
Formal Verification of Replication on a
Distributed Data Space Architecture*

Jozef Hooman
University of Nijmegen CWI

Nijmegen Amsterdam
http://www.cs.kun.nl/~hooman/

hooman@cs.kun.nl

ABSTRACT
We investigate the formal verification of safety-critical sys
tems on top of the distributed data space architecture Splice.
In Splice each component has its own local data space which
can be kept small using keys, time stamps and selective over
writing. We use two complementary formal tools: first the
µCRL tool set for a rapid investigation of alternatives by a
limited verification with state space exploration techniques;
next the most promising solutions are verified in general
by means of the interactive theorem prover of PVS. These
formal techniques are used to investigate transparent repli
cation of certain components on top of Splice. We prove
that a convenient solution can be obtained by means of a
slight extension of the write primitive of Splice.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi
cation; F.3.1 [Logics and Meanings of Programs]: Spec
ifying and Verifying and Reasoning about Programs

General Terms
Verification, Reliability

Keywords
Coordination, data space architecture, formal verification,
model-checking, theorem proving

1. INTRODUCTION
We study formal specification and verification of safety

critical systems that are implemented on top of the dis-

*Partially supported by PROGRESS, the embedded sys
te~s research program of the Dutch organisation for Sci
entific Research NWO, the Dutch Ministry of Economic Af
fairs and the Technology Foundation STW, grants EIF.3959
and CES.5009.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to list~. requires prior specific
permission and/or a fee.
SAC 2002, Madrid, Spain
Copyright 2002 ACM 1-58113-445-2/02/03 ... $5.00.

Jaco van de Pol
CWI

Amsterdam
http://www.cwi.nl/,.._,vdpol/

vdpol@cwi.nl
'

tributed data space architecture Splice [4], which has been
devised at the company Thales Nederland. It provides a co
ordination mechanism for loosely-coupled components, sim
ilar to Linda [7] and JavaSpaces [13]. The main difference is
that these last two languages have one central data space to
which all processes may write and from which they can all
read or take items. Such a central data space is absent in
Splice, where the data space is distributed; each application
has its own local data storage that is updated according to
a publish-subscribe mechanism. Whereas JavaSpaces uses a
leasing mechanism to express the temporal validity of data
items (and allow garbage collection), the local storages of
Splice are kept small using keys and time-stamps: recent
data just overwrites old data with the same key.

Splice is being used to build large and complex systems,
such as command and control systems. Typically there are
sensors, a number of internal processes that perform calcu
lations on the sensor data, and components that decide on
appropriate actions such as commands to actuators. Thanks
to the efficient implementation of Splice, large streams of
sensor data can be processed at real time.

An important aspect for most Splice applications is fault
tolerance, and often this is achieved by replicating compo
nents. In this paper, we investigate transparent replication,
i.e. the possibility to duplicate components without affecting
other components in the system. This has also been stud
ied in [8], aiming at a Splice-like architecture in which each
component can be replicated. Our aim is to investigate how
certain components can be replicated transparently on top
of Splice. A question is, for instance, whether the implicit
time-stamp mechanism of Splice can be exploited.

A second aim is a rigorous verification of the correctness
of replicated Splice components using formal methods, i.e.
methods and techniques that have a precise, mathematically
defined meaning. Our approach uses two rather complemen
tary formal approaches:

• The µCRL tool set [2] is based on an operational al
gebraic model that is suitable for quickly prototyping and
debugging applications. Small finite instances of the appli
cation can be verified automatically.

• The PVS tool [20] contains a logic that allows the for
mulation of a denotational semantics of Splice programs and
property-oriented specifications. Verification of general, un
bounded, applications is possible using interactive theorem
proving.

The PVS-approach provides more general results than the
µCRL-approach, but it is much more labor-intensive, espe-

cially when there are still many errors in the application.
Hence we apply this approach after a good intuition has
been obtained using µCRL.

To be able to apply our tools to the verification of Splice
systems, we need a formal semantics of Splice. Several for
malizations of (fragments of) Splice already exist. We men
tion work on the process algebra SPA [9], the µCRL tool
set [10, 21] and a formalization in the higher-order logic
of the theorem prover PVS [3]. Related work on the op
erational semantics of Linda and JavaSpaces has been pre
sented in [6]. A comparison between various shared data
space versions was given in (5].

Our semantic models of Splice are based on the models
described in (3, 21). They are less detailed than (10] in order
to facilitate verification. Moreover, the semantics presented
here is based on more recent information about the use of
keys and time-stamps.

This paper is structured as follows. In section 2 we give an
informal description of our research. The µCRL-approach
and the PVS-approach are presented in sections 3 and 4,
respectively. Concluding remarks can be found in section 5.
We refer to [18] for more details.

