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ABSTRACT
Formal methods, especially model checking, are an indispensable part of the software engineering process. With

large software systems currently beyond the range of fully automatic verification, however, a combination of

decomposition and abstraction techniques is needed. To model check components of a system, a standard

approach is to close the component with an abstraction of its environment. To make it useful in practice, the

closing of the component should be automatic, both for data and for control abstraction. Specifically for model

checking asynchronous open systems, external input queues should be removed, as they are a potential source

of a combinatorial state explosion.

In this paper, we close a component synchronously by embedding the external environment directly into

the system to avoid the external queues, while for the data, we use a two-valued abstraction, namely data

influenced from the outside or not. This gives a more precise analysis than the one investigated in [7]. To

further combat the state explosion problem, we combine this data abstraction with a static analysis to remove

superfluous code fragments. The static analysis we use is reminiscent to the one presented in [7], but we use

a combination of a may and a must-analysis instead of a may-analysis.
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1. Introduction

Model checking techniques have proven useful for the verification of communication systems. There
exist efficient algorithms to verify a system against correctness requirements expressed by system
invariants or by formulas of a temporal logic. The size of the model often grows exponentially with
the number of parallel system components, which limits the applicability of model checking techniques,
and various techniques like decomposition and abstraction have been developed to mitigate the state-
space explosion problem.

Using decomposition, one breaks up the system into several subsystems or components, verified
separately. These components rely on the communication with the rest of the system, i.e., they are
open. Many model checkers, e.g. Spin [6], do not handle open systems and hence one needs to close
open subsystems prior to verification.
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Asynchronously communicating software systems such as communication protocols call for addi-
tional, specific optimization techniques to deal with the asynchronous nature of communication. In [13]
we formalized a program transformation based on static analysis which takes the most abstract, i.e.,
chaotic environment, and “embeds” it into the component. Embedding the external chaos eliminates
the need to explore the combinatorial state space of the external queues.

Part of the approach is the abstraction of environmental data, where, assuming a chaotic environ-
ment, a single abstract value is used. (The part of the abstraction dealing with timers does not interest
us for the sake of this introduction.) Interested in a fully-automatic approach, [13] stressed efficiency
over precision of abstraction for the data abstraction, and we used a static data-flow analysis to mark
all instances of variables potentially influenced from outside as chaotic, and to transform the program
according to this reckoning.

In this paper, we improve on this abstraction in the following way. Instead of abstracting all
potentially chaotic data in a static transformation, we use dynamically an abstract chaotic data value,
which is represented in the implementation by the two-valued data-abstraction —data influenced by
the environment or not— which gives a more precise approximation and hence less false negatives in
the verification.

To further combat the state explosion problem, we combine this data abstraction with a static
analysis afterwards to remove superfluous code fragments in the abstracted program. The static
analysis we use is reminiscent to the one presented in [7], except that we use a must-analysis instead of
a may-analysis. The must analysis marks data definitely not influenced from outside, i.e., reliable data,
and data definitely influenced; the rest forms then a “don’t know” intermediate value for instances
at the process locations where both chaotic and non-chaotic values can be taken, depending on the
system run leading to this instance. For the optimization purposes, we further transform the system
by removing parts definitely influenced form outside and do not transform parts which are definitely
not influenced.

Typical practical applications we are interested in are SDL [11] and Promela [6] specifications.
Namely, the developed methods for closing open asynchronous systems are used to automate the
model checking of translations of SDL-specifications into DTPromela (the input language of DTSpin
—Discrete-Time Spin— model checker).1

The rest of the paper is organized as follows. In Section 2 we give a short overview of the semantics
we work with, in Section 3 we define the transformation rules and Section 4 contains the data-
flow analysis for marking chaotic, non-chaotic, and not-known instances of variables to optimize the
transformed system. In Section 5 we consider some examples to illustrate the approach and compare
the transformation results with the ones obtained with the old approach from [13]. We conclude
mentioning future and related work in Section 6.

2. Semantics

This section gives a brief overview of the structural operational semantics we work with. A more
detailed account can be found in [7]. Our operational model is based on asynchronously communicating
state machines (processes) with top-level concurrency. Though the model is rather general and can
be used for other languages, as well, it is primarily oriented toward SDL and DTPromela.

