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Abstract In this paper we investigate two numerical schemes for the simulation of
stochastic Volterra equations driven by space–time Lévy noise of pure-jump type.
The first one is based on truncating the small jumps of the noise, while the second one
relies on series representation techniques for infinitely divisible random variables.
Under reasonable assumptions, we prove for both methods L p- and almost sure
convergence of the approximations to the true solution of the Volterra equation. We
give explicit convergence rates in terms of the Volterra kernel and the characteristics
of the noise. A simulation study visualizes the most important path properties of the
investigated processes.

Keywords Simulation of SPDEs · Simulation of stochastic Volterra equations ·
Space–time Lévy noise · Stochastic heat equation · Stochastic partial differential
equation

1 Introduction

The aim of this paper is to investigate different simulation techniques for stochastic
Volterra equations (SVEs) of the form

Y (t, x) = Y0(t, x) +
∫ t

0

∫
Rd

G(t, x; s, y)σ (Y (s, y))Λ(ds, dy) , (t, x) ∈ R+ × R
d ,

(1)
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where G is a deterministic kernel function, σ a Lipschitz coefficient and Λ a Lévy
basis onR+×R

d of pure-jump typewith noGaussian part. In the purely temporal case
where no space is involved and the kernel G is sufficiently regular on the diagonal
{(t; s) ∈ R+ × R+ : t = s}, the existence and uniqueness of the solution Y to (1)
are established for general semimartingale integrators in [14]. The space–time case
(1) is treated in [5] for quite general Lévy bases. In particular, G is allowed to be
singular on the diagonal, which typically happens in the context of stochastic partial
differential equations (SPDEs) where G is the Green’s function of the underlying
differential operator. More details on the connection between SPDEs and the SVE
(1) are presented in Sect. 2, or can be found in [2, 5, 20].

Since in most cases there exists no explicit solution formula for the SVE (1), it
is a natural task to develop appropriate simulation algorithms. For SPDEs driven
by Gaussian noise, research on this topic is rather far advanced, see e.g. [7, 9, 21].
However, for SPDEs driven by jump noises such as non-Gaussian Lévy bases, the
related literature is considerably smaller, see [3] and the work of Hausenblas and
coauthors [8, 10, 11]. The case σ ≡ 1 has been treated in [4]. The contribution of
our paper can be summarized as follows:

• We propose and analyze two approximation schemes for (1), each of which
replaces the original noise by a truncated noise that only has finitely many atoms
on compact subsets of R+ ×R

d . For the first scheme, we simply cut off all jumps
whose size is smaller than a constant. For the second scheme, we use series rep-
resentation techniques for the noise as in [17] such that the jumps to be dropped
off are chosen randomly. Both methods have already been applied successfully to
the simulation of Lévy processes, cf. [1, 18].

• In the case where G originates from an SPDE, the crucial difference of our numer-
ical schemes to the Euler or finite element methods in the references mentioned
before is that we do not simulate small space–time increments of the noise but
successively the true jumps of the Lévy basis, which is an easier task given that
one usually only knows the underlying Lévy measure. It is important to recognize
that this is only possible because the noise Λ is of pure-jump type, and contains
neither a Gaussian part nor a drift. We shall point out in Sect. 6 how to relax this
assumption.

The remaining article is organized as follows: Sect. 2 gives the necessary back-
ground for theSVE (1). In particular,wepresent sufficient conditions for the existence
and uniqueness of solutions, and address the connection between (1) and SPDEs.
In Sect. 3 we construct approximations to the solution Y of (1) by truncating the
small jumps of the Lévy basis. We prove in Theorem 1 their L p-convergence, and
in some cases also their almost sure (a.s.) convergence to the target process Y . In
Sect. 4 we approximate the driving Lévy basis using series representation methods.
This leads to an algorithm that produces approximations again converging in the
L p-sense, sometimes also almost surely, to Y , see Theorem 2. In both theorems, we
find explicit L p-convergence rates that only depend on the kernel G and the charac-
teristics of Λ. Section5 presents a simulation study for the stochastic heat equation
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which highlights the typical path behaviour of stochastic Volterra equations. The
final Sect. 6 compares the two simulation algorithms developed in this paper and
discusses some further directions of the topic.

2 Preliminaries

We start with a summary of notations that will be employed in this paper.

R+ The set [0,∞) of positive real numbers
N The natural numbers {1, 2, . . .}
B A stochastic basis (Ω,F ,F = (Ft )t∈R+ ,P) satisfying the usual hypo-

theses of completeness and right-continuity
Ω̄ ,Ω̃ Ω̄ := Ω × R+ and Ω̃ := Ω × R+ × R

d where d ∈ N

B(Rd) The Borel σ -field on R
d

B̃b The collection of all bounded Borel sets of R+ × R
d

P The predictable σ -field onB or the collection of all predictable processes
Ω̄ → R

P̃ The productP ⊗B(Rd) or the collection allP ⊗B(Rd)-measurable
processes Ω̃ → R

P̃b The collection of sets in P̃ which are a subset of Ω × [0, k] × [−k, k]d

for some k ∈ N

δa The Dirac measure at a
p∗ p ∨ 1
L p The space L p(Ω,F ,P), p ∈ (0,∞) with ‖X‖L p := E[|X |p]1/p∗

L0 The space L0(Ω,F ,P) of all random variables on B endowed with the
topology of convergence in probability

B p
loc The set of all Y ∈ P̃ for which ‖Y (t, x)‖L p is uniformly bounded on

[0, T ] × R
d for all T ∈ R+ (p ∈ (0,∞))

Ac The complement of A within the superset it belongs to (which will be
clear from the context)

A − B {x − y : x ∈ A, y ∈ B}
−A {−x : x ∈ A}
Leb The Lebesgue measure on R

d (d should be clear from the context)
‖ · ‖ The Euclidean norm on R

d

C, C(T ) Two generic constants in R+, one dependent and one independent of T ,
whose values are irrelevant in this paper and may therefore change from
one place to the other

We suppose that the stochastic basis B supports a Lévy basis, that is, a mapping
Λ : P̃b → L0 with the following properties:
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• Λ(∅) = 0 a.s.
• For all pairwise disjoint sets (Ai )i∈N ⊂ P̃b with

⋃∞
i=1 Ai ∈ P̃b we have

Λ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

Λ(Ai ) in L0 . (2)

• (Λ(Ω × Bi ))i∈N is a sequence of independent random variables if (Bi )i∈N are
pairwise disjoint sets in B̃b.