2. INFORMAL OVERVIEW
In section 2.1 we introduce the main concepts of Splice and

some details of the underlying implementation. Section 2.2
describes a small application that is used as a case study.
Our formal approaches are briefly introduced in section 2.3.
The general results of our study are presented in section 2.4.

2.1 Splice
The Splice architecture provides a coordination mecha

nism based on a publish-subscribe paradigm. Producers and
consumers of data are decoupled; they need not know each
other, but communicate indirectly via the Splice primitives,
basically read- and write-operations on a distributed data
space. This makes it possible to add and remove compo
nents at run-time. The data space is distributed in the sense
that each component maintains its local version of the data
space. Read requests from an application process are served
from this local storage.

Looking at the implementation of Splice, each application
component has an agent that takes care of the communi
cation between components. When an application process
writes a data item of a particular sort, the corresponding
agent forwards this item asynchronously via some underly
ing network to all agents of processes that subscribed to this
sort. There are no assumptions on message delay, so items
may arrive at the agents in different order. Each agent uses
received items to update its local storage, as described be
low, where it might be read by its application.

To explain the update mechanism of local storages, we
first describe the entries in the data storage. Each entry
consists of three parts: a key, a value and a time stamp.
In each local data space, there will be at most one item
with a given key. When an application writes a (key,value)
pair, its local agent adds the current local clock value to
obtain a (key,value,time stamp) triple. This triple is sent
asynchronously to all subscribed agents.

Next assume that a (key,value,time stamp) triple arrives
at some other agent. If no item with the same key exists, the
triple is simply added to the local data space. Otherwise,
the item with the same key is overwritten by the new item,

provided the new item is strictly newer than the current item
in the local data space, as indicated by their respective time
stamps. This prevents data items to be overwritten by older
items that suffered from a large network delay.

An application can read items satisfying certain queries.
It is, for instance, possible to read a value with a given key.
Reads can be either blocking or non-blocking (possibly with
some time-out). Also, Splice admits both destructive and
non-destructive read. In the former case, an application
process can read each data item only once. As opposed to
the global "take" operation of JavaSpaces, this destructive
read only operates on the local data space. Note that an
item cannot simply be removed, because it is still needed by
the agent to check whether arriving data items are newer
than this item.

Our formal model mainly contains the features of Splice
that were needed for our case study (see section 2.2). We did
not model, for instance, time-outs on read operations, syn
chronization of local clocks, the (dynamic) publish/subscribe
mechanism, dynamic reconfiguration, data sorts, and differ
ent kinds of data such as persistent and context data.

2.2 The Case Study
As a case study, we consider a simple system with three

types of components:
• Producer: provides data (with key input) to the rest

of the system. It can be seen as an abstraction of sensors
such as radar, thermometer, altitude measurement device,
etc., that provide the system with an approximation of the
physical reality.

• Transformer: performs internal data computations;
here data with key input is simply transformed into data
with key output. In reality, some computation on data is
performed, such as computing tracks out of plots, making
an hypothesis about future movement of objects, etc.

• Consumer: reads data with key output and forwards it
to the external environment. In a real system, this compo
nent might include decision making, leading to commands
to external devices such as motors, pumps, screens, etc.

Although abstracting from internal computations makes
the example quite simple, it represents a typical Splice
application in which replication is relevant. The aim is
to obtain a higher degree of fault-tolerance by replicating
the transformer; the system becomes more robust against
crashes of transformers and against network errors. We try
to do this transparently, without modifying producer and
consumer.

2.3 Formal Methods
In this section we give the main ideas of our formal ap

proaches. Details can be found in subsequent sections.

2.3.1 µCRL
In the µCRL approach, Splice is modeled operationally,

by expressing the agents and the network in a form of pro
cess algebra. This leads to a Splice component. Next also
producer, transformer and consumer are modeled as a term
in process algebra. Then the aim is to show that the system
Splice 11 Producer I I Transformer 11 Consumer is equiv
alent (in some well-defined way) to Splice 11 Producer 11
Transformer 11 Transformer 11 Consumer.

In this approach, it is difficult to split up the verifica
tion task; the whole system, with all components, has to

be considered. Since the µCRL tool is especially suitable
for checking finite systems, we investigated a number of in
stances of the system. Due to the state-explosion problem,
the tool could check a system with at most 5 data items.
Still this turned out to be very useful to find errors. We also
investigated several types of equivalences, and found sur
prising differences, depending on the number of data items
considered.

To obtain a finite, checkable system that allows rapid pro
totyping of our ideas, we made some further simplifications
in this approach. For instance, we only modeled blocking
destructive reads which return a single data item.

