
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

Software ENgineering

Specification-based test generation with TGV

J.R. Calamé

REPORT SEN-R0508 MAY 2005

SEN
Software Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301654393?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2005, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

Specification-based test generation with TGV

ABSTRACT
TGV (Test Generation with Verification technology) is a tool, integrated into the toolset CADP,
for the generation of test cases based on a system’s specification and a test purpose. In this
report we discuss the integration of µCRL and TGV into the process of test generation. We also
work out the ioco theory and its relation to TGV. Furthermore, we do not only discuss the
theoretical aspects of the tool itself, but also its practical usage.

1998 ACM Computing Classification System: D.2.1; D.2.5
Keywords and Phrases: TGV; µCRL; conformance testing; test case generation
Note: This work was carried out under the ITEA project TT-Medal.

Specification-based Test Generation with TGV

Jens R. Calamé

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

TGV (Test Generation with Verification technology) is a tool, integrated into the toolset CADP, for the genera-

tion of test cases based on a system’s specification and a test purpose. In this report we discuss the integration

of µCRL and TGV into the process of test generation. In difference to [2], we also work out the ioco theory

and its relation to TGV. Furthermore, we do not only discuss the theoretical aspects of the tool itself, but also

its practical usage.

1998 ACM Computing Classification System: D.2.1 [Requirements/Specification], D.2.5 [Testing and Debug-

ging].

Keywords and Phrases: TGV, µCRL, conformance testing, test case generation.

Note: This work was carried out under the ITEA project TT-Medal.

1. Introduction
TGV (Test Generation with Verification technology) is a tool, integrated into the toolset CADP, for
the generation of test cases based on a system’s specification and a test purpose. A test purpose
is a sketch of those aspects of a system, which shall be evaluated. This document is an overview
of TGV and its underlying mechanisms. It is organized as follows: Section 2 gives definitions of the
fundamental terminology including the basic theories of conformance used in this document. Section 3
deals with the specification of input-output transition systems (IOLTSs) in the specification language
µCRL and the fileformat Aldébaran. The following section 4 gives information on the specification
and use of test purposes. The specification of test purposes is again shown in Aldébaran and µCRL.
Finally, sections 5 and 6 outline the test generation principles on which TGV is based and gives a
short introduction to the usage of the tool itself.

2. Fundamentals
In this section, we first give definitions of the types of automata, we are working with, before we
introduce the theories of conformance which are necessary to understand the approach of TGV.

2.1 Basic Definitions
Introductorily, the definition of labeled transition systems and input-output labeled transition systems,
which are fundamental for the rest of this document, are given. Furthermore, some special aspects of
these systems are introduced.

Definition 1 (LTS). A labeled transition system (LTS) is a tuple M = (Q,A, T, q0) where

• Q 6= ∅ is a set of states,

• A is a set of actions (machine alphabet),

• T ⊆ Q× A×Q is a transition relation between two states q, q′ ∈ Q, connected by an action (a
label) a ∈ A, denoted (q, a, q′) ∈ T or q

a−→ q′ ∈ T , and

2

• q0 ∈ Q is the initial state.

The elements a ∈ A are the actions of the LTS. They are also referred to as labels.

In the further document we will follow a certain notation concerning the elements of an LTS. When
we reference the sets or elements of the sets Q, A, T of a named automaton, the automaton will be
referred to in the superscript; special elements of an LTS like q0 get an index.
Test generation considers deterministic input-output labeled transition systems. During the generation
process itself, the synchronous product of a system specification and a test purpose as a guide for test
generation is made. The necessary terms are now defined.

Definition 2 (IOLTS). An input-output labeled transition system (IOLTS) is a tuple M = (Q,A, T, q0)
like the one defined for LTSs. The difference to LTSs is the distinction of the machine alphabet
into subsets of actions. With IOLTSs, the machine alphabet A = AI ∪ AO ∪ I is divided into the
three subsets AI (input alphabet, visible actions), AO (output alphabet, also visible actions) and the
alphabet of internal (invisible) actions I. When we assume a set I = {τ}, we will further call such
internal actions τ -steps.

Definition 3 (Deterministic IOLTS). An IOLTS M = (Q,A, T, q0) is deterministic, iff for each state
q ∈ Q and each action a ∈ A there can only be one outgoing transition (q, a, q′), q′ ∈ Q.

Definition 4 (Synchronous Product of IOLTSs). Given two IOLTSs M1 = (Q1, A1, T 1, q1
0), M2 =

(Q2, A2, T 2, q2
0), their synchronous product is an IOLTS M1×2 = (Q1×2, A1×2, T 1×2, q1×2

0) such that

• q1×2
0 = (q1

0 , q2
0),

• Q1×2 = Q1 ×Q2,

• A1×2 = A1 ∩A2,

• (q1, q2)
a−→ (q′1, q

′
2) ∈ T 1×2 ⇔ q1

a−→ q′1 ∈ T 1 ∧ q2
a−→ q′2 ∈ T 2.

After having given general definitions of IOLTSs, we now discuss some of their properties and internals.
For the testing theory, TGV is based on, input completeness of a system is an important requirement.
Furthermore, for a successful software test, the test cases must be controllable. The terms input
completeness and controllability are thus now defined.

Definition 5 (Input Complete IOLTS). An IOLTS M = (Q,A, T, q0) is input complete, iff for each
state q ∈ Q and each action a ∈ AI there is at least one outgoing transition labeled with this action
a.

Definition 6 (Controllable IOLTS). An IOLTS is M = (Q, A, T, q0) is controllable, iff in each state
q ∈ Q no choice needs to be made between several outputs or outputs and inputs.

An IOLTS defines the behavior of a system in means of traces. The behavior of an IOLTS is thereby
that set of actions, which can be executed and is thus subject and object of the software test. This
consideration leads to the notion of reachability. These terms are now defined.

Definition 7 (Trace). A trace σ is a sequence of actions a0, . . . , an ∈ A, n ∈ N for which there exist
states q0, . . . , qn+1 ∈ Q such that holds: ∀i ≤ n

(
(qi, ai, qi+1) ∈ T

)
. For finite traces, i is limited to

i ≤ n + 1. Such a trace is denoted as q
a0···an−−−−→ qn+1 or q

σ−→ qn+1, leaving out the states in between.
To state the existence of such a trace, one can just write q

a0···an−−−−→ or q
σ−→.

The set of traces of an IOLTS M is denoted T RM . Traces that only consist of τ -steps are named T .

3

Definition 8 (Reachability). Given an IOLTS M = (Q,A, T, q0) a state q ∈ Q is reachable, iff there
exists a trace σ ∈ T RM such that q0

σ−→ q.
Q′ = q after σ ⊆ Q defines the set of states, which are reachable from state q by trace σ. If q = q0,
one can also write Q′ = M after σ.

Definition 9 (Behavior of an IOLTS). The behavior of an IOLTS M is defined by its set of traces
T RM

q0
=

⋃
σ with q0

σ−→.

Definition 10 (Visible Behavior of an IOLTS). The visible behavior of an IOLTS M = (Q,A, T, q0) is
a projection of its behavior on the alphabet (AI ∪AO) ⊆ A.

The following two definitions of quiescence and the suspension automaton are important for the later
discussion of the ioco theory of conformance.

Definition 11 (Quiescence). In an IOLTS M = (Q, A, T, q0), a state q ∈ Q is quiescent, iff 6 ∃t ∈ T
(
t =

(q, a, q′) ∧ a ∈ AO

)
, q′ ∈ Q. This quiescent state is then denoted δ(q).

