
The Journal of Logic and
Algebraic Programming 48 (2001) 39–70

��� �����	
��

��� 	��
	
����	�
�����	����

www.elsevier.com/locate/jlap

Linearization in parallel pCRL

J.F. Groote a, c, A. Ponse a, b, Y.S. Usenko a,∗
a CWI, Department of Software Technology, P.O. Box 94079, 1090 GB Amsterdam, Netherlands

b Programming Research Group, University of Amsterdam, P.O. Box 41882, 1009 DB Amsterdam, Netherlands
c Computing Science Department, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven,

Netherlands

Received 19 September 2000; received in revised form 22 December 2000; accepted 29 January 2001

Abstract

We describe a linearization algorithm for parallel pCRL processes similar to the one implemented
in the linearizer of the �CRL Toolset. This algorithm finds its roots in formal language theory: the
‘grammar’ defining a process is transformed into a variant of Greibach Normal Form. Next, any
such form is further reduced to linear form, i.e., to an equation that resembles a right-linear, data-
parametric grammar. We aim at proving the correctness of this linearization algorithm. To this end
we define an equivalence relation on recursive specifications in �CRL that is model independent and
does not involve an explicit notion of solution. © 2001 Elsevier Science Inc. All rights reserved.

Keywords: �CRL; Process algebra; Linearization of recursive specifications

1. Introduction

In this paper we address the issue of linearization of recursive specifications in the
specification language micro Common Representation Language (�CRL, [16,20]). The
language �CRL has been developed under the assumption that an extensive and math-
ematically precise study of the basic constructs of specification languages is fundamental
to an analytical approach of much richer (and more complicated) specification languages
such as SDL [33], LOTOS [24], PSF [26,27] and CRL [32]. Moreover, it is assumed that
�CRL and its proof theory provide a solid basis for the design and construction of tools for
analysis and manipulation of distributed systems.

The language �CRL offers a uniform framework for the specification of data and pro-
cesses. Data are specified by equational specifications: one can declare sorts and functions
working upon these sorts, and describe the meaning of these functions by equational
axioms. Processes are described in process algebraic style, where the particular process
syntax stems from ACP [2,4,14], extended with data-parametric ingredients: there are con-

∗ Corresponding author. Tel.: +31-20-5924222; fax: +31-20-5924199.
E-mail address: ysu@cwi.nl (Y.S. Usenko).

1567-8326/01/$ - see front matter � 2001 Elsevier Science Inc. All rights reserved.
PII: S 1 5 6 7 - 8 3 2 6 (0 1) 0 0 0 0 5 - 4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301654448?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

40 J.F. Groote et al. / Journal of Logic and Algebraic Programming 48 (2001) 39–70

structs for conditional composition, and for data-parametric choice and communication.
As is common in process algebra, infinite processes are specified by means of (finite
systems of) recursive equations. In �CRL such equations can also be data-parametric.
As an example, for action a and adopting standard semantics for �CRL, each solution
for the equation X = a · X specifies (or “identifies”) the process that can only repeatedly
execute a, and so does each solution for Y(17)where Y(n) is defined by the data-parametric
equation Y(n) = a · Y(n+ 1)with n ∈ Nat. An interesting subclass of systems of recursive
equations consists of those that contain only one linear equation. Such a system is called an
Linear Process Equation (LPE). Here, linearity refers both to the form of recursion allowed,
and to a restriction on the process operations allowed. The above examples X = a · X and
Y(n) = a · Y(n+ 1) are both LPEs. The restriction to LPE format still yields an expressive
setting (for example, it is not hard to show that each computable process over a finite set
of actions can be simply defined using an LPE containing only computable functions over
the natural numbers, cf. [30]). Moreover, in the design and construction of tools for �CRL,
LPEs establish a basic and convenient representation format. This applies, for example,
to tools for generation of labeled transition systems, or tools for optimization, deadlock
checking, or simulation. The LPE format stems from [7], in which the notion of a pro-
cess operator is distinguished, and a proof technique for dealing with convergent LPEs is
defined. Furthermore, there is a strong resemblance between LPEs and specifications in
UNITY [9,11]. The restriction to linear systems has a long tradition in process algebra.
For instance, restricting to so-called linear specifications, i.e., linear systems that in some
distinguished model have a unique solution per variable, various completeness results were
proved in a simple fashion (cf. [5,28]). However, without data-parametric constructs for
process specification, the expressiveness is limited: only regular processes can be defined.

The language �CRL is considered to be a specification language because it contains
ingredients that facilitate in a straightforward, natural way the modeling of distributed,
communicating processes. In particular, it contains constructs for parallelism, encapsu-
lation and abstraction. On the other hand, as mentioned above, LPEs constitute a basic
fragment of �CRL in terms of expressiveness and tool support. This explains our interest
in transforming any system of �CRL equations into an equivalent LPE, i.e., our interest
to linearize �CRL process definitions. In this paper we do not consider full �CRL as the
source language for linearization, and allow only a restricted use of the above-mentioned
constructs. In [7], pico CRL (pCRL) was defined as a fragment of �CRL. Essentially, pCRL
restricts �CRL to the basic operations of process algebra, with data parametric choice,
sequential composition and conditionals. Typically, in an LPE only pCRL syntax occurs.
Now, as the source language for linearization we take parallel pCRL, an extension of pCRL
in which a restricted use of more involved operations, such as ‖ (parallel composition), is
allowed. For example, in parallel pCRL the ‖ may not occur in the scope of a recursion.
Very often distributed processes have a straightforward definition in parallel pCRL. In [8],
a linearization procedure was sketched for a fragment of �CRL, which is similar to parallel
pCRL, by means of an informal explanation and examples.

We define the linearization algorithm on an abstract level, but in a very detailed manner.
We do not concern ourselves with the question if and in what way systems of recursive
equations over parallel pCRL define processes as their unique solutions (per variable).
Instead, we argue that the transformation is correct in a more general sense: we show that
linearization “preserves all solutions”. This means that if a particular parallel pCRL system
of recursive equations defines a series of solutions for its variables in some model, then the
LPE resulting from linearization has (at least) the same solutions for the associated process

J.F. Groote et al. / Journal of Logic and Algebraic Programming 48 (2001) 39–70 41

terms. Consequently, if the resulting LPE is such that one can infer that these solutions are
unique in some particular (process) model, then both systems define the same processes in
that model. In our algorithm, most transformation steps satisfy a stronger property: the set
of solutions is the same before and after the transformation. Both the detailed description
of the linearization algorithm itself, and the preservation of solutions, which technically
speaking is a notion of implication between process terms over different �CRL systems,
can be considered the contribution of this paper.

To the best of our knowledge, a first description of a transformation of (non-parallel)
pCRL into an LPE like format was given in [6]. Transformation procedures from BPA
to Greibach Normal Forms were outlined in [1] and presented in [23]. The implications
and equivalences of regular systems of recursive equations and recursive program schemes
w.r.t. their full sets of solutions were extensively studied by Courcelle in [12,13] and Ben-
son and Guessarian in [3]. The definitions in these papers have a lot in common with our
approach, but they could not be directly applied to the �CRL setting.

Structure of the paper. In Section 2 we discuss parallel pCRL. Furthermore, we define
implication and equivalence between pCRL process terms defined over different pCRL
specifications. Sections 3–5 fully describe the linearization procedure. In Section 3 we
describe in detail the first part of this transformation, which yields process definitions in
so-called extended Greibach normal form. In Section 4 we define the LPE format, and
describe the transformation from extended Greibach normal form into this format. Then, in
Section 5 we consider the effect of the typical parallel pCRL operations on LPEs. The paper
is ended with some conclusions in Section 6. In particular, we provide some comments on
our transformation, and relate our approach to other work.

2. Description of �CRL and parallel pCRL

In this section we first recall some general information about �CRL. Then we con-
sider (recursive) process definitions in detail, and define various notions of equivalence,
among which equivalence between process terms defined over different �CRL specifica-
tions. Next, we shortly discuss guardedness and dependency in process definitions. Finally,
we introduce pCRL and parallel pCRL as fragments of �CRL.

2.1. Theory of µCRL

First we define the signature and axioms for booleans which are quite standard and can
be found for instance in [10, p. 116]. We use equational logic to prove boolean identities.
Booleans are obligatory in any �CRL specification.

Definition 1. The signature of Bool consists of constants t, f, unary operation not and
binary operations and, or, eq.

Note 1 (Booleans). We use infix notation ¬,∧,∨,↔ for not, and, or, eq respectively.

Definition 2. The axioms of Bool are the ones presented in Table 1.

42 J.F. Groote et al. / Journal of Logic and Algebraic Programming 48 (2001) 39–70

Table 1
Axioms of Bool

x ∧ y = y ∧ x
(x ∧ y) ∧ z = x ∧ (y ∧ z)

x ∧ x = x

x ∧ (x ∨ y) = x

(x ∧ y) ∨ (x ∧ z) = x ∧ (y ∨ z)
x ∧ f = f

x ∧ ¬x = f
x ↔ y = (x ∧ y) ∨ (¬x ∧ ¬y)

x ∨ y = y ∨ x
(x ∨ y) ∨ z = x ∨ (y ∨ z)

x ∨ x = x

x ∨ (x ∧ y) = x

(x ∨ y) ∧ (x ∨ z) = x ∨ (y ∧ z)
x ∨ t = t

x ∨ ¬x = t

Next we define the generalized equational theory of �CRL by defining its signature and
the axioms. The axioms are taken from, or inspired by Refs. [18,19].

Note 2 (Vector notation). Tuples occur a lot in the language, so we use a vector notation
for them. Expression �d is an abbreviation for d1, . . . , dn, where dk are data variables.
Similarly, if type information is given,

−−→
d:D is an abbreviation for d1:D1, . . . , dn:Dn for

some natural number n. In case n = 0 the whole vector vanishes as well as brackets (if
any) surrounding it. For instance a(�d) is an abbreviation for a in this case (here a is
an action, this notion is introduced below). For all vectors �d and �e we have �d, �e = −→d, e.
Thus

−→
d, e is an abbreviation for d1, . . . , dn, e1, . . . , en

′
. We also write

−−→
d:D & e:E for

d1:D1, . . . , dn:Dn, e:E.
For any vector of variables �d, �f (�d) is an abbreviation for f 1(�d), . . . ,f m(�d) for some

m ∈ Nat and �f = f 1,. . . ,f m, where each f k(�d) is a data term that may contain elements
of �d as free variables. As with vectors of variables, in case m = 0 the vector of data
terms vanishes. We often use �t to express a data term vector without explicitly denoting its
variables.

Definition 3. The signature of �CRL consists of data sorts (or ‘data types’) including
Bool as defined above, and a distinct sort Proc of processes. Each data sort D is assumed
to be equipped with a binary function eq : D ×D→ Bool. (This requirement can be
weakened by demanding such functions only for data sorts that are parameters of commu-
nicating actions.) The operational signature of �CRL is parameterized by the set of action
labels ActLab and a partial commutative and associative function γ : ActLab× ActLab →
ActLab such that γ (a1, a2) ∈ ActLab implies that a1, a2 and γ (a1, a2) have parameters of
the same sorts. The process operations are the ones listed below:

• Actions a(�t) parameterized by data terms �t , where a ∈ ActLab is an action label. More
precisely, a is an operation a : �D→ Proc.

• Constants δ and τ of sort Proc.
• Binary operations+, ·, ‖, , | defined on Proc, where | is defined using γ .
• Unary Proc operations ∂H , τI , ρR for each set of action labelsH, I ⊆ ActLab and action

label renaming function R : ActLab → ActLab such that a and R(a) have parameters of
the same sorts.

• A ternary operation _ � _ � _ : Proc× Bool× Proc → Proc.
• Binders

∑
d :D defined on Proc, for each data variable d of sort D.