2.3.2 PVS
The PVS-approach aims at general verification of Splice

applications. First a denotational semantics is defined for a
programming language with Splice primitives. Here we are
not aiming at finite models, but instead formulate a general
semantics in terms of the powerful higher-order logic of PVS.
Specifications are written in an assertional way, describing
properties of the system or its components, by means of
pre- and postconditions. Using the compositional character
of the semantics, verification can also be done composition
ally, allowing reasoning with the specifications of compo
nents without knowing their implementation.

This compositional approach supports a strong separa
tion of concerns; one can separately verify the satisfaction
of the top-level specification, the replication of transformer
specification, and the independent implementation of the
components.

2.4 Results
Experiments in µCRL with the case study, and several

other examples, show that in general replication leads to
different external behaviour. Duplication of the transformer
typically leads to a duplication in the values output by the
consumer. The reason for this was found by inspecting the
automatically generated error traces for the case study. The
problem is that the replicated transformers have their own
local clocks, which are used to time stamp the transformed
data items. Due to clock-differences, slightly different copies
of the same item are produced. Combined with the asyn
chronous network, this results in duplication of data by the
consumer. We found two possibilities for obtaining correct
replication:

• The producer adds sequence numbers to data items,
which are copied by the transformer(s), and the consumer
only accepts items with increasing sequence numbers.

• The write primitive of Splice has been extended with an
additional time-stamp parameter which replaces the implic
itly added time-stamp. The transformer now uses the new
primitives, by copying the time stamp. In this way, time
stamps reflect the temporal validity of data more accurately.
The original producer and consumer are not changed. Now
the update mechanism in Splice ensures that items are only
overwritten by more recent data.

Only the latter solution is transparent, because replication
is obtained without changing producer or consumer. This
solution has been validated in µCRL and its correctness has
been proved in general using PVS.

3. THE µCRL-APPROACH
The µCRL [15] specification language is a combination

of (ACP-style) process algebra (see e.g. [1, 12]) and alge
braic datatypes. A system is modeled as a "process" , often
specified as the parallel composition (JI) of a number of other
processes, the components. Components are often described
by recursive equations, using sequential (.) and alternative
(+) composition. Consider, e.g., Bu.f = in.out.Bu.f. Here in
and out are so-called atomic actions, which can be externally
visible actions, or which synchronize with corresponding ac
tions in different components. Atomic actions can be labeled
by data parameters in µCRL. Also recursive specifications
can have data parameters, which serve as state variables. In
put can be modeled by non-determinism, e.g. in(O) + in(l)
models the input of some bit. A generalized choice opera
tor is written with the E-operator. Another construct is a
guard: [b] -+ x, which can execute x provided boolean b is
true. Data, like bits and booleans, but also natural numbers,
sets etc., are described by means of algebraic data types. A
buffer-with-delay can be modeled as:

Buf (x: Bit) = L in(y).out(x).Bu.f(y)
y:Bit

The µCRL tool set [2] supports verification as follows.
The operational semantics of a µCRL process is a labeled
transition system (LTS). This is a rooted directed graph,
some of whose edges are labeled with atomic actions. The
µCRL tool set allows automatic generation of the LTS from
a µCRL specification. The resulting LTS can be inspected
by means of visualization, model checking, or equivalence
checking. For these activities we used the CADP tool set [11].

The sketched verification route has a clear bottle-neck:
the LTS suffers from a combinatorial state explosion, due
to the many possible interleavings. To overcome this, the
LTS can be minimized modulo some equivalence relation.
The equivalence relation used in µCRL is branching bisim
ulation [14]. To avoid the generation of a too large LTS en
tirely, the µCRL tool applies some reductions already at the
symbolic level of the specification. Here many techniques
from compiler optimization and theorem proving are used.

This verification method has the limitation that it can
only be applied on finite state systems. As advantages, we
mention that it is completely automatic, and that it also
gives useful feedback in case some requirement doesn't hold.
For instance, the model checker will return an execution
path which violates the requirement. This is very useful for
debugging the specification.

3.1 Components and Interfaces
We model a Splice system as the parallel composition

of the application processes and a separate Splice-process.
Subsequently, the Splice-process itself can be defined as the
parallel composition of a number of agents and a separate
Network-process. The applications synchronize with Splice(
agents) via atomic read- and write-primitives. Similarly,
the agents synchronize with the network via tell- and ask
primitives. See figure 1 for an overview of the system.

Next, we model the interfaces (API) of Splice and the
Network in µCRL. Each agent will get a unique address.
The read and write actions carry three data parameters:
the key, the value and the agent's address. The possibility of
synchronizing on write actions and on read actions must also
be specified. Here r and v represent the combined action of
the application and the agent of performing a read or write
action.

in --------,

------ -------------- --------- --------1 : write read '
I I

Network ' I
I I I I

: ~Ne!Y<arkla~------------------------' ,

I
I
I
I
I
I
I
I

I

I : Splice. lay.et - ~ I
I I
~S)'.Stem.honodacy ________________________________ ,

Figure 1: The architecture of a Splice system.

sort Key, Value, Address
act read,r : Key#Value#Address

write,w: Key#Value#Address
comm write I write = w

read I read = r

A similar interface (not shown) is used to allow synchro
nization between agents and the network. A tell action cor
responds to broadcasting an entry to a number of addresses
asynchronously. An ask action corresponds to receiving an
entry from the network at a particular address.

