
ELSEVIER
The Journal of Logic and

Algebraic Programming 49 (2001) 61-86

1HE~OF

LOOICAND
ALGEBRAIC
PROGRAMMING

www.elsevier.com/locate/jlap

A rewriting approach to binary decision diagrams

Abstract

Hans Zantema a,*, Jaco van de Pol b

a Department of Computing Science, Eindhoven University of Technology,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
b Department of Soft"<vare Engineering, Centrum voor Wiskunde en Informatica,

P.O. Box 94.079, 1090 GB Amsterdam, T7ze Netherlands

Received 11January2001; received in revised fonn 27 July 2001; accepted 30July 2001

Binary decision diagrams (BDDs) provide an established technique for propositional formula ma
nipulation. In this paper, we present the basic BDD theory by means of standard rewriting techniques.
Since a BDD is a DAG instead of a tree we need a notion of shared rewriting and develop appropriate
theory. A rewriting system is presented by which canonical reduced ordered BDDs (ROBDDs) can
be obtained and for which uniqueness of ROBDD representation is proved. Next, an alternative
rewriting system is presented, suitable for actually computing ROBDDs from fonnulas. For this
rewriting system a layerwise strategy is defined, and it is proved that when replacing the classical
apply-algorithm by layerwise rewriting, roughly the same complexity bound is reached as in the
classical algorithm. Moreover, a layerwise innermost strategy is defined and it is proved that the full
classical algorithm for computing ROBDDs can be replaced by layerwise innermost rewriting with
out essentially affecting the complexity. Finally a la;::y strategy is proposed sometimes performing
much better than the traditional algorithm. © 200 I Elsevier Science Inc. All rights reserved.

Keywords: Decision trees; Binary decision diagrams; Term rewriting; Shared rewriting; Reduction
strategies; Reduction length

1. Introduction

Equivalence checking and satisfiability testing of propositional formulas are basic but
hard problems in many applications, including hardware verification [6] and symbolic
model checking [7]. Binary decision diagrams (BDDs) [4,5,12,16], are an established tech
nique for this kind of boolean formula manipulation. The basic ingredient is representing

a boolean formula by a unique canonical form, the so called reduced ordered BDD (ROB
DD). After canonical forms have been established equivalence checking and satisfiability
testing is trivial. Constructing the canonical form however, can be very costly; it is even
possible that the size of the canonical form is exponential in the size of the original formula.

*Corresponding author.
E-mail addresses: h.zantema@tue.nl (H.Zantema).jaco.van.de.pol@cwi.nl (J. van de Pol).

1567-8326/01/$-see front matter .r 2001 Elsevier Science Inc. All rights reserved.
PU: S I 5 6 7 - 8 3 2 6 (0 l) 0 0 0 1 3 - 3

62 H. Zantema, J. van de Pol/ Journal of Logic and Algebraic Programming 49 (2001) 61-86

A main goal of the BDD approach is to keep constructing these canonical forms tractable
for as many boolean formulas as possible.

Various extensions to the basic data-type have been proposed such as DDDs [13], BEDs
[l] and EQ-BDDs [8]. Many variants of Bryant's original apply-algorithm for computing
boolean combinations of ROBDDs have been proposed in the literature. Usually, such
adaptations are motivated by particular benchmarks, that show a speed-up for certain cases.
In many cases, the relative complexity between the variants is not clear and difficult to
establish due to the variety of data-types.

BDDs are recursively defined structures and they are manipulated by repeating small
steps. It seems rather natural to view the BDD theory and the manipulations on BDDs
from a term rewriting point of view. In this paper, we pursue this view on the follow
ing lines: First, a signature for BDDs is given. Next we consider a finite axiomatization
of logical equivalence on these trees. Using the fairly standard rewriting techniques [2]
of critical pair analysis and recursive path ordering, we turn this into a complete, i.e.,
normalizing and confluent, term rewriting system (TRS), for which the normal forms are
exactly the ROBDDs. In this way great part of BDD theory is obtained for free: the exis
tence of an ROBDD representation follows from the normalization property, and unicity of
the ROBDD representation follows from the confluence property. The main theorem that
propositional formulas are logically equivalent if and only their ROBDD representations
are syntactically equal, turns out to be a corollary of soundness and completeness of the
basic axiomatization.

A complication is that the relative efficiency of BDDs hinges on the maximally shared
representation. In order to avoid the intricacies of maximally shared graph rewriting, we
present an elegant abstraction. Instead of introducing a rewrite relation on graphs, we intro
duce a shared rewrite step on terms. In a shared rewrite step, all identical redexes have to
be rewritten at once. We prove that if a TRS is complete, then the shared version is so too.
This enables us to develop the main theory in standard term rewriting (without sharing).
The rewrite analysis can be lifted to shared rewriting for free. This lifting is needed to
study the algorithmic complexity in terms of rewrite steps.

The power of a rewriting approach to BDD theory goes beyond a re-development of
existing theory. In particular, we describe a TRS to be used to compute the ROBDD for
a propositional formula. Instead of correctness of one single algorithm this implies that
every reduction strategy represents a correct algorithm. In this respect we hope that the
BDD-world can benefit from research on rewriting strategies, see [11] for an overview.
The second motivation for a rewriting approach to BDD is an educational one. As term
rewriting becomes more and more standard (see e.g. the textbook [2]), it is helpful to
present the BDD-theory in the standard notation and theory of term rewriting. Finally, in
the BDD-world various extensions are emerging, both with respect to the data structure as
well as the algorithmics (see e.g. [1,9]). Term rewriting can present a general framework
for describing the variations.

After having established the basic theory, we present a TRS for applying logical op
erations to ROBDDs and prove its correctness. This generalizes the traditional algorithm,
using Bryant's function apply. Then a layerwise reduction strategy for this TRS is given
which mimics the usual apply-algorithm, and we prove that it has similar time complexity.
More precisely, we prove that the number ofrewrite steps involved is bounded by the sharp
complexity bound of the traditional apply-algorithm. In this approach, the apply-algorithm
is replaced by rewriting, being a basic part of the full traditional algorithm. The next step
is to give a rewriting approach for the full algorithm: we define a layerwise innermost

H. Zantema, J. van de Pol I Journal of Logic and Algebraic Programming 49 (2001) 61-86 63

reduction strategy for which we show that if the ROBDD is computed by applying the
TRS using this strategy, then the required number of rewrite steps does not exceed the
known complexity bound of the standard algorithm.

As an alternative strategy the lazy strategy is presented. It is proved that by lazy re
writing a topmost symbol is computed in time linear to the shared size of the input term.
We also give an example, where lazy rewriting performs much better than any innermost
strategy, including the traditional algorithm based on apply.

In Section 2, we present basic theory for decision trees and describe how canonical
forms are obtained by rewriting. In Section 3, we present our approach to shared rewriting,
independent of the particular application to BDDs. In Section 4, ROBDDs are presented
as shared representations of canonical forms and a TRS is given and analyzed for vari
ous strategies to compute them. Finally in Section 5, the results of some experiments are
presented.

This paper grew out of earlier work [15]. In the present paper, we extend the more
restrictive definition of layerwise as introduced there, while being able to prove the same
main theorem. The current upper bound on head reductions is sharper than in that version,
by using the shared size of a term. Moreover, the results for layerwise innermost rewriting
and the experiments are new.

2. Decision trees

We consider a finite set A of binary atoms, whose typical elements are denoted by
p, q, r, ... A valuation a over A is defined to be a map from A to {true, false}; intuitively
for an atom p and a valuation a the value a (p) represents whether the boolean atom p
holds for the valuation a or not.

A binary decision tree over A is a binary tree in which every internal node is labeled by
an atom and every leaf is labeled either true or false. More precisely, we define a decision
tree over A is to be a ground term over the signature having true and false as constants and
elements of A as binary symbols.

Introducing the convention that in a decision tree the left branch of a node p corresponds
top taking the value true and the right branch corresponds to false, a boolean value [T],,.
can be assigned to every decision tree T and every valuation a, inductively defined as
follows:

[true]a =true

[false]a =false

[p(T, U)Da = [T]a ifa(p) =true

[p(T, U)]a = [U]a ifa(p) =false.

The function mapping a to [T]a is the boolean function described by T. Conversely, i
is not difficult to see that every boolean function on A can be described by a decision tree
One way to do so is building a decision tree such that in every path from the root to a leaf
every p E A occurs exactly once, and plugging the values true and false in the 2#A leaves
according to the 2#A lines of the truth table of the given boolean function.

For any decision tree T let #(T) be the size of T, being the number of internal nodes,
defined inductively by

#(true) =#(false) = 0, #(p(T, U)) = 1 + #(T) + #(U).

64 H. :ZOntema, J. van de Pol I Journal of Logic and Algebraic Programming 49 (2001) 61-86

Two decision trees T and U are called equivalent, denoted as T ::::::: U, if they represent
the same boolean function, i.e., if

[T]a = [U]0 for all er : A--+ {true, false}.