• For every B ∈ Bb, Λ(Ω × B) has an infinitely divisible distribution.
• Λ(A) isFt -measurable when A ∈ P̃b and A ⊆ Ω × [0, t] × R

d for t ∈ R+.
• For every t ∈ R+, A ∈ P̃b and Ω0 ∈ Ft we have a.s.

Λ(A ∩ (Ω0 × (t,∞) × R
d)) = 1Ω0Λ(A ∩ (Ω × (t,∞) × R

d)) .

Just as Lévy processes are semimartingales and thus allow for an Itô integra-
tion theory, Lévy bases belong to the class of L0-valued σ -finite random measures.
Therefore, it is possible to define the stochastic integral

∫
R+×Rd

H(s, y)Λ(ds, dy)

for H ∈ P̃ that are integrable with respect to Λ, see [6] for the details.
Similarly to Lévy processes, there exist two notions of characteristics for Lévy

bases: one going back to [15, Proposition 2.1] that is based on the Lévy-Khintchine
formula and is independent ofF, and a filtration-based one that is useful for stochastic
analysis [6, Theorem 3.2]. For the whole paper, we will assume that both notions
coincide such thatΛ has a canonical decomposition under the filtration F of the form

Λ(dt, dx) = B(dt, dx) + Λc(dt, dx) +
∫
R

z1{|z|≤1} (μ − ν)(dt, dx, dz)

+
∫
R

z1{|z|>1} μ(dt, dx, dz) ,

where B is a σ -finite signed Borel measure on R+ × R
d , Λc a Lévy basis such that

Λ(Ω × B) is normally distributed with mean 0 and variance C(B) for all B ∈ B̃b,
and μ a Poisson measure on R+ ×R

d relative to F with intensity measure ν (cf. [12,
Definition II.1.20]). There exists also a σ -finite Borel measure λ on R+ × R

d such
that

B(dt, dx) = b(t, x) λ(dt, dx) , C(dt, dx) = c(t, x) λ(dt, dx) and

ν(dt, dx, dz) = π(t, x, dz) λ(dt, dx) (3)
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with two functions b : R+ ×R
d → R and c : R+ ×R

d → R+ as well as a transition
kernel π from (R+ ×R

d ,B(R+ ×R
d)) to (R,B(R)) such that π(t, x, ·) is a Lévy

measure for each (t, x) ∈ R+ × R
d .

We have already mentioned in the introduction that we will assume

C = 0 (4)

throughout the paper. For simplicity wewill alsomake two further assumptions: first,
that there exist b ∈ R and a Lévy measure π such that for all (t, x) ∈ R+ × R

d we
have

b(t, x) = b , π(t, x, ·) = π and λ(dt, dx) = d(t, x) ; (5)

second, that
Λ ∈ S ∪ V0 , (6)

where S is the collection of all symmetric Lévy bases and V0 is the class of Lévy
bases with locally finite variation and no drift, defined by the property that

∫
R

|z|1{|z|≤1} π(dz) < ∞ , and b0 := b −
∫
R

z1{|z|≤1} π(dz) = 0 .

Furthermore, if Λ has a finite first moment, that is,

∫
R

|z|1{|z|>1} π(dz) < ∞ , (7)

we define

B1(dt, dx) := b1 d(t, x) , b1 := b +
∫
R

z1{|z|>1} π(dz) ,

M(dt, dx) := Λ(dt, dx) − B1(dt, dx) =
∫
R

z (μ − ν)(dt, dx, dz) .

Next, let us summarize the most important facts regarding the SVE (1). All details
that are not explained can be found in [5]. First, many SPDEs of evolution type driven
by Lévy noise can be written in terms of (1), where G is the Green’s function of
the corresponding differential operator. Most prominently, taking G being the heat
kernel inRd , (1) is the so-calledmild formulation of the stochastic heat equation (with
constant coefficients and multiplicative noise). Typically for parabolic equations, the
heat kernel is very smooth in general but explodes on the diagonal t = s and x = y.
In fact, it is only p-fold integrable on [0, T ] × R

d for p < 1 + 2/d. In particular,
as soon as d ≥ 2, it is not square-integrable, and as a consequence, no solution to
the stochastic heat equation in the form (1) will exist for Lévy noises with non-zero
Gaussian component. This is another reason for including assumption (4) in this
paper.
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Second, let us address the existence and uniqueness problem for (1). By a solution
to this equation we mean a predictable process Y ∈ P̃ such that for all (t, x) ∈
R+ ×R

d , the stochastic integral on the right-hand side of (1) is well defined and the
equation itself for each (t, x) ∈ [0, T ] × R

d holds a.s. We identify two solutions as
soon as they aremodifications of each other.Given a number p ∈ (0, 2], the following
conditions A1–A6 guarantee a unique solution to (1) in B p

loc by [5, Theorem 3.1]:

A1. Y0 ∈ B p
loc is independent of Λ.

A2. σ : R → R is Lipschitz continuous, that is, there exists C ∈ R+ such that

|σ(x) − σ(y)| ≤ C |x − y| , x, y ∈ R . (8)

A3. G : (R+ ×R
d)2 → R is a measurable function with G(t, ·; s, ·) ≡ 0 for s > t .

