
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Equivalence of Recursive Specifications in Process Algebra

Alban Ponse, Yaroslav S. Usenko

Software Engineering (SEN)

SEN-R0107 April 30, 2001

Report SEN-R0107
ISSN 1386-369X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Equivalence of Recursive Specifications in Process Algebra

Alban Ponse1,2 Yaroslav S. Usenko1

Alban.Ponse@cwi.nl Yaroslav.Usenko@cwi.nl

1CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

2Programming Research Group, University of Amsterdam,

P.O. Box 41882, 1009 DB Amsterdam, The Netherlands

ABSTRACT

We define an equivalence relation on recursive specifications in process algebra that is model-independent and

does not involve an explicit notion of solution. Then we extend this equivalence to the specification language

µCRL.

2000 Mathematics Subject Classification: 68Q10; 68Q65; 68Q85

1998 ACM Computing Classification System: D.2.4; D.3.1; D.3.3; F.3.2; I.1.1

Keywords and Phrases: µCRL, Process Algebra, Equivalence of Recursive Specifications.

1. Introduction

In process algebra, infinite behavior is usually specified by means of recursive equations.1 A simple
example is X = a · X, modeling a process that repeatedly executes action a. It is often convenient to
consider a system of interdependent recursive equations. For instance, a communication protocol can
be specified such that each of its parallel components (sender, receiver, etc.) is modeled by one or
more equations. In the following we will use the terminology ‘system of recursive equations’ to denote
a set of one or more equations in the sense sketched above.

Although the specification of processes by means of systems of recursive equations serves its purpose
well, proof theory for this type of specification is not entirely trivial, and goes with various particular
ingredients. For instance, we often want to assert that such a system represents a particular process
in some intended model as the unique solution for one of its variables. As an example, the recursive
equation X = X has (in any model) any process as its solution, and the equation X = X + a (where
+ models choice) has many solutions (in many models), whereas X = a · X has no solution in models
that represent only finite processes. In the case that a system of recursive equations has a unique
solution (per variable) in some intended model, we say that this system is a recursive specification:
some intended process is specified by means of recursive equations. Often, establishing the uniqueness
of solutions is intertwined with verification purposes. If one can show that each solution for some
distinguished variable in a system of recursive equations is also a solution for a smaller and simpler
system (or vice versa), and both systems have unique solutions per variable, then both systems specify
the same process, one focusing on ‘implementation details’, and the other abstracting from these and
focusing on the external behavior of the whole system. Comparing solutions of systems of recursive
equations often plays a major role in process verification.

In this paper we introduce an equivalence on recursively specified processes that is based on the
preservation of solutions. This equivalence results from the theory of equivalences for regular systems

1An alternative method of specification is the use of recursive operations, such as the Kleene star [4], or the use of
fixpoint operators [16]

2

of equations and applicative program schemes, as developed, among others, by Courcelle in [5, 6].
Systems of (recursive) equations are considered with respect to their full sets of solutions in all models.
As noted in [3], considering such a notion of equivalence avoids certain drawbacks of other methods
used in process algebras, such as the restriction of the process domains to the ordered ones and
considering the least solutions of recursive systems, or the restriction to systems that are guarded,
and considering only the domains where all such systems have unique solutions (see [2]). In many
cases, especially when data parameters are involved, such restrictions can be difficult to handle. We
use the specification language µCRL [13, 12] to describe our approach. This language comprises an
extension of process algebra with features that involve data for the specification of processes: actions,
recursive specification, communication, summation, and conditionals can all be data-parametric. For
instance, it is not possible to justify transformations of recursive systems in value passing process
algebras like µCRL using the method of restricting to syntactically guarded systems. For many models
of processes (resembling different equivalences, see e.g. [8, 9]) guardedness becomes a more involved
notion. Therefore it is useful to consider a model-independent equivalence of recursive systems in
process algebra, and to use model specific equivalences only in cases where the former one is not
sufficiently strong.

Typical for our approach is that we separate the question to unique solutions from the question how
solutions of systems of recursive equations can be compared. This splitting of notions is worthwhile:
properties of solutions are interesting for verification purposes, whereas comparison of systems of
recursive equations is a fundamental notion that in itself can be applied in a model-independent way,
only adhering to the axioms of process algebra. The comparison of systems of recursive equations
plays a major role in the tool support for µCRL because such systems are transformed into linear
form while preserving all their solutions [14]. Several kinds of optimizational transformations of µCRL
specifications, see e.g. [10], can be proved to be correct using the equivalence relations presented in
this paper.

