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ABSTRACT

Infinite normal forms are a way of giving semantics to non-terminating rewrite systems. The notion is a

generalization of the Böhm tree in the lambda calculus. It was first introduced in [AB97] to provide semantics

for a lambda calculus on terms with letrec. In that paper infinite normal forms were defined directly on the

graph rewrite system. In [Blo01] the framework was improved by defining the infinite normal form of a term

graph using the infinite normal form on terms. This approach of lifting the definition makes the non-confluence

problems introduced into term graph rewriting by substitution rules much easier to deal with. In this paper, we

give a simplified presentation of the latter approach.
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1. Introduction
A simple way of representing term graphs is to use the letrec syntax. By using this syntax, we can
derive term graph rewrite systems from term rewrite systems. For example, from the β-rule in the
lambda calculus

(λx.M)N −−→
β

M [x := N ] ,

we can derive

(λx.M)N −−−→
β◦ letrecx = N inM ;

letrecx = M,D inC[x] −−→es letrecx = M,D inC[M ] ;
(letrecD inM)N −−−→

lift
letrecD in (M N) .

(1.1)

(See [AK97] for details on exactly how this rewrite system may be derived.) We will refer to these
derived systems as cyclic extensions.

The Böhm tree and the Lévy-Longo tree are nice notions of semantics for the lambda calculus.
It is easy to extend the theory of these trees to the simple cyclic extension given above. In [AB02]
these notions were generalized to the notion of infinite normal form and two more complicated cyclic
extensions and Lévy-Longo trees for them were studied as examples. These examples proved to be
quite complicated, because the cyclic extensions each included forms of the substitution rules

letrecx = M,D inC[x] −−→es letrecx = M,D inC[M ] ;
letrecx = M,y = C[x],D inN −−→

is
letrecx = M,y = C[M ],D inN ;

letrecx = C[x],D inN −−→
cs

letrecx = C[C[x]],D inN .
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The problem is that with these three rules the rewrite system is no longer confluent. The classical
example is:

letrecx = F (x) inx

cs

es
letrecx = F (x) inF (x)

cs

letrecx = F (F (x)) inx letrecx = F (F (x)) inF (x)

The two terms at the bottom do not have a common reduct. (Every reduct of the left term has an
even number of F symbols, every reduct of the right term an odd number.)

The non-confluence causes a number of technical problems. Unfortunately, the way in which infinite
normal forms were defined in [AB97, AB02] means that for every different infinite normal form that
is defined, one has to deal with these problems all over. In [Blo01] an improved framework was given
in which the substitution related problems are separated from the rewrite system related problems.
This separation is achieved by relating the infinite normal form of a term graph to the infinite normal
form of the unwinding of the term graph. The price for the separation is that we have to assume that
the infinite normal form of a graph is the infinite normal form of the unwinding of that graph. In
the context of modeling programming languages, this means that the letrec cannot be used to model
sharing sensitive side-effects such as assignment. However, one can first model the sharing sensitive
side-effects in a non-recursive setting and then use the letrec to add recursion.
Overview. After the preliminaries, we will define the notion of infinite normal form. In the next section,
we extend rewrite relations and infinite normal forms from terms to graphs. Using these extensions,
we then identify a class of term graph rewrite systems for which we define extensions of infinite normal
forms from terms to term graphs.

2. Preliminaries
The set of terms T is given by:

T ::= x | λx.T | F (T , · · · , T ) ,

where x ranges over a set of variables and F ranges over a set of function symbols including the
constant Ω and the binary symbol @. We write s t for @(s, t). Combinatory Reduction Systems (see
[KvOvR93]) are defined on terms with a single binding operator, so one may think of a CRS whenever
we mention a rewrite system on terms.

We define the partial order ≤Ω on terms as the least transitive, reflexive, compatible relation such
that ∀s ∈ T : Ω ≤Ω s. That is, a term s is smaller than a term t if s can be obtained from t by
replacing sub-terms with Ω.

We define the downward closure of a set S as:

↓S = {s ∈ T | ∃s′ ∈ S : s ≤Ω s′} .