A4. Λ satisfies (3)–(6) and ∫
R

|z|p π(dz) < ∞ . (9)

A5. If we define for (t, x), (s, y) ∈ R+ × R
d

G̃(t, x; s, y) := |G(t, x; s, y)|1{p>1,Λ/∈S } + |G(t, x; s, y)|p , (10)

then we have for all T ∈ R+

sup
(t,x)∈[0,T ]×Rd

∫ T

0

∫
Rd

G̃(t, x; s, y) d(s, y) < ∞ . (11)

A6. For all ε > 0 and T ∈ R+ there exist k ∈ N and a partition 0 = t0 < · · · <

tk = T such that

sup
(t,x)∈[0,T ]×Rd

sup
i=1,...,k

∫ ti

ti−1

∫
Rd

G̃(t, x; s, y) d(s, y) < ε . (12)

Apart from A1–A6, we will add another assumption in this paper:

A7. There exists a sequence (U N )N∈N of compact sets increasing to Rd such that
for all T ∈ R+ and compact sets K ⊆ R

d we have, as N → ∞,

r N
1 (T, K ) := sup

(t,x)∈[0,T ]×K

(∫ t

0

∫
(U N )c

|G(t, x; s, y)|1{p>1,Λ/∈S } d(s, y)

+
(∫ t

0

∫
(U N )c

|G(t, x; s, y)|p d(s, y)

)1/p∗ )
→ 0 . (13)

Conditions A6 and A7 are automatically satisfied if |G(t, x; s, y)| ≤ g(t − s, x − y)

for some measurable function g and A5 holds with G replaced by g. For A6 see
[5, Remark 3.3(3)]; for A7 choose U N := {x ∈ R

d : ‖x‖ ≤ N } such that for p > 1
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sup
(t,x)∈[0,T ]×K

∫ t

0

∫
(U N )c

|G(t, x; s, y)|p d(s, y)

≤ sup
(t,x)∈[0,T ]×K

∫ t

0

∫
(U N )c

g p(t − s, x − y) d(s, y)

= sup
x∈K

∫ T

0

∫
x−(U N )c

g p(s, y) d(s, y) ≤
∫ T

0

∫
K−(U N )c

g p(s, y) d(s, y)

→ 0 as N → ∞

by the fact that K − (U N )c ↓ 0. A similar calculation applies to the case p ∈ (0, 1]
and the first term in r N

1 (T, K ).

Example 1 We conclude this section with the stochastic heat equation in Rd , whose
mild formulation is given by the SVE (1) with

G(t, x; s, y) = g(t − s, x − y) , g(t, x) = exp(−‖x‖2/(4t))

(4π t)d/2
1[0,t)(s) (14)

for (t, x), (s, y) ∈ R+ ×R
d . We assume that Y0 and σ satisfy conditions A1 and A2,

respectively. Furthermore, we suppose that (3)–(6) are valid, and that (9) holds with
some p ∈ (0, 1 + 2/d). It is straightforward to show that then A3–A6 are satisfied
with the same p. Let us estimate the rate r N

1 (T, K ) for T ∈ R+, K := {‖x‖ ≤ R}
with R ∈ N, and U N := {‖x‖ ≤ N }. We first consider the case p ≤ 1 or Λ ∈ S .
Since K − (U N )c = (U N−R)c for N ≥ R, the calculations after A7 yield (Γ (·, ·)
denotes the upper incomplete gamma function and p(d) := 1 + (1 − p)d/2)

(r N
1 (T, K ))p∗ ≤

∫ T

0

∫
(U N−R)c

g p(t, x) d(t, x) =
∫ T

0

∫ ∞
N−R

exp(−pr2/(4t))

(4π t)pd/2
rd−1 dr dt

= C
∫ T

0
t p(d)−1Γ

(
d

2
,

p(N − R)2

4t

)
dt

= C(T )

(
(p(d))−1Γ

(
d

2
,

p(N − R)2

4T

)
−

(
p(N − R)2

4T

)p(d)

× Γ

(
d

2
− p(d),

p(N − R)2

4T

) )

≤ C(T ) exp

(
− p(N − R)2

4T

)
(N − R)d−2 , (15)

which tends to 0 exponentially fast as N → ∞. If p > 1 and Λ /∈ S , it follows
from formula (13) that we need an extra summand for r N

1 (T, K ), namely (15) with
p = 1.
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3 Truncation of Small Jumps

In this section we approximate Eq. (1) by cutting off the small jumps of Λ. To this
end, we first define for each N ∈ N

G N (t, x; s, y) := G(t, x; s, y)1U N (y) , (t, x), (s, y) ∈ R+ × R
d , (16)

where the meaning of the sets U N is explained in A7. Furthermore, we introduce

r N
2 :=

(∫
[−εN ,εN ]

|z|p π(dz)

)1/p∗

, r N
3 :=

∣∣∣∣
∫

[−εN ,εN ]
z1{p>1,Λ/∈S } π(dz)

∣∣∣∣ , (17)

where (εN )N∈N ⊆ (0, 1) satisfies εN → 0 as N → ∞. Condition A4 implies that
r N
2 , r N

3 → 0 as N → ∞. Next, defining truncations of the Lévy basis Λ by

ΛN (dt, dx) :=
∫

[−εN ,εN ]c
z μ(dt, dx, dz) , (18)

our approximation scheme for the solution Y to (1) is given as:

Y N (t, x) := Y0(t, x) +
∫ t

0

∫
Rd

G N (t, x; s, y)σ (Y N (s, y))ΛN (ds, dy) (19)

for (t, x) ∈ R+×R
d . Indeed,Y N can be simulated exactly because for all T ∈ R+ the

truncation ΛN only has a finite (random) number RN (T ) of jumps on [0, T ] × U N ,
say at the space–time locations (τ N

i , ξ N
i ) with sizes J N

i . This implies that we have
the following alternative representation of Y N (t, x) for (t, x) ∈ [0, T ] × R

d :

Y N (t, x) = Y0(t, x) +
RN (T )∑

i=1

G(t, x; τ N
i , ξ N

i )σ (Y N (τ N
i , ξ N

i ))J N
i 1{τ N

i <t} . (20)

