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ABSTRACT 
We investigate the formal verification of safety-critical sys
tems on top of the distributed data space architecture Splice. 
In Splice each component has its own local data space which 
can be kept small using keys, time stamps and selective over
writing. We use two complementary formal tools: first the 
µCRL tool set for a rapid investigation of alternatives by a 
limited verification with state space exploration techniques; 
next the most promising solutions are verified in general 
by means of the interactive theorem prover of PVS. These 
formal techniques are used to investigate transparent repli
cation of certain components on top of Splice. We prove 
that a convenient solution can be obtained by means of a 
slight extension of the write primitive of Splice. 

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verifi
cation; F.3.1 [Logics and Meanings of Programs]: Spec
ifying and Verifying and Reasoning about Programs 

General Terms 
Verification, Reliability 

Keywords 
Coordination, data space architecture, formal verification, 
model-checking, theorem proving 

1. INTRODUCTION 
We study formal specification and verification of safety

critical systems that are implemented on top of the dis-
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tributed data space architecture Splice [4], which has been 
devised at the company Thales Nederland. It provides a co
ordination mechanism for loosely-coupled components, sim
ilar to Linda [7] and JavaSpaces [13]. The main difference is 
that these last two languages have one central data space to 
which all processes may write and from which they can all 
read or take items. Such a central data space is absent in 
Splice, where the data space is distributed; each application 
has its own local data storage that is updated according to 
a publish-subscribe mechanism. Whereas JavaSpaces uses a 
leasing mechanism to express the temporal validity of data 
items (and allow garbage collection), the local storages of 
Splice are kept small using keys and time-stamps: recent 
data just overwrites old data with the same key. 

Splice is being used to build large and complex systems, 
such as command and control systems. Typically there are 
sensors, a number of internal processes that perform calcu
lations on the sensor data, and components that decide on 
appropriate actions such as commands to actuators. Thanks 
to the efficient implementation of Splice, large streams of 
sensor data can be processed at real time. 

An important aspect for most Splice applications is fault
tolerance, and often this is achieved by replicating compo
nents. In this paper, we investigate transparent replication, 
i.e. the possibility to duplicate components without affecting 
other components in the system. This has also been stud
ied in [8], aiming at a Splice-like architecture in which each 
component can be replicated. Our aim is to investigate how 
certain components can be replicated transparently on top 
of Splice. A question is, for instance, whether the implicit 
time-stamp mechanism of Splice can be exploited. 

A second aim is a rigorous verification of the correctness 
of replicated Splice components using formal methods, i.e. 
methods and techniques that have a precise, mathematically 
defined meaning. Our approach uses two rather complemen
tary formal approaches: 

• The µCRL tool set [2] is based on an operational al
gebraic model that is suitable for quickly prototyping and 
debugging applications. Small finite instances of the appli
cation can be verified automatically. 

• The PVS tool [20] contains a logic that allows the for
mulation of a denotational semantics of Splice programs and 
property-oriented specifications. Verification of general, un
bounded, applications is possible using interactive theorem 
proving. 

The PVS-approach provides more general results than the 
µCRL-approach, but it is much more labor-intensive, espe-



cially when there are still many errors in the application. 
Hence we apply this approach after a good intuition has 
been obtained using µCRL. 

To be able to apply our tools to the verification of Splice 
systems, we need a formal semantics of Splice. Several for
malizations of (fragments of) Splice already exist. We men
tion work on the process algebra SPA [9], the µCRL tool 
set [10, 21] and a formalization in the higher-order logic 
of the theorem prover PVS [3]. Related work on the op
erational semantics of Linda and JavaSpaces has been pre
sented in [6]. A comparison between various shared data 
space versions was given in (5]. 

Our semantic models of Splice are based on the models 
described in (3, 21). They are less detailed than (10] in order 
to facilitate verification. Moreover, the semantics presented 
here is based on more recent information about the use of 
keys and time-stamps. 

This paper is structured as follows. In section 2 we give an 
informal description of our research. The µCRL-approach 
and the PVS-approach are presented in sections 3 and 4, 
respectively. Concluding remarks can be found in section 5. 
We refer to [18] for more details. 

2. INFORMAL OVERVIEW 
In section 2.1 we introduce the main concepts of Splice and 

some details of the underlying implementation. Section 2.2 
describes a small application that is used as a case study. 
Our formal approaches are briefly introduced in section 2.3. 
The general results of our study are presented in section 2.4. 