The set of possibly infinite terms T ∞ is the ideal completion of (T ,≤Ω). That is, a term S ∈ T ∞ is
a subset of T , such that

S =↓ S and ∀s, t ∈ S : ∃u ∈ S : s ≤Ω u ∧ t ≤Ω u .

The set of terms is embedded in the set of infinite terms by means of the map

s �→ ↓{s} .

We define the set of cyclic terms T ◦ as:

T ◦ ::= x | λx.T ◦ | F (T ◦, · · · , T ◦) | letrecD in T ◦ ;
D ::= x1 = T ◦, · · · , xn = T ◦ .
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Given a rewrite system (T ,−→), we denote the reflexive closure of −→ by −→≡, the transitive reflexive
closure by −→→ and the transitive, reflexive and symmetric closure by ←←−→→. We say that −→ is monotonic
if

∀s, s′, t : s −→ t ∧ s ≤Ω s′ =⇒ ∃t′ : s′ −→ t′ ∧ t ≤Ω t′ .

Not every CRS is monotonic. For example, if we have the η-rule for the lambda calculus, we have
λx.(Ω y)x −→η Ω y, but λx.(x y)x contains no η-redex. The problem is that the η-rule requires that
a variable does not occur in a sub-term. By expanding an Ω we introduced an occurrence of a
variable that destroyed the redex. To get monotonicity we therefore need rewrite rules in which no
non-occurrence requirements are used. Such rewrite rules are called fully-extended in [HP96].

3. Infinite Normal Forms
In this section, we give a simple presentation of the notion of infinite normal form. This notion is
an abstract version of the Böhm tree definition of Lévy (See [Lév78]). A first version of the notion
of infinite normal form is presented in [AB97, AB02]. The theory was extended in [Blo01]. In these
papers the theory is presented on the level of abstract reduction systems. To keep matters simple, we
restrict our presentation to a subset of the theory in [Blo01] and we present the theory on the level of
lambda terms.

The idea behind the notion of infinite normal form is that the result of an infinite computation is
an infinite term, which is built piece-by-piece during the computation. For example, the Böhm tree
of (λx.λy.y (xx)) (λx.λy.y (xx)) is the limit of the bold parts of the terms in the following reduction
of the term:

(λx.λy.y (xx)) (λx.λy.y (xx))
−−→
β

λy.y ( (λx.λy.y (xx)) (λx.λy.y (xx)) )
−−→
β

λy.y λy.y ( (λx.λy.y (xx)) (λx.λy.y (xx)) )
...
λy.y λy.y λy.y (· · · )

If more than one computation is possible then the results over all possible reductions are gathered. The
key to formalizing the notion is the approximation function. This function computes the information
content of a term, which is the prefix of the eventual infinite term that has already been computed.
The infinite normal form of a term is then defined as the set of all prefixes that can be computed by
reducing the term. Uniqueness is an important property of the infinite normal form: it states that
any two convertible terms have the same infinite normal form. Uniqueness implies that if a term is
reduced then any prefix, which may be computed form a term, can also be computed from the reduct.
Formally:

Definition 3.1 Given T x ∈ {T , T ∞, T ◦} and a rewrite system (T x,−→), we say that a function
ω : T x → T ∞ is an approximation function if

∀s, t ∈ T x : s −→ t =⇒ ω(s) ⊆ ω(t) .

Given an approximation function ω : T x → T ∞, we define the infinite normal form of a term as:

Inf
−→
ω (s) = ∪{ω(t) | s−→→t} .

We say that infinite normal forms are unique if

∀s : Infω(s) ∈ T ∞ and ∀s, t : s ←←−→→ t : Infω(s) = Infω(t) .
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The superscript −→ is sometimes omitted if it is clear which relation is meant. Due to the natural
orders on terms (≤Ω) and sets (⊆), we can talk about monotonicity of approximation function and
infinite normal forms.

Example 3.2 The prefix, which is important for the Böhm Tree is the head normal form. Thus, it
seems natural to define the Böhm Tree information content of a term as:

ωBT(s) =
{

λx1 · · ·xn.x ωBT(s1) · · ·ωBT(sm), if s ≡ λx1 · · ·xn.x s1 · · · sm

Ω , otherwise

To show that this function is an approximation function, we use the fact that ωBT(s) is the normal
form of s with respect to the following rewrite rules:

(λx.M)N −−−−→ωBT
Ω ;

λx.Ω −−−−→
ωBT

Ω ;
Ω M −−−−→

ωBT
Ω .