Structure of the paper. In order to give a simple exposition, we start out from the well-known
process algebra system BPA (Basic Process Algebra) in Section 2. We characterize the equivalence
mentioned, and consider some examples. Then, in Section 3 we generalize our equivalence to the
setting of µCRL. The paper is ended with some conclusions.

2. Equivalence of BPA systems

Recall that the axioms of BPA (Basic Process Algebra, see, e.g., [2, 7]) are the following:

(A1) x + y = y + x
(A2) x + (y + z) = (x + y) + z
(A3) x + x = x
(A4) (x + y) · z = x · z + y · z
(A5) (x · y) · z = x · (y · z)

where + models alternative composition and · sequential composition. We further omit brackets in
repeated applications of + and ·.

For terms t, u over the signature of BPA we write

BPA ` t = u

if t = u can be proved from BPA in equational logic. Furthermore, let ~x = x1, . . . , xn be a sequence of
variables. Then we write t(~x) if all free variables of t are in ~x. In this section we consider systems of
(recursive) equations over the signature of BPA. As a convention for this section we shall use capital
letters for the variables in such systems, in order to distinguish these from the variables in the BPA
axioms.

2. Equivalence of BPA systems 3

Let n fresh variables X1, . . . ,Xn = ~X and terms t1(~X), . . . , tn(~X) over BPA be fixed. Then we call

G = {Xi = ti(~X) | i = 1, . . . , n}
a system of process equations over BPA. A simple example is {X1 = a ·X2, X2 = b ·X1}. Furthermore,
we call (Xi, G) for a particular i a process definition (this terminology is syntax-oriented; the question
whether (Xi, G) really ‘defines’ a process is a model dependent one).

Let M be a model of BPA with domain M . Then (m1, . . . , mn) ∈ Mn is a solution of G in M if
for all i = 1, . . . , n and interpretation functions I satisfying I(Xi) = mi,

M, I |= Xi = ti(~X). (2.1)

We further abbreviate (statements like) (2.1) to

M |= mi = ti(~m).

In this case we say that mi is a solution of (Xi, G) in M. Finally, given G as above, i.e., G = {Xi =
ti(~X) | i = 1, . . . , n}, we define for term sequence ~v = v1, . . . , vn,

G(~v) M=
n∧

i=1

vi = ti(~v).

We now turn to the preservation of solutions. Let

H = {Yj = uj(~Y) | j = 1, . . . , k}

be a system of k process equations over BPA such that ~X and ~Y = Y1, . . . ,Yk do not share any
variable. The preservation of solutions refers to designated process definitions of G and H , usually
(X1, G) and (Y1, H), respectively.

Definition 2.1. Let G refer to the setting where X1, . . . ,Xn = ~X are regarded as constants and the
equations in G as additional axioms. We say that (X1, G) implies (Y1, H), notation

(X1, G) ⇒ (Y1, H),

if there exist terms w1, . . . , wk = ~w with wi = wi(~X) such that

BPA ∪G ` X1 = w1,

and for all j = 1, . . . , k,

BPA ∪G ` wj = uj(~w).

In the case of BPA, ⇒ characterizes the preservation of solutions. This can be seen as follows: we
say that (X1, G) is preserved by (Y1, H), notation

(X1, G) � (Y1, H),

if in each model of BPA, each solution of (X1, G) is also a solution of (Y1, H). So, (X1, G) � (Y1, H)
if in each model M of BPA, say with domain M ,

∀~m ∈ Mn(M |= G(~m) ⇒ ∃~n ∈ Mk(M |= H(~n) ∧m1 = n1)).

Thus, a characterization of (X1, G) � (Y1, H) in first order logic is the following:

BPA |= ∀~X(G(~X) → ∃~Y(H(~Y) ∧ X1 = Y1)). (2.2)

4

We proceed to show that � is characterized by ⇒, i.e., to derive from (2.2) necessary and sufficient
proof obligations in equational logic. Let the symbol `fol refer to derivability in first order logic. By
the completeness of first order logic, (2.2) is equivalent with

BPA `fol ∀~X(G(~X) → ∃~Y(H(~Y) ∧ X1 = Y1)),

and thus with

BPA `fol ∀~X∃~Y(G(~X) → (H(~Y) ∧ X1 = Y1)).