2.1 Splice 
The Splice architecture provides a coordination mecha

nism based on a publish-subscribe paradigm. Producers and 
consumers of data are decoupled; they need not know each 
other, but communicate indirectly via the Splice primitives, 
basically read- and write-operations on a distributed data 
space. This makes it possible to add and remove compo
nents at run-time. The data space is distributed in the sense 
that each component maintains its local version of the data 
space. Read requests from an application process are served 
from this local storage. 

Looking at the implementation of Splice, each application 
component has an agent that takes care of the communi
cation between components. When an application process 
writes a data item of a particular sort, the corresponding 
agent forwards this item asynchronously via some underly
ing network to all agents of processes that subscribed to this 
sort. There are no assumptions on message delay, so items 
may arrive at the agents in different order. Each agent uses 
received items to update its local storage, as described be
low, where it might be read by its application. 

To explain the update mechanism of local storages, we 
first describe the entries in the data storage. Each entry 
consists of three parts: a key, a value and a time stamp. 
In each local data space, there will be at most one item 
with a given key. When an application writes a (key,value) 
pair, its local agent adds the current local clock value to 
obtain a (key,value,time stamp) triple. This triple is sent 
asynchronously to all subscribed agents. 

Next assume that a (key,value,time stamp) triple arrives 
at some other agent. If no item with the same key exists, the 
triple is simply added to the local data space. Otherwise, 
the item with the same key is overwritten by the new item, 

provided the new item is strictly newer than the current item 
in the local data space, as indicated by their respective time 
stamps. This prevents data items to be overwritten by older 
items that suffered from a large network delay. 

An application can read items satisfying certain queries. 
It is, for instance, possible to read a value with a given key. 
Reads can be either blocking or non-blocking (possibly with 
some time-out). Also, Splice admits both destructive and 
non-destructive read. In the former case, an application 
process can read each data item only once. As opposed to 
the global "take" operation of JavaSpaces, this destructive 
read only operates on the local data space. Note that an 
item cannot simply be removed, because it is still needed by 
the agent to check whether arriving data items are newer 
than this item. 

Our formal model mainly contains the features of Splice 
that were needed for our case study (see section 2.2). We did 
not model, for instance, time-outs on read operations, syn
chronization of local clocks, the (dynamic) publish/subscribe 
mechanism, dynamic reconfiguration, data sorts, and differ
ent kinds of data such as persistent and context data. 

2.2 The Case Study 
As a case study, we consider a simple system with three 

types of components: 
• Producer: provides data (with key input) to the rest 

of the system. It can be seen as an abstraction of sensors 
such as radar, thermometer, altitude measurement device, 
etc., that provide the system with an approximation of the 
physical reality. 

• Transformer: performs internal data computations; 
here data with key input is simply transformed into data 
with key output. In reality, some computation on data is 
performed, such as computing tracks out of plots, making 
an hypothesis about future movement of objects, etc. 

• Consumer: reads data with key output and forwards it 
to the external environment. In a real system, this compo
nent might include decision making, leading to commands 
to external devices such as motors, pumps, screens, etc. 

Although abstracting from internal computations makes 
the example quite simple, it represents a typical Splice
application in which replication is relevant. The aim is 
to obtain a higher degree of fault-tolerance by replicating 
the transformer; the system becomes more robust against 
crashes of transformers and against network errors. We try 
to do this transparently, without modifying producer and 
consumer. 

2.3 Formal Methods 
In this section we give the main ideas of our formal ap

proaches. Details can be found in subsequent sections. 

2.3.1 µCRL 
In the µCRL approach, Splice is modeled operationally, 

by expressing the agents and the network in a form of pro
cess algebra. This leads to a Splice component. Next also 
producer, transformer and consumer are modeled as a term 
in process algebra. Then the aim is to show that the system 
Splice 11 Producer I I Transformer 11 Consumer is equiv
alent (in some well-defined way) to Splice 11 Producer 11 
Transformer 11 Transformer 11 Consumer. 

In this approach, it is difficult to split up the verifica
tion task; the whole system, with all components, has to 



be considered. Since the µCRL tool is especially suitable 
for checking finite systems, we investigated a number of in
stances of the system. Due to the state-explosion problem, 
the tool could check a system with at most 5 data items. 
Still this turned out to be very useful to find errors. We also 
investigated several types of equivalences, and found sur
prising differences, depending on the number of data items 
considered. 