Having fixed the interfaces, we can be more explicit on the
composition. For instance, a system with two components
(P, Q) as specified as follows:

System= T{r,w}O{read,write}(Splice II P II Q)
Splice= T{a,t}O{aak,tell}(Network II Agent II Agent)

Here parallel composition (Ii) is ACP-style parallelism,
corresponding to an interleaving semantics, with the possi
bility of synchronization between atomic actions, as defined
in the preceding comm-sections. The encapsulation a is
needed to enforce synchronization. The hiding T is used
to hide externally invisible actions: only the actions in P;
different from read/write are externally visible. In the sub
sequent sections we define the components Network, Agent,
and some application processes.

3.2 The network
For a high-level description of a reliable network with un

bounded delay, we introduce the sort Multiset, containing
(entry, address)-pairs. The entries will be delivered to the
addresses in arbitrary order. Next, some auxiliary func
tions are needed, such as union, remove and in (membership
test). Also the function send_to_all is defined in such a way
thate.g.send_to_all([a,b,c],e) = {Ca,e),(b,e),(c,e)},
where a, b, and c are addresses and e is an entry.

Process Network is defined as a recursive specification,
with the current multiset as a state variable (B). It has two
possible behaviors. At any moment a tell-action can happen
from any address a of entry e to recipients in address list
AL. Similarly for all a, e an ask-action can happen, provided
(e, a) is an element of B. The recursive calls specify the new
value of the multi-set in both branches.

proc Network(B:Multiset) =
sum(a:Address,sum(e:Entry,sum(AL:AddressList,

tell(a,e,AL).
Network(union(B,send_to_all(AL,e))))))

+ sum(a:Address,sum(e:Entry,
[in(e,a,B)] ->

ask(a,e).
Network(remove(e,a,B))))

3.3 The Agents
The agents maintain a local data base of current entries.

Entries are defined as triples (key,value,time stamp), where
we choose the natural numbers as time stamps. The data
base is modeled as a set of (Entry,Bool)-pairs, where the
boolean indicates whether the entry has been used. This is
needed to model destructive reads.

func entry : Key#Value#Nat->Entry
sort Database
func empty : -> Database

add : Entry#Bool#Database -> Database
map value: Key#Database -> Value

time: Key#Database -> Nat
unused_elt: Key#Database ->Bool
update: Entry#Database -> Database
mark_used: Key#Database ->Database

Here empty and add are the (list-like) constructors for
Database. Furthermore, value and time are functions to
retrieve the value and time stamp of an item with a certain
key in the database; unused_el t (k, S) holds if and only if
key k refers to an entry in S which is not yet used. Finally,
update and mark_used are modifiers, in order to update the
database with a new entry, or to mark the entry with a cer
tain key as used. These operations are defined by rewrite
rules (not shown), formalizing the intended behaviour of the
overwrite mechanism.

Next, we define the behavior of the agents. Besides the
database (initially empty), an agent has a local clock (t :Nat,
initially 0), and it is parameterized with its address. The
Agent process is defined recursively, and consists of three
branches. First, an unread entry from the database can be
read, which is then marked as used. Second, a new ele
ment can be added, which is then time stamped with the
current clock value and broadcasted over the network to all
subscribers. We assume that some (application-dependent)
function is given to compute the subscribers for some key.
In this case the clock is increased by one. Finally, some new
entry may arrive from the network, after which the database
is updated accordingly. So we get:

proc Agent(X:Database,i:Address,t:Nat)
sum(k:Key,

[unused_elt(k,X)]->
read(k,value(k,X),i).
Agent(mark_used(k,X),i,t))

+ sum(k:Key,sum(e:Value,
write(k,e,i).
tell(i,entry(k,e,t),subscribers(k)).
Agent(X,i,S(t))))

+ sum(e:Entry,
ask(i,e).
Agent(update(e,X),i,t))

3.4 Application Processes
We model a producer and a consumer, which are inter

mediated by a (number of identical) transformer(s). The
system interacts with the external world through in- and
out-actions parameterized by Value. When the producer
gets some input, it writes it to the database with key input.
The consumer tries to read elements with key output and
outputs them to the external world. The transformer com
putes the output values from the input values.

func input,output: ->Key
act in,out: Value
proc
Producer(i:Address) =

sum(e:Value,
in(e). write(input,e,i). Producer(i))

Consumer(i:Address) =
sum(e:Value,

read(output,e,i). out(e). Consumer(i))
Transformer(i:Address) =

sum(e:Value,
read(input,e,i). write(output,e,i).
Transformer(i))

3.5 Verification
To verify replication, we compare two systems. The first

system has a producer, consumer and one transformer. The
second system has a producer, consumer and two transform
ers. We restricted the number of inputs to a parameter n; for
fixed n, the system is finite state. The state spaces of both
systems are generated and minimized modulo trace equiva
lence. Our notion of correctness is trace equivalence between
systems with and without replication. This is deliberately
weaker (coarser) than branching bisimulation equivalence,
for reasons described later.