We also define −−→
Ω

by

∀M ∈ T : Ω −−→
Ω

M .

Note that M ≤Ω N if and only if M−−→
Ω
→N .

By a simple case distinction, we can show that the following diagram holds:

ωBT

Ω

ωBT

≡
Ω

≡

From the diagram and the fact that −−−−→ωBT
⊂−−→

Ω
, we conclude that ωBT is monotonic with respect to

≤Ω. If C[(λx.M)N ] −−→
β

C[M [x := N ]] then C[(λx.M)N ] −−−−→
ωBT

C[Ω]. Hence , we have

ΩBT(C[(λx.M)N ]) = ΩBT(C[Ω]) ≤Ω ΩBT(C[M [x := N ]]) .

The conclusion is that ΩBT is an approximation function.

The following theorem formally states three important facts: confluence implies uniqueness of in-
finite normal forms, monotonicity of the approximation function and the rewrite relation implies
monotonicity of infinite normal forms and if infinite normal forms are unique then they are infinite
terms:

Theorem 3.3 Given T x ∈ {T , T ∞, T ◦}, a rewrite system R ≡ (T x,−→) and an approximation func-
tion ω.

1. If R is confluent then Infω infinite normal forms are unique.

2. If −→ and ω are monotonic then Infω is monotonic.

3. If Infω infinite normal forms are unique then ∀s ∈ T x : Infω(s) ∈ T ∞.

1. Given s ←←−→→ t and a ∈ Infω(s). We can find s′, such that s−→→s′ and a ∈ ω(s′). By confluence
we can find t′, such that s′−→→s′ and t−→→t′. Because ω is an approximation function, we have
ω(s′) ⊆ ω(t′). Thus, we have:

a ∈ ω(s′) ⊆ ω(t′) ⊆ Infω(t) .
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2. Given s ≤ Ωt and a ∈ Infω(s). We can find s′, such that s−→→s′ and a ∈ ω(s′). Due to
monotonicity of −→ we can find t′, such that t−→→t′ and s′ ≤Ω t′. Due to monotonicity of ω, we
have ω(s′) ⊆ ω(t′). Thus, we have:

a ∈ ω(s′) ⊆ ω(t′) ⊆ Infω(t) .

3. For any term ∀s ∈ T x, we must show that the set Infω(s) is an ideal:

• Given a ∈ Infω(s) and a′ ≤ Ωa. We can find t, such that s−→→t and a ∈ ω(t). Because ω(t)
is downward closed by definition, we have a′ ∈ ω(t) and hence a′ ∈ Infω(s).

• Given a1, a2 ∈ Infω(s), we can find t, such that s−→→t and a1 ∈ ω(t). Because of uniqueness,
Infω(s) = Infω(t), so we can find t′, such that t−→→t′ and a2 ∈ ω(t′). Because ω is an
approximation function, we also have that a1 ∈ ω(t′). Because ω(t′), we can then find
a3 ∈ ω(t′), such that a1 ≤Ω a3 ∧ a2 ≤Ω a3. We also have that a3 ∈ Infω(s).

�

Both uniqueness and monotonicity are used in the extensions of infinite normal forms from terms
to graphs. If all of these properties hold then we talk about a regular rewriting system with approxi-
mations:

Definition 3.4 A Regular Rewriting System with Approximations (RRSA) is a structure (T ,−→, ω),
where (T ,−→) is a rewrite system, −→ is monotonic and ω is a monotonic approximation function, such
that Infω is unique and monotonic.

Not all of these properties are needed for every stage in the development of infinite normal forms
for infinite terms and term graphs, but having all of them simplifies the presentation.