A quiescent trace is a trace σ that leads to a quiescent state: q
σ−→ q′ with δ(q′).

There are three cases, in which quiescence appears [2]:

Output Quiescence: A trace ends in a quiescence state, in which the system only waits for input
from its environment.

Deadlock: A trace ends in a quiescent state, which has no outgoing transitions. This is the special
case of output quiescence.

Livelock: A trace ends in a quiescent state, which is situated in a loop of τ -steps, even though it
possibly has other outgoing transitions.

States with a combination of livelock and output quiescence are, of course, also quiescent.

Definition 12 (Suspension Automaton). The suspension automaton of an IOLTS M = (Q,A, T, q0) is
the automaton δ(M) = (Q, A ∪ {δ}, δ(T), q0) where δ(T) ⊇ T is obtained by adding a δ-loop (q, δ, q)
for each quiescent state q ∈ Q.

2.2 Conformance
Conformance testing verifies, whether an implementation Imp conforms a specification Spec. Here,
we give a definition of the term conformance. Therefore we discuss two definitions for conformance
relations given by [10]. Those are the I/O conformance relations ioconf and ioco. The first of
the two relations is given for introductory reasons. The latter relation is the theoretical fundament
for the TGV [2] toolkit explained in this document. A mapping from the definitions to the TGV
interpretation is given at the end of the section.

Definition 13 (Output of Suspension Automata). Let M be a suspension automaton and q, q′ ∈ Q
states of this machine. Then out : Q → AO ∪ {δ} is a function which returns a set of all possible
outputs that can appear in a certain state of M . Those are actions from the set of outputs AO or
quiescence, when the system cannot produce output since it is waiting for input. Thus, out is defined
as follows:

out(q) = {a ∈ AO|∃q
T a−−→ q′ ∈ T R} ∪ {δ|δ(q)}

For a set of states Q, out is defined as out(Q) = {out(q)|q ∈ Q}.

4

Even though, we define out as a function working on suspension automata, you should be aware of
the fact, that [10] does not use this kind of automata. There, definitions are based on some kind of
extended IOLTS M = (Q,A ∪ {δ}, T, q0), defining δ as the output for transitions which intrinsically
do not produce any output. Due to his abstract approach on conformance it is not necessary to know,
how such an extended IOLTS is actually defined. This is refined by TGV using suspension automata
as described later in section 2.3.

Definition 14 (I/O Conformance ioconf). [11, Def. 4.7]. Let Spec = (QSpec, ASpec, TSpec, qSpec
0) be a

specification and Imp = (QImp, AImp, T Imp, qImp
0) its implementation, both defined as IOLTSs. Imp

conforms to Spec under the relation ioconf iff

∀σ ∈ T RSpec
(
out(Imp after σ) ⊆ out(Spec after σ)

)

This definition means that regarding only the set of traces of the specification Spec, the implementation
Imp is allowed to at most show the output behavior of Spec. Additional traces in Imp which are not
specified in Spec are not affected by this restriction, so they can show any behavior.
More restrictive than the above conformance relation ioconf is the relation ioco on which we have to
elaborate on further in this document. Defining this relation requires us to first define several notions
which are interesting especially for this aspect of conformance.
The ioco theory [10] requires IOLTSs to be weak input enabled. This means, that an IOLTS M must
accept every possible input in every state. This means that for every state q′ ∈ Q and every input
action a ∈ AI there must be either a transition leaving q′ being labeled with a or a trace of internal
actions must lead from q′ to a transition labeled with a. This requirement is not as strong as the one
for input completeness (definition 5). All further definitions in this section require such weak input
enabled IOLTSs.

Definition 15 (Refusion Relation). The relation refuses : Q × A → {true, false} defines, whether a
given subset of actions will be refused from an LTS M = (Q,A, T, q0) in a certain state (q ∈ Q, a ∈ A):

q refuses a =
{

true, if ∀q′ ∈ Q (q, a, q′) 6∈ T
false, if ∃q′ ∈ Q (q, a, q′) ∈ T

Definition 16 (Refusal Set). A refusal set AR(q) for a state q ∈ Q is defined as follows:

AR(q) = {a|q refuses a}

Definition 17 (Failure Trace). A trace in which besides actions also sets of refusions appear is named
a failure trace σF .

Definition 18 (Suspension Trace). A failure trace, in which the appearing refusal sets are restricted
to sets of outputs (∀AR ∈ AR(AR = AO)) is named a suspension trace σS . Such a refused output is
denoted δ.
The set of suspension traces of an IOLTS M is ST R.

Definition 19 (I/O Conformance ioco). [11, Def. 4.13]. Let Spec = (QSpec, ASpec, TSpec, qSpec
0) be a

specification and Imp = (QImp, AImp, T Imp, qImp
0) its implementation. Imp conforms to Spec under

the relation ioco iff

5

∀σS ∈ ST RSpec
(
out(Imp after σS) ⊆ out(Spec after σS)

)

Definition 19 restricts definition 14 in a way, that not only the output behavior of the implementation
on certain inputs is limited, but also the sets of possible inputs in a certain state must be the same in
both Spec and Imp.

2.3 Mapping ioco to TGV
The theory, TGV [2] is based on, is “inspired” by the ioco theory [10]. In this section we explain the
interpretation of ioco for TGV to find the key for this inspiration.
Regarding an IOLTS M = (Q,A, T, q0), TGV only cares about its visible behavior. For that reason,
the original automaton is first reduced to its visible behavior, constructing an automaton det(M) =
(2Q, A\I, Tdet, q0 after T). During the reduction process, subsets of Q are combined to single states
in det(M). Transitions qdet

a−→ q′det between those states correspond to traces q
T a−−→ q′of M . This

reduction is only implicit in ioco [10].
This IOLTS det(M) is then transformed to a suspension automaton δ(det(M)) (= det(δ(M))) by
adding δ-loops for quiescence states. This is also only implicit by the ioco idea of IOLTSs, which
produce output δ if no other output is produced.
TGV regards an implementation Imp of a specification Spec as an input complete, not only a weak
input enabled, IOLTS. Thus, the relation ioco for TGV is defined as follows:

Imp ioco Spec, iff ∀σ ∈ T Rδ(Spec)
(
out(δ(Imp) after σ) ⊆ out(δ(Spec) after σ)

)
.

The function out in this formula corresponds to that given in definition 13. The set T Rδ(M) is the set
of traces of the suspension automaton of M (with M being Spec or Imp, resp.). Those traces produce
– as observable behavior – actions from the set AO ∪ {δ} and correspond from that point of view to
the suspension traces as of ioco (definition 18). That makes the set T Rδ(Spec) from the TGV theory
correspond to ST R. Combining these insights, we can state that the theory behind TGV corresponds
to the ioco theory.
Given those definitions, we have the basis for the further considerations on test generation with TGV.
In the following section we will regard, how to specify an IOLTS in general.

3. System Specification
For conformance testing with TGV the specification of the system under test (SUT) is given as an
IOLTS. The SUT is in most cases first specified in a language like LOTOS or µCRL, then an IOLTS
represented in the Aldébaran format is generated. Additionally, the definition of the input-/output
alphabets as well as the internal steps of this IOLTS must be given. We will now first discuss how
to specify an IOLTS in µCRL and Aldébaran and then regard the specification of its inputs, outputs
and internal actions.

3.1 Specification in µCRL
General Specification µCRL is a specification language for communicating processes, which is based
on process algebra theory. The combination of the processes described build a system, whose semantics
is an IOLTS.