For the two systems (with n = 2), we obtain the graphs
above, showing that they are not the same. The system on
the right with two transformers is able to duplicate out(2).
By using the CADP model checker, we could expand this
to a concrete trace, including all intermediate read/write
actions. As explained earlier, the problem can be repaired
by extending the write primitive of Splice. This is achieved
by adding a parameter to the read- and write actions:

act read,r : Key#Value#Nat#Address
write,w: Key#Value#Nat#Address

proc Transformer'(i:Address) =
sum(e:Value,sum(t:Nat,

read(input,e,t,i). write(output,e,t,i).
Transformer'(i)))

Again, the version with and without replication were gen
erated and compared using the µCRL tool set. The system
could be verified up to five input items.

3.6 Concluding remarks on µCRL approach
We notice that µCRL is quite expressive. Especially the

combination of choice operators and guards allows the mod
eling of restricted non-deterministic input and output, in
contrast to e.g. value passing CCS [19].

The problem sizes that can be dealt with are limited, but
some interesting instances can be generated. In figure 2 we
show the size of the state space for m transformers and n
input items, denoted SYSmn. It appears that we can easily
generate situations with up to 3 transformers, or 5 input
items (slightly larger instances can be generated, but this
is time and memory consuming). The symbolic reduction
tools were indispensable to generate these instances.

generated reduced
states transitions states transitions

SYS12 35 56 6 7
SYS22 419 1278 6 7
SYS32 4547 20465 6 7
SYS13 152 350 10 16
SYS23 5052 22305 10 16
SYS33 142472 925429 10 16
SYS14 611 1825 15 30
SYS24 55041 315712 15 30
SYS15 2339 8565 21 50
SYS25 566640 3984157 21 50

Figure 2: Size of the generated and reduced LTSs

Finally, the used equivalence relation matters! It appears
that the systems with and without replication are not equal
modulo branching equivalence with more than two input
items. Apparently, this equivalence relation is too fine. We
tried several coarser equivalence relations, but many of them
fail, when the number of inputs increases. Only trace equiv
alence appeared to hold (up to 5 input items). This also
indicates that a more general tool, dealing with arbitrary
many inputs is useful.

4. THE PVS-APPROACH
The tool PVS (20] is used to give general verifications of

Splice-based systems, for instance with an unbounded num
ber of data items or any arbitrary number of transformers.
The logic of PVS is a typed higher-order logic in which we
express the semantics of Splice. Earlier work on a denota
tional semantics for Splice [3] showed the equivalence of a
global data space view and an implementation with local
data spaces for a carefully selected set of Splice-primitives.
This result, however, does not hold for the full Splice archi
tecture, which is essentially based on distributed storages.

The semantics for local storages of [3] seems not very con
venient for verification; it is based on a partial order of read
and write events, with complex global conditions. It also
uses process identifiers, which we would like to avoid if pos
sible. Here we aim at a more intuitive denotational seman
tics, which enables local reasoning as much as possible and
also incorporates more recent information about the char
acteristics of Splice, especially concerning the time stamps.

A new denotational semantics is presented in section 4.1.
The specifications and verification techniques are based on
earlier work on compositional program verification in PVS
[17] and are described in section 4.2. Section 4.3 contains
the PVS-work on the case study.

4.1 Denotational semantics
The PVS theories that describe the general Splice seman

tics are parameterized by types Data , KeyData, and a key
function from data to key data key : [Data -> KeyData].
Moreover, there are parameters for sets of variables, ranging
over data and sets of data. As usual, there is a type States
which assigns values to variables.

As time domain we use the real numbers. By adding a
time stamp to data we obtain data items, represented in
PVS as a record with two fields, dat and ts. Extended data
items contain an additional boolean used. A data base is
a set of these extended items, where used indicates if the
item has been read destructively, hence cannot be read by
subsequent reads.

Time TYPE = real
Dataitems TYPE [# dat : Data,

ts : Time #]
ExtDataitems TYPE [# di : Dataitems,

used : bool #]
DataBases TYPE setof[ExtDataitems]

The basic idea of the semantics is that for each sequential
program we record the current contents of the local data
base, the set of data written by the program itself, and the
data items assumed to be written by its yet unknown envi
ronment. In the semantics, these written data items have
an additional logical clock value that is used to avoid causal
inconsistencies. Since these logical clocks are not relevant
for the current case study, we omit them in the rest of the
presentation here.