To obtain a finite, checkable system that allows rapid pro
totyping of our ideas, we made some further simplifications 
in this approach. For instance, we only modeled blocking 
destructive reads which return a single data item. 

2.3.2 PVS 
The PVS-approach aims at general verification of Splice

applications. First a denotational semantics is defined for a 
programming language with Splice primitives. Here we are 
not aiming at finite models, but instead formulate a general 
semantics in terms of the powerful higher-order logic of PVS. 
Specifications are written in an assertional way, describing 
properties of the system or its components, by means of 
pre- and postconditions. Using the compositional character 
of the semantics, verification can also be done composition
ally, allowing reasoning with the specifications of compo
nents without knowing their implementation. 

This compositional approach supports a strong separa
tion of concerns; one can separately verify the satisfaction 
of the top-level specification, the replication of transformer 
specification, and the independent implementation of the 
components. 

2.4 Results 
Experiments in µCRL with the case study, and several 

other examples, show that in general replication leads to 
different external behaviour. Duplication of the transformer 
typically leads to a duplication in the values output by the 
consumer. The reason for this was found by inspecting the 
automatically generated error traces for the case study. The 
problem is that the replicated transformers have their own 
local clocks, which are used to time stamp the transformed 
data items. Due to clock-differences, slightly different copies 
of the same item are produced. Combined with the asyn
chronous network, this results in duplication of data by the 
consumer. We found two possibilities for obtaining correct 
replication: 

• The producer adds sequence numbers to data items, 
which are copied by the transformer(s), and the consumer 
only accepts items with increasing sequence numbers. 

• The write primitive of Splice has been extended with an 
additional time-stamp parameter which replaces the implic
itly added time-stamp. The transformer now uses the new 
primitives, by copying the time stamp. In this way, time
stamps reflect the temporal validity of data more accurately. 
The original producer and consumer are not changed. Now 
the update mechanism in Splice ensures that items are only 
overwritten by more recent data. 

Only the latter solution is transparent, because replication 
is obtained without changing producer or consumer. This 
solution has been validated in µCRL and its correctness has 
been proved in general using PVS. 

3. THE µCRL-APPROACH 
The µCRL [15] specification language is a combination 

of (ACP-style) process algebra (see e.g. [1, 12]) and alge
braic datatypes. A system is modeled as a "process" , often 
specified as the parallel composition (JI) of a number of other 
processes, the components. Components are often described 
by recursive equations, using sequential (.) and alternative 
( +) composition. Consider, e.g., Bu.f = in.out.Bu.f. Here in 
and out are so-called atomic actions, which can be externally 
visible actions, or which synchronize with corresponding ac
tions in different components. Atomic actions can be labeled 
by data parameters in µCRL. Also recursive specifications 
can have data parameters, which serve as state variables. In
put can be modeled by non-determinism, e.g. in(O) + in(l) 
models the input of some bit. A generalized choice opera
tor is written with the E-operator. Another construct is a 
guard: [b] -+ x, which can execute x provided boolean b is 
true. Data, like bits and booleans, but also natural numbers, 
sets etc., are described by means of algebraic data types. A 
buffer-with-delay can be modeled as: 

Buf (x: Bit) = L in(y).out(x).Bu.f(y) 
y:Bit 

The µCRL tool set [2] supports verification as follows. 
The operational semantics of a µCRL process is a labeled 
transition system (LTS). This is a rooted directed graph, 
some of whose edges are labeled with atomic actions. The 
µCRL tool set allows automatic generation of the LTS from 
a µCRL specification. The resulting LTS can be inspected 
by means of visualization, model checking, or equivalence 
checking. For these activities we used the CADP tool set [11]. 

The sketched verification route has a clear bottle-neck: 
the LTS suffers from a combinatorial state explosion, due 
to the many possible interleavings. To overcome this, the 
LTS can be minimized modulo some equivalence relation. 
The equivalence relation used in µCRL is branching bisim
ulation [14]. To avoid the generation of a too large LTS en
tirely, the µCRL tool applies some reductions already at the 
symbolic level of the specification. Here many techniques 
from compiler optimization and theorem proving are used. 

This verification method has the limitation that it can 
only be applied on finite state systems. As advantages, we 
mention that it is completely automatic, and that it also 
gives useful feedback in case some requirement doesn't hold. 
For instance, the model checker will return an execution 
path which violates the requirement. This is very useful for 
debugging the specification. 