Decision equivalence can be described by an equational axiomatization as follows. Let
<ff consist of the equations

(1) p(x, x) = x

(2) p(q(x, y), q(z, w)) = q(p(x, z), p(y, w))

(3) p(p(x, y), z) = p(x, z)

(4) p(x, p(y, z)) = p(x, z)

for all p, q E A, p ofa q. Note that <ff is finite if and only if A is finite. Let :=6 be the
congruence generated by If'. We prove that If is a sound and complete axiomatization for
decision equivalence, i.e., the relations ::8 and ::::::: on decision trees coincide. This means
that two decision trees are equivalent if and only if this can be derived by only applying the
four types of equations in IS'. A straightforward elementary proof is given in [17]; here we
give an alternative approach based on rewriting which will be the basis of uniqueness of
the ROBDD representation. For the basics of rewriting (confluence, critical pair analysis,
termination, recursive path ordering) we refer to [2].

The first step is to complete 8': find a confluent and terminating rewrite system DT
such that ::6 and ++ tr coincide. One problem in doing so is orienting rule (2). If between
two atoms p and q no preference is given, this cannot be oriented without getting cyclic
reductions. The way to solve this is choosing a total order < on A, and orient the rewrite
rules in such a way that the left-hand side is greater than the right-hand side with respect
to the corresponding recursive path order. In this way all equations are oriented from left
to right, where Eq. (2) is only allowed for q < p. This rewrite system has non-converg
ing critical pairs, in particular (p(q(x, y), z), q(p(x, z), p(y, z))), obtained from rewriting
p(q (x, y), q (z, z)) by rules (1) and (2), respectively. Orienting yields the new set of rewrite
rules

p(q(x, y), z)--+ q(p(x, z), p(y, z))

for all p, q satisfying p > q, and by symmetry also

p(x, q(y, z))--+ q(p(x, y), p(x, z))

for all p, q satisfying p > q. Surprisingly, the original rule (2) can be removed now since

p(q(x, y), q(z, w))--+ + q(p(x, z), p(y, w))

if p > q, and

q(p(x, z), p(y, w))--+ + p(q(x, y), q(z, w))

if q > p, in both cases only using rules (3), (4) and these new rules. We define the rewrite
system DT to consist of the rules

p(x,x) --+ x for all p
p(p(x, y), z) --+ p(x,z) for all p
p(x, p(y, z)) --+ p(x,z) for all p
p(q(x, y), z) --+ q(p(x, z), p(y, z)) for p > q
p(x, q(y, z)) --+ q(p(x, y), p(x, z)) for p > q.

H. Zantema, J. van de Pol I Journal of logic and Algebraic Programming 49 (2001) 61-86 65

~e hav~ co~stru~ted DT in such a way that indeed =s and ~ DT coincide. Moreover,
D_T is ~ernunatmg smce e~ery left-hand side is greater than the corresponding right-hand
side with respect to recursive path order. Finally, it can be checked that all critical pairs are
convergent. For instance, if p > q > r, then the two rules

p(q(x, y), z) -+ q(p(x, z), p(y, z))

and

q(x,r(y,z))-+ r(q(x,y),q(x,z))

give rise to the critical pair

(p(r(q(x, y), q(x, z)), w), q(p(x, w), p(r(y, z), w)))

which is convergent due to the reductions

p(r(q(x, y), q(x, z)), w) -+ r(p(q(x, y), w), p(q(x, z), w))

-+ r(q(p(x, w), p(y, w)), p(q(x, z), w))

-+ r(q(p(x, w), p(y, w)), q(p(x, w), p(z, w)))

and

q(p(x, w), p(r(y, z), w)) -+ q(p(x, w), r(p(y, w), p(z, w)))

-+ r(q(p(x, w), p(y, w)), q(p(x, w), p(z, w))).

The full critical pair analysis can be done either by hand or automatically, for the latt
approach it has to be remarked that it suffices to prove it for the case of #A= 3 sii
no rule contains more than two different symbols. Since all critical pairs converge D7.
locally confluent, and since DT is terminating too we conclude that DT is confluent.

Definition 1. A decision tree is in canonical form with respect to the order < on A i1
on every path from the root to a leaf the atoms occur in strictly increasing order, and no
subterm of the shape p(T1, T2) exists for which T1 and T2 are syntactically equal.

Clearly a decision tree is in canonical form if and only if it is in normal form with
respect to DT. Since DT is terminating and confluent we have the following theorem.

Theorem 2. Every decision tree reduces by DT to a unique canonical form, and T1 and
T2 have the same canonicalform if and only ifT1 =s T2.

Next we prove completeness of the equational axiomatization. First we need a lemma.

Lemma 3. Let T, Ube decision trees in canonical form satisfying T::::: U. Then T = U.

Proof. We apply induction on #(T) + #(U). If #(T) + #(U) = 0, then both Tand U are
true or both T and U are false and we are done.

Consider the case #(T) + #(U) > 0. In case either Tor U is equal to true or false, say
T is equal to true, then U can be written as U = p(U1, U2). Since U is in canonical form
both U1 and U2 are in canonical form and p does neither occur in U1 nor in U2. Since
U ::=true we obtain U1 ::::: true and U2 ::=true; from the induction hypothesis we conclude
U 1 = true = U 2, contradicting the assumption that U is in canonical form.

66 H. Zantema, J. van de Pol I Journal of Logic and Algebraic Programming 49 (2001) 61--86

In the remaining case we have T::::: p(Ti, T2) and U = q(Ui, U2). First assume that
p =I= q. Since < is a total order we have either p < q or q < p, by symmetry we may as
sume p < q. Since T and U are in canonical form p does not occur in any of the trees Ti, T1
and U. For arbitrary a satisfying a(p)::::: true we obtain [T1 Ila ::::: [p(T1, T1)]a = [U]a.
Since p does not occur on Ti and U, the values of [T1]a and [U]a do not depend on a(p).
Hence [T1]a = [U]a for all a, hence Ti '.:::'. U. By taking a satisfying a(p) =false we
obtain T1 '.:::'. U in the same way. From the induction hypothesis we conclude Ti = U = T2,
contradicting the assumption that T is in canonical form.

In the remaining case we have T = p(Ti, T2) and U = p(U1, U2). Since Tand U are in
canonical formp does not in occur in any of the trees Ti, T1, U1 and U2. For arbitrary s sat
isfying a(p) =true we obtain [T1]a::::: [p(T1, T2)Ila = [p(Ui, U2)]a = [Ui]a. Since
p does not occur on Ti and U1, the values of [T1Ila and [U]a do not depend on a(p).
Hence [T1 Ila = [U i]a for all a, hence Ti '.:::'. U i . By taking a satisfying a (p) = false we
similarly obtain T2 '.:::'. U2. From the induction hypothesis we then conclude Ti = U1 and
T2 = U2. Hence T = p(T1, T2) = p(U1, U2) = U. D

Theorem 4. For decision trees T, U we have T =8 U if and only if T '.:::'. U.

Proof. The 'only if'-part is soundness which follows immediately from the fact that all
rules are sound. For the 'if' -part (completeness) assume T '.:::'. U. Let T', U' be the canoni
cal form of T, U, respectively. By soundness we conclude T '.:::'. T' and U '.:::'. U'; transitivity
of'.:::'. yields T' '.:::'. U'. By Lemma 3 we conclude T' = U'; from Theorem 2 we conclude
T =& U. 0

Combining Theorems 2 and 4 yields a straightforward way to decide whether two de
cision trees are equivalent or not: reduce them to canonical form and look whether they
are syntactically equal. However, in Ex.ample 5 we shall see that it can happen that the
canonical form has size exponential in the size of the original decision tree, even if you
may choose a suitable ordering < yourself. Hence worst case this procedure for establish
ing equivalence is of exponential complexity. A straightforward quadratic procedure for
establishing equivalence is well-known; one version is presented in (17].

Example 5. Let n be any natural number. LetA consist of Pt, p2, ... , Pn. q1, q1, ... , qn,
rand define inductively

To= Uo =false, T; = p;(q;(true, false), T;-1), U; =q;(p;(true, false), U;-1),

for i = 1, ... , n, and V = r(Tn, Un). Clearly Vis a decision tree of size #V = 4n + I. In
[18] it has been proved that for every order< on A the corresponding canonical form of V
has a size exceeding 2n 12, which is exponential in the size of V.

3. Sharing

A term can be seen as a tree. For measuring the space complexity, the size of a term
is usually defined as the number of nodes of this tree. For efficiency reasons, most im
plementations apply the sharing technique. A subterm is stored at a certain location in the
memory of the machine, various occurrences of the same subterm are replaced by a pointer

H. zantema. J. van de Pol I Journal of Logic and Algebraic Programming 49 (2001) 6!-R6 67

to this single location. This shared representation can be seen as a directed acyclic graph
(DAG). It is allowed that nodes have more than one parent, but no cycles are introduced
by sharing a term. Allowing sharing in the representation admits efficient representation of
logical circuits.