A program Prog is given as the parallel composition Πn
i=1Pi of a finite number of processes. A process

P is described by a four-tuple (Var ,Loc, σinit ,Edg), where Var denotes a finite set of variables, and
Loc denotes a finite set of locations or control states. We assume the sets of variables Var i of processes
Pi in a program Prog = Πn

i=1Pi to be disjoint. A mapping of variables to values is called a valuation;
we denote the set of valuations by Val : Var → D. We assume standard data domains such as N,
Bool , etc. We write D when leaving the data-domain unspecified, and silently assume all expressions
to be well-typed. Σ = Loc × Val is the set of states, where a process has one designated initial state
σinit = (linit ,Val init) ∈ Σ. An edge of the state machine describes changes configurations specified by

1See [7] for details about the Vires toolset for the verification of DTPromela translations of SDL specifications.
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an action from a set Act ; the set Edg ⊆ Loc × Act × Loc denotes the set of edges.
As actions, we distinguish (1) input of a signal s containing a value to be assigned to a local

variable, (2) sending to a process P ′ a signal s together with a value described by an expression, and
(3) assignments. In SDL, each transition starts with an input action, hence we assume the inputs
to be unguarded, while output and assignment can be guarded by a boolean expression g, its guard.
The three classes of actions are written as ?s(x), g B P !s(e), and g B x := e, respectively, and we use

α, α′ . . . when leaving the class of actions unspecified. For an edge (l, α, l̂) ∈ Edg , we write more

suggestively l −→α l̂.
We define the set of internal signals Sig int as the set of all signals sent by the processes of the

system. Signals coming from the environment form the set of external signals Sig ext . Note that it
can be the case that the same signal can come both from the environment and from a process of the
system.

Time aspects of a system behaviour are specified by actions dealing with timers. The timed se-
mantics we use is the one described in [5, 2], and is also implemented in the DTSpin model checker
[1, 3]. In SDL, timeouts are often considered as specific timeout messages kept in the input queue
like any other message, and timer-expiration consequently is seen as adding a timeout-message to
the queue. We use an equivalent presentation of this semantics, where timeouts are not put into the
input queue, but are modelled more directly by guards. The equivalence of timeouts-by-guards and
timeouts-as-messages in the presence of SDL’s asynchronous communication model is argued for in
[2].

Each process has a finite set of timer variables (with typical elements t, t′1, . . .) which consist of a
boolean flag indicating whether the timer is active or not, and a value given by a natural number.
A timer can be either set to a value on(v), i.e., it is activated to run for the designated period v, or
deactivated, i.e., it has a value off. Setting and resetting are expressed by guarded actions of the form
g B set t := e and g B reset t. If a timer expires, i.e., the value of a timer becomes zero, it can cause a
timeout, upon which the timer is reset. The timeout action is denoted by gt B reset t, where the timer
guard gt expresses the fact that the action can only be taken upon expiration, i.e., if [[t]]η = on(0),
where [[t]]η denotes the evaluation of the timer t in the valuation η. Both timeout and reset actions
lead to the deactivation of the timer.

In SDL’s asynchronous communication model, a process receives messages via a single associated
input queue. We call a state of a process together with its input queue a configuration (σ, q). We write
ε for the empty queue; (s, v) :: q denotes a queue with message (s, v) (consisting of a signal s and a
value v) at the head of the queue, i.e., (s, v) is the message to be input next; likewise the queue q ::(s, v)
contains (s, v) most recently entered. The behaviour of a single process is then given by sequences of
configurations (σinit , ε) = (σ0, q0) →λ (σ1, q1) →λ . . . starting from the initial one, i.e., the initial state
and the empty queue. The step semantics →λ ⊆ Γ×Lab ×Γ is given as a labelled transition relation
between configurations. The labels differentiate between internal τ -steps, “tick”-steps, which globally
decrease all active timers, and communication steps, either input or output, which are labelled by a
triple of process (of destination/origin resp.), signal, and value being transmitted.

An input of a signal, l −→?s(x) l̂ ∈ Edg , is enabled if the signal at the head of the queue matches
signal expected by the process. Inputting results in removing the signal s(v) from the head of the
queue and updating the local valuation η[x 7→ v] according to parameters of the signal. Discard is a
specific feature of SDL: if the signal from the head of the queue does not match any input defined as
possible for the current (input) location, the signal is removed from the queue without changing the
location and the valuation. A possible discard of a timeout signal is imitated by the deactivation of
an expired timer.