3.1 Components and Interfaces 
We model a Splice system as the parallel composition 

of the application processes and a separate Splice-process. 
Subsequently, the Splice-process itself can be defined as the 
parallel composition of a number of agents and a separate 
Network-process. The applications synchronize with Splice(
agents) via atomic read- and write-primitives. Similarly, 
the agents synchronize with the network via tell- and ask
primitives. See figure 1 for an overview of the system. 

Next, we model the interfaces (API) of Splice and the 
Network in µCRL. Each agent will get a unique address. 
The read and write actions carry three data parameters: 
the key, the value and the agent's address. The possibility of 
synchronizing on write actions and on read actions must also 
be specified. Here r and v represent the combined action of 
the application and the agent of performing a read or write 
action. 
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Figure 1: The architecture of a Splice system. 

sort Key, Value, Address 
act read,r : Key#Value#Address 

write,w: Key#Value#Address 
comm write I write = w 

read I read = r 

A similar interface (not shown) is used to allow synchro
nization between agents and the network. A tell action cor
responds to broadcasting an entry to a number of addresses 
asynchronously. An ask action corresponds to receiving an 
entry from the network at a particular address. 

Having fixed the interfaces, we can be more explicit on the 
composition. For instance, a system with two components 
(P, Q) as specified as follows: 

System= T{r,w}O{read,write}(Splice II P II Q) 
Splice= T{a,t}O{aak,tell}(Network II Agent II Agent) 

Here parallel composition (Ii) is ACP-style parallelism, 
corresponding to an interleaving semantics, with the possi
bility of synchronization between atomic actions, as defined 
in the preceding comm-sections. The encapsulation a is 
needed to enforce synchronization. The hiding T is used 
to hide externally invisible actions: only the actions in P; 
different from read/write are externally visible. In the sub
sequent sections we define the components Network, Agent, 
and some application processes. 

3.2 The network 
For a high-level description of a reliable network with un

bounded delay, we introduce the sort Multiset, containing 
(entry, address)-pairs. The entries will be delivered to the 
addresses in arbitrary order. Next, some auxiliary func
tions are needed, such as union, remove and in (membership 
test). Also the function send_to_all is defined in such a way 
thate.g.send_to_all([a,b,c],e) = {Ca,e),(b,e),(c,e)}, 
where a, b, and c are addresses and e is an entry. 

Process Network is defined as a recursive specification, 
with the current multiset as a state variable (B). It has two 
possible behaviors. At any moment a tell-action can happen 
from any address a of entry e to recipients in address list 
AL. Similarly for all a, e an ask-action can happen, provided 
(e, a) is an element of B. The recursive calls specify the new 
value of the multi-set in both branches. 

proc Network(B:Multiset) = 
sum(a:Address,sum(e:Entry,sum(AL:AddressList, 

tell(a,e,AL). 
Network(union(B,send_to_all(AL,e)))))) 

+ sum(a:Address,sum(e:Entry, 
[in(e,a,B)] -> 

ask(a,e). 
Network(remove(e,a,B)))) 

3.3 The Agents 
The agents maintain a local data base of current entries. 

Entries are defined as triples (key,value,time stamp), where 
we choose the natural numbers as time stamps. The data 
base is modeled as a set of (Entry,Bool)-pairs, where the 
boolean indicates whether the entry has been used. This is 
needed to model destructive reads. 

func entry : Key#Value#Nat->Entry 
sort Database 
func empty : -> Database 

add : Entry#Bool#Database -> Database 
map value: Key#Database -> Value 

time: Key#Database -> Nat 
unused_elt: Key#Database ->Bool 
update: Entry#Database -> Database 
mark_used: Key#Database ->Database 

Here empty and add are the (list-like) constructors for 
Database. Furthermore, value and time are functions to 
retrieve the value and time stamp of an item with a certain 
key in the database; unused_el t (k, S) holds if and only if 
key k refers to an entry in S which is not yet used. Finally, 
update and mark_used are modifiers, in order to update the 
database with a new entry, or to mark the entry with a cer
tain key as used. These operations are defined by rewrite 
rules (not shown), formalizing the intended behaviour of the 
overwrite mechanism. 