The written items are used to update the local data base;
this may happen non-deterministically, at any point in time.
In the sets of written items, the field used indicates whether
an item has already been used for an update. For a process
in isolation, the environment may write any data item; in
each execution they are recorded as an assumption that is
checked later at parallel composition and closure.

This leads to semantic primitives of type SemPrim, which
are modeled as a record in PVS containing the current state,
value of the local clock, local data storage, own written items
and items written by the environment.

The denotational semantics of each statement is a function
from an initial semantic primitive (representing the effect of
preceding statements) to a set of resulting primitives, de
noting all possible non-blocking executions. Similar to [17],
a program and its semantics are identified, since that pro
vides the most flexible framework. So here a Splice program
is simply defined as its semantics, a function which assigns
to each initial semantic primitive a set of semantic primitives
denoting the outcome of its executions.

SpliceProgs : TYPE
prog, prog1, prog2

[SemPrim -> setof[SemPrimJ]
VAR SpliceProgs

A basic skip statement simply yields a set containing only
the initial state. The full skip statement is more compli
cated; it also includes a so called UPDATE statement which

allows arbitrary environment writes and non-deterministic
updates of the data base using the write sets. The update
of the data base formalizes the mechanism described before,
using keys and time stamps. In this way, we define all basic
statements, such as assignment, read, and write; they all
include UPDATE.

A read statement Read(svar,q,destr) has three param
eters: a variable svar, ranging over sets of items, a query
q, and a boolean destr which indicates whether the read
should be destructive. The query is a predicate over the cur
rent state and database, specifying subsets of the data base
that might be read. If such a subset exists, it is assigned to
svar, otherwise the read statement blocks. The query may
disallow the empty set, specifying a blocking read.

A write statement Write(e) adds a data item specified
by expression e and extended with the current value of the
clock to the set of own writes. This statement also increases
the local clock. Since all other statements do not decrease
the clock, this ensures that all writes of a sequential program
have different time stamps.

We also define a number of compound constructs, such as
sequential composition Seq (prog1, prog2), choice construct
IfThenElse (b, prog1, prog2) and infinite loop Loop (prog).
At parallel composition prog1 I I prog2 we check whether
the environment writes of one program are equal to the
union of the own writes of the other program and the remain
ing environment writes of the compound construct. Finally,
there is a closure operation Close (prog) which requires that
there are no environment writes; hence all consumed items
must have been produced inside the program itself.

4.2 Specification and verification
To obtain a very flexible framework, suitable for top-down

program design, we freely mix specifications and program
constructs. Starting from a specification, gradually more
programming constructs can be introduced, until finally all
specifications are removed. Hence we define a specification
also as a program. Here we use a pre- and postcondition
style specification, where an assertion is a predicate over
the semantic primitives.

Assertions
p, q
sp, spO

TYPE = pred[SemPrim]
VAR Assertions
VAR SemPrim

spec(p,q) : SpliceProgs =
LAMBDA spO : { sp I p(spO) IMPLIES q(sp) }

We define when prog1 refines prog2, denoted prog1 => prog2,
as the subset relation. It is reflexive and transitive.

=>(prog1,prog2) : bool =
FORALL spO : subset?(prog1(sp0),prog2(sp0))

Verification of this refinement relation is supported by a
number of proof rules that have been proved using the in
teractive theorem prover of PVS. As an example, we show
the monotonicity rule for parallel composition, formulated
in PVS as a theorem with label mono_par:

mono_par : THEOREM
(prog3 => prog1) AND (prog4 => prog2)
IMPLIES

((prog3 II prog4) => (prog1 // prog2))

4.3 Case study
To model the case study in PVS, we import the general

PVS theories described above with the following parameters.
Data consists of name and value, where the name acts as key.

DataName TYPE {input,output,out}
Data Val TYPE nat
Data TYPE [# name : DataName,

val Data Val #]
KeyData TYPE DataName
key(dvar: Data) KeyData = name(dvar)

4.3.1 Top-level specification
The top-level specification, TopLevel, expresses that if

there are no writes outside the system then the out-values
are increasing, i.e. for two items edi1 and edi2 in ownw
with name out we have that val(edi1) < val(edi2) !FF
ts (edi1) < ts (edi2). Using suitable abbreviations, this
can be written as follows.

pre : Assertions = LAMBDA spO
db(spO) emptyset AND
ownw(spO) = emptyset AND
envw(spO) = emptyset

postTopLevel : Assertions = LAMBDA sp
empty?(envw(sp)) IMPLIES

Increasing(Out(ownw(sp)))
TopLevel : SpliceProgs = spec(pre, postTopLevel)