6

Actions All actions of an IOLTS correspond to actions in a µCRL specification:

...

act

a b c

...

Actions can also be parameterized, whereby this parameterization is data type oriented. That means,
that all parameters of an action must be of certain data types and are not just treated as untyped
symbols. That means that for an action d, defined as

...

act

d: Bit

...

a data type Bit must be defined and only values of this data type’s domain can be used for parame-
terization of d as shown below:

sort Bit

func 0, 1: Bit

...

act

d: Bit

...

proc

X = d(0).X

% not possible:

% Y = d(2).Y

...

This is an important difference between specifications in µCRL and specifications of IOLTSs like
Aldébaran where data types of action parameters are not taken into account at all.

States The states of an IOLTS are not explicitly given in its µCRL specification. They are determined
by an instantiator during the generation of the actual IOLTS in Aldébaran.

Generation of an IOLTS To transform a µCRL specification into an IOLTS in the Aldébaran spec-
ification format, two steps must be taken. In the first step, the µCRL specification is transformed
into a linear process equation (LPE). Then, in the second step, this LPE is instantiated resulting
in an IOLTS specification in Aldébaran. This IOLTS specifies the complete system with all parallel
processes being combined.

Specification of the System’s Internal τ -Steps The alphabet of an IOLTS M is divided into the set
of internal (and invisible) actions I and the set of visible actions A\I. There are two ways to define
an action be an internal action:

1. use the predefined action tau,

2. define an arbitrary action and declare it be internal by using hide(...).

µCRL and τ -Steps Consider the following example:

sort Bool

... % specification of constructors , maps and rewrite rules for Bool

% Data type for bits

sort Bit

func 0, 1: -> Bit

act

7

visible:Bit

proc

X = visible (1).tau.X

init

X

In this example, an action visible(1) followed by a τ -step is executed over and over again. The
appropriate IOLTS is given in figure 1 (with 0 being the initial state of the automaton).

0

1

visible(1)
tau

Figure 1: IOLTS with one τ -step and one visible action

The arising problem is, that following this approach all internal actions are named tau. That is not
practical if one wants to differentiate them. This can be done by defining actions like internal in
the following example, and hiding them by using hide(...):

% specification of the two data types Bool and Bit

...

act

visible:Bit

internal

proc

X = visible (1).internal.X

init

hide({ internal},X)

The resulting IOLTS looks the same like the one for the first example (figure 1), since all actions that
are hidden by hide(...) are simply renamed to tau.

Hiding τ -Steps in an IOLTS Even though we are already using the hide(...) command of µCRL
all τ -actions still appear in the generated Aldébaran specification of the IOLTS, that means that they
are still visible, either as action "tau" or as action "i". This depends on the parameterization of the
instantiator that generates the IOLTS. Per default, internal actions are renamed to "tau", conforming
to the theory of procss algebra. Invocation of this tool with instantiator -i replaces "tau" by "i"
for reasons of compatibility to the specification language LOTOS.
Making internal actions "tau" invisible in the Aldébaran specification requires a the definition of this
action in a .hide-file as it is described later in subsection 3.2. An action "i" is hidden automatically.
Hiding internal actions means automatically reducing the state space of the IOLTS by those states,
which are only necessary as start and end points for the internal actions (“internal states”). That
means, that a sequence of states qn

a−→ qn+1
T−→ qn+m−1

b−→ · · · is reduced to qn
a−→ qn+m−1

b−→ · · · .
This reduction is done automatically by TGV.

Specification of the System’s Inputs and Outputs A specification of a system’s input and output
actions is not possible in µCRL. This rather happens in an additional description to the generated
IOLTS in Aldébaran as it is decsribed in subsection 3.2.

8

3.2 Specification in Aldébaran
General Specification An IOLTS M can be directly specified in Aldébaran as a set of transitions of
the form (q, a, q′) ∈ Q×A×Q. We will first describe its grammar and then its application.

Definition 20 (Grammar of Aldébaran Files). The grammar of Aldébaran files is given by the following
Backus-Naur form (let NL be a ”new line”):

<iolts> ::= <fileheader>NL<transitionlist>
<fileheader> ::=

des(<initial-state>,<number-of-transitions>,<number-of-states>)
<initial-state> ::= 0
<transitionlist> ::= <transition>NL<transitionlist> | ε
<transition> ::= (<source>,<label>,<target>)

The term <label> is a free form string that must be enclosed with quotation marks if it con-
tains blanks. The terms <source>, <target>, <initial-state>, <number-of-transitions> and
<number-of-states> are numerical values.

The number of states, notated in the file, must be equal to the entry for <number-of-states>, the
number of transitions defined must be equal to the entry for <number-of-transitions>. A single
transition (qn, a, qm) ∈ T , n, m ∈ N ∪ {0}, is denoted in the list of transitions <transitionlist> as
an entry <transition> that reads (n, a, m). A label can be any input, output or internal action
and is represented as an arbitrary string in quotation marks or a string without blanks.
An example specification shall be given here for the IOLTS E = (QE , AE , TE , q0) with:

• QE = {q0, q1, q2, q3},

• AE = {abc, abc d, ab(c), xyz},

• TE = {(q0, abc, q1), (q1, abc d, q2), (q2, ab(c), q3), (q3, xyz, q3)},

• q0 as initial state.

This results in the specification shown below and in the graph in figure 2.

des(0,4,4)

(0,abc ,1)

(1,"abc d",2)

(2,ab(c) ,3)

(3,"xyz",3)

0

1

2

3

abc

abc d

ab(c)

xyz

Figure 2: Example: IOLTS E

9

Up to this point, the states and the labeled transitions of an IOLTS M can be defined. The limitation
is, that the IOLTS’ alphabet A can only be defined as one set without the separation of inputs, outputs
and internal actions. Since the defined machine is thus not an IOLTS, but only an LTS, the definition
must be extended by the

1. specification of the system’s internal τ -steps (as already outline before) and the

2. specification of the system’s inputs and outputs.

Specification of the System’s Internal τ -Steps For the internal actions of the IOLTS specified in
Aldébaran, some additional information must be given to divide them from the visible actions the test
generation should be based on. Those so called hidden (or explicitly unhidden) labels are defined in a
.hide file, whose grammar shall now be defined.
Definition 21 (Grammar of .hide Files). [4]. The grammar of .hide files can be described as follows
(be NL a ”new line”), whereby the grammar is simplified leaving out the definition of optional blanks
at the beginning and the end of each line of a file:

<hide> ::= <fileheader>NL<labellist>
<fileheader> ::= hide | hide all but
<labellist> ::= <label>NL<labellist> | ε

The term <label> is a free form string that must be enclosed with quotation marks if it contains
blanks.
If the file’s header <fileheader> is set to hide, each of the labels in the list <labellist> is considered
to be an internal action a ∈ I of the according IOLTS and does thus not influence the test generation
by TGV based on the visibile behavior. If the file’s header is set to hide all but, then all the labels
of the IOLTS’ set AI ∪ AO are explicitly defined to be visible behavior which TGV can work on for
test generation.
We take the example from above (subsection 3.2) and we want to define the action "abc d" to be an
internal action. It is possible to do this in two ways. The first example defines "abc d" explicitly to
be an internal action:
hide

"abc d"

The second example achieves the same by defining all visible actions explicitly and thus "abc d" to
be internal implicitly :
hide all but

abc

ab(c)

"xyz"

The resulting visible behavior after hiding and reduction can again be described as an IOLTS as shown
in figure 3.
The use of regular expressions is allowed in the .hide-files to treat classes of actions like ".*c.*",
which would not only treat the action "abc d", but also "ab(c)".