What remains to do is to simulate Y N (τ N
i , ξ N

i ), i = 1, . . . , RN (T ), iteratively, from
which the values Y (t, x) for all other (t, x) ∈ [0, T ] × R

d can be computed.
The following algorithm summarizes up the simulation procedure:

Algorithm 1 Consider a finite gridG ⊆ [0, T ]×R
d . For each N proceed as follows:

1. Draw a Poisson random variable RN (T ) with parameter

RN (T ) :=
∫ T

0

∫
U N

∫
R

1{z∈[−εN ,εN ]c} ν(dt, dx, dz) = TLeb(U N )π
([−εN , εN ]c) .
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2. For i = 1, . . . , RN (T ):

a. Draw a pair (τ N
i , ξ N

i ) with uniform distribution from [0, T ] × U N .
b. Draw J N

i from [−εN , εN ]c with distribution π/π
([−εN , εN ]c).

c. Rename (τ N
i , ξ N

i , J N
i : i = 1, . . . , RN (T )) by sorting (τ N

i : i = 1, . . . ,
RN (T )) in increasing order.

3. For each i = 1, . . . , RN (T ) and (t, x) ∈ G simulate Y0(τ
N
i , ξ N

i ) and Y0(t, x).
4. For each i = 1, . . . , RN (T ) set

Y N (τ N
i , ξ N

i ) := Y0(τ
N
i , ξ N

i ) +
i−1∑
j=1

G(τ N
i , ξ N

i ; τ N
j , ξ N

j )σ (Y N (τ N
j , ξ N

j ))J N
j .

5. For each (t, x) ∈ G define Y N (t, x) via (20).

The next theorem determines the convergence behaviour of (19) to (1).

Theorem 1 Grant assumptions A1–A7 under which the SVE (1) has a unique solu-
tion in B p

loc. Then Y N as defined in (19) belongs to B p
loc for all N ∈ N, and for all

T ∈ R+ and compact sets K ⊆ R
d there exists a constant C(T ) ∈ R+ independent

of N and K such that

sup
(t,x)∈[0,T ]×K

‖Y (t, x) − Y N (t, x)‖L p ≤ C(T )(r N
1 (T, K ) + r N

2 + r N
3 ) . (21)

Furthermore, if
∑∞

N=1(r
N
1 (T, K ) + r N

2 + r N
3 )p∗

< ∞ is fulfilled, then we also have
for all (t, x) ∈ [0, T ] × K that Y N (t, x) → Y (t, x) a.s. as N → ∞.

Proof It is obvious that |G N | ≤ |G| pointwise and that we have νN ≤ ν for the third
characteristic νN of ΛN . Thus, A1–A6 are still satisfied when G and ν are replaced
by G N and νN (if Λ ∈ S , also ΛN ∈ S ). So Y N as a solution to (1) with G N and
ΛN instead of G andΛ belongs to B p

loc as well. Moreover, for all T ∈ R+ there exists
C(T ) ∈ R+ independent of N ∈ N such that

sup
(t,x)∈[0,T ]×Rd

‖Y N (t, x)‖L p ≤ C(T ) , N ∈ N . (22)

We only sketch the proof for this statement. In fact, using [5, Lemma 6.1(1)] it can
be shown that the left-hand side of (22) satisfies an inequality of the same type as in
Lemma 6.4(3) of the same paper. In particular, it is bounded by a constant C N (T )

that depends on N only through |G N | and νN , and that this constant is only increased
if we replace |G N | and νN by the larger |G| and ν. In this way, we obtain an upper
bound C(T ) that does not depend on N .
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Next, we prove the convergence of Y N to Y as stated in (21). We have

Y (t, x) − Y N (t, x) =
∫ t

0

∫
Rd

[G(t, x; s, y) − G N (t, x; s, y)]σ(Y (s, y))Λ(ds, dy)

+
∫ t

0

∫
Rd

G N (t, x; s, y)[σ(Y (s, y)) − σ(Y N (s, y))] Λ(ds, dy)

+
∫ t

0

∫
Rd

G N (t, x; s, y)σ (Y N (s, y)) (Λ − ΛN )(ds, dy)

=: I N
1 (t, x) + I N

2 (t, x) + I N
3 (t, x) , (t, x) ∈ R+ × R

d . (23)

If p > 1, we have by (8), Hölder’s inequality and the Burkholder-Davis-Gundy-
inequality

‖I N
2 (t, x)‖L p ≤

∥∥∥∥
∫ t

0

∫
Rd

G N (t, x; s, y)[σ(Y (s, y)) − σ(Y N (s, y))] B1(ds, dy)

∥∥∥∥
L p

+
∥∥∥∥
∫ t

0

∫
Rd

G N (t, x; s, y)[σ(Y (s, y)) − σ(Y N (s, y))] M(ds, dy)

∥∥∥∥
L p

≤ C

( (∫ t

0

∫
Rd

|G(t, x; s, y)| |B1|(ds, dy)

)p−1

×
∫ t

0

∫
Rd

|G(t, x; s, y)|‖Y (s, y) − Y N (s, y)‖p
L p |B1|(ds, dy)

)1/p

+ C

(∫ t

0

∫
Rd

|G(t, x; s, y)|p‖Y (s, y) − Y N (s, y)‖p
L p d(s, y)

)1/p

.