The partial function γ is called a communication function. If γ (a, b) = c, this indicates
that actions with labels a and b can synchronize, becoming action c, provided that the data
parameters of these actions are equal. The constant δ represents a deadlocked process and

J.F. Groote et al. / Journal of Logic and Algebraic Programming 48 (2001) 39–70 43

the constant τ represents some internal or hidden activity. The choice operator + and the
sequential composition operator · are well known. The merge operator ‖ represents parallel
composition. The (left merge) and | (communication merge) are auxiliary operations used
to equationally define ‖. The encapsulation operator ∂H (q) blocks actions in q with action
labels in the set H, which is especially used to enforce actions to communicate. The hiding
operator τI (q) with a set of action labels I = {a, b, . . .} hides actions with these labels in
q by renaming them to τ . The renaming operator ρR(q) where R is a function from action
labels to action labels renames each action with label a in q to an action with label R(a).
The operator p1 � c � p2 is the if c then p1 else p2 operator, where c is an expression of
type Bool. The sum operator

∑
d :D p expresses a (potentially infinite) summation p[d :=

d0] + p[d := d1] + · · · if data domainD = {d0, d1, . . .}, and p[d := di] is the term p with
all free occurrences of d replaced by di .

Definition 4. Axioms of �CRL are the ones presented in Tables 2–7. We assume that

• + binds weaker, and · binds stronger than other operations.
• x, y, z are variables of sort Proc.
• c, c1, c2 are variables of sort Bool.
• d, d1, dn, d ′, . . . are data variables (but d in

∑
d :D is not a variable).

• b stands for either a(�d), or τ , or δ.

• �d = −→d ′ is an abbreviation for eq(d1, d1′) ∧ · · · ∧ eq(dn, dn′), where �d = d1, . . . , dn

and
−→
d ′ = d1′, . . . , dn′.

• The axioms where p and q occur are schemas ranging over all terms p and q of sort Proc,
including those in which d occurs freely.

• The axiom (SUM2) is a scheme ranging over all terms r of sort Proc in which d does not
occur freely.

The axioms in Table 7 (actually only (SC3)) are used only for the parallel composition
elimination (Section 5). Note that due to (SC3), the axioms (CM6), (CM9), (CT2), (CD2),
(Cond9′) and (SUM7′) become derivable. The axioms (B1) and (B2) are not used in the
transformations described in this paper, so these transformations are also sound in models
where these two axioms do not hold.

We use many sorted equational logic for processes and booleans, while other data types
can have slightly different proof rules, which may include induction principles, quantifier
introduction principles, etc. The proof theory of �CRL consists of proof rules for the data
sorts, the rules of equational logic for the booleans, and the rules of generalized equational
logic [18] for the processes. Note that the rules of generalized equational logic do not
allow us to substitute terms containing free variables if they become bound. For example,
in axiom (SUM1) we cannot substitute a(d) for x.

Definition 5. Two process terms p1 and p2 are (unconditionally) equivalent (notation
p1 = p2) if p1 = p2 is derivable from the axioms of �CRL and boolean identities by
using many sorted generalized equational logic ({�CRL,BOOL} � p1 = p2). Here BOOL
is used to refer to the specification of the booleans, and the use of equational logic for
deriving boolean identities.

Two process terms p1 and p2 are conditionally equivalent if {�CRL,BOOL,DATA} �
p1 = p2. Here DATA is used to refer to the specification of all data sorts involved, and all
proof rules that may be applied.

44 J.F. Groote et al. / Journal of Logic and Algebraic Programming 48 (2001) 39–70

Table 2
Basic axioms of �CRL

x + y = y + x (A1)
x + (y + z) = (x + y)+ z (A2)

x + x = x (A3)
(x + y) · z = x · z+ y · z (A4)
(x · y) · z = x · (y · z) (A5)

x + δ = x (A6)
δ · x = δ (A7)
x · τ = x (B1)

z · (τ · (x + y)+ x) = z · (x + y) (B2)

Table 3
Axioms for parallel composition in �CRL

x‖y = (x y + y x)+ x|y (CM1)

b x = b · x (CM2)

(b · x) y = b · (x‖y) (CM3)

(x + y) z = x z+ y z (CM4)

(b · x)|b′ = (b|b′) · x (CM5)

b|(b′ · x) = (b|b′) · x (CM6)

(b · x)|(b′ · y) = (b|b′) · (x‖y) (CM7)
(x + y)|z = x|z+ y|z (CM8)
x|(y + z) = x|y + x|z (CM9)

a(�d)|a′(−→d ′) = γ (a, a′)(�d) � �d = −→d ′ � δ if γ (a, a′) is defined (CF1)

a(�d)|a′(−→d ′) = δ otherwise (CF2)
τ |b = δ (CT1)
b|τ = δ (CT2)
δ|b = δ (CD1)
b|δ = δ (CD2)

Table 4
Axioms for conditions in �CRL

x � t � y = x (Cond1)
x � f � y = y (Cond2)
x � c � y = x � c � δ + y � ¬c � δ (Cond3)

(x � c1 � δ) � c2 � δ = (x � c1 ∧ c2 � δ) (Cond4)
(x � c1 � δ)+ (x � c2 � δ) = x � c1 ∨ c2 � δ (Cond5)

(x � c � δ) · y = (x · y) � c � δ (Cond6)
(x + y) � c � δ = x � c � δ + y � c � δ (Cond7)

(x � c � δ) y = (x y) � c � δ (Cond8)
(x � c � δ)|y = (x|y) � c � δ (Cond9)

x|(y � c � δ) = (x|y) � c � δ (Cond9′)
(x � c � δ) · (y � c � δ) = (x · y) � c � δ (Sca)

2.2. Systems of recursion equations

We assume a fixed and infinite set Procnames = {X,Y,Z, . . .} of process names with
type information associated to them. We extend the sort Proc of processes by allowing
the process names in P ⊆ Procnames as variables of type �D→ Proc. The terms in the

J.F. Groote et al. / Journal of Logic and Algebraic Programming 48 (2001) 39–70 45

Table 5
Axioms for sums in �CRL∑

d:D
x = x (SUM1)

∑
e:D

r =
∑
d:D

(r[e := d]) (SUM2)

∑
d:D

p =
∑
d:D

p + p (SUM3)

∑
d:D

(p + q) =
∑
d:D

p +
∑
d:D

q (SUM4)

∑
d:D

(p · x) =

∑
d:D

p

 · x (SUM5)

∑
d:D

(p x) =

∑
d:D

p

 x (SUM6)

∑
d:D

(p|x) =

∑
d:D

p

 |x (SUM7)

∑
d:D

(x|p) = x|

∑
d:D

p

 (SUM7′)

∑
d:D

(∂H (p)) = ∂H

∑
d:D

p

 (SUM8)

∑
d:D

(τI (p)) = τI

∑
d:D

p

 (SUM9)

∑
d:D

(ρR(p)) = ρR

∑
d:D

p

 (SUM10)

∑
d:D

(p � c � δ)=

∑
d:D

p

 � c � δ (SUM12)

signature of �CRL extended with P are further called (�CRL) process terms and the set of
all of them is denoted by Terms(P). The free data variables in a process term are those not
bound by

∑
d :D occurrences. We write DVar for the set of all free and bound data variables

that can occur in a term.

Definition 6. A process equation is an equation of the form X(
−−−→
dX:DX) = qX, where X is a

process name with a list of data parameters
−−−→
dX:DX, and qX is a process term, in which only

the data variables from
−→
dX may occur freely. We write rhs(X) for qX, pars(X) for

−→
dX , and

type(X) for
−→
DX.

Definition 7. Let P ⊆ Procnames be a finite set of process names such that each process
name is uniquely typed. A (finite) non-empty set G of process equations over Terms(P) is
called a (finite) system of process equations if each process name in P occurs exactly once
at the left. The set of process names (with types) that appear within G is denoted as |G|
(so, |G| = P). We use rhs(X,G), pars(X,G) and type(X,G) to refer to the corresponding
parts of the equation for X in G.

46 J.F. Groote et al. / Journal of Logic and Algebraic Programming 48 (2001) 39–70

Table 6
Axioms for renaming operators in �CRL

∂H (b) = b if b = τ or (b = a(�d) and a /∈ H) (D1)
∂H (b) = δ otherwise (D2)

∂H (x + y) = ∂H (x)+ ∂H (y) (D3)
∂H (x · y) = ∂H (x) · ∂H (y) (D4)

∂H (x � c � δ)= ∂H (x) � c � δ (D5)

τI (b) = b if b = δ or (b = a(�d) and a /∈ I) (T1)
τI (b) = τ otherwise (T2)

τI (x + y) = τI (x)+ τI (y) (T3)
τI (x · y) = τI (x) · τI (y) (T4)

τI (x � c � δ)= τI (x) � c � δ (T5)
ρR(δ)= δ (RD)
ρR(τ)= τ (RT)

ρR(a(�d)) = R(a)(�d) (R1)
ρR(x + y) = ρR(x)+ ρR(y) (R3)
ρR(x · y) = ρR(x) · ρR(y) (R4)

ρR(x � c � δ)= ρR(x) � c � δ (R5)

Table 7
Axioms for standard concurrency in �CRL

(x y) z = x (y‖z) (SC1)
x|y = y|x (SC3)

(x|y)|z = x|(y|z) (SC4)

x|(y z)= (x|y) z (SC5)

Although the original definition of a �CRL specification allows us to have the same
process names with different types, we do not treat this possibility here as it would make
the explanation only more long-winded.

Definition 8. Let G be a finite system of process equations, X be a process name in it,
and �t be a data term vector of type type(X,G). Then the pair (X(�t),G) is called a process
definition. We use the abbreviation (X,G) for (X(pars(X,G)),G).

Example 9. Both G1 = {X = a · Y,Y = b · X,Z = X‖Y} and G2 = {T(n:Nat) = a(even
(n)) · T(S(n))}with even : Nat → Bool as expected and S : Nat → Nat the successor func-
tion, are examples of systems of process equations. All of (X,G1), (T,G2), (T(m),G2) are
process definitions.

Definition 10. Process term q directly depends on process name X if this name occurs in
q. Process name X directly depends on process name Y in a system of process equations G
if rhs(X,G) directly depends on Y. Process term q depends on X in G if it either directly
depends on it, or there is a sequence of process names Y1, . . . ,Yn = X such that q directly
depends on Y1 and for each i < n, Yi directly depends on Yi+1. Process name X depends
on Y in G if rhs(X,G) depends on it.

We note that the combination of the given data specification with a system G of process
equations determines a �CRL specification in the sense as defined in [20]. Such a specifica-

J.F. Groote et al. / Journal of Logic and Algebraic Programming 48 (2001) 39–70 47

tion depends on a finite subset act of ActLab and on comm, an enumeration of γ restricted
to the labels in act. So a finite system G implicitly describes a finitary based language.

For a consistent (meaningful) specification, i.e., a Statically Semantically Correct spe-
cification, it is necessary that all objects are specified only once, that all typing is respected
and that the communications in comm are specified in a functional way. Furthermore, the
eq functions for the data sorts should have the following properties:

{DATA, eq(d, e) = t} � d = e and {DATA, d = e} � eq(d, e) = t

All data sorts that are introduced during the linearization must have eq functions satisfying
these properties.

2.3. Equivalence of process definitions

We introduce equivalence over systems of process equations in a stepwise manner. Let
G1 and G2 be systems of process equations, and assume that the common data sorts of G1
and G2 are equally defined. Then DATA(G1,G2) represents all data specifications occur-
ring in G1 and G2 and all proof rules adopted for these data. We first define (conditional)
implication between process terms, and then the equivalence.