Below, we define the unwinding of a term graph as an infinite normal form of the rewrite system
(T ◦,−−→

es
). Because the unwinding is important in the remainder, we use a different notation for the

infinite normal form:

Definition 3.5 Given the rewrite system (T ◦,−−→es ). Let nfωunw(M) denote the normal form of M
with respect to the rewrite rule

letrecx1 = M1, · · · , xn = Mn inM −−−−→ωunw
M [x1 := Ω, · · · , xn := Ω]

The function ωunw : T ◦ → T ∞ is defined by ωunw(M) =↓ {nfωunw(M)}. The unwinding of a term M
is given by:

Unw(M) = Inf
−−→es
ωunw(M) .

We use M =unw N as shorthand for Unw(M) = Unw(N). It is easy to verify that nfωunw is an
approximation function. Because −−→es is confluent it is also easy to prove that Unw is a unique infinite
normal form by applying Thm. 3.3.

4. Infinitary Extension
One of the motivations to study infinitary rewriting is to give the semantics of graph rewriting by
means of infinitary rewriting. For this purpose Corradini defined a rewriting system on infinite terms
that performs a complete development of an infinite set of redexes in one step [Cor93]. We use a liberal
extension of his definition to express the requirements under which we can extend an infinite normal
form definition from term rewriting to graph rewriting. Our extension lifts any rewrite relation from
terms to infinite terms, by stating that S rewrites to T if every term in S can be extended to another
term in S, which in turn rewrites to a term in T . Moreover, every term in T is the prefix of a term
in T , which can be obtained by rewriting a term in S. Corradini’s definition extends only a specific
relation and requires that every prefix of S rewrites to a prefix of T . Formally:
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Definition 4.1 The rewrite extension operator [·〉 : 2T ×T → 2T
∞×T ∞

is given by

∀S, T ∈ T ∞,→⊆ T × T : S[−→〉T ⇐⇒
{

∀s ∈ S : ∃s′ ∈ S, t′ ∈ T : s ≤Ω s′ ∧ s′ → t′

∧ ∀t ∈ T : ∃s′ ∈ S, t′ ∈ T : s′ → t′ ∧ t ≤Ω t′

The transitive reflexive closure of [·〉 is [·〉〉. Note that if a ‘spanning’ subset of S rewrites to a
‘spanning’ subset of T , we have that S rewrites to T :

Proposition 4.2 Given S, T ∈ T ∞, →⊆ 2T ×T , an index set I and si, ti ∈ T such that si → ti for
i ∈ I.

S =↓ {si | i ∈ I} and T =↓ {ti | i ∈ I} =⇒ S[→〉T .

This simple observation is very useful for showing that an infinite term rewrites to another infinite
term. The following example illustrates a few possibilities of the [·〉 operator:

Example 4.3 Let us consider the TRS

A(X) −→ X B(X) −→ X .

We use the following notation:

A0(x) = x; B0(x) = x; AB0(x) = x;
An+1(x) = A(An(x)); Bn+1(x) = B(Bn(x)); ABn+1(x) = A(B(ABn(x)));
Aω = {An | n ∈ N}; Bω = {Bn | n ∈ N}; ABω = ↓{ABn | n ∈ N}.

We then have:

A(B(ABω))[−→〉A(ABω), because A(B(ABn(Ω)) −→ A(ABn(Ω)) ;

ABω[−→→〉Aω, because ABn(Ω)−→→An(Ω) ;

Aω[−→→〉Ω, because An(Ω)−→→Ω ;

ABω[−→→〉Bω[−→→〉Ω .

One may ask the question if confluence of −→ implies confluence of [−→→〉. The answer is no, one will
have to impose some restrictions. For example, with the confluent rule

A(A(X)) −→
2

X

we get both

Aω[−→
2
→〉Ω and Aω[−→

2
→〉A(Ω) .

The [·〉 operator extends a rewrite relation form terms to infinite term. If on the terms, we have an
infinite normal form Infω defined then we want to extend the infinite normal form to infinite terms
as well. The simplest way to do this is to extend the function Infω. Because infinite terms are sets of
terms and the co-domain of Infω is sets of terms already, we only extend the domain:

Definition 4.4 Given a RRSA (T ,−→, ω), the direct extension of Infω is defined as:

Inf∞ω (S) = ∪{Infω(s) | s ∈ S} .