Next, we define the behavior of the agents. Besides the 
database (initially empty), an agent has a local clock (t :Nat, 
initially 0), and it is parameterized with its address. The 
Agent process is defined recursively, and consists of three 
branches. First, an unread entry from the database can be 
read, which is then marked as used. Second, a new ele
ment can be added, which is then time stamped with the 
current clock value and broadcasted over the network to all 
subscribers. We assume that some (application-dependent) 
function is given to compute the subscribers for some key. 
In this case the clock is increased by one. Finally, some new 
entry may arrive from the network, after which the database 
is updated accordingly. So we get: 

proc Agent(X:Database,i:Address,t:Nat) 
sum(k:Key, 

[unused_elt(k,X)]-> 
read(k,value(k,X),i). 
Agent(mark_used(k,X),i,t)) 

+ sum(k:Key,sum(e:Value, 
write(k,e,i). 
tell(i,entry(k,e,t),subscribers(k)). 
Agent(X,i,S(t)))) 

+ sum(e:Entry, 
ask(i,e). 
Agent(update(e,X),i,t)) 



3.4 Application Processes 
We model a producer and a consumer, which are inter

mediated by a (number of identical) transformer(s). The 
system interacts with the external world through in- and 
out-actions parameterized by Value. When the producer 
gets some input, it writes it to the database with key input. 
The consumer tries to read elements with key output and 
outputs them to the external world. The transformer com
putes the output values from the input values. 

func input,output: ->Key 
act in,out: Value 
proc 
Producer(i:Address) = 

sum(e:Value, 
in(e). write(input,e,i). Producer(i)) 

Consumer(i:Address) = 
sum(e:Value, 

read(output,e,i). out(e). Consumer(i)) 
Transformer(i:Address) = 

sum(e:Value, 
read(input,e,i). write(output,e,i). 
Transformer(i)) 

3.5 Verification 
To verify replication, we compare two systems. The first 

system has a producer, consumer and one transformer. The 
second system has a producer, consumer and two transform
ers. We restricted the number of inputs to a parameter n; for 
fixed n, the system is finite state. The state spaces of both 
systems are generated and minimized modulo trace equiva
lence. Our notion of correctness is trace equivalence between 
systems with and without replication. This is deliberately 
weaker (coarser) than branching bisimulation equivalence, 
for reasons described later. 

For the two systems (with n = 2), we obtain the graphs 
above, showing that they are not the same. The system on 
the right with two transformers is able to duplicate out(2). 
By using the CADP model checker, we could expand this 
to a concrete trace, including all intermediate read/write 
actions. As explained earlier, the problem can be repaired 
by extending the write primitive of Splice. This is achieved 
by adding a parameter to the read- and write actions: 

act read,r : Key#Value#Nat#Address 
write,w: Key#Value#Nat#Address 

proc Transformer'(i:Address) = 
sum(e:Value,sum(t:Nat, 

read(input,e,t,i). write(output,e,t,i). 
Transformer'(i))) 

Again, the version with and without replication were gen
erated and compared using the µCRL tool set. The system 
could be verified up to five input items. 

3.6 Concluding remarks on µCRL approach 
We notice that µCRL is quite expressive. Especially the 

combination of choice operators and guards allows the mod
eling of restricted non-deterministic input and output, in 
contrast to e.g. value passing CCS [19]. 

The problem sizes that can be dealt with are limited, but 
some interesting instances can be generated. In figure 2 we 
show the size of the state space for m transformers and n 
input items, denoted SYSmn. It appears that we can easily 
generate situations with up to 3 transformers, or 5 input 
items (slightly larger instances can be generated, but this 
is time and memory consuming). The symbolic reduction 
tools were indispensable to generate these instances. 

generated reduced 
states transitions states transitions 

SYS12 35 56 6 7 
SYS22 419 1278 6 7 
SYS32 4547 20465 6 7 
SYS13 152 350 10 16 
SYS23 5052 22305 10 16 
SYS33 142472 925429 10 16 
SYS14 611 1825 15 30 
SYS24 55041 315712 15 30 
SYS15 2339 8565 21 50 
SYS25 566640 3984157 21 50 

Figure 2: Size of the generated and reduced LTSs 

Finally, the used equivalence relation matters! It appears 
that the systems with and without replication are not equal 
modulo branching equivalence with more than two input 
items. Apparently, this equivalence relation is too fine. We 
tried several coarser equivalence relations, but many of them 
fail, when the number of inputs increases. Only trace equiv
alence appeared to hold (up to 5 input items). This also 
indicates that a more general tool, dealing with arbitrary 
many inputs is useful. 