In the following definition, derivabilities of the form {�CRL,BOOL,DATA} ∪G1 � φ
are required. In this case, the axioms from �CRL,BOOL and DATA may be used to derive
φ, as well as the process equations in G1. However, we restrict derivability by requir-
ing that the (data-parametric) process names from G1 are considered as (data-parametric)
constants. For example, if G1 = {X = a · X}, we may use X = a · X as an axiom in
{�CRL,BOOL,DATA} ∪ {X = a · X} � φ, but X may not be used as a variable that can
be instantiated (e.g., {�CRL,BOOL,DATA} ∪ {X = a · X} �� a = a · a).

Definition 11. Let G1,G2 be systems of process equations with |G1| = {X1, . . . ,Xn} and
|G2| = {Y1, . . . ,Ym}. Let furthermore DATA be such that it contains DATA(G1,G2), i.e.,
DATA contains all data sorts and associated proof rules of DATA(G1,G2).

We say that (X1(�t1),G1) conditionally implies (Y1(�t2),G2) (notation (X1(�t1),G1)⇒c

(Y1(�t2),G2)) for some (possibly open) data term vectors �t1, �t2 over DATA if for j =
1, . . . ,m there is a set of mappings gYj : type(Yj)→ Terms({X1, . . . ,Xn}) such that

{�CRL,BOOL,DATA} ∪G1 � X1(�t1) = gY1(�t2)
and ∀j ∈ 1 . . .m

(
{�CRL,BOOL,DATA} ∪G1 �
gYj (

−→
d ′j) = rhs(Yj)

[∀k ∈ 1 . . .m Yk(t
′) := gYk (t

′)
])

If DATA identities are not used in these derivations we say that (X1(�t1),G1) (uncon-
ditionally) implies (Y1(�t2),G2) (notation (X1(�t1),G1)⇒ (Y1(�t2),G2)). In case (X(pars
(X,G1)),G1) (conditionally) implies (Y(pars(Y,2)),G2) we say that (X,G1) (condition-
ally) implies (Y,G2) (notation (X,G1)⇒ (Y,G2) ((X,G1)⇒c (Y,G2))).

The adjective “conditional” could be replaced by “data-dependent”, but we did not do
this because it is used similarly in the guardedness definition (See Section 2.4).

We state without proof:

48 J.F. Groote et al. / Journal of Logic and Algebraic Programming 48 (2001) 39–70

Lemma 12. Let G1 and G2 be systems of process equations, and let the set H of process
equations be such that Gi ∪H is a system of process equations (i = 1, 2). If G1 ⇒ G2,

then G1 ∪H ⇒ G2 ∪H, and if G1 ⇒c G2, then G1 ∪H ⇒c G2 ∪H .

Definition 13. Process definition (X(�t1),G1) is equivalent to process definition (Y(�t2),G2)

(notation (X(�t1),G1) = (Y(�t2),G2)) if both (X(�t1),G1)⇒ (Y(�t2),G2) and (Y(�t2),G2)⇒
(X(�t1),G1). Similarly, if (X(pars(X,G1)),G1) = (Y(pars(Y,G2)),G2) we say that
(X,G1) is equivalent to (Y,G2). The conditional equivalence (notation =c) is defined in
the same way.

Finally, G1 = G2 if |G1| = |G2| and for all X ∈ |G1|, (X,G1) = (X,G2)

Note that on systems of process equations, the relations = and =c are equivalences,
and the relations ⇒ and ⇒c are reflexive and transitive. The following simple examples
demonstrate the use of Definitions 13 and 11.

Example 14. Let G1 = {X = a · Y,Y = b · X} and G2 = {X = a · b · X}. We can show
that (X,G1) = (X,G2). The implication from left to the right can be shown by choosing
gX = X. The reverse direction can be shown by choosing gX = X and gY = b · X.

Example 15. Let G1 = {X(b:Bool) = a(b) · X(¬b)} and G2 = {Y(n:Nat) = a(even(n)) ·
Y(S(n))}. We can show that (X(t),G1)⇒c (Y(0),G2) by choosing gY(n) = X(even(n)).
In this case we need to show that X(t) = gY(0) (which follows from even(0) = t) and that
X(even(n)) = a(even(n)) · X(even(S(n))). This latter identity follows from X(b) = a(b) ·
X(¬b) and the data identity even(S(n)) = ¬even(n). If we assume the existence of a func-
tion n : Bool → Nat, defined by n(t) = 0 and n(f) = 1, we can prove that (X(b),G1)⇒c

(Y(n(b)),G2) using the same function gY(n) and the data identities even(n(b)) = b and
even(S(n(b))) = ¬b, both of which seem reasonable.

We do not have any of the reverse implications: consider the model with carrier set Nat,
in which a(b) is interpreted as 1, and sequential composition as +. Then Y(0) has many
solutions, whereas X(t) has none.

Below we argue that the basic Definition 11 characterizes preservation of solutions. For
more details on this subject we refer to [31].

Proposition 16. Let G1,G2 be systems of process equations with |G1| = {X1, . . . ,Xn}
and |G2| = {Y1, . . . ,Ym}. Let (X1(�t1),G1)⇒c (Y1(�u1),G2) and let M be a model of
�CRL, Bool, DATA andG1. If P ∈M is a solution for X1(�t1), then P is also a solution for
Y1(�u1).

Proof. Let P1 ∈M be a solution for X1(�t1). So, there are processes Pi (i = 1, . . . , n)
that solve the equations of G1 for Xi (�ti). By (X1(�t1),G1)⇒c (Y1(�u1),G2) there are func-
tions gYi (i = 1, . . . ,m) such that M |= X1(�t1) = gY1(�u1). Furthermore, the derivability of

gYj (
�d ′j) = rhs(Yj)

[∀k Yk(t ′) := gYk (t
′)
]

(j = 1, . . . ,m) yields that P1 is also a solution
for Y1(�u1) in G2. �

The following lemma shows that by applying a �CRL axiom to the right-hand side of
an equation we get an equivalent system.

J.F. Groote et al. / Journal of Logic and Algebraic Programming 48 (2001) 39–70 49

Lemma 17. Let p1, p2 be process terms such that p1 = p2. Let G be a system of process
equations, and X be a process name in it such that p1 is a subterm of rhs(X,G). Let G′
consist of equations in G, but in the equation defining X an occurrence of p1 is replaced
by p2. Then G = G′.

The following lemma shows that by replacing a subterm of the right-hand side of an
equation by a fresh process name, and adding the equation for it, we get an equivalent
process definition for each process name in the original system.

Lemma 18. Let G be a system of process equations, and X be a process name in it. Let p
be a subterm of rhs(X,G) with free data variables d1:D1, . . . , dn:Dn = −−→d:D in it. Let Y
be a process name, Y /∈ |G|. Let G′ consist of equations in G, but in the equation defining
X an occurrence of p is replaced by Y(�d), and the equation Y(

−−→
d:D) = p is added to G.

Then for any Z ∈ |G| we have (Z,G) = (Z,G′).

Proof. To prove that (Z,G)⇒ (Z,G′)we take gZ(pars(Z)) = Z(pars(Z)) for all Z ∈ |G|,
and gY = p. To prove the other direction we just take gZ(pars(Z)) = Z(pars(Z)) for all
Z ∈ |G|. �

The following lemma shows that under certain conditions we can substitute a process
name by its right-hand side in a right-hand side of an equation.

Lemma 19. Let G be a system of process equations, and X be a process name in it. Let
Y(�t) be a subterm of rhs(X,G) for some Y /= X. Let G′ consist of equations in G, but in
the equation defining X an occurrence of Y(�t) is replaced by rhs(Y,G)[pars(Y,G) := �t].
Then we have that G = G′.

Proof. In both directions we take the mappings gX to be the identity mappings. �

The following lemma says that we can add dummy data parameters to a process equa-
tion, or remove such parameters.

Lemma 20. Let G be a system of process equations, and X be a process name in it with
parameters d1, . . . , dn. Suppose that di does not occur freely in rhs(X,G). LetG′ be as G,
but the process name X is replaced by X′ and pars(X′,G′) = d1, . . . , di−1, di+1, . . . , dn.
Then for all Y ∈ |G| ∧ Y /= X we have (Y,G) = (Y,G′), and (X(d1, . . . , dn),G) = (X′
(d1, . . . , di−1, di+1, . . . , dn),G′).

Proof. In both directions we take the mappings gY (for Y /= X) to be the identity mappings.
In one direction gX′(d1, . . . , di−1, di+1, . . . , dn) = X(d1, . . . , dn) and gX(d

1, . . . , dn) =
X′(d1, . . . , di−1, di+1, . . . , dn). �

In many cases we are interested in a process definition (X,G) for a fixed process name
X. The following lemma states that we can drop a defining equation for a process name
Y /= X, in cases when the X does not depend on Y, and Y does not depend on itself, under
the condition that the resulting set of equations will form a system of process equations
(Definition 7).

50 J.F. Groote et al. / Journal of Logic and Algebraic Programming 48 (2001) 39–70

Lemma 21. Let G be a system of process equations, and X,Y be process names in it such
that X does not depend on Y, and Y does not depend on itself. Let G′ contain all equations
in G except the defining equation for Y. If G′ is a system of process equations, then we
have (X,G) = (X,G′).

Proof. In the direction from left to the right we use the identity mapping for gZ. In the
reverse direction we use the same mapping, but gY = rhs(Y,G). �

2.4. Guardedness

In this paper we use a slightly different notion of guardedness as the one used in [19].

Definition 22. An occurrence of a process name X in a process term p is completely
guarded if there is a subterm p′ of p of the form q · p′′ containing this occurrence of
X, where q is a process term containing no process names.

A process term is called completely guarded if every occurrence of a process name in
it is completely guarded. Note that a term that contains no process names is completely
guarded.

A system of process equations G is completely guarded if for any X ∈ |G|, rhs(X,G) is
a completely guarded term.

Definition 23. A process definition (X,G) is (unconditionally) guarded if there is a pro-
cess definition (X′,G′) such that G′ is a completely guarded system of process equations,
and (X,G) = (X′,G′).

Definition 24. Let G be a system of process equations. A Process Name Unguarded-
Dependency Graph (PNUDG) is an oriented graph with the set of nodes |G|, and edges
defined as follows: X → Y belongs to the graph if Y is not completely guarded in rhs(X,G).

Lemma 25. If the PNUDG of a finite system of process equations G is acyclic, then G is
guarded.

Proof. Given a system G we replace each unguarded occurrence of a process name by its
right-hand side. By Lemma 19 we get an equivalent system. Due to the fact that PNUDG
is acyclic, we need to perform the replacement only finitely many times, and after that we
get a completely guarded system. �

The following example shows that the converse of Lemma 25 does not hold.

Example 26. System G consisting of one equation X = X � f � δ is guarded, but its
PNUDG contains the cycle X → X.

2.5. Parallel pCRL

We define (parallel) pCRL processes as a subset of �CRL processes.

J.F. Groote et al. / Journal of Logic and Algebraic Programming 48 (2001) 39–70 51

Definition 27. Let G be a system of process equations. A process term in Terms(|G|) is
called a pCRL process term in G if it has the syntax

p ::= a(�t) | δ | Y(�t) | p + p | p · p |
∑
d :D

p | p � c � p (1)

and can directly depend only on process names whose right-hand sides are also pCRL
process terms. A process name is called a pCRL process name if its right-hand side is a
pCRL process term.

Definition 28. Let G be a system of process equations. A process term in Terms(|G|) is
called a parallel pCRL process term in G if it has the syntax

q ::=Y(�t) | q‖q | ∂H (q) | τI (q) | ρR(q), (2)

and directly depends only on process names whose right-hand sides are pCRL or parallel
pCRL process terms. It is called a parallel pCRL process name if its right-hand side is a
parallel pCRL process term.