Output, l −→g B P ′!(s,e) l̂ ∈ Edg , is guarded, so sending a message involves evaluating the guard
and the expression according to the current valuation. It leads to change of location of the process
that sends the message. In the output edge, P ′ stands for the process identity of the destination.
Receiving a message by asynchronous communication simply means putting it into the input queue
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of the process matching the identity of the signal destination. Assignments, l −→g B x:=e l̂ ∈ Edg ,
results in the change of location and the update of the valuation η[x 7→ v], where [[e]]η = v. We assume
for the non-timer guards, that at least one of them evaluates to true for each configuration.

The global transition semantics for a program Prog = Πn
i=1Pi is given by a standard product

construction: configurations and initial states are paired, and global transitions synchronize via their
common labels. Asynchronous communication between the two processes uses signal s to exchange
a common value v. As far as τ -steps and non-matching communication steps are concerned, each
process can proceed on its own by the interleaving. Time elapses by counting down active timers till
zero, when no other actions are possible except for receiving messages from the environment. That
happens only if input queues of all processes are empty and no timeout is possible.

3. Abstracting data

Originating from a chaotic environment, signals from outside can carry any value, which renders the
system infinite state. Assuming nothing about the data means, one can conceptually abstract values
from outside into one abstract value, which basically means to ignore these data and focus on the
control structure. Beside that, the data not coming from outside is kept not abstracted.

To keep the implementation in Spin’s input-language Promela simple, the abstraction is realized
as a straightforward and standard source code transformation. We describe the abstraction here in
terms of the abstract language from above; examples in concrete Promela-code are shown in Section 5.
Instead of extending the data domains by one single additional abstract value for external data, each
variable x has associated a boolean flag bx to remember, whether its current value is a value from
outside or not: The flag’s value is false when x contains data from outside, and true otherwise.
Expressions are interpreted strict with respect to chaotic data and we write b(e) where b(e) is true iff.
all of the variables occurring inside have their flag set to true.

As the abstract system must show at least all behavior of the original system does, guards whose
result depends on values coming from outside, guards g with b(g) = false, must be enabled. Therefore
we replace each guard by a transformed guard g] given by the disjunction ¬b(g) ∨ (b(g) ∧ g). Timer
guards are left unchanged. To propagate the information through the system, the parameter lists of
signals exchanged within the system, i.e., signals from Sig int , are extended with the lists of corre-
sponding flags (rules T-Inputint and T-Outputint in Table 1 show transformation for the case of a
signal with one parameter).

Inputs from the chaotic environment are always enabled. We must make sure, however, that inputs
from the environment do not prevent time progress. Therefore, as in [13], we add a new timer
variable tP for each process, which is used to guard inputs from outside and assure time progress
(cf. T-Inputext). This timer is set to 0 until T-NoInput step is taken non-deterministically, setting
this timer to 1 and postponing the possibility of taking the next “input from the environment” until
time progresses. Flags of variables received their values from the parameters of environment signals
are evaluated to false to indicate that from this point the value is not to be used as reliable any more.
As for inputs, outputs sent to a process within the system have their parameter lists extended with
the corresponding flags; outputs to the environment are just removed (cf. rules T-Outputint and
T-Outputext).

Assignments are performed only if the assigned expression is not influenced by the environment;
the corresponding flag is then set to indicate that the value of the variable is reliable from now on (cf.
rule T-Assign1). The assignment of an unreliable value is skipped, but setting the corresponding
flag to false to show that the value of the variable became chaotic (see T-Assign2).

For the implementation, we use an idea similar to the one from [9], where it is an optimization
based on live variable analysis, namely resetting the variables which are not used afterwards to its
respective default value, for instance for integers to 0. Being simple, this transformation proved to be
very efficient for the reduction of the state space in [9]. In our case, values of chaotic variables are
irrelevant until the variable gets a concrete value again, so they can be reset to a default value when
the flag of the variables is changed from true to false. (For the sake of simplicity, we do not include
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this transformation into the rules of Table 1.)
Concerning timers, the set operation and its transformation is similar to an assignment. If the

expression e in set t := e is non-chaotic, the timer is set and t’s flag bt gets the value true (see T-Set1).
If otherwise the expression is chaotic (cf. T-Set2), we set the timer to 0 since in the abstraction, a
chaotic timer must be able to expire immediately; the flag of the timer is set to false.