Because the variables X1, . . . ,Xn do not occur in the axioms of BPA, the latter statement is equivalent
with:

BPA `fol ∃~Y(G(~X) → (H(~Y) ∧ X1 = Y1)).

The above statement is in turn equivalent with:

There exist terms w1, . . . , wk = ~w with wi = wi(~X) such that
BPA `fol G(~X) → (H(~w) ∧ X1 = w1),

and finally also equivalent with:

There exist terms w1, . . . , wk = ~w with wi = wi(~X) such that
BPA ∪G `fol H(~w) ∧ X1 = w1,

(This last equivalence follows from the Deduction Theorem on open formulae, see e.g., [17, p. 33-34].)
Now we have transformed our logical characterization of the preservation of solutions into the setting

of equational logic:

Theorem 2.2. Let (X1, G) and (Y1, H) be process definitions over BPA. Then (X1, G) � (Y1, H) iff
(X1, G) ⇒ (Y1, H).

Proof. (X1, G) � (Y1, H) iff (2.2) holds. As argued above, this is the case iff there exist terms
w1, . . . , wk = ~w with wi = wi(~X) such that G `fol H(~w) ∧ X1 = w1 is derivable from BPA ∪ G
in first order logic, which in turn is the case iff each conjunct is derivable, or in other words, iff
(X1, G) ⇒ (Y1, H). (By the completeness of first order logic and of equational logic, for any set Γ of
equations Γ ` t = u iff Γ `fol t = u.)

Implication between process definitions induces the following equivalence between process defini-
tions:

(X1, G) = (Y1, H)

if (X1, G) ⇒ (Y1, H) and (Y1, H) ⇒ (X1, G). Evidently, this is an equivalence. (We do not treat its
possible congruence property: we do not have any use for that.)

Some examples. If G = {X = X+ a+ b} and H = {Y = Y + a}, then (X, G) ⇒ (Y, H) but not vice
versa.

If G = {X1 = a ·X2, X2 = b ·X1} and H = {Y = a · b ·Y}, then (X1, G) = (Y, H), the proof of which
we leave to the reader.

The systems G = {X = a ·X} and H = {Y = a · Y · b} are incomparable: in the model with domain
Z, and with + interpreted as maximum, · as addition, and a as the value −1 and b as the value 1,
there is no solution for X and many for Y. The converse holds in case a is interpreted as 0 and b as 1.

If G = {X1 = a + X1 · a, X2 = a · X2} and H = {Y = a + Y · a}, then (X1, G) ⇒ (Y, H), but the
reverse implication does not hold. Consider the model where processes are trees with finite paths, but
possibly infinite branching, taken modulo bisimulation equivalence In this model (Y, H) has a solution
which is the class of trees representing the process

∑
i∈Nat ai+1. But G has no solutions in this model

because of its second equation, which requires an infinite path. See [2, p. 33] and [1, p. 153] for more
information about this counterexample.

3. Up to µCRL 5

3. Up to µCRL

The language µCRL [13, 12] is an extension of ACP-style process algebra with data-parametric ac-
tions, alternative composition over data domain, value-passing communication, and conditions. Fur-
thermore, recursion in µCRL allows to specify data-parametric processes by means of systems of
data-parametric process equations.

The axioms of µCRL define two sorts, booleans Bool and processes Proc, which are part of any
µCRL specification. Other data types, like natural numbers, integers, lists, queues, stacks, and domain
specific data types can be defined by algebraic specifications.

Let −→f = f1, . . . , fn be a sequence of typed function symbols f1 : −→Df1 → Proc, . . . , fn : −−→Dfn → Proc
for given data types −→Dfi , and −→d be a sequence of (typed) data variables. Then we write t(−→f ,

−→
d) for

a term t over the signature of µCRL extended with −→f , if all its free data variables are in −→d .
Let n fresh typed function symbols X1, . . . ,Xn be fixed. Then we call

G = {Xi(
−−−−−→
dXi :DXi) = ti(

−→
X ,
−→
dXi) | i = 1, . . . , n}

a system of process equations over µCRL. Each function symbol Xi is called a process name of G.
Furthermore, we call each pair (Xi(

−→
dt), G), for some appropriately typed sequence of data terms −→dt ,

a process definition. As an example, G = {X(b:Bool) = a(b) · X(¬b)} is a system of process equations,
and (X(t), G) and (X(b), G) where t stands for “true” and b is a boolean variable, both are process
definitions.