Example 29. Referring to G1 and G2 as defined in the previous Example 9, X+ a is a
pCRL process term in G1, and X, X‖X and X‖Y are parallel pCRL process terms in G1.
Furthermore, P(S(n))with n a variable of sort Nat and a(even(0)) · P(0) are pCRL process
terms in G2. Finally, X‖a is not a (parallel) pCRL process term in G1.

In the following definition we define what a parallel pCRL process definition is. For
this definition we assume that we have a �CRL specification that is Statically Semantic-
ally Correct (cf. [20]), that is, in which the data types, actions, communication functions
and processes are all well-defined. The first two restrictions posed in the definition below
distinguish parallel pCRL as a subset of �CRL. The third one is present to disallow par-
allel process names on which the head process name does not depend, and to exclude the
presence of certain independent equations in a system. This is not a severe restriction and
it simplifies the algorithm presented in Section 5.

Definition 30. Let G be a finite system of process equations, and (X,G) be a process
definition. (X,G) is called a parallel pCRL process definition if X is a (parallel) pCRL
process name, and

• all of the process names in G are either pCRL or parallel pCRL process names;
• no parallel pCRL process name depends on itself;
• process name X depends on all parallel pCRL process names in G, but not on itself.

It is called a pCRL system of process equations if all process names in it are pCRL process
names.

It follows from Definitions 30 and 28 that for every (parallel) pCRL process
definition (X,G), either X is a pCRL process name, or it depends on a pCRL process
name in G.

Example 31. Referring to G1 as defined in Example 9, (Z,G1) is a parallel pCRL process
definition, but (X,G1) is not.

52 J.F. Groote et al. / Journal of Logic and Algebraic Programming 48 (2001) 39–70

3. Transformation to Extended Greibach Normal Form

As the input for the linearization procedure we take a (parallel) pCRL process defini-
tion (X,G) such that PNUDG of G is acyclic. The system of process equations G can be
partitioned in two parts: G1 and G2, whereG1 has pCRL equations, and G2 parallel pCRL
equations. G2 can be empty, in which case X is a pCRL process name. Otherwise X is a
parallel pCRL process name.

In this section we transform G1 into a system of process equations G′1 in Extended
Greibach Normal Form (EGNF). The resulting system will contain process equations for
all process names in |G1| with the same names and types of data parameters involved,
as well as, possibly, other process equations. After that we need to linearize the process
definition (X,G′), where G′ = G′1 ∪G2. The transformation to EGNF is done via an
intermediately form called pre-Extended Greibach Normal Form (pre-EGNF). Adopting
the algorithm from Proposition 7.12 in [12] to the setting of pCRL yields a transformation
procedure to pre-EGNF. However, for practical purposes such an approach introduces far
too many equations, and therefore we define a more refined procedure below.

From this point on we assume that a(�t) with possible indices can also be an abbreviation
for τ . This is done to make the normal form representations more concise.

Definition 32. A pCRL process equation is in pre-EGNF iff it is of the form:

X(
−−→
d:D) =

∑
i∈I

∑
−→
ei :Ei

pi(
−−→
d, ei) � ci(−−→d, ei) � δ

where pi(
−−→
d, ei) are terms of the following syntax:

p ::= a(�t) | Y(�t) | a(�t) · p | Y(�t) · p (3)

A pCRL process equation is in EGNF iff it is of the form:

X(
−−→
d:D)=

∑
i∈I

∑
−→
ei :Ei

ai (
−→
fi (
−−→
d, ei)) · pi(−−→d, ei) � ci(−−→d, ei) � δ

+
∑
j∈J

∑
−−→
ej :Ej

aj (
−→
fj (
−−→
d, ej)) � cj (−−→d, ej) � δ

where I and J are disjoint, and all pi(
−−→
d, ei) are terms of the following syntax:

p ::=Y(�t) | Y(�t) · p.
Finally, a finite system of process equations is in (pre-)EGNF iff all its equations are.

Note 3 (Sum notation). Apart from functions
∑

d :D p that are included in the syntax of
process terms, we use the following abbreviations. Expression

∑−−→
d:D is an abbreviation for∑

d1:D1 · · ·∑dn:Dn . In case n = 0,
∑−−→
d:D p is an abbreviation for p. Expression

∑
i∈I pi ,

where I is a finite set, is an abbreviation for pi1 + · · · + pin such that {i1, . . . , in} = I . In
case I = ∅,

∑
i∈I pi is an abbreviation for δ.

Note 4 (Conditions). As follows from the above definition, any process equation in
pre-EGNF or EGNF must have a condition in each summand. However, this is not a necessary
restriction. In case a summand q does not have a condition, it is an abbreviation for q � t � δ.

J.F. Groote et al. / Journal of Logic and Algebraic Programming 48 (2001) 39–70 53

3.1. Preprocessing

We first transform G1 into G1
1. This can be seen as a preprocessing step that pos-

sibly renames bound data variables. For instance
∑

d :D((
∑

d :E a(d)) · b(d)) is replaced
by

∑
d :D((

∑
e:E a(e)) · b(d)), where e is a fresh variable. We replace each equation

X(
−−−→
dX:DX) = pX in G1 with the equation X(

−−−→
dX:DX) = S0({−→dX}, pX), where S0 : DVar×

Terms(|G1|)→ Terms(|G1|) is defined in the following way:

S0(S, f (p
1, . . . , pn))→ f (S0(S, p

1), . . . , S0(S, p
n)) if f is not

∑
d :D

S0

(
S,
∑
d :D

p

)
→
{∑

d :D S0(S ∪ {d}, p) if d /∈ S∑
e:D S0(S ∪ {e}, p[d := e]) if d ∈ S

where e is a fresh variable.

Proposition 33. LetG1
1 be the result of applying the preprocessing to G1. Then G1

1 = G1.

Proof. The statement follows from Lemma 17 if we apply axiom (SUM2). �

As can easily be seen, the preprocessing step does not increase the size or the number
of equations in the system.

3.2. Reduction by simple rewriting

By applying term rewriting we get an equivalent set of process equations to the given
one, but with terms in right-hand sides having the more restricted form as presented in
Table 8.

The rewrite rules that we apply to the right-hand sides of the equations are listed in
Table 9. The symbols

∑
d :D are treated in this rewrite system as function symbols, not

as binders. This is justified by the fact that we have renamed all nested bound variables,
which allows the use of first order term rewriting. We call the function induced by the
rewrite rules rewr : Terms(|G|)→ Terms(|G|) for a given system of process equations G.

Before applying the rewriting we eliminate all terms of the form _ � _ � _ with the third
argument being different from δ with the following rule:

y �≡ δ ⇒ x � c � y → x � c � δ + y � ¬c � δ (RCOND3)

Table 8
Syntax of terms after simple rewriting

p ::= a(�t) | δ | X(�t) | p1 · p | p2 + p2 | p3 � c � δ |
∑
d:D

p4

p1 ::= a(�t) | X(�t) | p1 · p | p2 + p2

p2 ::= a(�t) | X(�t) | p1 · p | p2 + p2 | p3 � c � δ |
∑
d:D

p4

p3 ::= a(�t) | X(�t) | p1 · p
p4 ::= a(�t) | X(�t) | p1 · p | p3 � c � δ |

∑
d:D

p4

54 J.F. Groote et al. / Journal of Logic and Algebraic Programming 48 (2001) 39–70

Table 9
Rewrite rules defining rewr

x + δ→ x (RA6)
δ · x→ δ (RA7)∑
d:D

δ→ δ (RSUM1′)
∑
d:D

(x + y)→
∑
d:D

x +
∑
d:D

y (RSUM4)

∑
d:D

x

 · y→∑

d:D
(x · y) (RSUM5)

∑
d:D

x

 � c � δ→∑

d:D
x � c � δ (RSUM12)

δ � c � δ→ δ (RCOND0′)
(x � c1 � δ) � c2 � δ→ x � c1 ∧ c2 � δ (RCOND4)

(x + y) � c � δ→ x � c � δ + y � c � δ (RCOND7)
(x � c � δ) · y→ (x · y) � c � δ (RCOND6)

The rewriting is performed modulo the following rules:

x + y = y + x

x + (y + z)= (x + y)+ z

(x · y) · z= x · (y · z)
The optimization rules presented in Table 10 are not needed to get the desired restricted
syntactic form, but can be used to simplify the terms. They could be applied with higher
priority than the rules in Table 9 to achieve possible reductions. Note that the rule (RSCA′)
could lead to optimizations only in cases when x is completely guarded, and y or z are not.

Proposition 34. The commutative/associative term rewriting system of Table 9 is strongly
terminating.

Proof. Termination can be proved by using the following order on the operations: _ � c �
_ > · > _ � c � δ >∑

> +. �

Lemma 35. For any process term p not containing p1 � c � p2, where p2 �≡ δ, we have
that rewr(p) has the syntax defined in Table 8.

Table 10
Optimization rules

x + x→ x (RA3)
x � c � x→ x (RCOND0)
x � t � y→ x (RCOND1)
x � f � y→ y (RCOND2)

x � c1 � δ + x � c2 � δ→ x � c1 ∨ c2 � δ (RCOND5)
(x1 � c � x2) · (y1 � c � y2)→ x1 · y1 � c � x2 · y2 (RSCA)

x · (y � c � z)→ x · y � c � x · z (RSCA′)

J.F. Groote et al. / Journal of Logic and Algebraic Programming 48 (2001) 39–70 55

Proof. Let q = rewr(p). It can be seen from the rewrite rules that they preserve the syntax
in Definition 27. Suppose q does not satisfy the syntax defined in Table 8. The following
possibilities exist, and all of them imply that q is reducible:

• q = δ · p1. Can be reduced by (RA7).
• q = (p1 � c � δ) · p2. Can be reduced by (RCOND6).
• q = (

∑
d :D p1) · p2. Can be reduced by (RSUM5).

• q = δ + p1. Can be reduced by (RA6).
• q = δ � c � δ. Can be reduced by (RCOND0′).
• q = (p1 + p2) � c � δ. Can be reduced by (RCOND7).
• q = (p1 � c1 � δ) � c2 � δ. Can be reduced by (RCOND4).
• q = (

∑
d :D p1) � c � δ. Can be reduced by (RSUM12).

• q =∑d :D δ. Can be reduced by (RSUM1′).
• q =∑d :D(p1 + p2). Can be reduced by (RSUM4). �

Proposition 36. Let G2
1 be the result of applying the rewriting to G1

1. Then G2
1 = G1

1.

Proof. Taking into account that G1
1 does not contain nested occurrences of bound vari-

ables, each rewrite rule is a consequence of the axioms of �CRL. By Lemma 17 we get
G2

1 = G1
1. �

As the result of applying simple rewriting the number of equations obviously remains
the same. The process terms may grow with a constant factor, but the number of occur-
rences of action labels and process names does not increase. The data terms and the number
of their occurrences may grow with a constant factor, too.

3.3. Adding new process equations

In this step we reduce the complexity of terms in the right-hand sides of the G2
1 equa-

tions even further by the introduction of new process equations. In some cases we take a
subterm of a right-hand side and substitute it by a fresh process name parameterized by
(at least) all free variables that appear in that subterm. As the result we get a system of
process equations G3

1 with equations in pre-EGNF. Such a transformation can be done for

all equations X(
−−−→
dX:DX) = pX by replacing them with X(

−−−→
dX:DX) = S1(

−−−→
dX:DX, pX).