Specification of the System’s Inputs and Outputs The step from an LTS to an IOLTS requires a
separation of the LTS’ alphabet into the invisible behavior I and the visible behavior A\I. The
latter must additionally be divided into the subsets for input actions AI ⊆ A\I and output actions
AO ⊆ A\I with AI ∩AO = ∅. This definition can happen in two ways:

1. use an IO-definition specific for this particular IOLTS or

2. use a default IO-definition.

These two ways will be outlined in the following.

10

0

1

2

abc

ab(c)

xyz

Figure 3: Example: IOLTS E, visible behavior

Specific IO-definition Using a specific IO-definition requires the specifier to write a .io-file following
the grammar defined below:

Definition 22 (Grammar of .io Files). [6]. The grammar of .io files can be described as follows
(be NL a ”new line”, symbols are defined in bold font), whereby it again leaves out the definition of
optional blanks from the original grammar:

<io> ::= <fileheader>NL<labellist>
<fileheader> ::= input | output
<labellist> ::= <label>NL<labellist> | ε

The term <label> is a free form string that must be enclosed with quotation marks if it contains
blanks.

If the file’s header <fileheader> is set to input, then all labels in the list of labels are specified to
be elements of the set of inputs AI , so that the set of outputs AO = A\I\AI is defined implicitly.
If the file header is set to output, then the set of outputs AO is set explicitly and the set of inputs
AI = A\I\AO is implied.
Consider again the example. We now want to divide the set of visible actions A\I = {abc, ab(c), xyz}
into the set of outputs AO = {abc, xyz} ⊂ A\I and of inputs AI = {ab(c)} ⊂ A\I. There are two
possibities to do so. The first one explicitly defines AI and implies AO:

input

ab(c)

The second way is to explicitly define AO, implying AI :

output

abc

xyz

The use of regular expressions is allowed in the .io-files to treat classes of actions in the same way
like in the .hide-files.

Using the Default I/O-Definition The Caesar/Aldébaran framework, into which the test generator
TGV is integrated, already provides the following default I/O-definition:

input

[^!]*[?].*

This allows the determination of the sets AI and AO without any further I/O-definition, just by
specifying an IOLTS’ inputs i ∈ AI in a specification by defining those labels in the form "?i", and
the outputs o ∈ AO by defining the labels in the form "!o" (the syntax "i?" or "o!", resp., would
also be correct). This will be shown for the example from the subsections above:

11

des(0,4,4)

(0,"!abc",1)

(1,"abc d",2)

(2,"?ab(c)",3)

(3,"!xyz",3)

The action "abc d" again is internal (due to the .hide file described above), so that it is not interesting
here. The IOLTS’ specification results in figure 4, which also shows the internal action "abc d" since
it is not hidden explicitly.

0

1

2

3

 !abc

abc d

?ab(c)

 !xyz

Figure 4: Example: IOLTS E, input/output separation

If the IOLTS’ actions are not separated into inputs and outputs, TGV will assume the IOLTS to be
a system without any inputs that just produces outputs, due to the default IO-definition file.

4. Test Purposes
Average software systems have a very large – if not even infinite – state space. Generating test cases
just relying on this state space can be a very time-consuming activity producing a large number of
test cases. Limiting the generated test cases to certain aspects of the whole system can speed up
the generation process and leads to a much smaller result space. These aspects are defined as test
purposes.
A test purpose is an abstraction of test cases [3] and the necessary starting point for test case generation
with TGV. First, a formal definition of test purposes and a detailed explanation are given, then we
will discuss the specification of test purposes in both Aldébaran and µCRL.
Definition 23 (Trap State). In an LTS M = (Q,A, T, q0), a trap state is a state q ∈ Q for which
trap : Q → {true, false} defined as trap(q) = ∀(q, a, q′) ∈ T (q = q′) holds.

Definition 24 ((Complete) Test Purpose). Let the IOLTS Spec = (QSpec, ASpec, TSpec, qSpec
0) be a

specification. A test purpose is a (complete) deterministic IOLTS TP = (QTP , ATP , TTP , qTP
0) with

a set of actions ATP = ASpec
I ∪ ASpec

O ∪ {ACCEPT, REFUSE} (internal actions of Spec are not
considered here).
Let furthermore be:

• QTP
acc = {q|q ∈ QTP ∧ trap(q) ∧ ∃t ∈ TTP

(
t = (q, ACCEPT, q)

)
} ⊆ QTP and

• QTP
ref = {q|q ∈ QTP ∧ trap(q) ∧ ∃t ∈ TTP

(
t = (q, REFUSE, q)

)
} ⊆ QTP .

QTP
acc is the set of accept states of the test purpose, QTP

ref the set of refuse states. The following must
hold for a test purpose:

QTP
acc 6= ∅ ∧QTP

acc ∩QTP
ref = ∅.

12

Transitions which are labeled with ACCEPT or REFUSE are allowed in trap states only.
Definition 25 (Valid Test Purpose). A test purpose TP is valid, iff Qacc 6= ∅ ∧ QTP

acc ∩ QTP
ref = ∅ and

at least one state q ∈ Qacc is reachable from the initial state qTP
0 .

Now some terms are explained that are necessary for the description of the semantics of test purposes.
In a test purpose one or more traces are defined as a hint for the later test case generation. A trace
always starts in qTP

0 and ends in one of the trap states. The trap states in QTP
acc are reached for all

traces, that describe behavior which the SUT shall also show (desired behavior). The trap states in
QTP

ref are reached for those traces, that describe behavior which the SUT shall not show (undesired
behavior). The traces are not necessarily as detailed and complete as the test traces that are generated
for the test case, but an abstraction.
Test purpose specifications are in most cases not complete when they are written for test case gen-
eration in the first place. Thus they are completed by the TGV test generator in order to form a
complete test purpose for the generation of test cases for a particular SUT. This completion is achieved
by inserting ∗-self-loops (q, ∗, q) in every state q ∈ QTP , which does not define an outgoing transition
for all actions in A, the set of actions of this SUT. The ∗ has the meaning of an complementary set of
actions [2] here and not that of a regular expression. That means that, if for a certain q ∈ QTP there
exists a certain set of action Aq = {a|a ∈ ATP ∧∃t ∈ TTP

(
t = (q, a, q′)

)
, q′ ∈ QTP } leaving this state

q, then ∗ defines the set of actions ATP \Aq.
Test purposes can be specified as Aldébaran files or µCRL specifications. Both possibilities are outlined
in the following two subsections.