Sharing can be done in many ways, but every term has a unique representation as a DAG
with maximal sharing, meaning that sharing is applied whenever possible. Every node in
this maximally shared DAG represents a subterrn of the original term, and subterms are
equal if and only if they are represented by the same node. For a term t write #s1i(t) for
the number of nodes of the maximally shared DAG representation of r, which we call the
shared size oft. Then by the above observation we have

#s1i(t) = #{s Is is a subterm oft}.

The shared size can be much smaller than the tree size as illustrated by the following
example, which is exactly the reason that sharing is applied.

Example 6 (See Fig. 1). Define To = true and Uo =false. For binary symbols p1, p2 , p3,
... define inductively Tn = p,, (Tn-1, Un- l) and Un = Pn(Un-1, Tn-l). Considering Tn as
a term its size #(T,,) is exponential in n. However, the only subterms of T11 are true, false,
and T; and U; for i < n, hence #sh (T11) is linear inn.

Maximal sharing is essentially the same as what is called the fully collapsed tree in [14].
In [IO] it is shown that the maximally shared representation is unique, and that the original
term can be reconstructed from it.

In implementations some care has to be taken in order to keep terms maximally shared.
In essence, when constructing a term, a hash table is used to find out whether a node
representing this term exists already. If so, this node is reused; otherwise a new node is
created. We also refer to the ATerrn library [3], which is a C-library offering a data type
for terms, that are internally stored maximally shared. The main operations are construct
ing and destructing terms in constant time, and unreferenced terms are garbage collected
automatically. Furthermore, all BOD-packages can be seen as implementing the idea of
maximal sharing.

We now study the time complexity of a term t. In term rewriting this is usually defined
as the length of the maximal reduction sequence from t to normal form. Note that all

Vn- l Pn-1
I I

P2 P2

1:~
Pi PI

I=-~><!!
true false

Fig. l. The effel'.t of sharing: 7/1 and Un.

68 H. :zantema, J. van de Pol I Journal of Logic and Algebraic Programming 49 (2001) 61-86

occurrences of the same redex have to be contracted one by one. Because in the shared
representation all distinct subterms occur once, it is reasonable to count the contraction of
these subterms only once.

Although it is possible to define the rewrite relation on DAGs, this is quite complicated.
Note that if a subterm is rewritten, then this should be noticed by all referring nodes.
Also note that if C[D[la]] reduces to C[D[ra]], then D[ra] may occur somewhere else
in C[], so after contracting the redex, a number of sharing steps are needed to remove the
duplicated nodes from D[].

These problems are partly solved in [1], where a data structure is invented for repre
senting BEDs (a generalization on BDDs). Extra indirections are inserted from nodes to
their reduced versions. This technique was already used in [1 O] on an implementation of
rewriting with maximal sharing, called Unlimp.

In order to avoid these complexities, we introduce the shared rewrite relation on terms.
In usual unshared rewriting a rewrite step consists of writing the term as cw·1 for some
context C, some substitution a and some rewrite rule l --+ r, and replace the term by C [ra].
In shared rewriting not only this single occurrence of za is replaced by ra, but by sharing
also every other occurrence of zct. By this observation we define shared rewriting without
explicitly referring to the shared terms.

Definition 7. Between two terms t and t' there is a shared rewrite step t =*Rt' with re
spect to a rewrite system R if t = C[la, ... , za] and t' = C[ra, ... , ra] for one rewrite
rule I-+ r in R, some substitution a and some multi-hole context C having at least one
hole for which za is not a subterm of c.

We will take the maximum number of =}-steps from t as the time complexity of com
puting t.

Both in unshared rewrite steps -+ R and shared rewrite steps =} R the subscript R is often
omitted if no confusion is caused.

We now study some properties of the rewrite relation =} R. The following lemmas are
straightforward from the definition.

Lemma 8. lft :::::> t', then t--+ + t'.

Lemma 9. If t -+ t', then a term t" exists satisfying t' --+* t" and t :::::> t".

The following theorem shows how the basic rewriting properties are preserved by shar
ing. In particular, if -+ is terminating and all critical pairs converge, then termination and
confluence of:::::> can be concluded too.

Theorem 10.
(1) If--+ is terminating, then :::::> is terminating too.
(2) A term is a normal form with respect to=} if and only if it is a normal form with respect

to-+.
(3) If-+ is confluent and terminating, then:::::> is confluent and terminating too.

Proof. Part (1) follows directly from Lemma 8.

H. Zantema, J. van de Pol I Journal of Logic and Algebraic Programming 49 (2001) 61-86 69

If t is a normal form with respect to -+, then it is a normal form with respect to => by
Lemma 8. If t is a normal form with respect to=>. then it is a normal form with respect to
-+-by Lemma 9. Hence we have proved part (2).

For part (3) we obtain termination by part (l); it suffices to prove confluence. Assume
s =>* s1 and s =>* s2. Since => is terminating there are normal forms n1 and n2 with
respect to=> satisfying s; =>* ni for i = 1, 2. By part (2) n1 and nz are normal forms with
respect to-+; by Lemma 8 we haves -+ * n; for i = 1, 2. From confluence of-+ conclude
n1 = n2. Since Si =>* ni for i = l, 2 we proved that=> is confluent. D

Note that Theorem 10 holds for any two abstract reduction systems-+ and=> satisfying
Lemmas 8 and 9 since the proof does not use anything else.

Example 11 (Due to Vincent van Oostrom). Not for all assertions in Theorem 10 the
converse holds. For instance, the rewrite system consisting of the two rules f (0, 1) -+
/(1, 1) and 1 -+ 0 admits an infinite reduction f (0, 1)-+ f (1, 1) -+ f(O, 1)-+ ···,but
the shared rewrite relation => is terminating.

For preservation of confluence the combination of termination is essential, as is shown
by the rewrite system consisting of the two rules 0-+ f(O, 1) and 1 -+ f(O, 1). This sys
tem is confluent since it is orthogonal, but => is not even locally confluent since f (0, 1)
reduces to both f (0, f (0, 1)) and f {f (0, 1), 1), not having a common =>-reduct.

Notions on reduction strategies like innermost and outermost rewriting carry over to
shared rewriting as follows. As usual a redex is defined to be a subterm of the shape zcr
where l -+ r is a rewrite rule and a is a substitution. A deterministic (one step) reduction
strategy is a function that maps every term that is not in normal form to one of its redexes,
for instance the leftmost innermost strategy. More general, a (non-deterministic) reduction
strategy is defined to be a function that maps every term that is not in normal form to a non
empty set of its redexes, being the redexes that are allowed to be reduced. For instance,
in the innermost strategy the set of redexes is chosen for which no proper subterm is a
redex itself. This naturally extends to shared rewriting: choose a redex in the set of allowed
redexes, and reduce all occurrences of that redex. Note that it can happen that some of these
occurrences are not in the set of allowed redexes. For instance, for the two rules f (x) -+- x,
a -+ b the shared reduction step g (a, f (a)) => g (b, f (b)) is an outermost reduction, while
only one of the two occurrences of the redex a is outermost.

4. Reduced OBDDs

Normally a BDD is defined to be a decision tree in which sharing is allowed. An ordered
BDD (OBDD) then is a BDD in which on every path from the root to a leaf the atoms occur
only in strictly increasing order, with respect to some fixed total order on the atoms. The
main motivation for OBDDs is that there is a natural notion of ROBDD in such a way
that it is a unique representation for boolean functions that often can be found reasonably
efficiently. Unicity has many strong consequences. For instance, a boolean formula is sat
isfiable if and only if its ROBDD is not equal to false, and it is a tautology if and only if its
ROBDD is equal to true. In our terminology it is very easy to define ROBDDs and prove
uniqueness of representation.

70 H. Zantema, J. van de Pol/ Journal of Logic and Algebraic Programming 49 (2001) 61-86

Definition 12. Let < be a total order on A. A ROBDD with respect to< is a decision tree
tin canonical form with respect to <, in maximally shared representation.

Usually a ROBDD is defined to be an OBDD in which no node occurs for which
the left branch and the right branch point to the same node, and no two nodes labeled
by the same symbol occur for which both the two left branches point to the same node and
the two right branches point to the same node. This definition coincides with our definition:
the first condition due to canonical form, the second due to maximal sharing.

Theorem 13. Let< be a total order on A. Then every boolean function can uniquely be
represented by a ROBDD with respect to <.

Proof. Every boolean function can be represented by a decision tree. After reducing to
canonical form and sharing the desired ROBDD is found. Unicity follows from Lemma 3
and unicity of maximal sharing. 0

4.1. ROBDDs by rewriting

Next we describe how an arbitrary propositional formula or circuit can be transformed
to a ROBDD. Just like reducing arbitrary decision trees to canonical form we do this by
rewriting. Due to sharing the basic steps of rewriting will be => instead of-+.

For a rewriting approach we already have the TRS DT to transform an arbitrary deci
sion tree to its canonical form. For handling propositional formulas we still need rules to
eliminate the propositional connectives. It turns out that by taking care of the order on A
in these rules we can achieve that the ultimate decision tree is in canonical form without
referring to DT. Moreover, in our approach the standard BDD algorithms based on Bry
ant's apply-function can be mimicked. This apply-function computes the ROBDD of T OU

for ROBDDs T and U and binary propositional operations O in complexity (!(#,h(T) *
#sh (U)). One of our goals is to develop a reduction strategy by which the number of rewrite
steps required is of the same order as the complexity of Bryant's basic BDD algorithm.
Although the execution of a rewriting step and maintaining maximal sharing may take
more than constant time, counting the number of rewriting steps is the most natural notion
of complexity of a rewriting computation.