S1(S, a(�t))→ a(�t)
S1(S, δ)→ δ

S1(S,X(�t))→ X(�t)
S1(S, p1 · p2)→ S2(S, p1 · p2)

S1(S, p1 + p2)→ S1(S, p1)+ S1(S, p2)

S1(S, p � c � δ)→ S2(S, p) � c � δ

S1

(
S,
∑
d :D

p

)
→
∑
d :D

S1(S & d:D,p)

S2(S, a(�t))→ a(�t)
S2(S, δ)→ (Y := fresh_var); add (Y = δ)

56 J.F. Groote et al. / Journal of Logic and Algebraic Programming 48 (2001) 39–70

S2(S,X(�t))→ X(�t)
S2(S, p1 · p2)→ S2(S, p1) · S2(S, p2)

S2(S, p1 + p2)→ (Y := fresh_var)(S); add (Y(S) = S1(S, p1 + p2))

S2(S, p � c � δ)→ (Y := fresh_var)(S); add (Y(S) = S1(S, p � c � δ))

S2

(
S,
∑
d :D

p

)
→ (Y := fresh_var)(S); add

(
Y(S) = S1

(
S,
∑
d :D

p

))

Here fresh_var represents a fresh process name, and add represents addition of the equa-
tion to the resulting system. Thus formally, S1 and S2 induce operations Ŝ1 and Ŝ2 that
operate on sets of equations and are defined in the expected way (those operations actually
transform the system of recursive equations). In the following we provide a simple example
of the transformation.

Example 37. Let G = {X(d:D) = a(d) · (b(d)+ X(f (d)))} be a given system of process
equations. After applying the transformation we get the system G′ = {X(d:D) = a(d) ·
Y(d),Y(d:D) = b(d)+ X(f (d))} which is in pre-EGNF.

Proposition 38. The functions S1 and S2 are well defined.

Proof. Using the order on the operations S1 > +, S1 >
∑
, S2 > · it can be shown that

the infinite recursion is not possible for any admissible arguments given. �

Lemma 39. All process equations in G3
1 are in pre-EGNF.

Proof. It is easy to see that S2 produces terms that satisfy the syntax (3) from Defini-
tion 32. The transformation S1 can add only +,

∑
or � � operations to them at the cor-

rect places. The only interesting transformation to consider is S1(S,
∑

d :D p)→
∑

d :D S1
(S & d:D,p), as we need to show that p is not of the form p1 + p2. This follows from the
fact that p satisfies the syntax defined in Table 8. �

Proposition 40. For any process name X in G2
1 we have (X,G3

1) = (X,G2
1).

Proof. The statement follows from Lemma 18. �

The transformation described in this section does not increase the size of terms. The
number of processes may increase linearly in the size of terms in the original system.

3.4. Guarding

Next we transform the equations of G3
1 in such a way that each sequential term starts

with an action (or τ). To this end, we define the function guard : DVar× Terms(|G|)→
Terms(|G|) in the following way:

guard

S,∑

i∈I

∑
−→
ei :Ei

pi � ci � δ

 = rewr

∑
i∈I

∑
−→
ei :Ei

guard(S ∪ {−→ei }, pi) � ci � δ

J.F. Groote et al. / Journal of Logic and Algebraic Programming 48 (2001) 39–70 57

guard(S, a(�t)) = a(�t)
guard(S,Y(�t)) = guard

(
S, S0 (S \ {pars(Y)}, rhs(Y))

[
pars(Y) := �t])

guard(S, p1 · p2) = rewr′(guard(S, p1) · p2)

Here we use functions rewr and S0 from the previous subsections. The function rewr′
represents the rewrite system of rewr extended with the following rule.

(x + y) · z→ x · z+ y · z (RA4)

Proposition 41. For any finite system G3
1 with acyclic PNUDG, and any process name X

in it, the function guard is well-defined on rhs(X,G3
1).

Proof. Let n be the number of equations in G3
1, and m be the maximal number of process

names in sequences pi for all i ∈ I . Suppose that guard is applied more than n ·m times on
a term. This means that a process name Y is substituted more than once, which contradicts
to the fact that PNUDG is acyclic. �

We define the system G4
1 in the following way. For each equation

X(
−−→
d:D) =

∑
i∈I

∑
−→
ei :Ei

pi(
−−→
d, ei) � ci(−−→d, ei) � δ

in G3
1 we put

X(
−−→
d:D) = guard

{−−→d:D},∑

i∈I

∑
−→
ei :Ei

pi(
−−→
d, ei) � ci(−−→d, ei) � δ

into G4
1.

Lemma 42. The equations in G4
1 are in pre-EGNF and all sequential process terms in the

right-hand sides of its equations start with an action.

Proof. Due to Proposition 41 we can apply induction on the definition of guard. The
second and third clauses of the definition are trivial. The first one is brought to the desired
form by applying (RCOND4) and (RSUM4) from Table 9. The fourth clause is brought to
the desired form by applying (RA4), and then (RSUM5) and (RCOND6) from Table 9. �

Proposition 43. Let G3
1 and G4

1 be defined as above. Then G3
1 = G4

1.

Proof. According to Lemmas 19 and 17 all transformations performed by guard lead to
equivalent systems. We note that care has been taken to rename some data variables during
the substitution (in the third clause of guard definition) in order to make the substitution
and the following applications of the axioms sound. �

The transformation performed in this step does not increase the number of equations,
but their sizes may grow exponentially, due to application of (RA4). An example of such
an exponential growth is given below.

58 J.F. Groote et al. / Journal of Logic and Algebraic Programming 48 (2001) 39–70

Example 44. Let n be a natural number and let the system of process equations G contain
the following n equations.

X0 = a+ b
...

Xn = Xn−1 · a+ Xn−1 · b
By induction on n it is easy to show that after applying guarding we get Xn =∑p∈{a,b}n+1 p

where {a, b}n is the set of all strings of length n consisting of a and b occurrences. Indeed,
for n = 0 this is trivial. For n > 0 we get

Xn =

 ∑
p∈{a,b}n

p

 · a+

 ∑
p∈{a,b}n

p

 · b

=
∑

p∈{a,b}n
(p · a)+

∑
p∈{a,b}n

(p · b)

=
∑

p∈{a,b}n+1

p

This example shows that the term in the right-hand side of the equation for Xn contains 2n

summands after the transformation.

3.5. Postprocessing

Finally, we transform all equations of G4
1 into EGNF. This transformation can be seen

as a simple postprocessing step in which we eliminate all actions that appear not leftmost
in the right-hand sides in the equations. This elimination is obtained by introducing a new
process name Xa for each action a that occurs inside the process terms pi , with parameters
corresponding to those of the action. Thus we add equations Xa(

−−−→
da:Da) = a(

−→
da) to the

system, and replace the occurrences of the action a(�t) by Xa(�t).

Proposition 45. Let the system G′1 of process equations be obtained after the postpro-
cessing of the system G4

1 as described above. Then for all X ∈ |G4
1| we have (X,G′1) =

(X,G4
1) and G′1 is in EGNF.

Proof. According to Lemma 18 this transformation is correct and leads to a system that
obviously is in EGNF. �

As a possible optimization during the postprocessing step, the following slightly dif-
ferent strategy can be applied. If we encounter a subterm a · Y in pi , we replace it by a
new process name (with the parameters for both a and Y), and add the equation for it
to the system. This optimization goes along the lines of a so-called regular linearization
procedure (see Conclusion), which is a more general case of such an optimization.

Summary. In this section we described the transformation of a finite systemG = G1 ∪G2
with acyclic PNUDG and G2 containing all parallel pCRL process equations into a system
G′ = G′1 ∪G2 with G′1 in EGNF. For each X ∈ |G1|,

J.F. Groote et al. / Journal of Logic and Algebraic Programming 48 (2001) 39–70 59

(X,G1)= (X,G1
1) (“Preprocessing”, by Proposition 33)

= (X,G2
1) (“Rewriting”, by Proposition 36)

= (X,G3
1) (“Adding new equations”, by Proposition 40)

= (X,G4
1) (“Guarding”, by Proposition 43)

= (X,G′1) (“Postprocessing”, by Proposition 45)

By Lemma 12 it follows that (X,G) = (X,G′) for each X ∈ |G|.

4. From EGNF to LPE

In this section we transform the system of process equations G′ = G′1 ∪G2 where G′1
is in EGNF (cf. Definition 32) into G′′ = G′′1 ∪G′2, where

• G′′1 consists of a single linear process equation with a specially constructed parameter
list;

• if G2 is not empty, it is transformed into G′2 with the same set |G2| of process names,
but taking the effect of the transformation from G′1 into G′′1 into account (references to
G′1 process identifiers may have to be adapted).

Definition 46. A process equation is called a linear process equation (LPE) if it is of the
form

X(
−−→
d:D)=

∑
i∈I

∑
−→
ei :Ei

ai (
−→
fi (
−−→
d, ei)) · X(−→gi (−−→d, ei)) � ci(−−→d, ei) � δ

+
∑
j∈J

∑
−−→
ej :Ej

aj (
−→
fj (
−−→
d, ej)) � cj (−−→d, ej) � δ

where I and J are disjoint sets of indices.

We note that the transformation described in this section is uni-directional, i.e., is
formulated in terms of ⇒c. We again give counterexamples for the associated reverse
implications.

4.1. Formal parameters harmonization

In this section we make the formal parameters of all (non-parallel) pCRL process names
in G′1 to be the same, and adapt the parallel pCRL equations in G2 in an appropriate
way. This is done to be able to compress all (non-parallel) pCRL equations in one process
equation. The harmonization is defined by the following steps.

(1) We rename the data variables with the same names, but different types in different
processes. This can be easily done (see Section 3.1).

(2) We create the common list of data parameters
−−→
d:D by taking the set of all data para-

meters in the pCRL equations, and giving some order to it.
(3) For each pCRL process name X in G′1 we define a mapping MX from its parameter

list
−→
DX to the common parameter list �D. This mapping is such that each newly created

60 J.F. Groote et al. / Journal of Logic and Algebraic Programming 48 (2001) 39–70

parameter is a constant. (Recall that a correct �CRL specification contains constants
for each declared data sort.)

(4) Then we replace all left-hand sides of the pCRL process equations X(
−−−→
dX:DX) by X(

−−→
d:D),

and all pCRL process name occurrences Y(�t) in the right-hand sides of all the equa-
tions in G′ by Y(MY(�t)).

Proposition 47. Let the system G5
1 ∪G1

2 of process equations be obtained after harmon-

ization of the system G′1 ∪G2 as described above. Then for all X ∈ |G′1|, (X(−−→d:D),G5
1) =

(X(
−−−→
dX:DX),G

′
1), and for all X ∈ |G2|, (X,G5

1 ∪G1
2) = (X,G′1 ∪G2).

Proof. By Lemma 20 it follows that this transformation yields an equivalent system of
equations. �

We remark that a more optimal strategy than ‘global harmonization’ is to merge as
many data parameters as possible. This can be achieved by renaming parameters of some
processes so that they match the parameters of other processes, and therefore are not intro-
duced in the general parameter list. In this case the number of parameters of some type s
in the general list will be the maximal number of parameters of this type in an equation. A
drawback of this optimization is the fact that we may lose parameter name information for
some process names.

4.2. Making one process equation

Let G5
1 be a system of n pCRL process equations in EGNF with the same formal

parameters.

X1(
−−→
d:D)=

∑
i∈I 1

∑
−−→
ei :E1

i

a1
i (
−→
f 1
i (
−−→
d, ei)) · p1

i (
−−→
d, ei) � c1

i (
−−→
d, ei) � δ

+
∑
j∈J 1

∑
−−→
ej :E1

j

a1
j (
−→
f 1
j (
−−→
d, ej)) � c1

j (
−−→
d, ej) � δ

...