Process definitions in µCRL comprise a restricted form of recursive applicative program schemes as
defined in [5, 6]. The restrictions are that all unknowns (process names) have the same range Proc
and that there are no functions from Proc to other sorts. On the other hand, process definitions
extend recursive applicative program schemes with binders (because the sum operators of µCRL are
binders), and therefore require a more refined approach for a formal treatment, such as generalized
equational logic [11].

Let M be a model of µCRL and the data types used in G and −→t , with domains P for processes, B
for booleans and DXi for DXi . A solution of G in M is a tuple (f1, . . . , fn) of functions fi : −→DXi → P
such that for all i = 1, . . . , n

M |= fi(
−→
dXi) = ti(

−→
f ,
−→
dXi).

In this case fi(
−→
tM) is a solution of (Xi(

−→
t), G) in M.

Given G as above, let

H = {Yj(
−−−−−→
dYj :DYj) = uj(

−→
Y ,
−→
dYj) | j = 1, . . . , k}

be a fresh system of process equations over µCRL. We say that (X1(
−→
t), G) is preserved by (Y1(−→u), H),

notation

(X1(
−→
t), G) � (Y1(−→u), H),

if in each model M of µCRL and the data we have

∀−→f
((∀i M |= fi(

−→
dXi) = ti(

−→
f ,
−→
dXi)

)
=⇒

∃−→g (∀j M |= gj(
−→
dYj) = ui(−→g ,

−→
dYj) ∧ M |= f1(

−→
t) = g1(−→u)

))

where fi : −−→DXi → P and gj : −−→DYj → P .
We now define implication between process definitions in the setting of µCRL. Let the symbol `

stand for derivability in generalized equational logic. We say that (X1(
−→
dt), G) conditionally implies

(Y1(
−→
dt′), H), notation

(X1(
−→
dt), G) ⇒c (Y1(

−→
dt′), H),

6

if there exist terms wj(
−→
dYj) = wj(

−→
X ,
−→
dYj) such that

µCRL ∪DATA ∪G ` X1(
−→
dt) = w1(

−→
dt′),

and for all j = 1, . . . , k,

µCRL ∪DATA ∪G ` wj(
−→
dYj) = uj(−→w ,

−→
dYj).

Here DATA represents the specification of the data types involved in both systems and in −→
dt and−→

dt′. Furthermore, G refers to the setting where the equations in G are considered to define additional
axioms.

We continue with an example. As before, let G = {X(b:Bool) = a(b) · X(¬b)} and, with Nat a
specification of the naturals, H = {Y(n:Nat) = a(even(n)) · Y(S(n))}. We show that

(X(t), G) ⇒c (Y(0), H)

by choosing w(n) = X(even(n)). In this case we need to show that X(t) = w(0) (this follows from
even(0) = t, which we assume to be derivable from DATA) and that X(even(n)) = a(even(n)) ·
X(even(S(n))). This latter identity follows from X(b) = a(b) ·X(¬b) and the necessarily derivable data
identity even(S(n)) = ¬even(n). If we assume the existence of a function f : Bool → Nat , defined by
f(t) = 0 and f(f) = 1 (where f stands for “false”), we can also prove that

(X(b), G) ⇒c (Y(f(b)), H)

using the same term w(n) and the data identities even(f(b)) = b and even(S(f(b))) = ¬b, both of
which seem reasonable. We do not have any of the reverse implications: consider the model with
carrier set Nat , in which a(b) is interpreted as 1, and sequential composition as +. Then Y(0) has
many solutions, whereas X(t) has none.

Theorem 3.1. Let (X1(
−→
dt), G) and (Y1(

−→
dt′), H) be process definitions over µCRL. If (X1(

−→
dt), G) ⇒c

(Y1(
−→
dt′), H), then (X1(

−→
dt), G) � (Y1(

−→
dt′), H).