We assume that the propositional formula is constructed from boolean atoms from a
finite set A, the values true and false, the unary operation -. and binary operations v, /\
and +*, all with their usual meaning. Other operations like implication and exclusive or
can either easily be added to the framework, or alternatively they can be expressed in the
other operations without affecting efficiency considerations. The latter is the reason for
including B: generally formulas including++ or xor cannot be represented in formulas of
the same (unshared) complexity without them.

Usually in propositional formulas the boolean atoms appear as constants. In order to
fit in the framework of BDDs it is more natural to consider boolean atoms as binary sym
bols, where a boolean atom p in a formula has to be interpreted as p(true, false). The
replacement of every occurrence of an atom pin the formula by p(true, false) can be seen
as a kind of preprocessing before the rewriting process starts, which is left implicit in the
sequel. In this way both propositional formulas and BDDs are represented as terms over the
same signature consisting of constants true and false, the unary symbol -. and in which all

H. Zantema, J. van de Pol I Journal of Logic and Algebraic Programming 49 (2001) 61-86 71

elements of A and the symbols v, /\ and *+ are binary symbols. This general kind of terms

describ~ng boolean functions both covering propositional formulas and BDDs appeared

before m [l]. Now we present a rewrite system f!.8 by which the propositional symbols are
propagated through the term and eventually removed, reaching the ROBDD as the normal
form. For the binary symbols from A we use prefix notation, for the symbols v, /\ and +*

we keep the infix notation as is usual in propositional formulas.

Definition 14. The rewrite system f!fi consists of the following rules, split up into idempo
tence rules, propagation rules and elimination rules:

p (x, x) -+ x for all p (idempotence rules)

....,p(x, y) -+ p(-,x, -,y)

p(x, y)()p(z, w) -+ p(xOz, y0w)

p(x, y)()q(z, w) -+ p(x0q(z, w), y()q(z, w))

q(x, y)()p(z, w) -+ p(q(x, y)Oz, q(x, y)()w)

-,true -+ false true/\ x -+ x
-.false -+ true x /\true -+ x

true v x -+ true false/\ x -+ false
xv true -+ true x /\false -+ false

false v x -+ x true*+x -+ x
xv false -+ x x+*true -+ x

false*+x -+ -.x

x*+false -+ -.x

for all p 1
for all 0, p (propagation
for all 0, p < q rules)

for all 0, p < q

(elimination rules)

Here p and q range over A and 0 ranges over the symbols v, /\ and +*.

We have defined f!fi in such a way that terms are only rewritten to logically equivalent
terms. Hence if some term rewrites in some way by f!J to a ROBDD, we may conclude that

this reduced OBDD is the unique representation for the original term.
The rewrite system f!J is tenninating since every left-hand side is greater than the cor

responding right-hand side with respect to any recursive path order for a precedence >
satisfying*+>--, and O >- p for OE{_,, v, /\,*+}and p EA. Hence reducing will lead

to a normal form, and it is easily seen that ground normal forms do not contain symbols
-,, v, /\, *+.

The rewrite system f!J is not confluent, for instance if p > q the term p(q (false, true),
q (false, true)) /\ p(false, true) reduces to the two distinct normal fonns p(false, q (false,

true)) and q(false, p(false, true)). Moreover, we see that f!.8 admits ground normal forms
that are not in canonical form. However, when starting with a propositional formula this

cannot happen due to the invariance of the following notion of order:

Definition 15. A term is called ordered if for every subterm of the shape p(T, U) for

p E A all symbols q E A occurring in Tor U satisfy p < q.

We have the following invariance lemma.

Lemma 16.
• Every propositional formula is ordered.
• IfTis ordered and T -+; U, then U is ordered too.

72 H. Zantema, J. van de Pol I Journal of Logic and Algebraic Programming 49 (2001) 61-86

Proof. The first claim is clear since in a propositional formula T = true and U =
false for every subterm of the shape p(T, U). The second claim follows by induction
from the same claim without '*', which follows from an analysis of the shape of the
rules. 0

Theorem 17. Let <!> be a propositional formula over A. Then any reduction of <1> with
respect to =}/4 leads to the same normal form, and this normalfomz is the unique ROBDD
of<!>.

Proof. From Lemma 16 it follows that normal forms of propositional formulas are or
dered. By definition a term is in canonical form if and only if it is ordered and it is in
normal form with respect to the idempotence rules. Hence normal forms of propositional
formulas are in canonical form, hence are ROBDDs. Since all rewriting steps preserve the
represented boolean function, the normal form represents the same boolean function as the
original formula. By Theorem 13 the ROBDD representation is unique. 0

In this way we have described the process of constructing the unique ROBDD purely by
rewriting. Instead of having a deterministic algorithm for this construction as described in
the literature [4, 12, 16], we still have a lot of freedom in choosing the strategy for reducing
to normal form, but one strategy may be much more efficient than another. In the next
subsections we discuss and develop a number of strategies.

4.2. Leftmost innermost reduction

The simplest and most used rewriting strategy is the leftmost innermost strategy: reduce
the leftmost of all innermost redexes. By elaborating an example we now will show that
the leftmost innermost strategy, even when adapted to shared rewriting, may be extremely
inefficient.

Example 18. As in Example 6 (Fig. 1) define To =true and Vo =false, and define in
ductively Tn = Pn(Tn-1, Un-I) and Un = Pn (U,,-1, Tn-1).

Both T11 and U11 are in canonical form, hence can be considered as ROBDDs. Both are
the ROBDDs of simple propositional formulas, in particular the term T11 is the ROBDD of
.,_,.7=1 Pi and Un is the ROBDD of-.(...... 7= 1p;). In fact they describe the parity functions:
T,, (respectively, U11) holds if and only if the number of i-s for which Pi does not hold is
even (respectively, odd).

Surprisingly, the leftmost innermost reductions of ...,(Tn) and ...,(Un) to normal form
have exponential lengths as we see in the next proposition. Define a -.-step to be an appli
cation of a rule ...,p(x, y) ~ p(--,x,...,y).

Proposition 19. For every n both for ...,(Tn) and ...,(Un) =::,.,18 -reduction to normal form by
the leftmost innermost strategy requires 2" - 1 -.-steps.

Proof. We apply induction on n. For n = 0 the proposition trivially holds. For n > 0 the
first reduction step is

H. Zantema. J. van de Pol I Journal of Logic and Algebraic Programming 49 (2001) 61--86 73

The leftmost-innermost reduction continues by reducing,(Tn-I). During this reduction
no --.-redex is shared in,CUn-1) since,(Un-1) contains only one --.-symbol that is too
high in the tree. Hence --.(Tn-1) is reduced to normal form with 2n-l - 1 --.-steps due
to the induction hypothesis, without affecting the right part,(Un-1) of the term. After
that another 211 - 1 - 1,-steps are required to reduce,(Un-1), making the total of 2n - 1
--.-steps. For --.(U,,) the argument is similar, concluding the proof. D

Although the terms encountered in this reduction are very small in the shared repre
sentation, we see that by this strategy every =}-step consists of one single --+-step, of
which exponentially many are required. This exponential behavior of leftmost innermost
reduction is caused by the fact that, despite of sharing, during the reduction very often the
same redex is reduced.

Since leftmost innermost reduction of the term representation of -. (++? = 1 p;) starts with
a reduction to (T,,), we see that indeed the leftmost-innermost .19-computation of the
ROBDD of a propositional formula can be exponential in the size of the formula.

4.3. Layerwise reduction

In this subsection we introduce a new strategy called layerwise avoiding the exponen
tial behavior discussed in the previous subsection in which very often the same redex is
reduced. More precisely, we show that in layerwise reduction of a term of the shape -.r
or T()U where T, U are ROBDDs and 0 E {v, A,++}, every propagation redex is re
duced at most once. Ultimately this will lead to a complexity comparable with the standard
algorithm for computing ROBDDs. First we investigate the involved redexes.

A redex is called essential if it is a propagation redex or an elimination redex. The
smallest symbol in a term t containing at least one symbol p E A is called the level oft.
For ordered terms it is clear that redexes with respect to the propagation rules as they occur
in Definition 14 are exactly the propagation redexes of level p.

Proposition 20. Let T, Ube ROBDDs.
• IJ--.T ---+ ~ V, then every essential redex in Vis of the shape --. T' for some subterm T'

ofT.
• If TOU --+ ~ V for 0 = v or 0 = /\, then every essential redex in Vis of the shape

T' OU' for some subterm T' of T and some sub term U' of U.
• IJT++U--l>~ V, then every essential redexin Visoftheshape T'++U' or-.T' or-.U'

for some subterm T' of T and some subterm U' of U.

