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ABSTRACT

This document describes an automated theorem prover, based on an extension of binary decision diagrams.

The prover transforms quantifier-free formulae into equivalent BDD-forms, w.r.t. to some algebraic data spec-

ification. The prover is used by four tools for the symbolic analysis of distributed systems specified in µCRL

(i.e. process algebra plus algebraic data types). The main techniques are invariants and confluence. Two case

studies are reported: the DKR leader election protocol [13], and SPLICE [5], a coordination architecture of

industrial origin. In both cases using confluence information leads to a reduced state space.
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1. Introduction

This document is an introduction to a prover supporting the analysis of distributed systems specified
in µCRL [20], and four analysis tools based on that prover. The prover is implemented as a library in
C and is meant for developers of analysis tools that need theorem prover assistance. The four tools
are meant for end-users who want to analyze a particular distributed system specified in µCRL. The
prover uses a separate component, the rewriter. Moreover, a subcomponent dealing with a many-
sorted signature for open terms can be used separately. The architecture of the system is depicted in
Figure 1. The tools (version 0.1) are distributed with the µCRL toolset (version 2.9.0).

rewriter.h

formcheck invcheck invelm confcheck

signature.h

prover.h

Figure 1: Architecture of the Tool Suite

The main functionality of the prover is to transform a formula into an equivalent binary decision
diagram (BDD) w.r.t. some algebraic data specification. The resulting BDD can be T, F, or something
different. In the first two cases, the original formula was a tautology, or a contradiction, respectively.
In the third case, we know nothing, due to the incompleteness of the prover. In that case, counter
examples and witnesses can be computed from the BDD for diagnostic purposes.

The four tools analyze and modify a µCRL specification in linear process operator format (LPO). An
LPO consists of a finite number of summands, each of which is a symbolic representation of a number
of state transitions, in terms of action, condition and effect triples. The analysis tools generate certain
formulae from an LPO, that represent invariants or confluence properties and check these formulae
by means of the prover. Depending on the result they modify the LPO accordingly.

An LPO can be used to generate the full state space. If a summand of the LPO is confluent
(i.e. commutes with all other summands), a much smaller state space can be generated [22, 19, 4].
Sometimes, invariant properties are helpful in proving confluence properties. We demonstrate the
effectiveness of the prover on confluence and invariance formulae, and the effect of this analysis on
the resulting state space, by a number of applications.

In the sequel of this paper we first shortly introduce some preliminaries, such as algebraic specifi-
cations (2.1), binary decision diagrams (2.2), and linear processes (2.4). Then we describe the library
providing the prover (3). Subsequently, the four analysis tools are described (4). Finally, some appli-
cations are described, in order to show and evaluate the applicability of the tools (5). This report is
a tutorial and a reference manual at once. The following partial readings are explicitly supported:

Objective Sections to be read
Tutorial of the tools 2, 4, 5
Tutorial of the prover 2.1, 2.2, 2.3, 3.1, 3.2
Manual of prover 2.1, 2.2, 2.3, 3
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2. Preliminaries

All tools work in the context of a µCRL specification, which consists of an algebraic data specification
and a process specification. We refer to [20, 16, 28] for a complete description of the µCRL specification
language.

2.1 Algebraic Specifications

A multi-sorted algebraic data specification consists of:

• a set of sorts,

• a set of function symbols (divided in constructor and defined symbols),

• a set of equations.

We assume familiarity with the usual rules for term formation and typing, as well as the notions of
variables, open terms and closed terms. Figure 2 contains an algebraic specification of the sorts Bool,
D and Queue in the language µCRL.

In µCRL some additional requirements and a particular interpretation are put forward. First of all,
the sort Bool is required, with T(rue) and F(alse) as its only constructors. It is assumed that T and F
are different.

There is a difference in the interpretation of constructors (functions defined as func) and defined
symbols (functions defined as map). The only assumption is that the domain for sort S is generated
by the constructors for sort S. This corresponds to the usual “no junk”-interpretation of the initial
algebra. However, opposed to the initial-algebra interpretation, it is not assumed that terms which
are not provably equal are actually different.