The direct extension is a proper extension in the sense that for finite terms Infω and Inf∞ω yield the
same result:
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Proposition 4.5 Given a RRSA (T ,−→, ω), we have that:

∀t ∈ T : Infω(t) = Inf∞ω (↓ {t}) .

We distinguish two cases:

”⊆”: Follows from the fact that t ∈↓ {t}.

”⊇”: From monotonicity if follows that for every s ∈↓ {t}, we have that

Infω(s) ⊆ Infω(t) .

Hence, we have that

Inf∞ω (↓ {t}) ⊆ Infω(t) .

�

The direct extension is also unique in the following sense:

Proposition 4.6 Given a RRSA (T ,−→, ω), we have that:

∀S, T ∈ T ∞ : S[−→→〉T =⇒ Inf∞ω (S) = Inf∞ω (T ) .

We distinguish two cases:

”⊆”: Given s ∈ S, we can find s′ ∈ S, t′ ∈ T , such that s ≤ s′ and s′−→→t′. By monotonicity and
uniqueness respectively we then have that

Infω(s) ⊆ Infω(s′) and Infω(s′) = Infω(t′) .

From these two statements and the definition of Inf∞ω we can derive that

Inf∞ω (S) ⊆ Inf∞ω (T ) .

”⊇”: Similar to the previous case.

�

Although the direct extension has the right properties (see the previous two propositions), it isn’t
satisfactory in the sense that it is not defined by means of an approximation function. Nevertheless,
we need it to prove that the approximation function for infinite terms, we will define next, yields
unique infinite normal forms.

Definition 4.7 Given a RRSA (T ,−→, ω), we define the derived extension of Infω with respect to
=⇒⊆ T × T as:

ω∞(S) =↓ {ω(s) | s ∈ S}

Inf
=⇒
ω∞(S) = ∪{ω∞(T ) | S[=⇒〉〉T}

We want to prove that the direct extension is equal to the derived extension. To do so, we need
to lift a reduction on terms to a reduction on infinite terms. This is possible for monotone reduction
relations:

Lemma 4.8 Given a rewrite system (T ,→). If → is monotone then

∀s, t ∈ T , S ∈ T ∞ : s → t ∧ s ∈ S =⇒ ∃T ∈ T ∞ : S[→〉T ∧ t ∈ T .
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Given s, t ∈ T , S ∈ T ∞, such that s → t and s ∈ S. Because S is a countable set and an ideal, we can
find a sequence

s ≡ s0 ≤Ω s1 ≤Ω · · · , such that S =↓ {si | i ≥ 0} .

Because → is monotonic we can find a sequence ti, such that si → ti and ti ≤Ω ti+1. We then have
that

S [→〉 ↓{ti | i ≥ 0} .

�

With this lemma, we can prove the equality of the two extensions:

Theorem 4.9 Given a RRSA (T ,−→, ω), we have that

∀S ∈ T ∞Inf∞ω (S) = Inf
−→→
ω∞(S) .

We distinguish two cases:

”⊇”: Given a ∈ Inf
−→→
ω∞(S). According to Def. 4.7 we can find a sequence

S ≡ S0[−→→〉S1[−→→〉 · · ·Sn, such that ∃sn ∈ Sn : a ∈ ω(sn) .

From a ∈ ω(sn) we get that a ∈ Infω(sn). By applying Def. 4.1 we can find sn−1 ∈ Sn−1, s
′
n ∈

Sn, such that sn ≤Ω s′n and s′n ←←−− sn−1. From monotonicity and uniqueness it follows that
Infω(sn) ⊆ Infω(s′n) and Infω(s′n) = Infω(sn−1), so Infω(sn) ⊆ Infω(sn−1). By repeating this
argument we can find s0 ∈ S0 such that Infω(sn) ⊆ Infω(s0). We conclude that

a ∈ Infω(sn) ⊆ Infω(s0) ⊆ Inf∞ω (S0) .

”⊆”: Given a ∈ Inf∞ω (S). We can find an s ∈ S such that a ∈ Infω(s). Hence, we can find t ∈ T ,
such that s−→→t and a ∈ ω(t). By repeatedly applying Lemma 4.8, we can find T ∈ T ∞, such
that t ∈ T and S [−→〉〉 T . Because [−→〉 ⊆ [−→→〉 and a ∈ ω(t) ⊆ ω∞(T ), we have

a ∈ Inf
−→→
ω∞(S) .