(24)

If p ∈ (0, 1], we have Λ ∈ V0 by (6) and (9), and thus Jensen’s inequality gives

‖I N
2 (t, x)‖L p = E

[(∫ t

0

∫
Rd

G N (t, x; s, y)[σ(Y (s, y)) − σ(Y N (s, y))]z μ(ds, dy, dz)

)p]

≤ E

[∫ t

0

∫
Rd

|G N (t, x; s, y)[σ(Y (s, y)) − σ(Y N (s, y))]z|p ν(ds, dy, dz)

]

≤ C
∫ t

0

∫
Rd

|G(t, x; s, y)|p‖Y (s, y) − Y N (s, y)‖L p d(s, y) . (25)

Inserting (24) and (25) back into (23), we have for wN (t, x) := ‖Y (t, x) −
Y N (t, x)‖L p

wN (t, x) ≤ C(T )

( (∫ t

0

∫
Rd

|G(t, x; s, y)|1{p>1,Λ/∈S }(wN (s, y))p d(s, y)

)1/p

+
(∫ t

0

∫
Rd

|G(t, x; s, y)|p(wN (s, y))p∗
d(s, y)

)1/p∗ )

+ ‖I N
1 (t, x) + I N

3 (t, x)‖L p , (t, x) ∈ [0, T ] × R
d .
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By a Gronwall-type estimate, which is possible because of A5 (see the proof of [5,
Theorem 4.7(3)] for an elaboration of an argument of this type), we conclude

sup
(t,x)∈[0,T ]×K

wN (t, x) ≤ C(T ) sup
(t,x)∈[0,T ]×K

‖I N
1 (t, x) + I N

3 (t, x)‖L p .

where C(T ) does not depend on K because of (11). For I N
1 (t, x) we have for p > 1

‖I N
1 (t, x)‖L p ≤

∥∥∥∥
∫ t

0

∫
Rd

[G(t, x; s, y) − G N (t, x; s, y)]σ(Y (s, y)) B1(ds, dy)

∥∥∥∥
L p

+
∥∥∥∥
∫ t

0

∫
Rd

[G(t, x; s, y) − G N (t, x; s, y)]σ(Y (s, y)) M(ds, dy)

∥∥∥∥
L p

≤ C

(
1 + sup

(t,x)∈[0,T ]×Rd
‖Y (t, x)‖L p

)( ∫ t

0

∫
(U N )c

|G(t, x; s, y)| |B1|(ds, dy)

+
(∫ t

0

∫
(U N )c

|G(t, x; s, y)z|p ν(ds, dy, dz)

)1/p )

≤ C(T )r N
1 (T, K ) , (26)

uniformly in (t, x) ∈ [0, T ] × K . In similar fashion one proves the estimate (26) for
p ∈ (0, 1], perhaps with a different C(T ). Next, when p > 1, (22) implies

‖I N
3 (t, x)‖L p =

∥∥∥∥
∫ t

0

∫
Rd

∫
[−εN ,εN ]

G N (t, x; s, y)σ (Y N (s, y))z (μ − ν)(ds, dy, dz)

∥∥∥∥
L p

+
∥∥∥∥
∫ t

0

∫
Rd

∫
[−εN ,εN ]

G N (t, x; s, y)σ (Y N (s, y))z1{Λ/∈S } ν(ds, dy, dz)

∥∥∥∥
L p

≤ C(T )

( (∫ t

0

∫
Rd

∫
[−εN ,εN ]

|G(t, x; s, y)z|p π(dz) d(s, y)

)1/p

+
∣∣∣∣
∫

[−εN ,εN ]
z1{Λ/∈S } π(dz)

∣∣∣∣
∫ t

0

∫
Rd

|G(t, x; s, y)|1{Λ/∈S } d(s, y)

)

≤ C(T )(r N
2 + r N

3 ) .

The case p ∈ (0, 1] can be treated similarly, cf. the estimation of I N
2 (t, x) above.

It remains to prove that for each (t, x) ∈ [0, T ] × K the convergence of Y N (t, x)

to Y (t, x) is almost sure when r N
1 (T, K ), r N

2 and r N
3 are p∗-summable. To this end,

choose an arbitrary sequence (aN )N∈N ⊆ (0, 1) converging to 0 such that

∞∑
N=1

AN < ∞ with AN := (r N
1 (T, K ) + r N

2 + r N
3 )p∗

a p
N

.

Such a sequence always exists, see [13, Theorem 175.4], for example. So by (21)
and Chebyshev’s inequality we derive
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P
[|Y (t, x) − Y N (t, x)| ≥ aN

] ≤ ‖Y (t, x) − Y N (t, x)‖p∗
L p

a p
N

≤ C(T )AN .

Our assertion now follows from the Borel-Cantelli lemma. �

Example 2 The rates r N
2 and r N

3 from (17) only depend on the underlying Lévy
measure π . Let p, q ∈ (0, 2] with q < p, and assume that

∫
[−1,1] |z|q π(dz) < ∞.

If Λ ∈ V0, assume that q < 1. Then

r N
2 =

(∫
[−εN ,εN ]

|z|p π(dz)

)1/p∗

≤
(∫

[−1,1]
|z|q ν(dz)(εN )p−q

)1/p∗

= O
(
(εN )(p−q)/p∗)

,

r N
3 =

∣∣∣∣
∫

[−εN ,εN ]
z1{p>1,Λ/∈S } π(dz)

∣∣∣∣ ≤ O
(
(εN )1−q1{p>1,Λ/∈S }

)
.

For instance, if εN = 1/N k , then the sequence (r N
2 )p∗ = O(N−k(p−q)) is summable

for all k > (p − q)−1. So in order to obtain a.s. convergence of Y N (t, x) → Y (t, x),
a sufficient condition is to choose the truncation rates εN small enough. Similar
conclusions are valid for the other two rates r N

1 (T, K ) and r N
3 .

4 Truncation via Series Representations

Another approach to the simulation of (1) uses series representations for the Lévy
basis. The idea, going back to [16, 17] and already applied to the simulation of Lévy
processes [18], is to choose the jumps to be simulated in a random order. Instead of
selecting the big jumps first and the smaller jumps later as in Sect. 3, we only choose
the big jumps first more likely. The details are as follows: we fix a finite time horizon
T ∈ R+ and, recalling A7, a partition (Qi )i∈N of Rd into pairwise disjoint compact
sets such that U N = ⋃N

i=1 Qi . We now assume that the jump measure μ of Λ on the
strip [0, T ] × R

d × R can be represented in the form

μ(dt, dx, dz) =
∞∑

i=1

μi (dt, dx, dz) ,

μi (dt, dx, dz) =
∞∑
j=1

δ(τ i
j ,ξ

i
j ,H(Γ i

j ,V
i
j ))

(dt, dx, dz) a.s. , (27)

where H : (0,∞) × R → R is a measurable function, satisfying H(·, v) =
−H(·,−v) for all v ∈ R when Λ ∈ S , and the random variables involved have
the following properties for each i ∈ N:
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• (τ i
j : j ∈ N) and (ξ i

j : j ∈ N) are i.i.d. sequences with uniform distribution on
[0, T ] and Qi , respectively.