4.3.2 Specifying components
The aim is to implement the above specification by a pro

ducer, one or more transformers, and a consumer. For the
producer we specify that it produces only input-values, and
its writes should be increasing. The consumer produces only
out-items and it just maintains the order of items, i.e. if the
environment writes increasing output-items, then it will also
write increasing out-items. In PVS, omitting many details:

postProd : Assertions = LAMBDA sp :
NameOwnw(input)(sp) AND Increasing(ownw(sp))

Prod : SpliceProgs = spec(pre, postProd)

postCons : Assertions = LAMBDA sp :
NameOwnw(out)(sp) AND

MaintainOrder(Output(envw(sp)),
Out(ownw(sp)))

Cons : SpliceProgs = spec(pre, postCons)

To satisfy the top-level specification, we introduce the fol
lowing specification for the transformer:

postTrans : Assertions = LAMBDA sp
NameOwnw(output)(sp) AND

MaintainOrder(Input(envw(sp)),
Output(ownw(sp)))

Trans : SpliceProgs = spec(pre, postTrans)

4.3.3 Verifying the design
Using the specifications above, it is relatively easy to ver

ify that the three components in parallel lead to the top-level
specification.

DesignCorrect: THEOREM
(Prod// (Trans // Cons)) => TopLevel

Next, the components can be implemented independently.
By the monotonicity property (and transitivity of =>), con
formance to the top-level specification is still guaranteed.
For instance, using a data variable d and appropriate defi
nitions for dinit, dval, and dnext, we can obtain a correct
program for the producer:

Producer : SpliceProgs
Seq(Assign(d,dinit),

Loop(Seq(Write(dval), Assign(d,dnext))))
ProdCor : LEMMA Producer => Prod

Similarly for the transformer and the consumer.

4.3.4 Introducing replication
Note, that the previous transformer specification cannot

be replicated. This has been proved in PVS by constructing
a counter example manually.

INoRepl : LEMMA NOT ((Trans // Trans) => Trans)

To obtain a transformer that can be replicated, we modify
the specification such that it also maintains the time stamp
of the input item, as expressed by assertion MaintainTs.

postTransNew : Assertions = LAMBDA sp :
NameOwnw(output)(sp) AND MaintainTs(sp)

TransNew : SpliceProgs = spec(pre, postTransNew)

We prove that the new transformer refines the old one, so it
still conforms to the top-level specification.

NewlmpliesOld : LEMMA TransNew => Trans

NewCorrect: THEOREM
(Prod// (TransNew // Cons)) => TopLevel

Now we can prove replication of the new transformer and
insert it into the system (as many times as we want).

TransNewRepl : THEOREM
(TransNew // TransNew) => TransNew

NewReplCorrect: THEOREM
(Prod// ((TransNew // TransNew) //Cons))

=> TopLevel

With the current Splice primitives, however, the new trans
former specification cannot be implemented; there is no pos
sibility to specify the value of the time stamp. Hence we
propose to add a write primitive Write (e, texp) which has
as additional parameter a time expression texp that is used
in the time stamp field of the data item written.

5. CONCLUSION
To achieve transparent replication of components on top

of the distributed data space architecture Splice, we pro
pose a slightly extended write command. By adding a time
expression that replaces the default time stamp of data,
the temporal validity of data can be expressed more ac
curately. Together with the update mechanism of Splice,
where data with old time stamps cannot overwrite newer

values, this leads to a more logical use of time stamps. This
made replication much easier, avoiding for instance the need
for additional sequence numbers. Note that the extended
write command can also be used for predicted or interpo
lated data items. Also other examples with explicit time
stamps, e.g. [16], could have been simplified with this new
write primitive.

The use of formal tools and techniques turned out to be
very useful during our study of replication on top of Splice.
Informal reasoning is difficult, because there a.re many pos
sible variations in the components and the use of the un
derlying architecture. For instance, for each read statement
there a.re already a number of choices concerning the precise
query, and whether it should be blocking and/or destructive.
There a.re also many variations concerning the structure of
the data and the choice of keys which influence the overwrit
ing of data. Moreover, the fact that Splice allows arbitrary
delays and reordering of messages leads to a large number
of possible executions.

Due to the combination of these aspects, it is already for
very simple systems difficult to predict whether they are
correct. Using the µCRL tool set we often found errors
in our initial solutions. We also discovered subtle points
such as the fact that, for transparent replication, overwriting
data items should only be done if the time-stamp is strictly
greater, not if it is equal. We also discovered differences
between small systems that in a subtle way depend on the
equivalence used and the number of data items considered.