Xn(
−−→
d:D)=

∑
i∈In

∑
−−→
ei :Eni

ani (
−→
f ni (
−−→
d, ei)) · pni (−−→d, ei) � cni (−−→d, ei) � δ

+
∑
j∈J n

∑
−−→
ej :Enj

anj (
−→
f nj (
−−→
d, ej)) � cnj (−−→d, ej) � δ

We define the system G6
1 as a single EGNF process equation in the following way:

X(s:State,−−→d:D)=
∑
i∈I 1

∑
−−→
ei :E1

i

a1
i (
−→
f 1
i (
−−→
d, ei)) · S(p1

i (
−−→
d, ei)) � c1

i (
−−→
d, ei) ∧ s = 1 � δ

+
∑
j∈J 1

∑
−−→
ej :E1

j

a1
j (
−→
f 1
j (
−−→
d, ej)) � c1

j (
−−→
d, ej) ∧ s = 1 � δ

J.F. Groote et al. / Journal of Logic and Algebraic Programming 48 (2001) 39–70 61

+ · · ·
+
∑
i∈In

∑
−−→
ei :Eni

ani (
−→
f ni (
−−→
d, ei)) · S(pni (−−→d, ei)) � cni (−−→d, ei) ∧ s = n � δ

+
∑
j∈J n

∑
−−→
ej :Enj

anj (
−→
f nj (
−−→
d, ej)) � cnj (−−→d, ej) ∧ s = n � δ

where S(Xs (�t)) = X(s, �t), and S(Xs (�t) · p) = X(s, �t) · S(p).
The data type State is an enumerated data type with equality predicate. Natural numbers

are normally used for State, though a finite data type is, of course, sufficient.
Let the systemG5

1 ∪G1
2 of process equations be obtained after harmonization of the sys-

tem G′1 ∪G2 as described above. Then for all X ∈ |G′1|, (X(−−→d:D),G5
1) = (X(

−−−→
dX:DX),G

′
1),

and for all X ∈ |G2|, (X,G5
1 ∪G1

2) = (X,G′1 ∪G2). During the current step we construct
the system G6

1 consisting of the single equation for X and the set G2
2 being G1

2 with all
pCRL process terms Xi (�t) replaced by X(i, �t) for each 1 � i � n.

Proposition 48. Let G5
1 be a system of n process equations in EGNF, each with formal

parameters
−−→
d:D, and let State enumerate 1, . . . , n. Let furthermore G5

1 ∪G1
2 be a system

of parallel pCRL process equations and G6
1 ∪G2

2 be the result of the transformation de-
scribed above. Then for any s:State, data term vector �t, and any X ∈ |G5

1|, (X(s, �t),G6
1) =c

(Xs(�t),G5
1). Finally, for each X ∈ |G1

2|, (X,G6
1 ∪G2

2) =c (X,G5
1 ∪G1

2).

Proof. The equivalence is easy to derive with the following functions: gXi (�t) = X(i, �t)
for each i:State, and gX(s, �t) = Xs (�t). Note that identities of sort State are used in the
derivations. �

4.3. Introduction of a stack

The final step in the linearization of pCRL processes consists of the introduction of a
stack parameter which allows us to model a sequential composition of process names with
parameters as a single process term. In the case that such sequential compositions do not
occur in the equation, we do not apply this step. For the particular transformation described
here, it is necessary that the process equation to be transformed is data-parametric. This
need not be the case after application of all preceding transformation steps. For instance
the equation X = a · X · · ·X+ b does not have a data parameter. In this case we need to add
a dummy data parameter (over a singleton data type, cf. Lemma 20) to apply the following
transformation.

Let G6
1 be a single pCRL process equation in EGNF:

X(
−−→
d:D)=

∑
i∈I

∑
−→
ei :Ei

ai (
−→
fi (
−−→
d, ei)) · X(

−→
t1i) · · ·X(

−→
t
ni
i) � ci(−−→d, ei) � δ

+
∑
j∈J

∑
−−→
ej :Ej

aj (
−→
fj (
−−→
d, ej)) � cj (−−→d, ej) � δ

We define G′′1 by the single process equation for Z in the following way:

62 J.F. Groote et al. / Journal of Logic and Algebraic Programming 48 (2001) 39–70

Z(st :Stack,−−→d:D)
=
∑
i∈I

∑
−→
ei :Ei

ai (
−→
fi (
−−→
d, ei)) · Z(push(

−→
t2i , . . . , push(

−→
t
ni
i , st) · · ·),−→t1i) � ci(−−→d, ei) � δ

+
∑
j∈J

∑
−−→
ej :Ej

aj (
−→
fj (
−−→
d, ej)) · Z(pop(st),

−−−→
get(st)) � st /= 〈 〉 ∧ cj (−−→d, ej) � δ

+
∑
j∈J

∑
−−→
ej :Ej

aj (
−→
fj (
−−→
d, ej)) � st = 〈 〉 ∧ cj (−−→d, ej) � δ

where
−−−→
get(st) = get1(st), . . . , getn(st).

The data type Stack is a standard stack data type with constructors 〈 〉 representing the
empty stack, and push(�t, st) inserting the new element �t to the top of the stack st. We
use the equality predicate on stacks, but a predicate that checks if a stack is empty can
be used instead. The function geti (st) returns the ith element of the top of st, and the
function pop(st) returns the stack value st without its top element. See [22] for details on
implementing data types in �CRL. To prove the following proposition we use an induction
principle on the data type Stack, namely that every value of type stack is either empty or
the result of an insertion to another value of this type.

During the current step we construct the system G′′1 consisting of the single equation for
X and the set G′2 being G2

2 with all pCRL process terms X(�t) replaced by Z(〈 〉, �t).
Proposition 49. Let systems G6

1 and G′′1 as described above be given. Then for any data
term vector �t we have (X(�t),G6

1)⇒c (Z(〈 〉, �t),G′′1). Let furthermore G6
1 ∪G2

2 be a sys-
tem of parallel pCRL process equations and G′′1 ∪G′2 be the result of the transformation
described above. Then for any X ∈ |G2

2|, (X,G6
1 ∪G2

2)⇒c (X,G′′1 ∪G′2).

Proof. We define gZ(st, �d) = X(�d) � st = 〈 〉 � X(�d) · gZ(pop(st),
−−−→
get(st)). To prove the

implication we consider two cases. First, if the stack st is empty we have gZ(st, �t) = X(�t).
It can be shown by induction on n that

gZ(push(
−→
t2 , . . . , push(

−→
tn , 〈 〉) · · ·),−→t1) = X(

−→
t1) · · ·X(−→tn)

When we apply this gZ to the equation for Z and use the identities of the sort Stack, we get
an identity which is the same as the equation for X.

In the second case, if the stack st = push(st′,
−→
t ′) for some stack value st′ and data term

vector
−→
t ′ , we have gZ(st, �t) = X(�t) · gZ(st′,

−→
t ′). By induction on n it can be shown that

gZ(push(
−→
t2 , . . . , push(

−→
tn , st) · · ·),−→t1) = X(

−→
t1) · · ·X(−→tn) · gZ(st′,

−→
t ′)

When we apply this gZ to the equation for Z and use the identities of the sort Stack, we get
the following identity:

X(�d) · gZ(st′,
−→
t ′)

=
∑
i∈I

∑
−→
ei :Ei

ai (
−→
fi (
−−→
d, ei)) · X(

−→
t1i) · · ·X(

−→
t
ni
i) · gZ(st′,

−→
t ′) � ci(−−→d, ei) � δ

+
∑
j∈J

∑
−−→
ej :Ej

aj (
−→
fj (
−−→
d, ej)) · gZ(st′,

−→
t ′) � cj (−−→d, ej) � δ

J.F. Groote et al. / Journal of Logic and Algebraic Programming 48 (2001) 39–70 63

This identity is derivable from the equation for X by applying axioms (A4), (SUM5) and
(Cond6). �

The following example [29] shows that the reverse implication does not hold in every
model. It is easy to see that if data parameters do not matter, the stack is isomorphic to a
counter which can be implemented by means of natural numbers.

Example 50. Let G1 = {X = a · X · X} and G2 = {Z(n:Nat) = a · Z(succ(n))}. Consider
the model with integers Z as the carrier set, and the operations · → +, a →−1. The
equation in G1 has the unique solution X = 1, while the equation in G2 has infinitely
many solutions Z(n) = n+ c, where c ∈ Z. For a more elaborated model that includes
interpretations of other �CRL operations see Example 52.

Summary. This section is about the transformation of a finite system G′ = G′1 ∪G2 with
acyclic PNUDG and G′1 in EGNF into a system G′′ = G′′1 ∪G′2 with G′′1 an LPE and G′2
appropriately updated. For each X ∈ |G′|,

(X,G′)= (X′,G5
1 ∪G1

2) (“Harmonization”, by Proposition 47)

=c (X
′′,G6

1 ∪G2
2) (“One equation”, by Proposition 48)

⇒c (X
′′′,G′′) (“One LPE”, by Proposition 49)

Here the primed versions of X represent the possible updates of parameters, as prescribed
by the propositions mentioned.

5. From parallel pCRL to LPE

As the result of the previous section we have obtained G′′ = G′′1 ∪G′2, where G′′1 is
an LPE and G′2 a (possibly empty) set of parallel pCRL process equations. In this section
we show that the parallel part of G′′ can be eliminated. First we take a general point of
view, and show that LPEs are closed under the parallel pCRL process operations, viz.
parallel composition, encapsulation, hiding, and renaming (see Definition 28). Then we
show that with these results and those from Sections 3 and 4, the transformation of G′′ into
a single LPE can be carried out. We note that the transformation described in this section
is uni-directional, and we give counterexamples for the associated reverse implications.

5.1. Parallel composition of LPEs

Let G be a system of process equations in which each of (X(
−→
dX),G) and (Y(

−→
dY),G) is

defined by an LPE, and that contains an equation Z(
−−−→
dX, dY) = X(

−→
dX)‖Y(−→dY). Assume that

the LPEs for X and Y have no common data variables, and are defined in the following
way:

X(
−−−→
dX:DX)=

∑
i∈I

∑
−→
ei :Ei

ai (
−→
fi (
−−−→
dX, ei)) · X(−→gi (−−−→dX, ei)) � ci(−−−→dX, ei) � δ

+
∑
j∈J

∑
−−→
ej :Ej

aj (
−→
fj (
−−−→
dX, ej)) � cj (−−−→dX, ej) � δ

64 J.F. Groote et al. / Journal of Logic and Algebraic Programming 48 (2001) 39–70

Y(
−−−→
dY:DY)=

∑
i∈I ′

∑
−→
e′i :E′i

a′i (
−→
f ′i (
−−−→
dY, e

′
i)) · Y(

−→
g′i (
−−−→
dY, e

′
i)) � c′i (

−−−→
dY, e

′
i) � δ

+
∑
j∈J ′

∑
−−→
e′j :E′j

a′j (
−→
f ′j (
−−−→
dY, e

′
j)) � c′j (

−−−→
dY, e

′
j) � δ

where I ∩ J = I ′ ∩ J ′ = ∅. We construct the equation for Z(
−−−−−−−−−→
dX:DX, dY:DY), being equal

to X(
−→
dX)‖Y(−→dY), as follows.