In particular, it is not assumed that different constructors yield unequal terms, except for T and
F. One way to specify that a and b are distinct, is to have an equation eq(a, b) = F . In combination
with reflexivity eq(x, x) = T , it follows that a 6= b. As in the µCRL linearizer, we will assume that if
a function eq:S#S -> Bool exists, then it denotes equality on sort S.

2.2 Formulae and Binary Decision Diagrams

A formula is any term of type Bool, possibly containing free variables. An example of a formula in
the signature of Figure 2 is: and(eq(x,in(D1,empty)),if(ne(x),b,not(b))), with free variables
b:Bool and x:Queue.

We define an atom to be a minimal formula different from T and F. So, given b,c:Bool and
x,y:Queue, the atoms of and(b,or(T,c)) are b, c, and and(eq(x,y),eq(x,if(ne(x),x,y))) con-
tains the atoms ne(x) and eq(x,y). In the last example, eq(x,if(ne(x),x,y)) is not an atom,
because it is not minimal.

From now on, we assume that there is some symbol if:Bool#Bool#Bool->Bool, satisfying the
following equations: if(T,x,y) = x and if(F,x,y) = y, for all x,y:Bool. We also assume that
functions with the name eq denote equality predicates.

An (extended) binary decision diagram (BDD) is defined as a finite ordered binary DAG, whose
leaves are labeled with T or F, and whose internal nodes are labeled by atoms. A BDD can be
represented as a term of sort Bool, by representing the leaves as T and F, and representing all other
nodes by a term if(atom,bdd,bdd). Such terms can be stored in maximally shared form, to get back
the DAG.

The BDDs defined above are a generalization of the BDDs introduced by Bryant [7]. The main
difference is that Bryant’s BDDs are for propositional logic, hence the only atoms allowed are boolean
variables. In [18] an extension with equality is introduced, called EQ-BDDs. Here equations between
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sort D
func D1,D2:->D
map eq:D#D->Bool

if:Bool#D#D->D
var d,d1,d2:D
rew eq(d,d)=T

if(T,d1,d2) = d1
if(F,d1,d2) = d2

sort Bool
func T,F:-> Bool
map and:Bool#Bool -> Bool

or:Bool#Bool -> Bool
not:Bool -> Bool
if:Bool#Bool#Bool->Bool

var b,c:Bool
rew and(T,b)=b

and(F,b)=F
or(T,b)=T
or(F,b)=b
not(F)=T
not(T)=F
if(T,b,c)=b
if(F,b,c)=c

sort Queue
func empty:->Queue % empty queue

in:D#Queue->Queue % add in front
map ne:Queue->Bool % non-empty

toe:Queue->D % last element
untoe:Queue->Queue % queue without last element
eq:Queue#Queue->Bool
if:Bool#Queue#Queue->Queue

var d,e:D q,q1,q2:Queue
rew ne(empty)=F

ne(in(d,q))=T
toe(in(d,empty))=d
toe(in(d,in(e,q)))=toe(in(e,q))
untoe(in(d,empty))=empty
untoe(in(d,in(e,q)))=in(d,untoe(in(e,q)))

eq(q,q) = T
eq(empty,in(d,q)) = F
eq(in(d,q),empty) = F
if(T,q1,q2) = q1
if(F,q1,q2) = q2

Figure 2: An algebraic data specification in µCRL
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variables are also allowed as atoms. This is a special case of the BDDs in this report, which arises
when eq and if are the only function symbols.

The formula and(ne(x),not(eq(x,y))), with x,y:Queue, can be represented as a BDD in the
following equivalent forms:

1. As the boolean formula: if(eq(y,x),F,if(ne(x),T,F))

2. In a picture:

ne(x)

F T

eq(y, x)

3. In a textual form, as output by the library and the tools of the following sections:

BDD: (node): atom --> (high) , (low)
------------------------------------
(0): F
(1): T
(2): ne(x) --> (1) , (0)
(3): eq(y,x) --> (0) , (2)
------------------------------------
Total number of nodes: 4

Given a model for the algebraic specification and an interpretation of the free variables in that model,
such a BDD can be evaluated to either T(rue) or F(alse). Hence a BDD can be seen as a representation
of a set of interpretations, viz. those for which it evaluates to T. In order to evaluate the BDD above
in a particular model, start in the root node (3), labeled with eq(y,x). If x = y in the model, proceed
to node 0, and the BDD evaluates to F; otherwise, if x 6= y, proceed to node 2. Now if ne(x) holds,
the BDD evaluates to T (node 1), otherwise to F.