Proof. Let M be a model for µCRL with data theories for the data types used in G, H , −→dt , and
−→
dt′,

and let wj(
−→
dj) be such that (X1(

−→
dt), G) ⇒c (Y1(

−→
dt′), H). Now assume that G has a solution in M.

So for i = 1, . . . , n there are fi(
−→
di) such that M |= fi(

−→
di) = ti(

−→
f ,
−→
di) where fi is the interpretation

of Xi. Then, by M |= f1(
−→
dt) = w1(

−→
dt′) and M |= wj(

−→
dYj) = uj(−→w ,

−→
dYj) the theorem follows.

The question whether our definition of ⇒c is complete in the sense that it characterizes the preser-
vation of solutions (in all models) is hard to answer. In general, proof principles such as induction are
intertwined with such a question (cf. the example below).

We define conditional equivalence, notation

(X1(
−→
dt), G) =c (Y1(

−→
dt′), H),

by requiring conditional implications in both directions. Indeed, conditional equivalence is an equiv-
alence relation.

An example. Let NAT be a specification of the naturals comprising induction schemes (see e.g. [15]),
and let G and H be the following systems of equations:

G =
{

X1(n:Nat) = (a · X2(n− 1) + X1(n− 1)) � n > 0 � a,
X2(n:Nat) = a · X2(n− 1) � n > 0 � a

}

H =
{

Y1(n:Nat) = (a + Y1(n− 1) · a) � n > 0 � a,
Y2(n:Nat) = a · Y2(n− 1) � n > 0 � a

}

4. Conclusions 7

We show that (Xi(n), G) =c (Yi(n), H) for i = 1, 2. For both implications ⇒c and ⇐c we choose
the terms w1 and w2 to be trivial, namely, in the first case w1(n) = X1(n), w2(n) = X2(n), and in the
second case w1(n) = Y1(n), w2(n) = Y2(n). The proofs then reduce to showing that µCRL∪NAT∪G `
X1(n) = (a+X1(n−1)·a)�n > 0�a and µCRL∪NAT∪H ` Y1(n) = (a·Y2(n−1)+Y1(n−1))�n > 0�a.

First we show by induction on n that µCRL ∪ NAT ∪G ` a · X2(n) = X2(n) · a. The case n = 0 is
trivial. In the other case we get:

a · X2(n + 1) = a · a · X2(n) IH= a · X2(n) · a = X2(n + 1) · a

Similarly, µCRL ∪NAT ∪H ` a · Y2(n) = Y2(n) · a
Next, we show by induction on n that µCRL∪NAT ∪G ` a ·X2(n) + X1(n) = a + X1(n) · a. Again,

for n = 0 we get a · a + a in both sides. In the other case we get:

a · X2(n + 1) + X1(n + 1) = a · a · X2(n) + a · X2(n) + X1(n)

and

a + X1(n + 1) · a = a + (a · X2(n) + X1(n)) · a = a + a · X2(n) · a + X1(n) · a
= (a + X1(n) · a) + a · a · X2(n)IH= a · X2(n) + X1(n) + a · a · X2(n)
= a · a · X2(n) + a · X2(n) + X1(n)

Next, we show that a similar identity is derivable from H , namely µCRL ∪NAT ∪H ` a · Y2(n) +
Y1(n) = a + Y1(n) · a. Again, the case n = 0 is trivial, and in the other case we have:

a · Y2(n + 1) + Y1(n + 1) = a · a · Y2(n) + a + Y1(n) · a = a + a · a · Y2(n) + Y1(n) · a

and

a + Y1(n + 1) · a = a + (a + Y1(n) · a) · a IH= a + (a · Y2(n) + Y1(n)) · a
= a + a · Y2(n) · a + Y1(n) · a = a + a · a · Y2(n) + Y1(n) · a

The last two identities imply the conditional equality we are proving.
It is important to note that the equation for Y2 is not needed for the preservation of solutions. If

H ′ is the system H with only the first equation, then (Y1(n), H ′) � (Y1(n), H). This is due to the
fact that the equation for Y2 has a solution in each model of µCRL and NAT , namely the function
f : Nat → P such that f(0) = a and f(n+1) = a ·f(n). This differs with the necessity of the equation
for Y2 in the last example of Section 2.