• (Γ i
j : j ∈ N) is a random walk whose increments are exponentially distributed

with mean 1/T .
• (V i

j : j ∈ N) is an i.i.d. sequence with distribution F on R, which we should be
able to simulate from. We assume that F is symmetric when Λ ∈ S .

• The sequences τ i , ξ i , Γ i and V i are independent from each other.
• (τ i , ξ i , Γ i , V i ) is independent from (τ k, ξ k, Γ k, V k : k �= i).

Because of (6), μ can always be written in the form (27) whenever the underlying
stochastic basis is rich enough.We give three examples of such series representations.

Example 3 The proofs that the following choices are valid can be found in [18,
Sect. 3], where also more examples are discussed.

1. LePage’s method: we set F := (δ−1 + δ1)/2 and H(r,±1) := ±ρ←(r,±1),
where ρ←(r,±1) = inf{x ∈ (0,∞) : π(±[x,∞)) < r} for r ∈ (0,∞).

2. Bondesson’s method: we assume that π(A) = ∫ ∞
0 F(A/g(t)) dt for A ∈ B(Rd)

with some non-increasing g : R+ → R+. Then we define H(r, v) := g(r)v.
3. Thinning method: we choose F in such a way that Q is absolutely continuous

with respect to F with density q, and define H(r, v) := v1{q(v)≥r}.

Our approximation scheme is basically the same as in Sect. 3: we define G N by
(16) and Y N by (19), with the difference that ΛN on [0, T ] × R

d is now defined as

ΛN (dt, dx) :=
∫
R

z μN (dt, dx, dz) ,

μN (dt, dx, dz) :=
∞∑

i=1

∑
j : Γ i

j ≤N

δ(τ i
j ,ξ

i
j ,H(Γ i

j ,V
i
j ))

(dt, dx, dz) . (28)

We can therefore rewrite Y N (t, x) for (t, x) ∈ [0, T ] × R
d as

Y N (t, x) = Y0(t, x) +
N∑

i=1

∑
j : Γ i

j ≤N

G(t, x; τ i
j , ξ

i
j )σ (Y N (τ i

j , ξ
i
j ))H(Γ i

j , V i
j )1{τ i

j <t} .

(29)
This yields the following simulation algorithm:

Algorithm 2 Let G be a finite grid in [0, T ] × R
d and N ∈ N.

1. For each i = 1, . . . , N set j := 1 and repeat the following:

a. Draw Ei
j from an exponential distribution with mean 1/T .

b. Define Γ i
j := Γ i

j−1 + Ei
j (Γ

i
0 := 0).

c. If Γ i
j > N , set Ji := j − 1 and leave the loop; otherwise set j := j + 1.
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2. For each i = 1, . . . , N and j = 1, . . . , Ji simulate independently

a. a pair (τ i
j , ξ

i
j ) with uniform distribution on [0, T ] × Qi ;

b. a random variable V i
j with distribution F ;

c. the random variable Y0(τ
i
j , ξ

i
j ).

3. Sort the sequence (τ i
j : i = 1, . . . , N , j = 1, . . . , Ji ) in increasing order, yielding

sequences (τi , ξi , Γi , Vi : i = 1, . . . ,
∑N

j=1 Jj ). Now define

Y N (τi , ξi ) := Y0(τi , ξi ) +
i−1∑
j=1

G(τi , ξi ; τ j , ξ j )σ (Y N (τ j , ξ j ))H(Γ j , Vj ) .

4. For each (t, x) ∈ G simulate Y0(t, x) and define Y (t, x) by (29).

We can now prove a convergence theorem for Y N to Y , similar to Theorem 1. Define

r N
2 :=

(∫ ∞

N

∫
R

|H(r, v)|p F(dv) dr

)1/p∗

,

r N
3 :=

∣∣∣∣
∫ ∞

N

∫
R

H(r, v)1{p>1,Λ/∈S } F(dv) dr

∣∣∣∣ . (30)

Theorem 2 Grant assumptions A1–A7 under which the SVE (1) has a unique solu-
tion in B p

loc. Further suppose that the jump measure μ of Λ has a representation in
form of (27). Then Y N as defined in (29) belongs to B p

loc for all N ∈ N, and for all
T ∈ R+ and compact sets K ⊆ R

d there exists a constant C(T ) ∈ R+ independent
of N and K such that

sup
(t,x)∈[0,T ]×K

‖Y (t, x) − Y N (t, x)‖L p ≤ C(T )(r N
1 (T, K ) + r N

2 + r N
3 ) . (31)

If
∑∞

N=1(r
N
1 (T, K )+r N

2 +r N
3 )p∗

< ∞, then we also have for all (t, x) ∈ [0, T ]× K
that Y N (t, x) → Y (t, x) a.s. as N → ∞.

Proof We start with some preliminaries. It follows from (27) and [18, Proposi-
tion 2.1] that on [0, T ] × R

d × R we have ν = ν̄ ◦ h−1 where ν̄(dt, dx, dr, dv) =
dt dx dr F(dv) and h(t, x, r, v) = (t, x, H(r, v)). Therefore, conditions (6) and (9)
imply that ∫ ∞

0

∫
R

|H(r, v)|p F(dv) dr =
∫
R

|z|p π(dz) < ∞ ,

and
∫ ∞

0

∫
R

|H(r, v)|1{p>1,Λ/∈S } F(dv) dr =
∫
R

|z|1{p>1,Λ/∈S } π(dz) < ∞ .
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Consequently, r N
2 and r N

3 are well defined and converge to 0 when N → ∞. Sim-
ilarly, the compensator νN of the measure μ − μN is given by νN (dt, dx, dz) =
dt dx πN (dz), where πN = (Leb ⊗ F) ◦ H−1

N and HN (r, v) = H(r, v)1(N ,∞)(r).
For the actual proof of Theorem2 one can basically follow the proof of Theorem1.