2.3 Theorem Proving by Ordering BDDs

BDDs have been successfully applied in propositional logic. The key fact found by Bryant [7] is that
reduced ordered BDDs are unique. Here reduced means that the BDD is maximally shared, and no
superfluous tests of the form if(b,x,x) exist. A BDD is ordered w.r.t. a given total order on atoms,
if along each path in the BDD, the atoms occur in strictly increasing order. The consequence of
uniqueness of ROBDDs (reduced ordered BDDs) is that equivalence, tautology, contradiction and
satisfiability can be checked in constant time on ROBDDs. This can be applied to propositional
formulae, by transforming these into ROBDD-form w.r.t. some arbitrary order on the atoms. For
propositional logic, this method is complete, irrespective of the chosen order, but the size of the
resulting ROBDD is very sensitive to the chosen order.

In EQ-BDDs, uniqueness is spoilt: [18] gives an example of two different but equivalent ordered
EQ-BDDs. But it is shown that by imposing some conditions on the ordering between equalities,
and applying some equational laws, it is guaranteed that all paths in EQ-ROBDDs (reduced ordered
EQ-BDDs) are consistent (see [18] for details). These equational laws are that atoms of the form
eq(x,x) are forbidden, other atoms of the form eq(x,y) are oriented such that x < y in some total
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ordering on variables. Finally, in if(eq(x,y),p,q), y may not occur in p. This can be achieved by
substituting x for y in p.

As a consequence of consistent paths, the only tautological EQ-ROBDD is T, and the only contra-
dictory EQ-ROBDD is F. Tautology, satisfiability and contradiction can still be checked in constant
time, but the equivalence check is lost. For EQ-BDDs this still gives a complete decision method for
tautology, contradiction and satisfiability.

Moreover, in case the formula is not a tautology or a contradiction, one can compute a counterex-
ample and a witness by finding any path in the resulting EQ-ROBDD from the root to the F and T
leaves, respectively. For both paths there exists a model, because all paths are satisfiable. Now the
path to the F leaf can be seen as a counterexample that the formula always holds, and the path to the
T leaf can be seen as a witness that the formula sometimes holds.

In this document, EQ-BDDs are extended by allowing arbitrary function (and relation) symbols,
restricting their interpretation by an algebraic data specification. To this specification, we associate a
term rewriting system (TRS), by orienting the rules of the algebraic specification. Besides the restric-
tions on EQ-ROBDDs, we additionally add the requirement that all atoms in an ordered extended
BDD are in normal form w.r.t. to the TRS.

At this moment we can only provide experimental support for these extended BDDs, and this notion
of ordering. In particular, we have no proof that ordered extended BDDs always exist. Moreover,
the paths in these ordered extended BDDs are not always satisfiable. As a consequence, the method
is not complete for tautology checking. This shouldn’t come as a surprise, because this problem is
already undecidable for equations over arbitrary equational theories (known as the word problem).
But the method is sound, in the sense that if the resulting BDD is T or F, then the original formula
is indeed tautological or contradictory, respectively. So we have a sound algorithm for tautology and
contradiction checking.

As a consequence of the lack of completeness, we don’t provide a sound satisfiability check. The
witnesses and counterexamples for ordered extended BDDs may be invalid, because there may not
exist a model in which they hold. However, if there is such a model in which the counter example
holds, then this model makes the whole formula false.

2.4 Process Specifications and Linear Process Operators

In the process part of a µCRL specification, several components can be defined by recursive equations.
The main operators are +,

∑
(non-deterministic choice), · (sequential composition), / b . (test on

boolean). The system is composed by parallel composition (||), and hiding/encapsulating internal
behaviour (∂,τ). As an example, Figure 3 shows the process specification of two communicating
unbounded queues.