4.1 Test Purpose Specification in Aldébaran
A test purpose can be specified as an IOLTS in Aldébaran (.aut-file). Labels of transitions can be
denoted in full string representation. An example is ab(c) for an input to or an output of the SUT,
whereby the decision, whether the given transition label is an input or output is made by TGV based
on the information about AI and AO of the system under test. Labels of transitions can also be or
contain an arbitrary regular expression (e.g. .*, ab(.*) or .*(c)). In the latter case a transition is
described, whose action matches this expression (ab(c) matches all three expressions).
A first example for a test purpose in Aldébaran is the following IOLTS (again based on the example
SUT from section 3), accepting any sequence of actions of the SUT during test, in which the action
xyz occurs (see figure 5):
des(0,2,2)

(0,"xyz",1)

(1,ACCEPT ,1)

0

1

xyz

ACCEPT

Figure 5: A test purpose accepting every appearance of xyz

A second example shows a test purpose that accepts any sequence of an action "abc", followed by at
least one arbitrary action, which is followed by action "xyz" (see figure 6):
des(0,4,4)

(0,"abc",1)

(1,.*,2)

(2,"xyz",3)

(3,ACCEPT ,3)

13

0

1

2

3

abc

.*

xyz

ACCEPT

Figure 6: A test purpose accepting abc followed later by xyz

TGV completes the test purposes with ∗-self-loops before generating the test cases. This means,
that the action sequence from above is also covered by the following, more general test purpose (see
figure 7; it also allows the sequence abc, xyz without a third action in between, what makes it be
more general):

des(0,3,3)

(0,"abc",1)

(1,"xyz",2)

(2,ACCEPT ,2)

0

1

2

abc

xyz

ACCEPT

Figure 7: A second test purpose accepting abc followed later by xyz

Sequences, which the SUT shall not show, must hence be explicitly refused, otherwise they may
be implicitly accepted. Such an explicit refusion is defined in the following example test purpose, in
which a sequence of actions "abc", followed by "xyz" is explicitly accepted, while the sequence "abc",
followed by "abc d" is explicitly refused (see figure 8):

des(0,5,4)

(0,"abc",1)

(1,"xyz",2)

(1,"abc d",3)

(2,ACCEPT ,2)

(3,REFUSE ,3)

4.2 Test Purpose in µCRL
Test purposes can also be specified in the form of µCRL specifications and then be translated to
Aldébaran. Doing so, one must take into account the following:

14

0

1

23 REFUSE

abc

abc d xyz

ACCEPT

Figure 8: A test purpose accepting abc followed later by xyz, but not by "abc d"

• The trap states for accepted and refused behavior must be defined as guarded recursions as
follows:

...

act ACCEPT REFUSE

...

proc

STACC = ACCEPT.STACC

STREF = REFUSE.STREF

...

The actions ACCEPT and REFUSE must be defined as actions without parameters in the test
purpose specification.

• Regular expressions cannot be used in µCRL directly. Instead of the expression itself, special
symbols (e.g. REGEX ALL for .*) must be defined that are later substituted by the actual regular
expression in the generated Aldébaran file. Additionally, if one regular expression is used as a
template for data and it is used to abstract data of several different data types, special symbols
must be defined for each data type, even though they might be substituted to the same regular
expression later (e.g. REGEX ALL BOOL of type Bool and REGEX ALL NAT of type Nat shall both
be representants of the regular expression .*).

The first example of the last subsection would be denoted as follows:

...

act xyz ACCEPT

...

proc

STACC = ACCEPT.STACC

...

init

xyz.STACC

The second example could be denoted as follows:

...

act abc REGEX_ANY_ACTION xyz ACCEPT

...

proc

STACC = ACCEPT.STACC

...

init

abc.REGEX_ANY_ACTION.xyz.STACC

The symbol REGEX ANY ACTION must be defined as an action in the µCRL specification and – after
linearization and instantiation – be substituted by the regular expression .* in the generated Aldébaran
file. It is possible to use renaming as described in subsection 4.3 for this purpose.
The last example defines a branch, that we should also regard in the µCRL specification:

15

...

act abc abc_d xyz ACCEPT REFUSE

...

proc

STACC = ACCEPT.STACC

STREF = REFUSE.STREF

...

init

abc.(abc_d.STREF + xyz.STACC)

In the latter example, the symbol abc d must be substituted by "abc d" in the generated Aldébaran
file.

4.3 Renaming
The Open/Caesar toolkit provides a way to rename labels of a given IOLTS using regular expressions.
TGV also allows the renaming of labels of Spec during the generation of the synchronous product
Spec×TP using this method. Therefore, a special renaming .ren file must be provided, which follows
the grammar defined below.

Definition 26 (Grammar of .ren Files). [5]. The grammar of .ren files can be described as follows
(be NL a ”new line”, the grammar is again simplified):

<rename> ::= <fileheader>NL<renamingrules>
<fileheader> ::= rename
<renamingrules> ::= <renamingrule>NL<renamingrules> | ε
<renamingrule> ::= <original-label>-><new-label>

The terms <original-label> and <new-label> are free form strings that must be enclosed within
quotation marks if they contain blanks. Both terms may also be defined as regular expressions.

Having a look at the last example of the previous subsection, the µCRL specification
...

act abc abc_d xyz ACCEPT REFUSE

...

proc

STACC = ACCEPT.STACC

STREF = REFUSE.STREF

...

init

abc.(abc_d.STREF + xyz.STACC)

will create a test purpose like the one printed below (see also figure 9):
des(0,5,4)

(0,"abc",1)

(1," abc_d ",2)

(1,"xyz",3)

(2," REFUSE ",2)

(3," ACCEPT ",3)

The label "abc d" does not match any label of the given IOLTS E, that should be tested. Hence, it
must be renamed to "abc d" with a space instead of an underline. This can be achieved using the
following .ren file:
rename

"abc_d"->"abc d"

The newly generated test purpose can now be used to generate tests for the IOLTS E. More complex
renamings are possible using regular expressions. The following example shows the rename file, that
converts the appearance of a symbol REGEX NAT as parameter of an arbitrary action to .* (e.g. converts
the label pay(REGEX NAT) to pay(.*)).

16

0

1

23 ACCEPT

abc

xyz abc_d

REFUSE

Figure 9: A test purpose generated from a µCRL specification

rename

"\(.*\)(REGEX_NAT)" - >"\1(\.*)"

5. Test Generation by TGV

System Specification

Test Purpose

TGV Test Case

Figure 10: TGV Tool description after Ledru et al.

As shown in figure 10 the TGV test generator takes both the specification of the SUT Spec and the
complete test purpose TP (completed on the fly, if necessary; see previous section) to generate test
cases. The IOLTS Spec thereby contains all paths that are specified for the SUT. The IOLTS TP
contains a specification of all paths, that are of interest for the generation of test cases (in other words:
which shall later be tested in the SUT).
This time, an overview over the test generation process shall be given first, before the details are
defined. The following steps are taken by TGV, that lead to the generation of the test cases:

1. If the given test purpose is not complete, it must be completed by inserting ∗-self-loops (see
section 4). This is necessary because a test purpose is an abstracted sequence of states and
actions, that can appear at any position in the system’s IOLTS.

2. The synchronous product ST = Spec× TP of the system’s specification Spec and the complete
test purpose TP is generated.

3. The IOLTS ST is reduced to a suspension automaton showing its visible behavior, whereby
the properties of its graph are retained as far as possible. This is a transformation of ST to
δ(det(ST)) (see section 2.3), but to make things easier readable we write ST furthermore.

4. The complete test graph CTG is produced.

5. Depending on the parameterization of the TGV tool, one trace containing loops or being loop-
free is selected from the CTG (single test case), or the CTG itself is the result of the test case
generation.