�

A very easy corollary of this theorem is that the derived infinite normal form is unique.

Corollary 4.10 Given a RRSA (T ,−→, ω), we have that Inf
−→→
ω∞ infinite normal forms are unique.

5. Cyclic Extension
A cyclic extension of a rewrite system on terms is nothing but a rewrite system on cyclic terms that
has somehow been derived from the rewrite system on terms. For the purpose of this paper it is not
important how this derivation was done. Only the properties of the derivation matter. The most
important property is infinitary soundness, which says that any reduction on cyclic terms can be
projected to a reduction on the unwindings of the terms:

Definition 5.1 A cyclic extension (T ◦,−−−→
R◦ ) of a rewrite system (T ,−−→

R
) is infinitarily sound if

∀M,N : M −−−→
R◦ N =⇒ Unw(M)[−−→

R
→〉Unw(N) .
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One way of deriving a cyclic extension is to begin with modifying the right-hand sides of the given
rewrite rules to use letrecs for substitutions. Next, rewrite rules that do not modify the unwinding
may be added. Finally, some completion must be done. The simple cyclic extension of the lambda
calculus in the introduction (1.1) was derived in this way. If a cyclic extension of an orthogonal CRS
is derived in this way then the following theorem, which was proven in [Blo01], might be useful to
show infinitary soundness:

Theorem 5.2 Given a cyclic extension R◦ ≡ (T ◦,−−−→
R◦ ) of an orthogonal CRS (T ,−−→

R
). The cyclic

extension is infinitarily sound if

−−−→
R◦ ⊆=unw ∪(=unw ◦ −−→

R
◦ =unw) .

Through the unwinding of a cyclic term, we can give a direct extension of an infinite normal form
from terms to cyclic terms:

Definition 5.3 Given a RRSA (T ,−−→
R

, ω) and a cyclic extension (T ◦,−−−→
R◦ ), we define the direct

extension of Infω as

Inf◦ω(M) = Inf∞ω (Unw(M)) .

This extension is unique in the following sense:

Proposition 5.4 Given a RRSA (T ,−−→
R

, ω) and an infinitarily sound cyclic extension (T ◦,−−−→
R◦ ), we

have

∀M,N ∈ T ◦ : M −−−→
R◦ N =⇒ Inf◦(M) = Inf◦(N) .

Follows from infinitary soundness and Prop. 4.6. �

A derived extension is also possible:

Definition 5.5 Given a RRSA (T ,−−→
R

, ω) and an infinitarily sound cyclic extension (T ◦,−−−→
R◦ ), the

derived extension of Infω is defined by the approximation function

ω◦(M) =↓ {ω(s) | s ∈ Unw(M)} .

To prove that the derived extension is equal to the direct extension and hence unique, we will
need a notion of completeness. The perfect situation would be that if an approximation s of the
unwinding of a cyclic term M rewrites to a term t then M rewrites to a cyclic term N such that
t is an approximation of the unwinding of N . However, we cannot expect this due to the fact that
a rewrite step on a cyclic term often corresponds to more than one step on an approximation. The
matter of completeness is discussed in depth in [Blo01]. In this paper, we merely present the solution.

Definition 5.6 Given a RRSA (T ,−−→
R

, ω). A cyclic extension (T ◦,−−−→
R◦ ) is complete up to information

content if ∀s, t ∈ T ,M ∈ T ◦:

s ∈ Unw(M) ∧ s−−→
R
→t =⇒ ∃N ∈ T ◦, t′ ∈ Unw(N) : M−−−→

R◦→N ∧ ω(t) ⊆ ω(t′).

We can make the notion of completeness stronger by replacing ω(t) ⊆ ω(t′) with t−−→
R
→t′. The

resulting stronger notion is usually easier to prove, but it doesn’t always hold and the weak notion is
sufficient to imply that the derived and direct infinite normal forms are the same.