Resetting a timer, the timer variable gets the concrete value off , independent of its previous value.
So the action stays unchanged while the flag of the timer gets the true value (cf. T-Reset). The same
happens with a timeout of the non-chaotic timer (cf. T-Timeout). According to this rule the same
actions can be taken for the chaotic timer as well, i.e., it can expire immediately. The expiration of the
chaotic timer can, however, be postponed according to rule T-NoTimeout by non-deterministically
setting the timer to 1 at an arbitrary moment in time.

4. Optimizing the transformation

For model checking, memory and time consumption are crucial. The transformation we described in
the previous section is not optimal in that regard. For instance, a system can contain variables that
never get influenced by the chaotic environment, hence we need no boolean flags for these variables.
Our task is thus to localize the redundancy introduced with the transformation and eliminate it prior
to model checking.

The optimization of this section removes the flags whose value at every location can be determined
by static dataflow analysis. In every action, the value of a flag calculated at the corresponding location
can be simply substituted for the flag itself. We chose to perform the analysis on the original system,
not on the transformed one, and incorporate the analysis results into transformation.

For the optimization presented below, we need to know for each variable including the timers and
for each location, whether

1. the variable is guaranteed to be influenced by the outside, or

2. the variable is guaranteed to be non-chaotic, or

3. whether its status depends on the actual run.

For the analysis, we abstract each data domain into a two-valued domain {⊥,>} where ⊥ stands for a
reliable data not influenced from the environment and > for unreliable or chaotic data. Correspond-
ingly, timers can take abstract values from {off , on(⊥), on(>)}, i.e., even if the actual timer value
may be chaotic, we insist on distinguishing active from non-active timers. Correspondingly, abstract
valuations ηα map variables to the set of abstract values Valα = Var → {⊥,>}, and the analysis gives
back an abstract valuation for each program location. The abstract values are ordered ⊥ ≤ >, and
with this ordering, the set of valuations forms a complete lattice. We write η⊥ for the least element,
given as η⊥(x) = ⊥ for all x ∈ Var , and dually η> for the greatest element. Furthermore, we denote
the least upper bound of ηα

1 , . . . , ηα
n by

∨n
i=1 ηα

i (or by ηα
1 ∨ ηα

2 in the binary case). Dually, we write
∧n

i=1 ηα
i and ηα

1 ∧ ηα
2 for the greatest lower bounds.

Depending on whether we are interested in an answer to point 1 or 2 from above, > is interpreted
as a variable guaranteed to be influenced from outside in the first case, and dually for the second case
> stands for potentially influenced from outside.

We present here only case 1, the second one is similar and almost dual.2 For each process and the
system we construct a control flow-graph whose nodes correspond to the actions of the process. A
transfer function, describing the change of the abstract valuation depending on the action at the node,
is defined in Table 2. The abstract valuation [[e]]ηα for an expression e equals ⊥ iff all variables in e are
evaluated to ⊥, [[e]]ηα is > iff the abstract valuation of at least one of the variables in e is >. For inputs,
?s(x) in process P assigns ⊥ to x if the signal is sent to P with reliable data, only. This means the

2The exact duality breaks for the start value of the worklist. Details can be found in [7].
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values after reception corresponds to the greatest lower bound over all expressions which can occur
in a matching send-action. In the clause for input, ϕ expands to the condition “αn′ = g B P !s(e)
for some node n′”, denoting all expressions in corresponding sending actions. All other clauses from
Table 2 are straightforward.

input : the flow−graph of the program
output: ηα

pre , η
α
post ;

∀n. ηα(n) = ηα
init(n);

WL = {n | αn = (g B x := e)};

repeat

pick n ∈ WL;
let S = {n′ ∈ succ(n) | fn(ηα(n) 6≥ ηα(n′)}
in

for all n′ ∈ S: ηα(n′) :=
∨

{f(ηα(n)), ηα(n′)};
if n = g B P !s(e)
then let S′ = {n′ ∈ P | n′ =?s(x), ηα(n)(e) 6≥ ηα(n′)(x)}
WL := WL\n ∪ S ∪ S′;

until WL = ∅;

ηα
pre(n) = ηα(n);

ηα
post (n) = fn(ηα(n))

Figure 1: Worklist algorithm (must)

For each node n of the flow graph, the data-flow problem is specified by two inequations or con-
straints (4.1). The first one relates the abstract valuation ηα

pre before entering the node with the
valuation ηα

post afterwards via the abstract effects of Table 2. The greatest fixpoint of the constraint
set can be solved iteratively in a fairly standard way by a worklist algorithm (see e.g., [8, 4, 10]), where
the worklist steers the iterative loop until the greatest fixpoint is reached (cf. Figure 1).