4. THE PVS-APPROACH 
The tool PVS (20] is used to give general verifications of 

Splice-based systems, for instance with an unbounded num
ber of data items or any arbitrary number of transformers. 
The logic of PVS is a typed higher-order logic in which we 
express the semantics of Splice. Earlier work on a denota
tional semantics for Splice [3] showed the equivalence of a 
global data space view and an implementation with local 
data spaces for a carefully selected set of Splice-primitives. 
This result, however, does not hold for the full Splice archi
tecture, which is essentially based on distributed storages. 

The semantics for local storages of [3] seems not very con
venient for verification; it is based on a partial order of read 
and write events, with complex global conditions. It also 
uses process identifiers, which we would like to avoid if pos
sible. Here we aim at a more intuitive denotational seman
tics, which enables local reasoning as much as possible and 
also incorporates more recent information about the char
acteristics of Splice, especially concerning the time stamps. 



A new denotational semantics is presented in section 4.1. 
The specifications and verification techniques are based on 
earlier work on compositional program verification in PVS 
[17] and are described in section 4.2. Section 4.3 contains 
the PVS-work on the case study. 

4.1 Denotational semantics 
The PVS theories that describe the general Splice seman

tics are parameterized by types Data , KeyData, and a key 
function from data to key data key : [Data -> KeyData]. 
Moreover, there are parameters for sets of variables, ranging 
over data and sets of data. As usual, there is a type States 
which assigns values to variables. 

As time domain we use the real numbers. By adding a 
time stamp to data we obtain data items, represented in 
PVS as a record with two fields, dat and ts. Extended data 
items contain an additional boolean used. A data base is 
a set of these extended items, where used indicates if the 
item has been read destructively, hence cannot be read by 
subsequent reads. 

Time TYPE = real 
Dataitems TYPE [# dat : Data, 

ts : Time #] 
ExtDataitems TYPE [# di : Dataitems, 

used : bool #] 
DataBases TYPE setof[ExtDataitems] 

The basic idea of the semantics is that for each sequential 
program we record the current contents of the local data 
base, the set of data written by the program itself, and the 
data items assumed to be written by its yet unknown envi
ronment. In the semantics, these written data items have 
an additional logical clock value that is used to avoid causal 
inconsistencies. Since these logical clocks are not relevant 
for the current case study, we omit them in the rest of the 
presentation here. 

The written items are used to update the local data base; 
this may happen non-deterministically, at any point in time. 
In the sets of written items, the field used indicates whether 
an item has already been used for an update. For a process 
in isolation, the environment may write any data item; in 
each execution they are recorded as an assumption that is 
checked later at parallel composition and closure. 

This leads to semantic primitives of type SemPrim, which 
are modeled as a record in PVS containing the current state, 
value of the local clock, local data storage, own written items 
and items written by the environment. 

The denotational semantics of each statement is a function 
from an initial semantic primitive (representing the effect of 
preceding statements) to a set of resulting primitives, de
noting all possible non-blocking executions. Similar to [17], 
a program and its semantics are identified, since that pro
vides the most flexible framework. So here a Splice program 
is simply defined as its semantics, a function which assigns 
to each initial semantic primitive a set of semantic primitives 
denoting the outcome of its executions. 

SpliceProgs : TYPE 
prog, prog1, prog2 

[SemPrim -> setof[SemPrimJ] 
VAR SpliceProgs 

A basic skip statement simply yields a set containing only 
the initial state. The full skip statement is more compli
cated; it also includes a so called UPDATE statement which 

allows arbitrary environment writes and non-deterministic 
updates of the data base using the write sets. The update 
of the data base formalizes the mechanism described before, 
using keys and time stamps. In this way, we define all basic 
statements, such as assignment, read, and write; they all 
include UPDATE. 

A read statement Read(svar,q,destr) has three param
eters: a variable svar, ranging over sets of items, a query 
q, and a boolean destr which indicates whether the read 
should be destructive. The query is a predicate over the cur
rent state and database, specifying subsets of the data base 
that might be read. If such a subset exists, it is assigned to 
svar, otherwise the read statement blocks. The query may 
disallow the empty set, specifying a blocking read. 

A write statement Write(e) adds a data item specified 
by expression e and extended with the current value of the 
clock to the set of own writes. This statement also increases 
the local clock. Since all other statements do not decrease 
the clock, this ensures that all writes of a sequential program 
have different time stamps. 