Definition 5.7 Given a RRSA (T ,−−→
R

, ω). A cyclic extension (T ◦,−−−→
R◦ ) is regular if it is infinitarily

sound and complete up to information content.
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Theorem 5.8 Given a RRSA R ≡ (T ,−−→
R

, ω) and a regular cyclic extension (T ◦,−−−→
R◦ ), we have that

∀M ∈ T ◦ : Infω◦(M) = Inf◦ω(M) .

We distinguish two cases:

”⊆”: From infinitary soundness it follows that Infω◦(M) ⊆ Infω∞(Unw(M)). Hence, by Thm. 4.9
it follows that

Infω◦(M) ⊆ Inf◦ω(M) .

”⊇”: Given a ∈ Inf◦ω(M). By definition Inf◦ω(M) = Inf∞ω (Unw(M)) = ∪{Inf(s) | s ∈ Unw(M)}, so
we can find s ∈ Unw(M) such that a ∈ Infω(s). Thus, we can also find t ∈ T such that s−−→

R
→t

and a ∈ ω(t). Due to completeness, we can find an N ∈ T ◦, t′ ∈ Unw(N) such that M−−−→
R◦→N

and ω(t) ⊆ ω(t′). Hence:

a ∈ ω(t) ⊆ ω(t′) ⊆ ω◦(N) ⊆ Infω◦(M) .

�

Uniqueness of the derived infinite normal form is an easy corollary of this theorem.

Corollary 5.9 Given a RRSA R ≡ (T ,−−→
R

, ω) and a regular cyclic extension (T ◦,−−−→
R◦ ), we have that

Infω◦ infinite normal forms are unique.

5.1 Syntactic continuity and congruence relations.
This section gives a brief sketch of how congruence results can be lifted from term rewriting to cyclic
term rewriting. Due to space limitations the full details cannot be included here. They can be found
in [Blo01].

To prove that Inf(M) = Inf(N) =⇒ Inf(C[M ]) = Inf(C[N ]) Lévy used the notion of syntactic
continuity. Syntactic continuity expresses that to compute the infinite normal form of a context filled
with a term , everything you need to know about that term is contained in the infinite normal form
of that term:

Definition 5.10 Given a rewrite system (T ,−−→
R

) and an approximation function ω : T → T ∞, we
have syntactic continuity of Infω if

Infω(C[s]) = ∪{Infω(C[a]) | a ∈ Infω(s)} .

To extend congruence results from terms to cyclic terms, we will also need the notion of substitutive
continuity, which expresses that to compute the infinite normal form of a substitution applied to a
term, everything you need to know about that term is contained in the infinite normal form of that
term:

Definition 5.11 Given a rewrite system (T ,−−→
R

) and an approximation function ω : T → T ∞, we
have substitutive continuity of Infω if

Infω(sσ) = ∪{Infω(aσ) | a ∈ Infω(s)} .

Note that, if the β-rule is present substitutive continuity follows immediately from syntactic conti-
nuity due to the fact that

Infω(s[x1 := t1, · · · , xn := tn]) = Infω(C[s]) ,

where C ≡ (λx1 · · ·xn.�) t1 · · · tn .

Given substitutive and syntactic continuity of a suitable CRS, we can prove that any regular cyclic
extension has syntactic continuity:
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Theorem 5.12 Given a RRSA (T ,−−→
R

, ω), where (T ,−−→
R

) is a fully-extended orthogonal CRS, and a
regular cyclic extension (T ◦,−−−→

R◦ ), we have that syntactic and substitutive continuity of Infω imply
syntactic continuity of Inf◦ω.

6. Conclusion
We have presented a framework for lifting infinite normal form definitions from term rewrite systems
to term graph rewrite systems. The non-confluence problems, which had to be dealt with for proving
uniqueness of infinite normal forms in [AI97] are now dealt with in a proof of infinitary soundness. The
advantage is that in a proof of infinitary soundness we can use known results about rewrite rules that
preserve the unwinding of a term. The framework does not supersede the notion of skew confluence
([AI97]). This notion is still useful to prove results about rewrite rules that preserve the unwinding
of a term.
Acknowledgments We thank Vincent van Oostrom for his help on Combinatory Reduction Systems
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