In the µCRL toolset [28], a specification will first be linearized. Linearization typically extends
the data specification, and transforms the process specification to an LPO (linear process operator).
We refer to [28] for an introduction to linearization, and to [21] for a theoretical description and
justification. The LPO connected to this example, as generated by the µCRL toolset can be found in
Figure 4. It can be reproduced by the following two commands, for linearization and pretty printing:

> mcrl -tbfile -regular queue
> pp queue.tbf

After linearization, the process specification becomes a single recursive specification with the following
components:

• a state vector (a list of variables with their sorts);

• a list of summands, each consisting of:

– a list of local variables with their sorts,
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act r,s,r’,s’,c:D
comm s’ | r’ = c
proc Q(q:Queue)=

sum(d:D, r(d) . Q(in(d,q)))
+ s(toe(q)).Q(untoe(q)) <| ne(q) |> delta

Q1 = rename({s->s’},Q(empty))
Q2 = rename({r->r’},Q(empty))
Q = hide({c}, encap({s’,r’}, Q1 || Q2))

init Q

Q1 Q2

Q

sr s′ r′
c

τ

=

|

Figure 3: Process specification of parallel queues

proc X(q:Queue,q0:Queue) =

sum(d:D,r1(d).
X(in(d,q),q0) <| T |> delta)+

s2(toe(q0)).
X(q,untoe(q0)) <| ne(q0) |> delta+

tau.
X(untoe(q),in(toe(q),q0)) <| and(ne(q),T) |> delta

init X(empty,empty)

Figure 4: LPO generated for the parallel queues
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– an action name,

– a list of action parameters,

– a next state vector,

– a condition;

• and an initial state (a list of data terms of the right sorts).

A common naming convention for LPOs is as follows:

X(d : D) = . . .+
∑
ei:Ei

ai(fi(d, ei)).X(gi(d, ei)) / bi(d, ei) . δ + . . .

with state vector d : D, and an i-th summand for the action with (port) name ai, local variables
ei : Ei, action label fi(d, ei), next state gi(d, ei) : D and condition bi(d, ei) : Bool. The intended
meaning is that in state d, the i-th summand can be executed if there exists some ei : Ei such that
bi(d, ei) holds. In this case, the executed action will be ai(fi(d, ei)) and the next state will be gi(d, ei).

Remarks:

1. In principle, LPOs can have terminating summands, where the next state is missing. Like the
existing tools in the toolset, the tools reported in this document neglect this possibility.

2. On default, the linearizer applies so-called clustering of summands by default. The algorithm
for this introduces new enumerated sorts. The prover doesn’t perform case splits on these sorts,
so it will miss a number of obvious conclusions. This can be easily solved by providing one of
the following options to mcrl:

• -nocluster: this avoids clustering at all.

• -binary: this does clustering, but uses boolean encodings instead of enumerated sorts.

So the “favourite” call to the linearizer becomes mcrl -tbfile -regular2 -binary spec file.

3. Description of the Prover

The main functionality of the prover is to transform a formula into an equivalent BDD according to
some algebraic data specification.

3.1 Assumptions on Data Specification

The prover makes some assumptions on the data specification, that the user has to obey. These are
the following:

1. The user must specify the following boolean functions, with their usual meaning:

• and:Bool#Bool->Bool

• or:Bool#Bool->Bool

• not:Bool->Bool

2. The user must specify some function with type Bool#Bool#Bool->Bool. It is assumed by the
prover that this function denotes the if-then-else function. Sometimes this function is called if,
or, in automatically generated specifications, C2-Bool. Use option -sig-verbose to see which
function symbol is taken as if-then-else.
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3. All functions with the name eq, and only these, are treated as semantic equality. They should
denote the identity-relation in the intended model. The prover implicitly uses reflexivity and
symmetry laws, and the substitution rule for eq-symbols, even when not present in the original
specification.

It is easy to construct specifications that don’t satisfy these requirements. Especially, it can not be
checked whether the intended interpretation of eq is the equality predicate. If this is not the case, the
prover will give wrong answers. The presence of the boolean connectives is checked, but it is currently
not checked whether the rewrite rules for them respect the intended meaning.

3.2 Interface of the Prover

The µCRL toolset implements data terms as ATerms, defined in the ATerm-library [6]. This C-library
implements terms, featuring maximal sharing and automatic garbage collection and it also provides
hash tables indexed by ATerms. The ATerm data structure is also used for other data structures in
the µCRL toolset, such as (lists of) variable declarations, signatures, data specifications and even a
whole linearized specification is represented as a single ATerm.