We take the following specification and test purpose from [2] as the accompanying example. The
SUT’s IOLTS is specified as follows (see also figure 11; inputs are denoted with a leading question
mark, outputs with a leading exclamation mark):

17

des (0,16 ,10)

(0," tau_1 ",1)

(0," tau_2 ",2)

(0," tau_3 ",9)

(1,"?a",3)

(2," tau_4 ",0)

(2,"?b",4)

(2,"?c",6)

(3,"!x",5)

(4," tau_6 ",4)

(4," tau_6 ",8)

(4,"!z",2)

(5," tau_5 ",1)

(6,"!y",7)

(7,"?c",6)

(8,"!y",0)

(9,"?a",8)

Its internal actions are defined as follows:
hide

tau_1

tau_2

tau_3

tau_4

tau_5

tau_6

The following test purpose shall be regarded (see also figure 12):
des(0,5,4)

(0 ,".*[z5]",3)

(0 ,".*y",1)

(1 ,".*z",2)

(2,ACCEPT ,2)

(3,REFUSE ,3)

It explicitly accepts all sequences in which on an action with last letter y, like output !y, follows an
action with last letter z, like output !z. It explicitly refuses all other occurences of actions with z
or 5 as the last letter.
Now, the definition of the synchronous product of both system specification and test purpose, assigned
test verdicts, the complete test graph and the single test case shall be given.

Definition 27 (Synchronous Product of System Specification and Test Purpose). [2]. The synchronous
product of the system specification Spec = (QSpec, ASpec, TSpec, qSpec

0) and a complete test purpose
TP = (QTP , ATP , TTP , qTP

0) is defined as the IOLTS ST = Spec×TP = (QST , AST , TST , qST
0) with:

• AST = ASpec ∪ {ACCEPT, REFUSE} the alphabet of the IOLTS,

• TST ⊆ TSpec × TTP the set of transitions with ((q, q′′), a, (q′, q′′′)) ∈ TST ⇔
((

(q, a, q′) ∈
TSpec ∧ (q′′, a, q′′′) ∈ TTP

)
∨

(
(q′′, ACCEPT, q′′′) ∈ TTP ∧ q = q′

)
∨

(
(q′′, REFUSE, q′′′) ∈

TTP ∧ q = q′
))

, and

• qST
0 = (qSpec

0 , qTP
0) ∈ QST the initial state.

Its state space QST ⊆ QSpec ×QTP is reduced to the reachable part of QSpec ×QTP .

A trace ends in a state (q, q′) ∈ QST
acc ⊆ QST with a transition ((q, q′), ACCEPT, (q, q′)) (accept

state), iff the trace leading to the state q or q′, resp., is possible in both the original system speci-
fication Spec and the complete test purpose TP and the trace ends in a trap state q′ ∈ QTP

acc . If a
sequence of transitions is possible in both Spec and TP , but ends in a trap state q′ ∈ QTP

ref , then the

18

0

48

1

5

9 2

6
3

7

tau_3 tau_2tau_1

?a ?c?b

tau_4

 !x

 !z

tau_6

tau_6

tau_5

 !y

?c

 !y

?a

Figure 11: Sample Specification

0

1

2 3ACCEPT REFUSE

.*y

.*[z5]

.*z

Figure 12: Sample Test Purpose

19

appropriate trace in the synchronous product ends in a state (q, q′) ∈ QST
ref ⊆ QST with a transition

((q, q′), REFUSE, (q, q′)) (refuse state). From the synchronous product ST TGV determines the
complete test graph CTG before the single test cases TC are generated.

Definition 28 (Complete Test Graph). [2]. The complete test graph CTG is an IOLTS CTG = (QCTG,
ACTG, TCTG, qCTG

0) which is determined from the visible behavior (cf. definition 10) of the syn-
chronous product ST in the following way:

1. The set of actions is determined by mirroring the set of actions of ST : ACTG = ACTG
I ∪ACTG

O

with

• ACTG
O ⊆ ASpec

I ,

• ACTG
I = ASpec

O .

The reason for mirroring inputs and outputs lies in the relation between a test case and a system
under test, as depicted in figure 13.

2. The set of states is determined. This set is divided into four subsets QCTG = (QCTG
L2A ∪

QCTG
pass)∪̇QCTG

inconc∪̇QCTG
fail which are defined as follows:

Lead to Accept: QCTG
L2A = {q ∈ QST |∃σ ∈ T RST (q σ−→ q′, q′ ∈ QST

acc)},
Pass: The set QCTG

pass ⊆ QCTG
L2A is defined as QCTG

pass = QST
acc. This set may not be empty.

Inconclusive: QCTG
inconc = {q′|∃q ∈ QCTG

L2A , q′ 6∈ QST
acc, a ∈ AST

O (q a−→ q′ ∈ TST)},
Fail: QCTG

fail = {qCTG
fail }, qCTG

fail 6∈ QST .

For reasons of manageability of the resulting IOLTS, the state qCTG
fail exists only implicitly and

is assumed as end point for all possible traces σ 6∈ T RST . It is not actually generated.

3. The set of transitions of the CTG is defined as TCTG = TCTG
L2A ∪ TCTG

inconc ∪ TCTG
fail with:

• TCTG
L2A = TST ∩ (QCTG

L2A ×ACTG ×QCTG
L2A),

• TCTG
inconc = TST ∩ (QCTG

L2A ×ACTG
I ×QCTG

inconc),

• TCTG
fail = {q a−→ qCTG

fail |q ∈ QCTG
L2A ∧ a ∈ ACTG

I ∧ q after a = ∅}.

The CTG also contains loops if necessary. It can furthermore contain choices between several outputs
in the same state or between inputs and outputs and is thus not (necessarily) controllable.

input
output input

outputTest Case
System
under
Test

Figure 13: Relation between test case and system under test

Definition 29 (Verdict). A verdict is the result of the execution of a test case. It is determined by
the comparison between the actual behavior of the SUT during test case execution and its expected
behavior. In general, there exist the following types of verdicts:

pass: The pass verdict is set, if the SUT is conformant to its specification under the applied TP. The
pass verdict is applied to those test executions, which end in a state q ∈ QCTG

pass .

inconclusive: The inconclusive verdict is set, if the test execution runs into a path, from which no
state of QCTG

pass can be reached anymore. Such executions end in a state q ∈ QCTG
inconc.

20

fail: The fail verdict is set, if the SUT is not conformant to its specification under the applied TP.
The fail verdict is applied to those test executions, which end in a state q ∈ QCTG

fail .

none: The none verdict is set before the excution of a test case [1].

error: The error verdict is set in case of an unexpected failure during test case execution, that is
not caused by incompliance of SUT and its specification [7]. In this case, only a state q ∈
QCTG

L2A \QCTG
pass is reached during test execution.

The last two types of verdicts are special cases, which are not considered any further. To complete
this explanation, it should be ensured, that a test case gets one verdict assigned after execution. A
suite of test cases get an aggregate verdict, which is determined by overwriting the single verdicts of
the single test cases combined to this test suite. This leads to the definition of overwriting rules for
verdicts.

Definition 30 (Systematization of Verdicts and Overwrite Rules). The types of verdicts can be struc-
tured in the following partial order: none v pass v inconclusive v fail v error. This structurization
is necessary to understand the overwriting rules for verdicts, like they are applied for the evaluation
of suites of test cases. A verdict v can only be overwritten by v′, iff v v v′. The aggegrate verdict for
a suite of test cases is the upper bound of the partial ordered set of single test case verdicts.