4. Conclusions

We have defined equivalence between (recursive) process definitions over BPA, and showed that this
equivalence emerges from a logical characterization of the preservation of solutions. Furthermore,
we have presented a straightforward generalization of this equivalence to the data-parametric setting
of µCRL. The main motivation to write this paper is to show that reasoning about equality (or
implication) between solutions of systems of equations can be separated from considerations about
unique solutions. As a consequence, transformation algorithms (e.g., for tools as now are available for
µCRL) can be easily proved correct (cf. [14]).

We note that our counter examples concern models that do not satisfy the left cancellation property,
i.e.,

a · x = b · y → a = b ∧ x = y.

8

where a and b are actions. The left cancellation property holds in common process semantics.
Future work could focus on defining transformations of recursive systems in process algebras and

µCRL that preserve the equivalence or the implication defined in this paper. Such transformations
were studied in [5] in a general setting, but applying them to process algebras may be useful for
optimization and verification purposes.

Acknowledgments

We thank Bas Luttik for careful proofreading of the manuscript and useful comments.

REFERENCES 9

References

[1] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. On the consistency of Koomen’s fair abstraction
rule. Theoretical Computer Science, 51(1/2):129–176, 1987.

[2] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theoretical Computer
Science 18. Cambridge University Press, 1990.

[3] D.B. Benson and I. Guessarian. Algebraic solutions to recursion schemes. Journal of Computer
and System Sciences, 35:365–400, 1987.

[4] J.A. Bergstra, I. Bethke, and A. Ponse. Process algebra with iteration and nesting. The Computer
Journal, 37(4):243–258, 1994.

[5] B. Courcelle. Equivalences and transformations of regular systems–applications to recursive pro-
gram schemes and grammars. Theoretical Computer Science, 42:1–122, 1986.

[6] B. Courcelle. Recursive applicative program schemes. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, chapter 9, pages 459–492. Elsevier, 1990.

[7] W.J. Fokkink. Introduction to Process Algebra. Texts in Theoretical Computer Science. An
EATCS Series. Springer-Verlag, 2000.

[8] R.J. van Glabbeek. The linear time – branching time spectrum II; the semantics of se-
quential systems with silent moves. Manuscript. Preliminary version available by ftp at
ftp://boole.stanford.edu/pub/spectrum.ps.gz, 1993. Extended abstract in E. Best, edi-
tor: Proceedings CONCUR’93, 4th International Conference on Concurrency Theory, Hildesheim,
Germany, August 1993, LNCS 715, Springer, pp. 66–81.

[9] R.J. van Glabbeek. The linear time – branching time spectrum I; the semantics of
concrete, sequential processes. In J.A. Bergstra, A. Ponse, and S.A. Smolka, edi-
tors, Handbook of Process Algebra, chapter 1, pages 3–99. Elsevier, 2001. Available at
http://boole.stanford.edu/pub/spectrum1.ps.gz.

[10] J.F. Groote and B. Lisser. Computer assisted manipulation of algebraic process specifications.
Technical report, CWI, Amsterdam, To appear.

[11] J.F. Groote and S.P. Luttik. Undecidability and completeness results for process algebras with
alternative quantification over data. Report SEN-R9806, CWI, The Netherlands, July 1998.
Available from http://www.cwi.nl/∼luttik/; under revision.

[12] J.F. Groote and A. Ponse. Proof theory for µCRL: A language for processes with data. In D.J.
Andrews, J.F. Groote, and C.A. Middelburg, editors, Semantics of Specification Languages, pages
232–251. Workshop in Computing Series, Springer-Verlag, 1994.

[13] J.F. Groote and A. Ponse. The syntax and semantics of µCRL. In A. Ponse, C. Verhoef, and
S.F.M. van Vlijmen, editors, Algebra of Communicating Processes 1994, pages 26–62. Workshop
in Computing Series, Springer-Verlag, 1995.

[14] J.F. Groote, A. Ponse, and Y.S. Usenko. Linearization in parallel pCRL. Technical Report
SEN-R0019, CWI, July 2000. To appear in JLAP.

[15] J.F. Groote and J.J. van Wamel. Algebraic data types and induction in µCRL. Technical Report
P9409, University of Amsterdam, Programming Research Group, 1994.

[16] R. Milner. Communication and Concurrency. Prentice-Hall International, Englewood Cliffs,
1989.

10 REFERENCES

[17] J.R. Shoenfield. Mathematical Logic. Addison-Wesley, 1967.