We also define a number of compound constructs, such as 
sequential composition Seq (prog1, prog2), choice construct 
IfThenElse (b, prog1, prog2) and infinite loop Loop (prog). 
At parallel composition prog1 I I prog2 we check whether 
the environment writes of one program are equal to the 
union of the own writes of the other program and the remain
ing environment writes of the compound construct. Finally, 
there is a closure operation Close (prog) which requires that 
there are no environment writes; hence all consumed items 
must have been produced inside the program itself. 

4.2 Specification and verification 
To obtain a very flexible framework, suitable for top-down 

program design, we freely mix specifications and program 
constructs. Starting from a specification, gradually more 
programming constructs can be introduced, until finally all 
specifications are removed. Hence we define a specification 
also as a program. Here we use a pre- and postcondition 
style specification, where an assertion is a predicate over 
the semantic primitives. 

Assertions 
p, q 
sp, spO 

TYPE = pred[SemPrim] 
VAR Assertions 
VAR SemPrim 

spec(p,q) : SpliceProgs = 
LAMBDA spO : { sp I p(spO) IMPLIES q(sp) } 

We define when prog1 refines prog2, denoted prog1 => prog2, 
as the subset relation. It is reflexive and transitive. 

=>(prog1,prog2) : bool = 
FORALL spO : subset?(prog1(sp0),prog2(sp0)) 

Verification of this refinement relation is supported by a 
number of proof rules that have been proved using the in
teractive theorem prover of PVS. As an example, we show 
the monotonicity rule for parallel composition, formulated 
in PVS as a theorem with label mono_par: 

mono_par : THEOREM 
(prog3 => prog1) AND (prog4 => prog2) 
IMPLIES 

((prog3 II prog4) => (prog1 // prog2)) 



4.3 Case study 
To model the case study in PVS, we import the general 

PVS theories described above with the following parameters. 
Data consists of name and value, where the name acts as key. 

DataName TYPE {input,output,out} 
Data Val TYPE nat 
Data TYPE [# name : DataName, 

val Data Val #] 
KeyData TYPE DataName 
key(dvar: Data) KeyData = name(dvar) 

4.3.1 Top-level specification 
The top-level specification, TopLevel, expresses that if 

there are no writes outside the system then the out-values 
are increasing, i.e. for two items edi1 and edi2 in ownw 
with name out we have that val(edi1) < val(edi2) !FF 
ts (edi1) < ts (edi2). Using suitable abbreviations, this 
can be written as follows. 

pre : Assertions = LAMBDA spO 
db(spO) emptyset AND 
ownw(spO) = emptyset AND 
envw(spO) = emptyset 

postTopLevel : Assertions = LAMBDA sp 
empty?(envw(sp)) IMPLIES 

Increasing(Out(ownw(sp))) 
TopLevel : SpliceProgs = spec(pre, postTopLevel) 

4.3.2 Specifying components 
The aim is to implement the above specification by a pro

ducer, one or more transformers, and a consumer. For the 
producer we specify that it produces only input-values, and 
its writes should be increasing. The consumer produces only 
out-items and it just maintains the order of items, i.e. if the 
environment writes increasing output-items, then it will also 
write increasing out-items. In PVS, omitting many details: 

postProd : Assertions = LAMBDA sp : 
NameOwnw(input)(sp) AND Increasing(ownw(sp)) 

Prod : SpliceProgs = spec(pre, postProd) 

postCons : Assertions = LAMBDA sp : 
NameOwnw(out)(sp) AND 

MaintainOrder(Output(envw(sp)), 
Out(ownw(sp))) 

Cons : SpliceProgs = spec(pre, postCons) 

To satisfy the top-level specification, we introduce the fol
lowing specification for the transformer: 

postTrans : Assertions = LAMBDA sp 
NameOwnw(output)(sp) AND 

MaintainOrder(Input(envw(sp)), 
Output(ownw(sp))) 

Trans : SpliceProgs = spec(pre, postTrans) 

4.3.3 Verifying the design 
Using the specifications above, it is relatively easy to ver

ify that the three components in parallel lead to the top-level 
specification. 