According to the verdicts, the traces in T RCTG lead to, one can claim the following on the relation
between traces in the original specification Spec, those in the test purpose TP and the later test
verdicts:
PPPPPPPPTrace

Model
Spec TP CTG ⇒ ACCEPT REFUSE

 Trap State

Verdict

no no no ⇒ fail
σ exists no yes no ⇒ fail fail Verdict as-

in... yes no yes ⇒ inconclusive signed to σ
yes yes yes ⇒ pass inconclusive

The left part of the table shows the possible combinations of a trace σ appearing either in the specifi-
cation Spec or in the test purpose TP , in both or in none of both. Depending on this, σ is taken over
into the CTG, shown in the fourth column (CTG). The right part of the table shows the determination
rules for the verdicts assigned to the trace σ.
If σ does not appear in the specification Spec at all, then it will always lead to the verdict fail, no
matter, if it appears in the test purpose TP and in which trap state it ends there. If σ appears in
Spec, then two verdicts are possible. If σ does not also appear in TP , then it leads to the inconclusive
verdict. It also leads to inconclusive, if it appears in both Spec and TP , but ends in a REFUSE trap
state there. Only if trace σ appears in both Spec and TP and ends in an ACCEPT state in TP ,
then it leads to a pass verdict in the CTG.
The CTG for the example above is shown in figure 14. As can be seen in the graph, the former input
actions of the SUT specified in Spec are now considered to be output and vice versa. This is the case
because the CTG is regarded here, which inputs its own outputs into the SUT and which observes the
SUT’s outputs by taking them as inputs. An explanation shall also be given for the self-loops with
labels LOCK; INPUT. Those loops appear at states, in which the SUT either waits for input from
outside (quiescence or outputlock) like in states 0 and 4 of the CTG, or it can be caught in a loop of
internal actions (livelock), like in states 2 and 7.
A complete test graph still contains many decisions, that must be made during the test execution. To
minimize the number of decisions to be made during test execution, TGV can generate a single test
case from the CTG. This shall be defined now.

21

Definition 31 ((Controllable) Test Case). A test case TC is an IOLTS TC = (QTC , ATC , TTC , qTC
0)

derived from a CTG with

• QTC ⊆ QCTG: QTC = QTC
L2A ∪ QTC

pass ∪ QTC
inconc ∪ QTC

fail and QTC
L2A ⊆ QCTG

L2A , QTC
pass ⊆ QCTG

pass ,
QTC

inconc ⊆ QCTG
inconc, QTC

fail ⊆ QCTG
fail ;

• ATC ⊆ ACTG: ATC
O ⊆ ACTG

O ∧ATC
I = ACTG

I ;

• TTC ⊆ TCTG: TTC = TTC
L2A∪TTC

inconc∪TTC
fail and TTC

L2A ⊆ TCTG
L2A , TTC

inconc ⊆ TCTG
inconc, TTC

fail ⊆ TCTG
fail ;

• qTC
0 = qCTG

0 .

TC defines a subset of traces of the CTG, that leads to a pass verdict, i.e. a state qpass ∈ QTC
pass. If in

certain states a decision between several inputs must be made, all inputs and resulting traces that lead
to an inconclusive verdict are also included in TC as traces to states qinconc ∈ QTC

inconc, additional to
one, that leads to the pass verdict. States qfail ∈ QTC

fail, which define the end points of traces leading
to a fail verdict, are implied for reasons of manageability.
In general, a single test case can still contain loops (see figure 15) for reasons of completeness or be
strictly sequential (see figure 16) to avoid infinite paths in the TC caused by loops.

8

4

0

9

5

1

6

2

7

3

?a; OUTPUT ?b; OUTPUT

LOCK; INPUT

 !x; INPUT (INCONCLUSIVE)

 !y; INPUT

LOCK; INPUT

 !y; INPUT

 !z; INPUT (INCONCLUSIVE)

?a; OUTPUT ?b; OUTPUT

LOCK; INPUT

 !x; INPUT (INCONCLUSIVE)

 !y; INPUT

LOCK; INPUT

 !y; INPUT

 !z; INPUT (PASS)

Figure 14: Sample CTG

22

4

0

5

1

2 3

LOCK; INPUT

?a; OUTPUT

 !y; INPUT

 !x; INPUT (INCONCLUSIVE)

 !z; INPUT (PASS)

 !y; INPUT

?b; OUTPUT

Figure 15: Sample TC with loops

23

4

0

5

1

6

2 3

LOCK; INPUT (INCONCLUSIVE)

?a; OUTPUT

 !y; INPUT (INCONCLUSIVE)

 !x; INPUT (INCONCLUSIVE)

 !z; INPUT (PASS)

 !y; INPUT

?b; OUTPUT

Figure 16: Sample TC without loops

24

6. Using the TGV Tool
The test generator TGV is delivered as part of the toolset CADP (www.inrialpes.fr/vasy/cadp/).
It is available as a command line tool, but also integrated into CADP’s graphical environment Eucalyp-
tus which can be invoked from the command line with xeuca. In this section, we give an introduction
to TGV based on this graphical interface. However, additional information about its command line
parameters are given. The sample specification is the IOLTS from figure 11, stored in a file s.aut. The
file s.hide stores the information about the specification’s internal actions as shown in this section,
s tp.aut is the sample test purpose (see figure 12).

Invoking TGV
In Eucalyptus, the configuration dialog for TGV is invoked by a left-button mouse click on the spec-
ification file and the selection of the menu item Generate Tests. . . (figure 17). On the command
line, the tool is invoked by using the CADP tool bcg open in the following way [6]:

bcg open [bcg opt] <specification> [cc opt] tgv [tgv opt] <testpurpose>

The BCG options as well as the C compiler (CC) options are not interesting for us here. The TGV
options are those, which we explain in the following. For the parameter specification we set the
filename of our specification (s.aut), for testpurpose that of our sample test purpose (s tp.aut).
Instead of the CADP tool bcg open, the tool mcrl open from the µCRL toolset can be used. This
tool has the advantage that it allows on-the-fly generation and exploration of LTSs rather than first
generating the whole LTS before exploration. The syntax of its command line parameters is the same
like bcg open.

Figure 17: Eucalyptus

25

Rough Configuration
The configuration dialog for the TGV test generation offers a rich collection of options (figure 18).

Figure 18: Configuration dialog for TGV

The parameter specification is already filled out by choosing the specification file as starting
point for test generation from the Eucalyptus user interface. The second mandatory parameter,
testpurpose, is defined by the test purpose specification file chosen from the list of files in the upper
third of the configuration window. Furthermore three optional files can be chosen:

Hiding file: This file specifies the internal actions of the SUT. If it is not set, per default action "i"
is treated as internal action (see section 3.2). The corresponding command line parameter is
-hide <hide-file>.

Renaming file: This file specifies renaming rules as discussed in section 4.3. If it is not set, no
renaming takes place. The corresponding command line parameter is -rename <rename-file>.

Input/Output file: This file specifies the input and output actions of the specification as discussed
in section 3.2. If it is not set, all actions of the system are considered to be output. If it is used in
combination with a renaming file, it must contain the renamed action labels. The corresponding
command line parameter is -io <io-file>.

The output file for the generated test case can be specified in the input field Generated test case
(output). Per default, it is the file tgv result.bcg, which produces a file in the BCG format. To
get an LTS in Aldébaran, one can change the file extension to .aut. The corresponding command
line parameter is -output <output-file>.

26

Fine Tuning
After having defined the inputs and output destination of the test generation process, one can now
deal with the questions what should be generated and how it should be generated.
The kind of test case to be produced by TGV can be configured in the section Test case controlla-
bility. There are three options:

Produce the complete test case: With this option enabled, TGV will produce the complete test
graph (sic, see definition 28) without selecting a single test case from it. Possibly, this test case
is not controllable (ibid.). The complete test graph for our example is given in figure 14. The
corresponding command line parameter is -csg.