ηα
post (n) ≤ fn(ηα

pre(n))

ηα
pre(n) ≤

∧

{ηα
post (n

′) | (n′, n) in flow relation}
(4.1)

The worklist algorithm starts from the greatest valuation for all nodes. Initially, the worklist WL
includes only nodes corresponding to assignment actions, since these are known to generate definite,
non-chaotic values. The algorithm makes the valuation smaller step by step, until it stabilizes, i.e.,
until the worklist is empty. At every step we pick up some node n from the list, calculate for it
the new post-valuation based on its current pre-valuation and check whether the change of the post-
valuation can influence pre-valuations of the successors of n. After termination the algorithm yields
two mappings ηα

pre , η
α
post : Node → Valα. Since the lattice of valuations is finite, termination of the

algorithm is trivial. On a location l, the result of the analysis is given by ηα(l) = ηα
post (n), also written

as ηα
l .

The algorithm for point 2 calculates the least fixpoint and works in a dual way, where we start
initially with a worklist that contains all nodes with input from the environment.

We use now the results of the two analyses in order to optimize the transformation of the system.
Overloading the symbols > and ⊥ we mean for the rest of the paper: the value of > for a variable
at a location refers to the result of the must analysis from point 1, i.e., the definite knowledge that
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the data is chaotic for all runs. Dually, ⊥ stands for the definite knowledge of the may-analysis from
case 2, i.e., for data which is never influenced from outside. Additionally, we write ⊥> in case neither
analysis gave a definite answer.

Clearly, the flags introduced in Section 3 are needed only for variables and timers that carry the
value ⊥> (or respectively on(⊥>) for timers) in at least one location; for other variables the values found
with the static analysis can be used. So let Var⊥> be the set of variables and timers that carry the value
⊥>, respectively on(⊥>), at least once. The rules of Table 1 are used unchanged only for variables and
timers from Var⊥>. In case x /∈ Var⊥>, the transformation is performed according to rules from Table 3.
So an assignment of chaotic value to a variable x such that x 6∈ Var⊥> is skipped (cf. rule Assign1). In
inputs, the boolean parameter for such variables is skipped, as well (rule Input⊥>

int). Input⊥>
ext covers

the similar case for signals from environment. Set1 transforms setting a timer marked > into setting
the timer to abstract value on(0). NoTimeout1 is used for arbitrary postponing a timeout of timers
influenced by environment. Timeout and reset actions are left unchanged for variables that never
become ⊥>. The actions on variables, that are never ⊥> and marked as ⊥ are left unmodified, as well.
The transformation of the guards is optimized in the way that the guards, which contains at least one
variable marked >, are transformed to true . If all the variables of a guard are marked as ⊥, the guard
is left unmodified.

5. Examples

In this section we present a simple illustrative example showing the difference between the approach
of [13, 7] and the one of this paper. Unlike the technical development in the previous sections,
the examples are given concretely in DTPromela, the input language of DTSpin [3]. The former
approach pessimistically removes all data potentially influenced by data from outside and where the
transformation is based on a static may analysis. The latter treats data from outside dynamically,
thus achieving a greater precision, but removes parts afterwards which are guaranteed to be chaotic,
as given by the combined analysis of Section 4.

Hence the difference is visible at locations where the abstract valuation of some variable can get both
> and ⊥ depending on the system run. In the static approach of [13, 7], the variable instance at this
location is handled as chaotic independent of the run; now the value of the variable is treated according
to the value its associated boolean flag has, as described in Section 3. The simplest situation of this
sort is when the variable gets its value from a signal that can be received both from the environment,
and from another process of the system with a reliable value.

As illustration, we take two processes communicating with each other and with the environment.
Figure 2 shows a part of the Promela code of the system specification. Process A can receive signal
a(x) both from process B and from the environment. Moreover, B always sent this signal with a
concrete value.

The Promela code of the chaotic environment given as external process is shown in Figure 3. The
queues in DTSpin are bounded, so we use variable n to limit the number of message that process B

and the environment can send to A during one time slice. Otherwise, the system would deadlock in
the attempt of A to send a message to the full queue of the environment while the environment is
trying to send a message to the full queue of the process.