DesignCorrect: THEOREM 
(Prod// (Trans // Cons)) => TopLevel 

Next, the components can be implemented independently. 
By the monotonicity property (and transitivity of =>), con
formance to the top-level specification is still guaranteed. 
For instance, using a data variable d and appropriate defi
nitions for dinit, dval, and dnext, we can obtain a correct 
program for the producer: 

Producer : SpliceProgs 
Seq(Assign(d,dinit), 

Loop(Seq(Write(dval), Assign(d,dnext)))) 
ProdCor : LEMMA Producer => Prod 

Similarly for the transformer and the consumer. 

4.3.4 Introducing replication 
Note, that the previous transformer specification cannot 

be replicated. This has been proved in PVS by constructing 
a counter example manually. 

INoRepl : LEMMA NOT ((Trans // Trans) => Trans) 

To obtain a transformer that can be replicated, we modify 
the specification such that it also maintains the time stamp 
of the input item, as expressed by assertion MaintainTs. 

postTransNew : Assertions = LAMBDA sp : 
NameOwnw(output)(sp) AND MaintainTs(sp) 

TransNew : SpliceProgs = spec(pre, postTransNew) 

We prove that the new transformer refines the old one, so it 
still conforms to the top-level specification. 

NewlmpliesOld : LEMMA TransNew => Trans 

NewCorrect: THEOREM 
(Prod// (TransNew // Cons)) => TopLevel 

Now we can prove replication of the new transformer and 
insert it into the system (as many times as we want). 

TransNewRepl : THEOREM 
(TransNew // TransNew) => TransNew 

NewReplCorrect: THEOREM 
(Prod// ((TransNew // TransNew) //Cons)) 

=> TopLevel 

With the current Splice primitives, however, the new trans
former specification cannot be implemented; there is no pos
sibility to specify the value of the time stamp. Hence we 
propose to add a write primitive Write (e, texp) which has 
as additional parameter a time expression texp that is used 
in the time stamp field of the data item written. 

5. CONCLUSION 
To achieve transparent replication of components on top 

of the distributed data space architecture Splice, we pro
pose a slightly extended write command. By adding a time 
expression that replaces the default time stamp of data, 
the temporal validity of data can be expressed more ac
curately. Together with the update mechanism of Splice, 
where data with old time stamps cannot overwrite newer 



values, this leads to a more logical use of time stamps. This 
made replication much easier, avoiding for instance the need 
for additional sequence numbers. Note that the extended 
write command can also be used for predicted or interpo
lated data items. Also other examples with explicit time 
stamps, e.g. [16], could have been simplified with this new 
write primitive. 

The use of formal tools and techniques turned out to be 
very useful during our study of replication on top of Splice. 
Informal reasoning is difficult, because there a.re many pos
sible variations in the components and the use of the un
derlying architecture. For instance, for each read statement 
there a.re already a number of choices concerning the precise 
query, and whether it should be blocking and/or destructive. 
There a.re also many variations concerning the structure of 
the data and the choice of keys which influence the overwrit
ing of data. Moreover, the fact that Splice allows arbitrary 
delays and reordering of messages leads to a large number 
of possible executions. 

Due to the combination of these aspects, it is already for 
very simple systems difficult to predict whether they are 
correct. Using the µCRL tool set we often found errors 
in our initial solutions. We also discovered subtle points 
such as the fact that, for transparent replication, overwriting 
data items should only be done if the time-stamp is strictly 
greater, not if it is equal. We also discovered differences 
between small systems that in a subtle way depend on the 
equivalence used and the number of data items considered. 

The µCRL tool set and PVS turned out to be complemen
tary. Debugging initial ideas and building an intuition about 
the correctness of applications is much easier in µCRL than 
with PVS where it is usually difficult to see why a proof 
does not work. The µCRL tool set automatically gener
ates counter examples, whereas they have to be constructed 
in PVS manually. On the other hand, by the well-known 
state explosion problem, the µCRL tool set can only check 
small instances of the system and our case study showed that 
adding one more data item might already break an equiva
lence. Hence the need for a tool like PVS that makes it pos
sible to perform general verifications. Our PVS framework 
also supports compositional reasoning, allowing a separation 
of concerns and scalability of the approach. 

Also note that our two approaches use a different specifi
cation paradigm; the µCRL approach provides a more oper
ational description, whereas the PVS approach is property
oriented. By comparing these approaches, we increase our 
confidence in the correctness of the formalization. Note, 
however, that we do not yet have a precise formal relation 
between the two approaches. Here the aim was to inves
tigate whether it could be useful to use these approaches 
in combination. Now that the answer is positive, a precise 
formal connection becomes a topic of future research. 
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