Z (
−−−−−−−−−→
dX:DX, dY:DY)

=
∑
i∈I

∑
−→
ei :Ei

ai (
−→
fi (
−−−→
dX, ei)) · Z(−→gi (−−−→dX, ei),

−→
dY) � ci(−−−→dX, ei) � δ

+
∑
j∈J

∑
−−→
ej :Ej

aj (
−→
fj (
−−−→
dX, ej)) · Y(−→dY) � cj (−−−→dX, ej) � δ

+
∑
i∈I ′

∑
−→
e′i :E′i

a′i (
−→
f ′i (
−−−→
dY, e

′
i)) · Z(−→dX,

−→
g′i (
−−−→
dY, e

′
i)) � c′i (

−−−→
dY, e

′
i) � δ

+
∑
j∈J ′

∑
−−→
e′j :E′j

a′j (
−→
f ′j (
−−−→
dY, e

′
j)) · X(−→dX) � c′j (

−−−→
dY, e

′
j) � δ

+
∑

(k,l)∈Iγ I ′

∑
−−−−−→
ek :Ek,el′ :E′l

γ (ak, a′l)(
−→
fk (
−−−→
dX, ek)) · Z(−→gk (−−−→dX, ek),

−→
g′l (
−−−→
dY, e

′
l))

� −→fk (−−−→dX, ek) = −→f ′l (
−−−→
dY, e

′
l) ∧ ck(−−−→dX, ek) ∧ c′l(

−−−→
dY, e

′
l) � δ

+
∑

(k,l)∈Iγ J ′

∑
−−−−−→
ek :Ek,el′ :E′l

γ (ak, a′l)(
−→
fk (
−−−→
dX, ek)) · Y(−→g′l (

−−−→
dY, e

′
l))

� −→fk (−−−→dX, ek) = −→f ′l (
−−−→
dY, e

′
l) ∧ ck(−−−→dX, ek) ∧ c′l(

−−−→
dY, e

′
l) � δ

+
∑

(k,l)∈Jγ I ′

∑
−−−−−→
ek :Ek,el′ :E′l

γ (ak, a′l)(
−→
fk (
−−−→
dX, ek)) · X(−→gk (−−−→dX, ek))

� −→fk (−−−→dX, ek) = −→f ′l (
−−−→
dY, e

′
l) ∧ ck(−−−→dX, ek) ∧ c′l(

−−−→
dY, e

′
l) � δ

+
∑

(k,l)∈Jγ J ′

∑
−−−−−→
ek :Ek,el′ :E′l

γ (ak, a′l)(
−→
fk (
−−−→
dX, ek))

� −→fk (−−−→dX, ek) = −→f ′l (
−−−→
dY, e

′
l) ∧ ck(−−−→dX, ek) ∧ c′l(

−−−→
dY, e

′
l) � δ

where PγQ = {(p, q) ∈ P ×Q | γ (ap, a′q) is defined}.
Proposition 51. Let G′ contain the equations for X, Y and Z defined above. Let G contain
the equations for X and Y, and the equation Z(

−−−→
dX, dY) = X(

−→
dX)‖Y(−→dY). Then (Z,G)⇒

(Z,G′).

Proof. We use the identity mapping for gX, gY, gZ. Then the equations for X and Y are
proven trivially because they are the same in G and G′. To prove the equation for Z first

J.F. Groote et al. / Journal of Logic and Algebraic Programming 48 (2001) 39–70 65

apply the axiom (CM1) to get Z = (X(
−→
dX) Y(

−→
dY)+ Y(

−→
dY) X(

−→
dX))+ X(

−→
dX)|Y(−→dY). Then

we replace X and Y in the left hand sides of and in both sides of | by their right-hand sides.
After that we apply the axioms (CM4), (SUM6), (Cond8), (CM2) and (CM3) to eliminate

, and the axioms (CM8), (CM9), (SUM7), (SUM7′), (Cond9), (Cond9′), (CM5), (CM6),
(CM7), (CF1), (CF2),(CT1), (CT2), (CD1), and (CD2) to eliminate |. Note that before
applying the axioms for sums we might need to apply (SUM2), and after elimination and
|we might need to apply (A7) and (A6). After that we apply the identity x‖y = y‖x, which

is derivable from axioms (CM1), (A1) and (SC3), to replace all occurrences of Y(
−→
t ′)‖X(�t)

by X(�t)‖Y(−→t ′), and finally we replace all X(�t)‖Y(−→t ′) by Z(�t,−→t ′) using the equation for Z
in G. As the result we get the equation for Z in G′. �

In the following example we present a model of �CRL based on the trace model [15],
but in which the sequential composition operation is commutative and idempotent. This
model is used in Example 53 to show that the reverse implication of Proposition 51 does
not hold in every model.

Example 52. Let ActLab be a finite set of action labels and γ be the totally undefined

function. Consider the model with carrier set
(

2
(
2ActLab\∅) \ ∅) ∪ {',⊥}, and the operations

defined as follows:

• For each a ∈ ActLab a(�t)→ {{a}}.
• δ→' and τ →⊥.
• + → ∪, where S ∪ ' = ' ∪ S = S and S ∪ ⊥ = ⊥ ∪ S = ⊥.
• ·, ‖, , | → ∗, where S ∗ S′ = {s ∪ s′ | s ∈ S ∧ s′ ∈ S′}, S ∗ ' = ' ∗ S = ' and S ∗ ⊥ =
⊥ ∗ S = S.

• ∂H → eH , where eH ({{a}}) = {{a}} if a /∈ H , eH ({{a}}) = ' if a ∈ H , eH (S ∪ S′) =
eH (S) ∪ eH (S′), eH (S ∗ S′) = eH (S) ∗ eH (S′), eH (') = ', eH (⊥) = ⊥.

• τI → hI , where hI is defined in a similar way as eH .
• ∑d :D → id, where id is the identity mapping.
• x � c � y → if (c, x, y), where if (c, x, y) is the if-then-else mapping.

Example 53. LetG = {X = a · X,Y = b · Y,Z = X‖Y} andG′ = {X = a · X,Y = b · Y,Z
= a · Z+ b · Z}. In the model defined in Example 52 the equations for X in both G and G′
have the following solutions:

{{a}}, {{a, b}}, {{a}, {a, b}}, '
while the equations for Y have the following solutions:

{{b}}, {{a, b}}, {{b}, {a, b}}, '
The equation for Z in G has two solutions {{a, b}} and ', while the equation for Z in G′
has five solutions {{a, b}}, {{a}, {a, b}}, {{b}, {a, b}}, {{a}, {b}, {a, b}} and '.

5.2. Encapsulation, hiding and renaming of LPEs

Let G be an LPE defining X as in the previous section, A be a set of action labels, and R
be a renaming function. We construct LPEs for Z1 being equal to ∂A(X), Z2 being equal to
τA(X), and Z3 being equal to ρR(X), in the following way:

66 J.F. Groote et al. / Journal of Logic and Algebraic Programming 48 (2001) 39–70

Z1(
−−−→
dX:DX)=

∑
i∈I1

∑
−→
ei :Ei

ai (
−→
fi (
−−−→
dX, ei)) · Z1(

−→gi (−−−→dX, ei)) � ci(−−−→dX, ei) � δ

+
∑
j∈J1

∑
−−→
ej :Ej

aj (
−→
fj (
−−−→
dX, ej)) � cj (−−−→dX, ej) � δ

Here and in the equations below we assume that I1 = {i ∈ I | ai /∈ A} and J1 = {j ∈
J | aj /∈ A}.

Z2(
−−−→
dX:DX)=

∑
i∈I1

∑
−→
ei :Ei

ai (
−→
fi (
−−−→
dX, ei)) · Z2(

−→gi (−−−→dX, ei)) � ci(−−−→dX, ei) � δ

+
∑
j∈J1

∑
−−→
ej :Ej

aj (
−→
fj (
−−−→
dX, ej)) � cj (−−−→dX, ej) � δ

+
∑
i∈I\I1

∑
−→
ei :Ei

τ · Z2(
−→gi (−−−→dX, ei)) � ci(−−−→dX, ei) � δ

+
∑

j∈J \J1

∑
−−→
ej :Ej

τ � cj (−−−→dX, ej) � δ

Z3(
−−−→
dX:DX)=

∑
i∈I

∑
−→
ei :Ei

R(ai)(
−→
fi (
−−−→
dX, ei)) · Z3(

−→gi (−−−→dX, ei)) � ci(−−−→dX, ei) � δ

+
∑
j∈J

∑
−−→
ej :Ej

R(aj)(
−→
fj (
−−−→
dX, ej)) � cj (−−−→dX, ej) � δ

Proposition 54. Let G′1 contain the equations for X and Z1 defined above, G′2 contain the
equations for X and Z2 defined above, and G′3 contain the equations for X and Z3 defined

above. Let G1 contain the equations for X and Z1(
−−−→
dX:DX) = ∂A(X(

−→
dX)), G2 contain the

equations for X and Z2(
−−−→
dX:DX) = τA(X(

−→
dX)), and G3 contain the equations for X and

Z3(
−−−→
dX:DX) = ρR(X(

−→
dX)). Then we have G1 ⇒ G′1, G2 ⇒ G′2 and G3 ⇒ G′3.

Proof. To prove the implications we use the identity mappings for gX, gZ1 , gZ2 and gZ3 .
The equations for X are proven trivially. For the other equations we substitute X by its
right-hand side and apply the axioms (D3), (SUM8), (D5), (D4), (D1), (D2), (A7), and
(A6) to push ∂A inside; the axioms (T3), (SUM9), (T5), (T4), (T1), and (T2) to push τA
inside; the axioms (R3), (SUM10), (R5), (R4), (R1), (RT), and (RD) to push ρR inside.
After that we use the equations for Z1,Z2,Z3 in G1,G2,G3 respectively to eliminate the
operators ∂A, τA and ρR completely and arrive at equations for Z1,Z2,Z3 in G′1,G′2,G′3
respectively. �

The following examples show that the reverse implications of the latter proposition do
not hold in every model.

Example 55. LetG1 = {X = a · X+ b · X,Z1 = ∂{b}(X)} andG′1 = {X = a · X+ b · X,Z1

= a · Z1}. Consider the model from Example 52. The equations for X in both G1 and G′1
have the following solutions:

J.F. Groote et al. / Journal of Logic and Algebraic Programming 48 (2001) 39–70 67

{{a, b}}, {{a}, {a, b}}, {{b}, {a, b}}, {{a}, {b}, {a, b}}, '
The equation for Z1 in G1 has two solutions {{a}} and ', while the equation for Z1 in G′1
has four solutions {{a}}, {{a, b}}, {{a}, {a, b}} and '.

Example 56. LetG2 = {X = a · X,Z2 = τ{a}(X)} andG′2 = {X = a · X,Z2 = τ · Z2}. Con-
sider the branching bisimulation model [15]. The equation for Z2 in G2 has the unique
solution Z2 = τ , while the equation for Z2 in G′2 has infinitely many solutions Z2 = τ · p,
where p is any element of the model.

Example 57. LetG3 = {X = a · X+ b · X,Z3 = ρR(X)} and G′3 = {X = a · X+ b · X,Z3

= a · Z3}, where R(a) = R(b) = a. Consider the model from Example 52. The equation
for Z3 in G3 has two solutions {{a}} and ', while the equation for Z3 in G′3 has four
solutions {{a}}, {{a, b}}, {{a}, {a, b}} and '.

5.3. Towards an LPE

LetG′′ = G′′1 ∪G′2 be a system of process equations withG′′1 an LPE andG′2 containing
parallel pCRL process equations. If G′2 is empty, we are done. Otherwise, let (X,G′′)
be the process definition to be transformed. We substitute the right-hand sides for all
parallel pCRL process names (other than X) in G′2 and obtain the set G′′2 with a single
process equation for X, such that (X,G′′) = (X,G′′1 ∪G′′2). We finish the description of
our transformation of G′′ into a single LPE by describing how G′′2 can be integrated with
G′′1. A general strategy is to apply an innermost/outermost reduction along the lines of
Propositions 51 and 54, occasionally adding or replacing process equations.