The µCRL tool set and PVS turned out to be complemen
tary. Debugging initial ideas and building an intuition about
the correctness of applications is much easier in µCRL than
with PVS where it is usually difficult to see why a proof
does not work. The µCRL tool set automatically gener
ates counter examples, whereas they have to be constructed
in PVS manually. On the other hand, by the well-known
state explosion problem, the µCRL tool set can only check
small instances of the system and our case study showed that
adding one more data item might already break an equiva
lence. Hence the need for a tool like PVS that makes it pos
sible to perform general verifications. Our PVS framework
also supports compositional reasoning, allowing a separation
of concerns and scalability of the approach.

Also note that our two approaches use a different specifi
cation paradigm; the µCRL approach provides a more oper
ational description, whereas the PVS approach is property
oriented. By comparing these approaches, we increase our
confidence in the correctness of the formalization. Note,
however, that we do not yet have a precise formal relation
between the two approaches. Here the aim was to inves
tigate whether it could be useful to use these approaches
in combination. Now that the answer is positive, a precise
formal connection becomes a topic of future research.

Acknowledgments. We would like to thank Edwin de
Jong and Ronald Lutje Spelberg from Thales for their de
tailed explanation of Splice.

6. REFERENCES
[1] J. Bergstra and J. Klop. Algebra of communicating

processes with abstraction. TCS, 37(1):77-121, 1985.
[2] S. Blom, W. Fokkink, J. Groote, I. Langevelde,

B. Lisser, and J. v. d. Pol. µCRL: a toolset for
analysing algebraic specifications. In Proc. of CA V,

LNCS 2102, pages 250-254. Springer, 2001.
[3] R. Bloo, J. Hooman, and E. de Jong. Semantical

aspects of an architecture for distributed embedded
systems. In Proc. of SAC, pages 149-155. ACM, 2000.

(4] M. Boasson. Control systems software. IEEE Trans.
on Automatic Control, 38(7):1094-1106, July 1993.

[5] M. Bonsangue, J. Kok, and G. Zavattaro. Comparing
coordination models based on shared distributed
replicated data. In Proc. of SAC, pages 146-155.
ACM, 1999.

[6] N. Busi, R. Gorrieri, and G. Zavattaro. Process calculi
for coordination: From Linda to JavaSpaces. In Proc.
of AMAST, LNCS 1816, pages 198-212. Springer,
2000.

[7] N. Carriero and D. Gelernter. How to Write Parallel
Programs: A First Course. MIT Press, 1990.

[8] P. Dechering and E. de Jong. Transparent object
replication: A formal model. In Proc. of WORDS'99.
IEEE, 2000.

[9] P. Dechering, R. Groenboom, E. de Jong, and
J. Udding. Formalization of a Software Architecture
for Embedded Systems: a Process Algebra for Splice.
In Proc. of HICSS-32. IEEE, 1999.

[10] P. Dechering and I. v. Langevelde. The verification of
coordination. In Proc. of COORDINATION, LNCS
1906, pages 335-340. Springer, 2000.

[11] J.-C. Fernandez, H. Ga.ravel, A. Kerbrat, L. Mounier,
R. Mateescu, and M. Sighireanu. CADP - a protocol
validation and verification toolbox. In Proc. of CA V,
LNCS 1102, pages 437-440. Springer, 1996.

[12] W. Fokkink. Introduction to Process Algebra. Texts in
Theoretical Computer Science. Springer, 2000.

[13] E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces
principles, patterns, and practice. Addison-Wesley,
Reading, MA, USA, 1999.

[14] R. v. Glabbeek and W. Weijland. Branching time and
abstraction in bisimulation semantics. Journal of the
ACM, 43(3):555-600, 1996.

[15] J. Groote and M. Reniers. Algebraic process
verification. In J. Bergstra et al., editor, Handbook of
Process Algebra, chapter 17. Elsevier, 2001.

[16] U. Hannemann and J. Hooman. Formal design of
real-time components on a shared data space
architecture. In Proc. of COMPSAC, pages 143-150.
IEEE, 2001.

[1 7] J. Hooman. Correctness of real time systems by
construction. In Formal Techniques in Real-Time and
Fault-Tolerant Systems, pages 19-40. LNCS 863,
Springer, 1994.

[18] J. Hooman and J. van de Pol. Verifying replication on
a distributed shared data space with time stamps. In
Proc. 2nd Workshop on Embedded Systems, pages
107-120. STW, Utrecht, NL, 2001.

[19] R. Milner. A calculus on communicating systems.
LNCS 92. Springer, 1980.

[20] S. Owre, J. Rushby, N. Shankar, and F. van Henke.
Formal verification for fault-tolerant architectures:
Prolegomena to the design of PVS. IEEE Trans.
Softw. Eng., 21(2):107-125, 1995.

[21] J. van de Pol. Expressiveness of basic SPLICE. Report
SEN-R0033, CWI, Amsterdam, 2000.