Only the estimation of I N
3 (t, x) as defined in (23) is different, which we shall carry

out now. In the case of p > 1, we again use the Burkholder-Davis-Gundy inequality
and obtain for (t, x) ∈ [0, T ] × R

d

‖I N
3 (t, x)‖L p =

∥∥∥∥
∫ t

0

∫
Rd

∫
R

G N (t, x; s, y)σ (Y N (s, y))z (μN − νN )(ds, dy, dz)

∥∥∥∥
L p

+
∥∥∥∥
∫ t

0

∫
Rd

∫
R

G N (t, x; s, y)σ (Y N (s, y))z1{Λ/∈S } νN (ds, dy, dz)

∥∥∥∥
L p

≤ C(T )

((∫ t

0

∫
Rd

∫ ∞

N

∫
R

|G(t, x; s, y)H(r, v)|p F(dv) dr d(s, y)

)1/p

+
∫ t

0

∫
Rd

|G(t, x; s, y)|
∣∣∣∣
∫ ∞

N

∫
R

H(r, v)1{Λ/∈S } F(dv) dr

∣∣∣∣ d(s, y)

)

≤ C(T )(r N
2 + r N

3 ) .

The case p ∈ (0, 1] is treated analogously. One only needs to replace μN − νN by
μN and estimate via Jensen’s inequality. �

Example 4 (Continuation of Example 3)We calculate the rates r N
2 and r N

3 from (30)
for the series representations given in Example 3. We assume that p, q ∈ (0, 2] with
q < p are chosen such that

∫
[−1,1] |z|q π(dz) < ∞, and q < 1 if Λ ∈ V0. For all

three examples we use the fact that π = (Leb ⊗ F) ◦ H−1 and that r > N implies
|H(r, v)| ≤ |H(N , v)| for all v ∈ R.

1. LePage’s method: We have

(r N
2 )p∗ =

∫ ∞

N

|H(r, 1)|p + |H(r,−1)|p

2
dr ≤ 1

2

∫
[H(N ,−1),H(N ,1)]

|z|p π(dz)

≤ 1

2

∫
[H(1,−1),H(1,1)]

|z|q π(dz)(|H(N ,−1)| ∨ |H(N , 1)|)p−q ,

and therefore

r N
2 = O

(
(ρ←(N , 1) ∨ ρ←(N ,−1))(p−q)/p∗)

,

r N
3 = O

(
(ρ←(N , 1) ∨ ρ←(N ,−1))1−q1{p>1,Λ/∈S }

)
.

2. Bondesson’s method: Since H(r, v) = g(r)v and g is non-increasing, we obtain

(r N
2 )p∗ =

∫ ∞

N

∫
R

|g(r)v|p F(dv) dr ≤ (g(N ))p−q
∫ ∞

0
gq(r) dr

∫
R

|v|p F(dv) ,
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and consequently

r N
2 = O

(
g(N )(p−q)/p∗)

, r N
3 = O

(
g(N )1−q1{p>1,Λ/∈S }

)
.

3. Thinning method: Here we have

r N
2 =

(∫
R

∫ q(v)∨N

N
|v|p dr F(dv)

)1/p∗

=
(∫

R

|v|p (q(v) − N ) ∨ 0

q(v)
π(dv)

)1/p∗

≤
(∫

R

|z|p1{q(v)≥N } π(dz)

)1/p∗
,

r N
3 ≤

∫
R

|z|1{q(v)≥N }1{p>1,Λ/∈S } π(dz) .

In most situations, there exist (εN )N∈N ⊆ R+ with εN → 0 as N → ∞ such that
{q(v) ≥ N } ⊆ [−εN , εN ]. In this case, one can apply the estimates in Example 2.

5 Simulation Study

In this section we visualize the sample path behaviour of the stochastic heat equation
from Example 2 via a simulation study, using MATLAB programs from [4]. We take
Λ to be a Lévy basis without drift, whose Lévymeasureπ is that of a gamma process,
i.e.

π(dz) = γ z−1 exp (−λz)1{z>0} dz

with two parameters γ, λ > 0. In the figures below their values are always γ = 10
and λ = 0.1. Furthermore, we set Y0 ≡ 0 and σ ≡ 1. Especially the latter choice
simplifies the subsequent discussion a lot, but none of the issues we address below
relies on this assumption. Thus, the process we would like to simulate is

Y (t, x) =
∫ t

0

∫
Rd

g(t − s, x − y)Λ(ds, dy) , (t, x) ∈ R+ × R
d , (32)

with g being the heat kernel given in (14). In order to understand the path properties
of Y , it is important to notice that g is smooth on the whole R+ × R

d except at
the origin where it explodes. More precisely, for every t ∈ (0,∞) the function
x �→ g(t, x) is the Gaussian density with mean 0 and variance 2t , which is smooth
and assumes its maximum at 0. Also, for every x �= 0, the function t �→ g(t, x) is
smooth (also at t = 0), with maximum at t = ‖x‖2/(2d). However, if x = 0, then
g(t, 0) = (4π t)−d/2 has a singularity at t = 0.