Proof. We apply induction on the reduction length of---+~- If this length is zero all asser
tions are trivial. For the induction step we assume that in

every essential redex in V' is of the desired shape and we have to prove that the same holds
for V. If V' --l>?A V is an application of a propagation rule or elimination rule this follows
from the shape of the rules; if V' ---+ ,18 V is an idempotence step this follows from the
observation that idempotence will not create new essential redexes, note that by definition
idempotence cannot be applied on subterms of ROBDDs. D

74 H. Zantema, J. van de Pol I Journal of Logic and Algebraic Programming 49 (2001) 61-86

A term t is called fiat if u --+::O t for u = -.r for some ROBDD Tor u = T()U for
ROBDDs T, U and O E {v, /\,**}.The motivation for calling this flat is that in flat terms
no connective symbols-., v, /\ and ** may occur nested by Proposition 20.

Now we give some lemmas investigating how redexes can be created, and which will
motivate the definition of layerwise reduction.

Lemma 21. Let t be a fiat tenn and let t --+ .f.d u be a reduction for which u contains a
propagation redex of level q that is not contained in t, for some q E A. Then either
• t --+ .Je u is a propagation step of level p for p < q, or
• t = C[false ** q(u 1, u2)] or t = C[q(u 1. u2) **false], and u = -.(q(u 1. u2))jor some

context C and some terms u 1, u2.

Proof. Let u = C[l°'], where za is the propagation redex of level q not contained in t2.
Let O E {-., v, /\, **} be the root of za. By Proposition 20 and the observation that every
closed term having its root in{-., v, /\, B) is an essential redex, we see that the position
of the redex in t is not below the position of la in u. We distinguish the three possibilities
fort -*'1 u.
• t --+ ,s u is an idempotence step C'[p (v, v)] --+ C'[v]. As observed v is not inside la, by

which la already occurs in t, contradicting the assumption.
• t --+ .!4 u is a propagation step. We see from the shape of the rules that the only way that

la can be created is by a propagation step of level p for p < q.
• t --+Ja u is an elimination step. We see from the shape of the rules that the only way

that la can be created is if t = C[false ++ q(u 1, u2)] or t = C[q(u J, u2) ++false], and
u = -.(q (u 1. u2)) for some context C and some terms u 1, uz. D

Lemma 22. Lett be a.fiat term and let t --+:14 u be a reduction for which u contains a redex
of the shape false++ q(v, w) or q (v, w) ++false that is not contained in t. Then t --+ i?4 u is
a propagation step of level p for p < q.

Proof. By Proposition 20 and the shape of the rules. D

Definition 23. A redex is called layerwise if it is not a propagation redex of level q such
that
• there is a propagation redex of level p for p < q, or
• there is a redex of the shape false ++ p (t, u) or p (t, u) ++ false for p ::;;: q.
A layerwise reduction is a reduction reducing only layerwise redexes.

Clearly every term not in normal form contains a layerwise redex, hence layerwise
reduction always leads to the unique normal form. Just like innermost and outermost re
duction, layerwise reduction is a non-deterministic reduction strategy. By definition a redex
is layerwise if and only if every occurrence of this redex is layerwise. Note that a similar
property holds for innermost redexes, but not for outermost redexes.

Note that in Definition 23 the second condition only plays a role for reduction of terms
in which the symbol ++ occurs.

In an earlier version of this paper [15] we proposed a more restricted definition of layer
wise in which reducing elimination redexes was often forced to be postponed. Experiments

H. Zantema. J. van de Pol I Journal of logic and Algebraic Programming 49 (200 I) 61-86 75

however show that first reducing elimination redexes often leads to shorter reductions, and
sometimes to much shorter reductions.

We will show that layerwise reduction leads to normal forms efficiently for suitable
terms.

For a term tits active level actlev(t) is defined to be the smallest value p with respect

to < for which t contains either a propagation redex of level p or a redex of the shape

false -tt p(t, u) or p(t, u) - false. If a term does not contain such a redex then its active
level is defined to be oo, with oo > p for all p E A.

Lemma 24. Lett be a flat term and let t -+.£ u. Then actlev(t) ~ actlev(u).

Proof. Follows from Lemmas 21 and 22. 0

Proposition 25. In every layerwise ==},18-reduction of a flat term every propagation redex

is reduced at most once.

Proof. Assume that a propagation redex la of level p is reduced twice:

Since the reduction is layerwise a propagation redex of level p may only be reduced if
the active level is exactly p, hence actlev(C[la]) = actlev(C'[la]) = p. By Lemma 24 we
conclude that all intermediate terms have active level p too. Since in C[la] :::=} t all occur
rences of la are reduced, the redex 1a does not occur in t. Hence the (unshared) reduction

t -+ .~ C'[la] contains a step t1 -+ .!4 t2 such that the red ex za does not occur in ti but
occurs in t2. Lemma 21 allows two cases. The first is that t 1 -+.M t2 is a propagation step
of level less than p. contradicting actlev(t1) = p. The remaining case is that t1 contains
a redex of the shape false *7 p (u, v) or p (u, v) *7 false. In none of the reduction steps

of C[la] -+'H t1 this redex can be created according to Lemma 22 since all terms have
active level p. Hence the redex false B p(u, v) or p(u, v) -tt false already occurs in CW],

contradicting the assumption that the first reduction step is layerwise. 0

Proposition 25 implies a bound on the number of propagation steps in a layerwise re
duction. The following lemma will be used to achieve a bound on the number of all rewrite

steps. Since there are rules by which a B-symbol is replaced by a -.-symbol we will only
achieve a decrease of size if a B-symbol contributes more to the size than a,-symbol.
That's why for any term t we define size(t) to be #sh (t) plus the number of distinct subterrns
oft having *7 as its root, i.e., size(t) is the number of distinct subterms oft where subterms

having B as its root are counted twice.

Lemma 26. Let any reduction t :::=} ~ u consist of m shared propagation steps and n shared

idempotence and elimination steps. Then

size(u) + n ~ size(t) + 3m.

Proof. We apply induction on the reduction length m + n. If m + n = 0, then the claim is
trivial. For the induction step assume that the reduction is of the shape t :::=} ~ u' :::=} ,!4 u. By
the induction hypothesis we may assume that the claim holds fort :::=} ~ u'; we distinguish
two cases:

H. Zantema, J. van de Pol I Journal of Logic and Algebraic Programming 49 (2001) 61-86 77

(T)

(U)

false

' ' ' '
Sn

""' true
Fig. 2. Counter example for generalized Jayerwise reduction.

T =PI (r1 (U, false),

P2(r2(U, false),

Pn-1 (rn-1 (U, false), rn(U, false)···).

Clearly T is an ROBDD and #sh(T) = (!)(n). A layerwise reduction of T #q(true, false)
will arrive at T' = p1(S1, p2(S2, ... , Pn-1(Sn-1. Sn)···)) where Si= q(n(U, false), n
(U, false)# false) for all i. Note that T' does not contain any propagation redex. If the
reduction continues by successively reducing every subterm Si to normal fonn, then every
reduction step satisfies the first condition of Definition 23, but not the second. Since every
reduction of Si to normal form requires Q(n) steps, the length of this total reduction of
T # q(true, false) is Q(n2). For a layerwise reduction this length is @(n) by Theorem 27.
We conclude that the second condition of Definition 23 is essential for Theorem 27 to hold.

Bryant's apply-function to compute the ROBDD of TOU for ROBBDs T and U and
a binary operator 0 has complexity (!)(#sh(T) *#sh(U)), see [4,12,16]. This is exactly
the same bound as the bound on the number of rewrite steps we derived in Theorem 27
for computing the same ROBDD by means of Jayerwise reduction. Write apply(T) for
layerwise reducing a term T to normal form. We now can define an algorithm reduce to
find the ROBDD for a propositional formula IP:

reduce(true) =true

reduce(false) =false

76 H. Z,antema, J. van de Pol I Journal of Logic and Algebraic Programming 49 (2001) 61-86

• Let u' =? !B u be a propagation step. Due to the shape of the rules we conclude that
size(u) ~ size(u') + 3. Here equality may hold for propagation rules for*+. Combined
with the induction hypothesis size(u') + n ~ size(t) + 3(m - 1) we obtain size(u) +
n ~ size(t) + 3m.

• Let u' =>IB u be an idempotence or elimination step. Due to the shape of the rules
we conclude that size(u) ~ size(u') - 1 (here is the point where we need size instead
of #sh: by the rules false*+ x --+ --.x and x ++false --+ --.x the shared size #sh does
not strictly decrease). Combined with the induction hypothesis size(u') + (n - 1) ~
size(t) + 3m we obtain size(u) + n ~ size(t) + 3m.

In both cases we are done. D

Theorem 27. Let T be a ROBDD. Then every layerwise =?31-reduction of --.T contains
(!J(#sh(T)) steps.

Let T, Ube ROBDDs. Then every layerwise =?::M-reduction ofT v U, T /\ U or T ++U

contains (!J(#sh(T) * #sh(U)) steps.