We consider a typical case (but note that many variants are conceivable):

G′′1 = {Y(−−−→dY:DY) = pY}
G′2 = {X(−−−→dX:DX) = τI (∂H (Y(�t)‖Y(�u)))}

and proceed in a stepwise manner. First we reduce the ‖-occurrence, so transform G′2 into

G3
2 = {X(−−−→dX:DX) = τI (∂H (Z(�t, �u))), Z(

−−−→
dY:DY,

−−−→
eY:DY) = Y(�dY)‖Y(�eY)}

where �eY is a fresh copy of �dY. With Lemma 18 it follows that for all Y ∈ |G′′|, (Y,G′′) =
(Y,G′′1 ∪G3

2). According to Proposition 51, there exists a system H with Z defined by
a number of linear equations in the process names Z and Y such that (Z,G′′1 ∪G3

2)⇒c

(Z,H), and for the remaining process names Y ∈ |G′′|, (Y,G′′) = (Y,G′′1 ∪G3
2)⇒c (Y,

H). Comparing the newly created system H of process equations with G′′, we see that
it contains one parallel pCRL operation less, and one more pCRL process equation con-
sisting of the linear equation for Z. Next, with Propositions 47 and 48 this system can be
transformed into a system H ′ that contains a single LPE, say over process name U, and the
equation X(

−−−→
dX:DX) = τI (∂H (U(�u))) where application of these propositions prescribes the

value vector �u. With Proposition 54 we can resolve the encapsulation and hiding operation
in a similar fashion. This yields a system of process equations H ′′ that consists of an LPE
over process name V and the equation X(

−−−→
dX:DX) = V(�v), and (X,H ′)⇒ (X,H ′′). Now the

last step of this final transformation is the conclusion (X,H ′′) = (V(�v),Glin), where Glin

contains only the LPE for V.

68 J.F. Groote et al. / Journal of Logic and Algebraic Programming 48 (2001) 39–70

The description above illustrates the last part of our transformation. Without further
proof we state the following result.

Proposition 58. Let G′′ = G′′1 ∪G′2 be a system of process equations as described above
(G′′1 an LPE, andG′2 containing parallel pCRL process equations). ThenG′′ can be trans-
formed via innermost/outermost reduction into a system Glin that contains one single LPE,
and that satisfies (X,G′′)⇒c (X′(−→tX′),Glin) for a certain value vector −→tX′ .

6. Conclusions

We described a transformation of parallel pCRL process definitions into a linear format,
and argued that this transformation is correct. Our correctness argument is not tied to some
particular model, and also applies to process definitions that do not necessarily imply that
the models have unique solutions. Furthermore, this transformation is idempotent in the
following sense: applying the transformation to an LPE yields the same LPE.

The algorithm underlying the transformation into LPE format basically matches the
one that is currently implemented in the �CRL toolset [17]. Of course, during the process
of linearization many optimizations are conceivable, some of which can only be applied
in a certain context. We have already mentioned some optimization rewrite rules (Table
10) that can be applied during one of the linearization steps. Another optimization can be
performed in the cases where a new process name is introduced. There can be a choice of
what parameters to use for the new process name in order to fetch the complicated structure
of data terms involved. Furthermore, there are many (minor) optimizations, such as the
rewriting of conditions or the elimination of constant parameters. Due to the fact that the
LPE format provides such a simple process structure, we feel that this type of optimizations
can be best performed after the transformation into the LPE format. Such optimizations
include rewriting of data terms, eliminations of redundant variables and constants, abstract
interpretation, and so on.

There are two particular optimizations that we want to mention here in more detail: reg-
ular linearization and clustering of actions. The first of these is based on [25], and applies
to the situation where regularity follows from the absence of termination in a recursion, like
in X = a · X · X. Restricting to standard process semantics for �CRL, an LPE that specifies
the same behavior is X = a · X. However, this optimization is model dependent, as there can
be models in which the two equations have different sets of solutions. For some other cases,
also dealt with in [25] and used in the �CRL toolset, these optimizations can be justified
on a general level using the equivalence of systems of process equations. For example, the
system G1 = {X = a · Y · X,Y = b} can be transformed into G2 = {X = a · Z,Z = b · X},
and we can prove that (X,G1) = (X,G2), thus showing that this transformation is sound
in every model. As for ‘clustering of actions’, we refer to Definition 2.7, Theorem 2.8
and Theorem A.4 in [21]. The transformation allows us to optimize an LPE to a form in
which every action label occurs at most twice (either as a termination action or not). The
constructed LPE is equivalent to the original one. During the transformation the sums

∑
i∈I

and
∑

j∈J which in Definition 46 represent the abbreviations for alternative compositions,
are changed to the ‘real’ sums over enumerated data types. We note that both these latter
optimizations are implemented in the current version of the �CRL toolset.

In the future we plan to work on extending the linearization procedure to cover the full
syntax of �CRL. Furthermore, the procedure can be extended to handle the timed version of

J.F. Groote et al. / Journal of Logic and Algebraic Programming 48 (2001) 39–70 69

the language. Finally, additional extensions to the language like interrupts, process creation
and priorities could be investigated, as these seem to be useful for applications.

Acknowledgments

Thanks go to Jan Bergstra, Wan Fokkink, Bas Luttik, Faron Moller, Vincent van Oostrom,
Jaco van de Pol, and Mark van der Zwaag for helpful discussions and comments.

References

[1] J.C.M. Baeten, J.A. Bergstra, J.W. Klop, Decidability of bisimulation equivalence for processes generating
context-free languages, Journal of the ACM 40 (3) (1993) 653–682.

[2] J.C.M. Baeten, W.P. Weijland, Process Algebra, Cambridge Tracts in Theoretical Computer Science, vol.
18, Cambridge University Press, Cambridge, 1990.

[3] D.B. Benson, I. Guessarian, Algebraic solutions to recursion schemes, Journal of Computer and System
Sciences 35 (1987) 365–400.

[4] J.A. Bergstra, J.W. Klop, Process algebra for synchronous communication, Information and Computation
60 (1/3) (1984) 109–137.

[5] J.A. Bergstra, J.W. Klop, A complete inference system for regular processes with silent moves, in: F.R.
Drake, J.K. Truss (Eds.), Proceedings Logic Colloquium Hull 1986, North-Holland, Amsterdam 1988,
pp. 21–81. First appeared as: Report CS-R8420, CWI, Amsterdam, 1984.

[6] J.A. Bergstra, A. Ponse, Translation of a muCRL-fragment to I-CRL, in: Methods for the Transformation
and Analysis of CRL. Deliverable 46/SPE/WP5/DS/A/007/b1, SPECS RACE Project no. 1046, pp. 125–
148, Available through GSI Tecsi, May 1991.

[7] M.A. Bezem, J.F. Groote, Invariants in process algebra with data, in: B. Jonsson, J. Parrow, (Eds.),
CONCUR’94, Lecture Notes in Computer Science, vol. 836, Springer, Berlin, 1994, pp. 401–416.

[8] D.J.B. Bosscher, A. Ponse, Translating a process algebra with symbolic data values to linear format, in:
U.H. Engberg, K.G. Larsen„ A. Skou (Eds.), Proceedings of the Workshop on Tools and Algorithms for
the Construction and Analysis of Systems, Aarhus, Denmark, volume NS-95-2 of BRICS Notes Series,
Department of Computer Science, University of Aarhus, May 1995, pp. 119–130.

[9] J.J. Brunekreef, Process specification in a UNITY format, in: A. Ponse, C. Verhoef, S.F.M. van Vlijmen
(Eds.), Algebra of Communicating Processes, Utrecht 1994, Workshops in Computing, Springer, Berlin,
1995, pp. 319–337.

[10] S. Burris, H.P. Sankappanavar, A Course in Universal Algebra, Graduate Texts in Mathematics, vol. 78,
Springer, Berlin, 1981.

[11] K.M. Chandy, J. Misra, Parallel Program Design. A Foundation, Addison-Wesley, New York, 1988.
[12] B. Courcelle, Equivalences and transformations of regular systems-applications to recursive program

schemes and grammars, Theoretical Computer Science 42 (1986) 1–122.
[13] B. Courcelle, Recursive applicative program schemes, in: J. van Leeuwen (Ed.), Handbook of Theoretical

Computer Science, vol. B, chapter 9, Elsevier, Amsterdam, 1990, pp. 459–492.
[14] W.J. Fokkink, Introduction to Process Algebra, Texts in Theoretical Computer Science. An EATCS Series,

Springer, Berlin, 2000.
[15] R.J. van Glabbeek, The linear time-branching time spectrum II; the semantics of sequential systems with si-

lent moves, Manuscript. Preliminary version available by ftp at ftp://boole.stanford.edu/pub/spectrum.ps.gz,
1993. Extended abstract, in: E. Best (Ed.), Proceedings CONCUR’93, 4th International Conference on
Concurrency Theory, Hildesheim, Germany, August 1993, Lecture Notes in Computer Science, vol. 715,
Springer, Berlin, pp. 66–81.

[16] J.F. Groote, The syntax and semantics of timed �CRL, Report SEN-R9709, CWI, The Netherlands, 1997.
[17] J.F. Groote, B. Lisser, Tutorial and Reference Guide for the �CRL toolset version 1.0, CWI, 1999. Available

from http://www.cwi.nl/∼mcrl/mutool.html..
[18] J.F. Groote, S.P. Luttik, Undecidability and completeness results for process algebras with alternat-

ive quantification over data, Report SEN-R9806, CWI, The Netherlands, July 1998. Available from
http://www.cwi.nl/∼luttik/; submitted for publication.

70 J.F. Groote et al. / Journal of Logic and Algebraic Programming 48 (2001) 39–70

[19] J.F. Groote, A. Ponse, Proof theory for �CRL: a language for processes with data, in: D.J. Andrews, J.F.
Groote, C.A. Middelburg (Eds.), Semantics of Specification Languages, Workshop in Computing Series,
Springer, Berlin, 1994, pp. 232–251.

[20] J.F. Groote, A. Ponse, The syntax and semantics of �CRL, in: A. Ponse, C. Verhoef, S.F.M. van Vlijmen
(Eds.), Algebra of Communicating Processes1994, Workshop in Computing Series, Springer, Berlin, 1995,
pp. 26–62.

[21] J.F. Groote, J. Springintveld, Focus points and convergent process operators. A proof strategy for protocol
verification, Technical Report 142, Department of Philosophy, Utrecht University, 1995. Available from
ftp://ftp.phil.uu.nl/pub/logic/PREPRINTS/preprint142.ps.Z.

[22] J.F. Groote, J.J. van Wamel, Algebraic data types and induction in �CRL, Technical Report P9409,
University of Amsterdam, Programming Research Group, 1994.

[23] Y. Hirshfeld, F. Moller. Decidability results in automata and process theory, in: F. Moller, G. Birtwistle
(Eds.), Logics for Concurrency: Structure versus Automata, Lecture Notes in Computer Science, vol. 1043,
Springer, Berlin, 1996, pp. 102–148.

[24] ISO/IEC, LOTOS–a formal description technique based on the temporal ordering of observational beha-
viour, International Standard 8807, International Organization for Standardization–Information Processing
Systems–Open Systems Interconection, Genève, September 1988.

[25] S. Mauw, J.C. Mulder, Regularity of BPA-systems is decidable, in: B. Jonsson, J. Parrow (Eds.), Proc.
CONCUR ’94, Lecture Notes in Computer Science, vol. 836, Springer, Berlin, 1994, pp. 34–47.

[26] S. Mauw, G.J. Veltink, A process specification formalism, Fundamenta Informaticae 13 (1990) 85–139.
[27] S. Mauw, G.J. Veltink (Eds.), Algebraic Specification of Communication Protocols, Cambridge Tracts in

Theoretical Computer Science, vol. 36, Cambridge University Press, Cambridge, 1993.
[28] R. Milner, A complete inference system for a class of regular behaviours, Journal of Computer and System

Sciences 28 (1984) 439–466.
[29] V. van Oostrom, Personal communications, 2000.
[30] A. Ponse, Computable processes and bisimulation equivalence, Formal Aspects of Computing 8 (6) (1996)

648–678.
[31] A. Ponse, Y.S. Usenko, Equivalence of recursive specifications in process algebra, Information Processing

Letters, to appear.
[32] SPECS-Semantics and Analysis, Definition of MR and CRL Version 2.1. Deliverable

46/SPE/WP5/DS/A/017/b1, SPECS RACE Project no. 1046. Available through GSI Tecsi, 1990.
[33] Specification and description language (SDL). ITU-T Recommendation Z. 100, 1994.