These analytical properties have direct consequences on the sample paths of Y .
When Λ is of compound Poisson type, that is, has only finitely many atoms on
compact sets, it can be readily seen from (32) that the evolution of Y after a jump J
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at (τ, ξ) follows the shape of the heat kernel until a next jump arrives. In particular,
for x = ξ , Y (t, x) jumps to infinity at τ , and decays in t like J (4π(t − τ))−d/2

afterwards. But for every x �= ξ , the evolution t �→ Y (t, x) is smooth at t = τ . In
fact, it first starts to increase until t = τ + ‖x − ξ‖2/(2d) and then decays again.
As a consequence, in space dimension 1, the space–time plot of Y shows a basically
smoothly evolving path, only interrupted with slim poles at the jump locations of
Λ; see the case N = 50 in Fig. 1. However, when Λ has infinite activity, that is,
has infinitely many jumps on any non-empty open set, then it is known from [16,
Theorem 4] that on any such set Y is unbounded, at least with positive probability.
Therefore, the space–time plots of the approximations of Y with finitely many jumps
must be treated with caution: in the limiting situation, no smooth area exists any
more, but there will be a dense subset of singularities on the plane, which is in line
with Fig. 1.

Another interesting observation, however, is the following: if we consider a count-
able number of x- or t-sections of Y (for x ∈ R

d , the x-section of Y is given by the
function t �→ Y (t, x); for t ∈ R+, the t-section of Y is the function x �→ Y (t, x)),
then it is shown in [19, Sect. 2] that these are continuous with probability one. Intu-
itively, this is possible because a.s. the sections never hit a jump (although they are
arbitrarily close). For instance, Figs. 2 and 3 show t-sections of a realization of (32) in
one, respectively two space dimensions. So as long as we only take countably many
“measurements”, we do not observe the space–time singularities of Y but only its
relatively regular sections. In theory, this also includes the x-sections of the process
Y . But if we plot them for one space dimension as in Fig. 4, one would conjecture
from the simulation that they exhibit jumps in time. However, this is not true: the
jump-like appearance of the x-sections are due to the fact that g(·, x) resembles a

Fig. 1 Successive approximations of Y as given in (32) via Bondesson’s method in dimension 1
for (t, x) ∈ [0, 1] × [0, 1] with N ∈ {50, 100, 250, 500} jumps in the region [0, 1] × [−1, 2]
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Fig. 2 Several t-sections of the realization of Y shown in Fig. 1 with N = 500

Fig. 3 Several t-sections in the region [−1, 1]2 of a realization of Y in dimension 2 by Bondesson’s
method with N = 500 jumps within [0, 1] × [−2, 2]2
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Fig. 4 The x-section of the realization of Y as in Fig. 1 with N = 500 at x = 0.6 and the heat
kernel g(·, x) at x = 0.002

discontinuous function at t = 0 for small x . Of course, it follows right from the
definition (14) that all x-sections of g are smooth everywhere.

Remark 1 Throughout this paper we have taken the stochastic heat equation as our
key example for illustration purposes. Obviously, all theory developed in Sects. 3
and 4 holds under much more general assumptions, namely under A1–A7. However,
the path behaviour of SVEs as examined through a simulation in this section heavily
depends on the chosen kernel. While the path properties above are typical of kernels
that originate from parabolic type SPDEs, or more generally, that are smooth every-
where except for an explosive singularity at the origin, a completely different picture
arises when we consider bounded kernels. We refer to [2] and the references therein
for examples of such kernels in different fields of application. In the case of a simple
Ornstein-Uhlenbeck type kernel, a simulation study is carried out in [4, Chap. 5].

6 Conclusion and Outlook

In Sects. 3 and 4 we have presented two simulation algorithms for the SVE (1):
Algorithms 1 and 2. In Theorems 1 and 2we have determined the rate of convergence
of the approximations Y N to Y in the L p-sense. If these rates are small enough,
we have also proved a.s. convergence. Although the theoretical analysis of both
schemes lead to quite similar results regarding their convergence behaviour, there
are important differences which will decide on whether the one or the other method
is preferable in concrete situations. For the first method of truncating the small
jumps to work, one must be able to efficiently simulate from the truncated Lévy
measure π/π([−ε, ε]c) for small ε. For the second method, which relies on series
representations, the main challenge is to choose H and F in a way such that H
is explicitly known and F can be easily simulated from. For instance, if one uses
LePage’s method (see Example 3), then F = (δ−1+δ1)/2 is easily simulated, but for
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H , which is given by the generalized inverse tails of the underlying Lévy measure,
maybe no tractable expression exists.

Finally, let us comment on further generalizations of our results. Throughout this
paper, we have assumed that the driving noise Λ is a homogeneous Lévy basis, i.e.
satisfies (5). In fact, we have introduced this condition only for the sake of simplicity:
with a straightforward adjustment, all results obtained in this paper also hold for time-
and space-varying (but deterministic) characteristics. Another issue is the finite time
perspective which we have taken up for our analysis. An interesting question would
be under which conditions (1) has a stationary solution, and in this case, whether
one can simulate from it. Sufficient conditions for the existence and uniqueness of
stationary solutions to (1) are determined in [5, Theorem4.8].Under these conditions,
the methods used to derive Theorems 1 and 2 can indeed be extended to the case of
infinite time horizon. We leave the details to the reader at this point.

At last, also the hypothesis thatΛ is of pure-jump type can be weakened. IfΛ has
an additional drift (including the case where Λ has locally infinite variation and is
not symmetric) but still no Gaussian part, the approximations Y N in (19) or (29) will
contain a further term that is a Volterra integral with respect to the Lebesguemeasure.
So each time in between two simulated jumps, a deterministic Volterra equation has
to be solved numerically, which boils down to a deterministic PDE in the case where
G comes from an SPDE. For this subject, there exists a huge literature, which is,
of course, also very different to the stochastic case as considered above. If Λ also
contains a Gaussian part, then one has to apply techniques from the papers cited in
Sect. 1 and ours simultaneously. We content ourselves with referring to [22], who
numerically analyzes a Volterra equation driven by a drift plus a Brownian motion.
Finally, let us remark that if p = 2 (in particular, G must be square-integrable), it is
possible for some Lévy bases to improve the results of Sect. 3 if we do not neglect the
small jumps completely but approximate them via a Gaussian noise with the same
variance, cf. [1] in the case of Lévy processes.
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15. Rajput, B.S., Rosiński, J.: Spectral representations of infinitely divisible processes. Probab.

Theory Relat. Fields 82(3), 451–487 (1989)
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