Proof. Let the considered reduction consist of m shared propagation steps and n shared
idempotence and elimination steps. By Proposition 20, the number of candidates for prop
agation redexes is (!J(#sh (T)) or (!J(#sh (T) * #sh (U)), respectively. By Proposition 25 each
of these candidates is reduced at most once. Hence the total number m of propagation
steps has the required complexity. Applying Lemma 26 we conclude that the total num
ber of steps m + n is less than or equal to 4m + size(t). If t = --.T, we have size(t) =
(!J(#sh(T)) and we already observed that m = (!J(#sh(T)), hence m +n = (!J(#sh(T)). If
t = T OU, we have size(t) = (!J(#sh (T) + #sh (U)) and we already observed that m =
(!J(#sh(T) *#sh(U)), hence m +n = (!J(#sh(T) *#sh(U)). For both cases this concludes
the proof. D

In Example 18, we saw that the first condition of Definition 23 is essential for Propo
sition 25 and Theorem 27 to hold. In the following two examples we show that the same
holds for the second condition of Definition 23.

Example 28. Let p < q and consider the following reduction in which the same q-redex
--.(q(true, false)) is reduced twice:

p(false, q(true, false))*+ p(q(true, false), false)

=?31 p(false ++ q(true, false), q(true, false)*+ false)

=?31 p(-.(q(true, false)), q(true, false)++ false)

=?31 p(q(-.(true), -.(false)), q(true, false) *+false)

=?31 p(q(-.(true), -.(false)), -.(q(true, false)))

=?31 p (q (-.(true), -.(false)), q (-.(true), --.(false))).

Every reduction step satisfies the first condition of Definition 23, but not the second. Hence
the second condition of Definition 23 is essential for Proposition 25 to hold.

Example 29 (See Fig. 2). Let PI < · · · < Pn-1 < q < r1 < · · · < rn < s1 < · · · <Sn, let
') = SJ (false, s2(false, ... , Sn(false, true)···)), and let

78 H. Zantema, J. van de Pol I Journal of Logic and Algebraic Programming 49 (2001) 61-86

reduce(p) = p(true, false)

reduce(-.([>) = apply(-.reduce(<I>))

reduce(<I> v 'P) = apply(reduce(<I>) v reduce('P))

reduce(<I> /\ 'P) = apply(reduce(<I>) /\ reduce('P))

reduce(<!>++ 'P) = apply(reduce(<l>) ++ reduce('P)).

Roughly speaking this function reduce mimics the standard algorithm from [4,12,16].
Note that applying reduce is not pure rewriting but a combination of rewriting and function
application. In the following section we succeed in mimicking the standard algorithm by
pure rewriting.

4.4. Layerwise innermost reduction

In order to compute the ROBDD of a propositional formula <I> we simply want to rewrite
<P by !!4 using a particular reduction strategy, until the normal form is obtained which is
the desired ROBDD according to Theorem 17. In this subsection we introduce a layerwise
innermost strategy for which we show that the required number of rewrite steps does not
exceed the known complexity bound of the standard algorithm.

Definition 30. A redex is called layerwise innermost if it is an innermost redex that is not
a propagation redex of level q such that
• there is an innennost redex with respect to a propagation rule of level p for p < q, or
• there is an innermost redex of the shape false ++ p (t, u) or p (t, u) ++ false for p ~ q.
A layerwise innermost reduction is a reduction reducing only layerwise innermost redexes.

Clearly every term not in normal form contains a layerwise innermost redex, and just
like innermost, outermost and layerwise, layerwise innermost reduction is a non-determin
istic reduction strategy. The following lemma gives the properties of layerwise innermost
reduction that we need in the sequel.

Lemma31.
(1) Every layerwise innermost redex is innermost, i.e., every proper subterm is in normal

form.
(2) Let T, Ube ROBDDs and 0 E {v, /\, ++}. Then every layerwise innermost reduction

of-.T or TOU to normalform is a layerwise reduction too.
(3) Let a subterm of a term t be a layerwise innermost redex of-.t or tOu or uOt. Then it

is a layerwise innermost redex oft too.

Proof. Parts (1) and (3) are immediate from the definition; part (2) holds since every
essential redex occurring in a reduction of --.T or TOU to normal form is an innermost
redex according to Proposition 20. 0

In order to compare the reduction lengths of layerwise innermost reduction with the
complexity bound of the standard algorithm, we first specify that complexity bound. Fix
an order < on A. Let F be recursively defined on propositional formulas as follows.

H. Zantema, J. van de Pol I Journal of Logic and Algebraic Programming 49 (2001) 61-86 79

F(p) = 0 for p EA
F(-.cf>) = F(c/>) + s(c/>)

F(c/>01/f) = F(c/>) + F(ljf) + s(cf>)s(l/f) for 0 E {v, /\, #},

where s(c/>) is defined to be the shared size of the ROBDD of </J with respect to<. The stan
dard apply-function to compute the ROBDD of T()U for ROBBDs T and U and a binary
operator has complexity {(j(#sh (T) * #sh (U)). As consequence, there is a constant C such
that the number of computation steps to compute the ROBDD of a propositional fonnula <f>

by means of the standard algorithm is at most C * F(c/>). Our main theorem states that the
number of reduction steps of a layerwise innermost reduction of</:> has exactly the same
complexity bound.

Before presenting and proving the main theorem we give a lemma.

Lemma 32. Let O E {v, /\, #} and let tOu => ~ t' ()u' be a layerwise innermost reduc

tion of n steps not containing any root reduction step. Then there are layerwise innennost

reductions t =>~ t' and u =>~ u' ofnr, nu steps, respectively, satisfying n :::;; n1 +nu.

Proof. We apply induction on n. For n = 0 the lemma trivially holds. For n > 0 the re
duction can be written as

t()u =>:M t"Ou" =>~ t'Ou'.

By the induction hypothesis we have layerwise innermost reductions t" =>;; t' and u" :::::} ~

u' of n 1, nz steps, respectively, satisfying n - I :::;; n 1 + n 2· For the redex of the first step
tOu =>go t" ()u" we have three possibilities:
• It occurs in t and not in u. Then u = u" and there is a layerwise innermost reduction

step t =>got", giving rise to layerwise innermost reductions t =>;; t' and u =>~ u' of
nr = n1 +I and nu = nz steps, respectively, hence satisfying n = 1 + (n - I)~ I+
n 1 + nz = n1 + nu.

• It occurs in u and not in t. Then t = t" and there is a layerwise innermost reduction
step u =>:!4 u", giving rise to layerwise innermost reductions t =>~ t' and u =>~ u' of
n1 = n1 and nu = nz + 1 steps, respectively, hence satisfying n = l + (n - 1) ~ 1 +
n 1 + nz = n1 + nu.

• It occurs both in t and in u. Then there are layerwise innermost reduction steps t =>:m t"

and u =?gg u", giving rise to layerwise innermost reductions t =>~ t' and u =>~ u' of
n1 = n1+1 and nu = nz + 1 steps, respectively, hence satisfying n = 1 + (n - 1):::;;
1 +n1 +n2 < n1 +nu.

Here the reduction steps t =>311 t" and u =>311 u" are layerwise innermost by Lemma 31,
part (3). In all cases we are done. D

Theorem 33. There is a constant C such that the computation of the ROBDD of any prop

ositional formula c/> by applying layerwise innermost reduction to normal.form requires at

most C * F(c/>) reduction steps.

Proof. Let C be the constant implied by Theorem 27 such that for every ROBDD T every
layerwise =>:M-reduction of -.T contains at most C * #sh (T) steps, and that for all ROB
DDS T, U every layerwise =>a1-reduction of T v U, T /\ U or T-tt U contains at most

C *#sh(T) *#sh(U) steps.
We will prove the theorem by induction on the structure of the formula ef>.

80 H. Zantenw, J. van de Pol I Journal of Logic and Algebraic Programming 49 (2001) 61-86

For the basis of the induction we have </> = p(true, false) is in normal form, and the
claim holds.

For the induction step we distinguish two cases: </> = --.<fJ1 and </> = </>1 0</>2 for 0 E
{v, /\, ++}.

Let </J = -.</>1• Let T be the ROBDD of </>1 and let Ube the ROBDD of</>. By Lemma
31, part (l), every layerwise innermost reduction of</> is of the shape

</>=-.</JI=>~ --.T =>~ U.

By removing the top-. symbol in the reduction --.<f> 1 =>~ -.r we obtain a reduction from
</>1 to T, which is layerwise innermost by Lemma 31, part (3). Hence it has at most C *
F(</>1) steps by induction hypothesis. Hence the reduction --.<fJ1 :::::} ~ --.T has at most C *
F(</J1) steps. The layerwise innermost reduction --.T =>~ U is layerwise too by Lemma 31,
part (2). Then by the definition of C we conclude that the reduction --. T => ~ U consists of
at most C * #51i(T) = C * s(<jJ1) steps. We conclude that the total number of steps in the
layerwise innermost reduction of <f> is at most C * F(</>1) + C * s(</>1) = C * F(--.<f>i) =
C * F(</J).