Furthermore, the environment must behave chaotically also wrt. the timing behavior. Therefore,
sending actions of the environment are guarded by a timeout, which allows to postpone sendings until
the next time slice.

Figure 4 shows the result of closing by embedding chaos based on the static approach from [7] and
Figure 5 shows the result obtained with the method described in this paper. The old may-analysis
marks variable x in process A as >; therefore, the guards x==1 and x==0 are transformed to true. As a
consequence, the property of the original system, that for every request a sent by process B to process
A, B eventually gets an answer c from A does not hold anymore, since A can send the answer to the
environment instead. According to the approach of this paper, we do not take a pessimistic view,
and follow the information about the reliability of the value of x dynamically during the system run.
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proctype A{

...

pa: atomic{

if :: chA?a,x -> goto decision; fi;

};

decision: atomic{

if

:: (x==0) -> chB!c; goto pa;

:: (x==1) -> chEnv!c; goto pa;

fi }

...

}

proctype B{

...

start: atomic{

set(tB, 5); goto wait_tB;}

wait_tB:atomic{

if

:: (n>0 && expire(tB)) -> chA!a(0);

n = n-1; set(tB,5); goto wait_tB;

:: chB?c -> set(tB, 1); goto wait_tB;

fi }

}

Figure 2: Example

Therefore, B always gets an answer from A for every its request sent. Thus the false negative that is
obtained during the model checking in the first case does not appear when we model check the closed
system in the second case.

All three variants of closing sketched here were model-checked with DTSpin. The results of the
experiments confirm that closing the system with the approach of [7] and by the one presented here
allow to reduce time and memory consumption compared with the system closed by adding the
environment as a process.3 So far we tested only the previous approaches on a realistic example, a
larger part of a protocol, but not the enhancement developed here, for which we so far exercised on
smaller toy examples. The results reported in [7, 14], and earlier in [12] (where the results were achieved
by closing and abstracting subsystems manually), show that the rather general abstraction of the
environment into chaos can nevertheless be useful in praxis to help debugging large software systems
by model checking. Based on first experiments on smaller examples, we except further reduction of the
state space and we are currently extending the implementation to work with the extension presented
here.

6. Conclusion

Model checking has gained its popularity in industry and become a constituent part of software engi-
neering practice since it is, in principle, a push-button verification technology. The further dissemi-
nation of model checking, however, depends on whether it is possible to reduce the significant human
involvement in applying the concomitant techniques like abstraction; automation of these techniques
is therefore crucial.

In this paper we proposed an approach for automatic closing of open systems, based on data and
control abstraction of the environment, taking the most general environment, i.e., the chaotic one. To
avoid the detrimental effect of external queues in the state space, the closing environment is embedded
into the system. The approach presented here goes beyond [13] in yielding a more refined abstraction.

3See [7] for comparison “embedded environment vs. environment as an external process”.
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proctype Env{

...

pe: atomic{

if

:: expire(t) -> set(t, 1);

n=BUFFSIZE; goto pe;

:: (n>0 && expire(t)) ->; chA!a, 1;

n = n-1; set(t, 0); goto pe;

:: (n>0 && expire(t)) -> chA!a, 0;

n = n-1; set(t, 0); goto pe;

:: proch?c -> goto pe;

fi ;

}

}

Figure 3: Environment

The price for the refinement is possible (but not necessary) increase of the state space, though the
state space of the model is still significantly smaller than the state space of the model closed with
the environment built as an outside chaotic process. We partially remove the additional state space
without losing precision by an a-posteriori static analysis, determining variable occurrences that are
guaranteed not to be influenced from outside and those which are guaranteed to be chaotic.

Procedures Since SDL and Promela feature procedures, we are currently extending our approach
to handle them. A procedure with formal parameters can be invoked by different processes of the
system both with chaotic and non-chaotic values of parameters. In the presented closing approach,
the transformation of procedures is rather straightforward and can be handled in analogy to commu-
nication: A procedure call is treated like a special signal and the parameter lists of procedures get
thus extended with boolean flags to work with abstract data, as presented in Section 3.