Produce a controllable test case with loops: With this option enabled (what is the default for
TGV), a single test case (see definition 31) possibly containing loops will be generated. An
example is shown in figure 15.

Produce a controllable test case without loops: With this option enabled, TGV produces a
single testcase without loops, like the one in figure 16. The corresponding command line param-
eter is -unloop.

Furthermore, TGV can generate test cases, which are timer controlled. Those test cases start a timer
after each input to the SUT and fail on timeout (or cancel the timer on an appropriate SUT output).
This feature can be enabled by Produce a test case with test timers or by the command line
option -timer. In figure 19 the test case from figure 16 is shown with timer support enabled.
The next options define priority settings. These settings suffer from a not very detailed description in
the TGV documentation, nor have they any effect on the small examples, we are showing here. By
default, TGV lays the priority on input actions and on actions of the specification. With the option
Give priority to test purpose actions (command line parameter -tpprior) or Give priority to
output actions (command line parameter -outprior) this can be changed. A case study in which
setting the priority to test purpose instead of specification actions actually has the effect of reducing
the size of the generated test case is described in [9].
We analyzed the effect of changing the default priority settings in an experiment based on a case study
described in [8, pp. 113ff.]. Taking the same combination of specification, test purpose and I/O action
specification and just varying priority settings, our experiment had the following result according to
the number of states and transitions in the generated test cases:

Priority Setting Number of states Number of Transitions
Complete Test Graph
. . . on specification/input 29612 92888
. . . on test purpose/input 29612 92888
. . . on specification/output 29612 92888
. . . on test purpose/output 29612 92888
Single Test Case with Loops
. . . on specification/input 178 177
. . . on test purpose/input 178 177
. . . on specification/output 70 69
. . . on test purpose/output 51 50
Single Test Case without Loops
. . . on specification/input 178 177
. . . on test purpose/input 178 177
. . . on specification/output 70 69
. . . on test purpose/output 51 50

27

0

1

2

3 4

5

6

7

8

9

10 1112

13

?a; OUTPUT

START TAC

 !y; INPUT !x; INPUT (INCONCLUSIVE)
TIMEOUT TAC; INPUT FAIL

CANCEL TACCANCEL TAC

?b; OUTPUT

START TNOAC

 !z; INPUT (PASS) !y; INPUT (INCONCLUSIVE)
TIMEOUT TNOAC; INPUT (INCONCLUSIVE)

CANCEL TNOAC

CANCEL TNOAC

Figure 19: Sample TC without loops and with timer support

28

As one can gather from the results, setting the priorities only affects the selection of single test cases,
not the generation of the complete test graph. Comparing the resulting test cases, one can state, that
priorizing the test purpose compared to the specification leads to a test case, in which those traces
from the complete test graph are selected, where the actions defined in the test purpose match as early
as possible. Priorizing the specification leads to an analogous result. The priorization with respect
to (test case) input or output actions controls, whether the selection described above is made with
special attention on the input or the output actions. Here we could not observe different results with
respect to the specification/test purpose priorization.
The option Search a postamble from pass or inconclusive states leads to test cases, whose pass
and inconclusive states are completed by traces, which lead to a state in which no further output from
the SUT is expected (stable state). This can be enabled on the command line using -post.
Generally, searching the test purpose for accepting states and the specification of the SUT for stable
states like described above can be further configured. TGV accepts a limitation for both the maximal
trace length to an accepting state in the test purpose (Maximal depth search for preamble or
-depth) and the maximal trace length to a stable state in the SUT (Maximal depth search for
postamble or -postdepth). Both require a numeric value n that defines the maximal length of this
trace by the number of adjacent states. By default, both maxima are set to 0, which defines an infinite
maximal length. The size of memory required during test generation can also be limited (or extended)
by the Size of hash table (command line option -hash), 100000 by default.

Further Options

Figure 20: Configuration menu for TGV

Some general options for TGV cannot be found in the configuration dialog described above, but
in the menu Options/TGV/. . . of Eucalyptus (figure 20). Those control the logging outputs of
TGV during test generation (verbose, normal or quiet) and its behavior according lock transitions.
Normally, in the CTG a lock transition is set in the case of a quiescence state (see figure 14), but later
pruned during selection of the single test case (see figure 16). Pruning can be disabled by Disable
pruning of lock transitions or -keeplock on the command line. If lock transitions are printed in
the TGV output, one can furthermore decide for one of the following three options:

Display lock transitions: The output automaton describing the test case will show a transition
labeled with LOCK for each lock transition of whatever type. This is the default for TGV.

Differentiate lock transitions: With this option enabled, the types of locks are differentiated
(OUTPUTLOCK, DEADLOCK, LIVELOCK) in the output automaton. The corresponding
command line parameter is -difflock.

Do not display lock transitions: With this option enabled, TGV generates an automaton, which
does not show any of its lock transitions. The corresponding command line parameter is -unlock.

29

Sample Test Cases
All sample test cases in this document have been generated by using the following settings of TGV:

• Specification file: s.aut

• Test purpose file: s tp.aut

• Hide file: s.hide

• Display lock transitions

• Maximal depth search for preamble: 0

• Maximal depth search for postamble: 0

• Size of hash table: 100000

• Give priority to specification actions

• Give priority to input actions

• No search for postamble states from pass and inconclusive states

Generating the examples, we variated the type of test case as follows:

Figure 14:
• Produce the complete test case

Figure 15:
• Produce a controllable test case with loops

Figure 16:
• Produce a controllable test case without loops

Figure 19:
• Produce a controllable test case without loops

• Produce a test case with test timers

30

References

1. European Telecommunications Standards Institute, Sophia Antipolis Cedex. Methods for Test-
ing and Specification; The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core
Language, 2003. ETSI Standard ES 201 873-1 v.2.2.1.

2. C. Jard and T. Jéron. TGV: theory, principles and algorithms. International Journal on Software
Tools for Technology Transfer, 2004.

3. Y. Ledru, L. du Bousquet, P. Bontron, O. Maury, C. Oriat, and M.-L. Potet. Test Purposes:
Adapting the Notion of Specification to Testing. In 16th IEEE International Conference on
Automated Software Engineering (ASE’01), San Diego, California, 2001. IEEE-CS.

4. OPEN/CAESAR MANUAL – caesar hide 1. man caesar hide 1.

5. OPEN/CAESAR MANUAL – caesar rename 1. man caesar rename 1.

6. TGV Manual Pages – TGV. man tgv.

7. OMG. UML 2.0 Testing Profile Specification, August 2003. Version 2.0, Final Adopted Specifi-
cation/finalization phase.

8. Jun Pang. Formal Verification of Distributed Systems. PhD thesis, Vrije Universiteit Amsterdam,
2004.

9. Guiseppe Scollo and Silvia Zecchini. Architectural unit testing in a robot teleoperation case study.
Research report, Università di Verona, 2003.

10. Jan Tretmans. Test generation with inputs, outputs, and repetitive quiescence. Software - Con-
cepts & Tools, 17:103–120, 1996.

11. Jan Tretmans. Test generation with inputs, outputs, and repetitive quiescence. Technical report,
University of Twente, 1998.

	Introduction
	Fundamentals
	Basic Definitions
	Conformance
	Mapping ioco to TGV

	System Specification
	Specification in CRL
	Specification in Aldébaran

	Test Purposes
	Test Purpose Specification in Aldébaran
	Test Purpose in CRL
	Renaming

	Test Generation by TGV
	Using the TGV Tool
	References