For the remaining case let</>= <Pi 0</>2. Let Ti be the ROBDD of</>; for i = 1, 2, and let
Ube the ROBDD of <f>. By Lemma 31, part (1), every layerwise innermost reduction of <P
is of the shape

<P = </J1 O</J2 => ~ T1 OT2 :::::} ~ U.

Due to Lemma 32 the number of steps of the first part <Pi 0</>2 =>d T1 ()T2 is at most n 1 + n2
where n; is the length of a layerwise innermost reduction rf;; :::::} d T; for i = 1, 2. By the in
duction hypothesis we obtain n; ::;;; C * F(</>;) for i = 1, 2. The second part T1 ()T2 :::::};., U
of the reduction is layerwise by Lemma 31, part (2); by the definition of C we conclude
that it contains at most C * #sh (T1) * #sh (T2) steps. Combining these results on the first
and second part of the reduction <jJ => ~ U we conclude that the total number of steps is at
most C * F(</>1) + C * F(</J2) + C * #s1i(T1) * #s1z(T2) = C * F(</>). D

4.5. Laz.v reduction

With the innermost reduction strategy, the deepest connectives are propagated down
wards, and finally eliminated. We will now consider the opposite strategy, called lazy strat
egy, which is defined in such a way that a step is only performed if it contributes to lifting
the smallest variable to the root. Technically, the definition proceeds by distinguishing head
reduction (-+ H) and lazy reduction (-+ L). Head reduction will be defined as the closure of
propagation and elimination rule instances under connectives. Lazy reduction is the closure
of head reduction and the idempotence rule under proposition symbols.

Definition 34. The head reduction steps are defined inductively by the following clauses:
• For any elimination and propagation rule l -+ r and ground substitution a, la -+ H ra.
• Ifs -+ H t, then --.s -+ H --.r and for any ground term rand connective 0 E {v, /\, ++ },

s()r -+ H t()r and r()s -+ H rOt.
The lazy reduction steps are defined inductively as follows:
• For any ground term t, p(t, t) -+ L t.
• Ifs -+ H t, then s -+ L t.

• Ifs -+ L t, then for any ground term rand atom p, p(r, s) -+ L p(r, t) and p(s, r) -+ L

p(t, r).

H. Zantema, J. van de Poll Journal of Logic and Algebraic Programming 49 /2001) 61-86 81

A redex r7 is called lazy in C[/°"], if we have C[lcr] -+L C[ra] for the corresponding
right-hand side r. We now show that -+ L is a strategy, in the sense that each term that is
not yet in normal form contains a lazy redex. This first requires a lemma on head normal
forms. For a rewrite relation -+ we write t fr to denote that t is in normal form, i.e., cannot
be rewritten by -+.

Lemma 35. If t fr H for some closed t, then t is of the form false, true or p(t', t").

Proof. Induction on t. Lett fr H· If t = r()s, for some connective 0. then r fr H and
s fr H, otherwise t would do a -+ H-step. By induction hypothesis, sis of the form true,
false or p(s', s"), and similar for r. Now for each of the nine cases that arise, there exists
some elimination or propagation rule in the TRS (f4 by which rOs can do a -+ H step;
contradiction. So t cannot be of the form r\)s. Similar fort = -.r. 0

According to the previous lemma, terms of the form false, true and p(r, s) can be
called head normal forms. This notion was used in an alternative definition of the lazy
strategy in [15]. The current definition is more precise, and the separate notion of head
reduction admits a nicer formulation of the main property of lazy reductions (Proposi
tion 37).

Proposition 36. If t fr L, then t fr if#·

Proof. Induction on t. Let t be in -+ L normal form. If t is one of true, false, then clearly
t fr 14. Furthermore, t cannot be of the form rOs or -.r, for then t can do a -+ H step by
Lemma 35, which is a -+ L step by definition. Finally, consider t of the form p(r, s). The
only rule to do a top-level reduction is idempotence, but this would be a-+ L-step which
is not possible by assumption. Next, rand s must be in -+ L normal form, for otherwise t
does a -+ L step. Hence by induction hypothesis, r and s are in -+ JB normal form too, so a
-+ JB step inside a proper subterm oft is also excluded. D

For arbitrary TRS the lazy reduction strategy can be defined by distinguishing construc
tor symbols and defined symbols. In our case, false, true and the atoms are the constructor
symbols, as they appear in normal forms, and the connectives are the defined symbols.
The idempotence rule is special, in the sense that the root symbol of the left-hand side
is a constructor symbol. The special treatment of idempotence in our definition of lazy
rewriting is motivated by Example 38.

Lazy reduction is related, but not identical, to outermost rewriting. First, outermost
idempotence redexes can always be postponed in our definition. Also, true /\ false is
a lazy redex in the term true/\ (true/\ false), although not outermost; this is on pur
pose, as the topmost constructor of the right conjunct is not yet visible. Conversely, in
p(-.true, true)/\ (true/\ false), the subterm -.true is an outermost redex, but not a lazy
redex; this is on purpose, as the topmost constructor of the left conjunct p(-.true, true)
is already visible.

Lazy reduction can be lifted to shared rewriting in the usual way: first identify some
lazy redex, then replace all its occurrences. Note that opposed to the innermost and the
layerwise strategies, some of these occurrences might be in non-lazy position. Consider
for instance q (true, -.true) /\ -.true. We have:

82 H. Zantema, J. van de Pol I Journal of Logic and Algebraic Programming 49 (2001) 61-86

q(true, -.true)/\ -.true -+ L q(true, -.true)/\ false

but

q(true, -.true)/\ -.true frL q(true, false)/\ -.true

Nevertheless, using shared rewriting both copies are rewritten:

q(true, -.true)/\ -.true ~L q(true, false)/\ false.

We will now prove the main property of lazy reduction, which states that the smallest
variable is lifted to the top in a number of steps linear to the size of the shared term. This
strengthens the result in [15] considerably, which was only proved for the unshared size.
The result is stated in terms of head reduction.

Proposition 37. !ft ~H t', then n :::;; 2.#sh(t).

Proof. First define the set H of subterms of t that are accessible by head reduction as
follows:

H(true) = H(false) = H(p(t, u)) = 0

H (-.t) = {-it} U H(t)

H(t0u) = {t0u} U H(t) U H(u) forO E {v, /\, #}

Let top(t) denote the number of nodes in the accessible top, counting# twice, i.e.,

top(t) = #H(t) + #{u E H(t) ! 3v, w. u = v ++w}

Because ~ H is defined as the closure of elimination and propagation rules under connec
tives, each ~ H step removes all occurrences of some elimination or propagation redex zu
from H(t). That redex is replaced by the corresponding right-hand side ru, which starts
with an atom in all cases, except that # might be replaced by, (for this reason ++ was
counted twice), effectively decreasing top(t) with at least one. Other subterms in H(t) are
either removed by an elimination rule (decreasing top(t) further), or they are of the form
C[lu] and replaced by C[ra] (possibly decreasing top(t) due to sharing). Hence, if t ~ H u
then top(t) > top(u). Clearly, top(t):::;; 2.#sh(t). So the number of possible rewrite steps
n :::;; top(t) :::;; 2.#sh(t).

Combined with Lemma 35, we have that head-reduction reveals the top-most symbol
of the BDD in a linear number of steps. Although the proposition is stated in terms of head
reduction, we obtain as a corollary that each lazy reduction sequence starting in t reaches
a term of the form p(u, v) in at most 2 * #sh (t) steps, but in the next lazy step p may
disappear due to a propagation step.

Note that by applying the idempotence rule the accessible top might increase, and the
above proof would not be valid. The following example shows that excluding idempotence
from head reductions is indeed essential.

Example 38. Write p ,:, t to denote p(t, t). Consider the shared term

=.:..:;...::, PI ,:, P2 ,:, · · · _:=:, Pn _:=:, true.
11

H. Zantema, J. van de Pol I Journal of Logic and Algebraic Programming 49 (2001) 61-86 83

A.s a shared term, this has size linear in n. We have the following reduction:

n-1
==}H

~idemp

::.:..:;..2P1 .=. pz .=. · · · .=. Pn .=. true
n

-. P 1 .__,, -. • · •, pz .=. · · · .=. Pn .=. true
~

n-1

::.:..:;..2 P2 .=. · · · .=. Pn .=. true
n

~, ··.-.true ..__,__,
n

=?'H false/true

The length of this reduction is quadratic in n. Apart from the idempotence steps it is a head
reduction, showing that for validity of the linearity bound of Proposition 37 it is essential
to exclude idempotence in the definition of head reduction.

We conclude this section by giving a typical example where lazy reduction outperfonns
any innermost strategy, like the traditional apply-algorithm.

Example 39. Let <P be a formula of size m, whose ROB OD-representation is exponential
ly large in m. Without loss of generality we assume that true and false do not occur in <l>
and that some variable p is strictly smaller than all variables occurring in formula <I>. Con
sider the formula p /\ ('1> I\ -.p), which is clearly unsatisfiable. Note that any innermost
strategy, such as the traditional algorithm using apply, will as an intermediate step always
completely build the ROBDD for <P, which is known to be exponential in m.