Future work For future work, we will extend our tool for closing open components with the algorithm
described here. We also need to extend the method to account for more complex data types and
process creation. Based on the results from [15], another direction for future work is to the extend
the pml2pml implementation to handle environments more refined than just chaos with building an
environment process communicating to the system synchronously.
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proctype A{

...

pa: atomic{

if

:: expire(tC) -> set(tC, 0);

goto decision;

:: chA?a,x -> goto decision;

:: expire(tC) -> set(tC, 1); goto pa;

fi; };

decision: atomic{

if

:: chB!c; goto pa;

:: goto pa;

fi; }

}

proctype B{

...

:: expire(tB) -> pAch!a(0);

set(tB,5); goto wait_tB;

...

}

Figure 4: Transformed system (may-analysis)

proctype A{

...

pa: atomic{

if

:: chA?a,x, bx -> goto decision;

:: expire(tC) -> set(tC, 1); goto pa;

:: expire(tC) ->

set(tC, 0); bx=false; goto decision;

fi; };

decision: atomic{

if

:: ((x==0&bx) || (!bx)) -> pBch!c;

goto pa;

:: ((x==1&bx) || (!bx)) -> goto pa;

fi }

}

proctype B{

...

:: expire(tB) -> chA!a(0, true);

set(tB,5); goto wait_tB;

...

}

Figure 5: Transformed system (must-analysis)
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Table 1: Transformation rules

l −→?s(x) l̂ ∈ Edg s ∈ Sig int
Inputint

l −→?s(x,bx) l̂ ∈ Edg
]

l −→?s(x) l̂ ∈ Edg s ∈ Sigext
Inputext

l −→gtP
B set tP :=0−→bx:=false l̂ ∈ Edg

]

NoInput

l −→gtP
B set tP :=1 l ∈ Edg

]

l −→g B P ′!(s,e) l̂ ∈ Edg
Outputint

l −→g] B P ′!(s,e,b(e)) l̂ ∈ Edg
]

l −→g B Penv !(s,e) l̂ ∈ Edg
Outputext

l −→skip l̂ ∈ Edg
]

l −→g B x:=e l̂ ∈ Edg
Assign1

l −→g]∧b(e) B x:=e−→bx:=true l̂ ∈ Edg
]

l −→g B x:=e l̂ ∈ Edg
Assign2

l −→g]∧¬b(e) B bx:=false l̂ ∈ Edg
]

l −→g B set t:=e l̂ ∈ Edg
Set1

l −→g]∧b(e) B set t:=e−→bt:=true l̂ ∈ Edg
]

l −→g B set t:=e l̂ ∈ Edg
Set2

l −→g]∧¬b(e) B set t:=0−→bt:=false l̂ ∈ Edg
]

l −→g B reset t l̂ ∈ Edg
Reset

l −→g] B reset t−→bt:=true l̂ ∈ Edg
]

l −→gt B reset t l̂ ∈ Edg
Timeout

l −→
g

]
t B reset t

−→bt:=true l̂ ∈ Edg
]

NoTimeout

l −→
(g

]
t∧¬bt) B set t:=1

l ∈ Edg
]

Table 2: Abstract effect for process P

f(?s(x))ηα =

{

ηα
[x 7→>] s ∈ Sigext

ηα
[x 7→

∧

{[[e]]ηα | ϕ]

f(g B P !s(e))ηα = ηα

f(g B x := e)ηα = ηα
[x 7→[[e]]ηα ]

f(g B set t := e)ηα = ηα
[t 7→ on([[e]]ηα)]

f(g B reset t)ηα = ηα
[t 7→ off ]

f(gt B reset t)ηα = ηα
[t 7→ off ]
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Table 3: Optimized transformation for P

l −→g B x:=e l̂ ∈ Edg>> x 6∈ Var⊥> [[x]]ηα
l

= >
Assign1

l −→g] B skip l̂ ∈ Edg
]

l −→?s(x) l̂ ∈ Edg>> x 6∈ Var⊥> s ∈ Sig int
Input

⊥>

int

l −→?s(x, ) l̂ ∈ Edg
]

l −→?s(x) l̂ ∈ Edg>> x 6∈ Var⊥> s ∈ Sigext
Input

⊥>
ext

l −→gtP
B set tP :=0 l̂ ∈ Edg

]

l −→g B set t:=e l̂ ∈ Edg>> t 6∈ Var⊥> [[t]]ηα
l

= >
Set1

l −→g] B set t:=0 l̂ ∈ Edg
]

t 6∈ Var⊥> [[t]]ηα
l

= >
NoTimeout1

l −→
g

]
t B set t:=1

∈ Edg
]
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