We now show that the lazy strategy has linear time complexity. Replace each proposi
tional variable q by q(true, false), transforming <P to <P'. Using the lazy reduction strategy
sketched above, we get a reduction of the following shape:

p(true, false)/\ (<P' I\ -.p(true, false))
n+I
=?H p(true, false)/\ (q(<P1, <l>2) /\ p(-.true, -.false))

=?H p(true, false)/\ p(q(<I>1, <l>2) I\ -.true, q(<P1, <I>2) /\-.false)

=?H p(true /\ (q(<l>1, <P2) /\-.true), false/\ (q(<P1, <P2) /\-.false))

=?l p(false, false)

=?i false

where n is the number of steps applied on <P' until a head normal form q (<l>1, <P2) is
reached. This shape is completely forced by the lazy strategy. Note that the reduction of
-.p doesn't interfere with If>, as <P doesn't contain p. By Lemma 37 we have n ~ 2m.
Furthermore, depending on the order in which the redexes are contracted, 4 ~ k ~ 6, so
the length of the reduction is linear in m. Note that reductions inside <P1 and <P2 are never
permitted.

In [I] the up-one algorithm is devised, which brings a variable to the top of a BED in lin
ear time. Our work unifies this algorithm with the usual apply algorithm (called up-all for
BEDs), by showing that both algorithms can be obtained as a special reduction strategy of
the same TRS. Lazy reduction coincides with the repeated application of up-one, and layer-

84 H. Zantema, J. van de Pol I Journal of Logic and Algebraic Programming 49 (2001) 61-86

wise innermost reduction coincides with up-all. In [1] it is noticed that up-one can be more
effective in case the resulting BDD is small, like in the example above, but there the effect
is partially attributed to the addition of logical rewrite rules, such as x /\ (y /\ -.x) ~ false.
Our example shows that pure lazy rewriting can have similar effects. The effect of rewrite
rules acting on nodes labeled with connectives can also be obtained by the level exchange
operation on nodes with newly introduced variables [9].

5. Experiments and concluding remarks

In order to get a better impression of the performance of the various strategies we made
an implementation for them counting the number of rewrite steps to reach the ROBDD for
a number of formulas (see Table 1).

We consider five strategies: leftmost innermost, layerwise, layerwise innermost, left
most lazy and layerwise lazy. Here the layerwise lazy strategy means that among all lazy
redexes one is chosen that satisfies the requirements as they occur in the definition of
layerwise.

We consider six formulas. The first one is the fourth pigeon hole formula ph4:

Since the first big conjunct implies that at least 5 variables are true and the second big
conjunct implies that at most 4 variables are true, the formula is equivalent to false.

The second formula is chess4, a formula describing all possibilities to tile a 4 x 4 chess
board by 8 dominoes.

The third formula is a random formula of size 200 on 10 variables. Without going into
detail of how to define a random formula we only mention that we tried a number of
samples for different notions of randomness all roughly giving the same pattern as the
sample given in the table.

The fourth is bi-imp, a bi-implicational formula consisting only of++:
PI++ P2 # · · · ++ P1s #PI# P2 # · · · # P1s, associated from left to right. It is not

difficult to see that this formula is equivalent to true.
The last two are unsatisfiable formulas unsi = p /\ (<Pi /\ --. p) for i = l, 2, where <P1 =

V f~ 1 (Pi /\qi) and <P2 = (-.q) /\ <P1. We take the order p < PI < P2 < .. · < PIO < q1 <
q2 < · · · < qio < q. The formula <P1 with this order is a standard example of a small
formula having a big ROBDD: the ROBDD of <Pi has 2046 internal nodes.

Table I

Strategy Formula

Ph4 Chess4 Random Bi-imp uns1 uns2

Leftmost innermost 32633 3248 6962 262147 4119 16408
Layerwise 2113 1863 2946 1790 58 4123
Layerwise innermost 4225 3142 2849 633 4119 7202
Leftmost lazy 7017 2024 5319 671750 29 31
Layerwise lazy 1984 1696 3333 1986 29 31

H. Zantema, J. van de Pol I Joumal of Logic and Algebraic Programming 4912001.161-86 85

Every number in the table denotes the number of rewrite steps required for the given
fonn~la to reac? the ROBDD by using the given rewrite strategy.

It is not possible to choose a definite winner among the given strategies. Roughly speak
ing '!'e can say t~at layerwise innermost is often a good strategy, but that sometimes lay
erw1se or layerw1se lazy is better. However, the formulas uns1 and uns~ serve bad for
layerwise innermost (with shared sizes of intennediate terms of over 2000, which does
not occur in the. other examples) and very well for both lazy strategies. For the example
uns1 the layerw1se strategy is not bad; in the example uns2 however the lazy strategies
convincingly outperform the layerwise strategy.

As a conclusion we state that we developed a framework for a wide class of algorithms
to compute the ROBDD of a propositional formula, all proved to be correct, essentially
covering the standard algorithm, but also covering algorithms that perform much better
than the standard algorithm in particular cases.

References

[1) H.R. Andersen, H. Hulgaard, Boolean expression diagrams, in: 1\veltih Annual IEEE Symposium

on Logic in Computer Science, Warsaw, Poland, IEEE Computer Society, Silver Spring, MD. 1997, pp.
88-98.

[2] F. Baader, T. Nipkow, Term Rewriting and All That, Cambridge University Press, Cambridge, 1998.

[3) M.G.J. van den Brand, H.A. de Jong, P. Klint, P.A. Olivier, Efficient annotated terms. Software - Practice
and Experience 30 (3) (2000) 259-291.

[4] R.E. Bryant, Graph-based algorithms for boolean function manipulation, IEEE Trans. Comput. C-35 (8)
(1986) 677-691.

[5] R.E. Bryant, Symbolic boolean manipulation with ordered binary-decision diagrams, ACM Comput. Sur
veys 24 (3) (1992) 293-318.

[6] J. Burch, E. Clarke, D. Long, K. McMillan, D. Dill, Symbolic model checking for sequential circuit verifi

cation, IEEE Trans. Comput. Aided Design 13 (4) (1994) 401-424.
[7] E. Clarke, E. Emerson, A. Sistla, Automatic verification of finite-state concurrent systems using temporal

logic specifications, ACM Trans. Prog. Languages Syst. 8 (2) (1986) 244--263.
[8) J. Groote, J. van de Pol, Equational binary decision diagrams. in: M. Parigot, A. Voronkov (Eds.), Logic

for Programming and Reasoning, LPAR2000, Lecture Notes in Artificial Intelligence, vol. I 955, Springer,

Berlin, 2000, pp. 161-178.
[9] A. Hett, R. Drechsler, B. Becker, MORE: Alternative implementation ofBDD packages by multi-operand

synthesis, in: European Design Automation Conference, 1996, pp. 164-169.
[10] S. Kahrs, Unlimp: Uniqueness as a leitmotiv for implementation, in: Proc. Programming Language Imple

mentation and Logic Programming, Lecture Notes in Computer Science, vol. 631, Springer, Berlin. 1992,

pp. 115-129.
(11) J.E. Klop, Term rewriting systems, in: D.G.S. Abramski. T. Maibaum (Eds.), Handbook of Logic in Com

puter Science, vol. 2, Oxford University Press, Oxford, 1992.
[12] C. Meinel, T. Theobald, Algorithms and Data Structures in VLSI Design OBDD-Foundations and Appli-

cations, Springer, Berlin, 1998. .
[13] J. M!illler, J. Lichtenberg, H.R. Andersen, H. Hulgaard, Difference decision diagrams, in: Computer Science

Logic, Denmark, 1999. .
[14] D. Plump, Term graph rewriting, H. Ehrig, G. Engels, H.J. Kreowski, G. Rozenberg (Eds_), m: Handbook

of Graph Grammars and Computing by Graph Transformation, Applications, Languages, vol. 2, World

Scientific, Singapore, 1999, pp. 3-61. ,
[15) J. van de Pol, H. Zantema, Binary decision diagrams by shared rewntmg, m: M. Nielsen, B. Rovan (Eds.),

Mathematical Foundations of Computer Science, MFCS2000, Lecture Notes in Computer Science, vol.

1893, Springer, Berlin, 2000, pp. 609--618. . . ,
[16] I W B h. p grams and Binary Decision Diagrams Monographs on Discrete Mathematlcs . egener, ranc mg ro •

and Applications, SIAM, Philadelphia, PA, 2000.

86 H. Zalltema, J. van de Pol I Journal of Logic and Algebraic Programming 49 (2001) 61-86

[17] H. Zantema, Decision trees: Equivalence and propositional operations, in: H.L. Poutre, J. van den Herik
(Eds.), Proceedings !Oth Netherlands/Belgium Conference on Artificial Intelligence (NAIC'98), Extended
version appeared as report UU-CS-1998-14, Utrecht University, 1998, pp. 157-166.

(18] H. Zantema, H.L. Bodlaender, Sizes of ordered decision trees, lnt. J. on Found. of Comp. Sci. (200 I), to
appear (preliminary version appeared as report UU-CS-1999-31, Utrecht University).