Because ATerms are present everywhere, the ATerm interface must be included before the prover
interface can be included. Similarly, the ATerm library must be initialized before the prover library
can be initialized.

The most important functions provided by the prover are stated below. The prover is initialized
once with a certain data type; this must be the first call to the prover. Free variables can be declared
incrementally. The prover can transform formulae into BDD-form, where the formulae are constructed
from previously declared variables, and function symbols from the data type.

void Init_prover(ATerm datatype,int argc, char *argv[]);
void Declare_vars(ATermList vars);
ATerm Prove(ATerm formula);
ATerm Simplify(ATerm term);

Init prover: initializes the prover with a certain datatype, and passes the options from the UNIX
command line to the prover. It automatically calls RWinitialiseRewriter and Init signature.
The ATerm library must be initialized before initializing the prover. Re-initialization of the prover
is not intended, although it might work as expected, except causing memory leaks.

The datatype specification is conform the current µCRL toolset (version 2.9.0), i.e. an ATerm of the
form d(<signature>, <equations>), where the signature is of the form s(<sorts>,<funcs>,<maps>)
and the equations are a list of items of the form e(<vars>,<lhs>,<rhs>).

The prover recognizes the following options from argv, mainly useful for debugging purposes:

-pr-test writes all case splits (tedious for large examples)
-pr-statistics collects and writes statistic information to stderr
-pr-verbose reports information on the number of iterations to stderr
-pr-print prints the intermediate BDDs after each iteration to stderr

Declare vars: is used to declare new free variables. Its argument is an ATermList of the form
[v(v1,S1), . . . ,v(vn,Sn),], where vi are variable names with sorts Si, respectively. Si must be
declared as sorts in the data type, and the variable names must not coincide with constants from the
data specification. A variable may be redeclared with a different sort, in which case the old declaration
is overwritten.
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Prove: is used to transform formulae into BDD-form. when Prove(formula) terminates, it yields
an equivalent formula in BDD form. The argument is any term of type Bool, possibly containing free
variables, which should have been declared with Declare vars.

Simplify: is used to simplify a formula by means of rewriting. At the moment it just calls
RWrewrite of the rewriter with the full specification, but this might change in future versions, by
applying only simplifying rules.

The library provides the following functions to inspect a BDD. Their first argument is a BDD,
typically constructed by Prove. The last argument is the file where the output is written:

void print_BDD(ATerm bdd, FILE*);
void count_BDD(ATerm bdd, FILE*);
void print_example(ATerm bdd,ATerm polarity,FILE*);

The first prints a BDD, in a format which is linear to the shared size of the BDD. The second function
counts and reports the size of a BDD. In print example, the polarity is T or F, and this function writes
some path from the root of the BDD to the leaf indicated by polarity (i.e. either a counterexample or
a witness).

Remark. All mentioned functions use terms and declarations in internal toolset format. This
format can be created and inspected by the parse- and prettyprint-functions of signature.h.

3.2.1 signature.h

The representation of µCRL data terms by ATerms is not completely straightforward, for instance
due to the fact that µCRL allows overloading. The details of this representation are encapsulated in
the interface signature.h. Its implementation depends on the so-called 2nd-generation format of the
µCRL toolset (version 2.9.0).

This interface should be seen as a part of the interface of the prover. Figure 5 lists this interface.
Note that Declare vars is in fact part of signature.h.

First, there is the initialization Init signature, which is called automatically by Init prover; so
it is only needed when signature.h is used as a separate component. The following option, from
the command-line is recognized by signature and can be used to find out the designated if-then-else
symbol:

-sig-verbose writes info to stderr

The signature is initialized once, and free variables can be declared incrementally (see the previous
section). Several functions for constructing terms and retrieving information from them are provided.
They all work in the context of the initial signature and the current set of declared variables.

The functions that retrieve information on the head symbol of a term are:

• Sort of returns the sort of a symbol

• Is var, Is func and Is map find out whether the head symbol of their argument is a variable,
constructor, or defined symbol, respectively. If so, they return the sort of their argument;
otherwise they return NULL.

• Is eq and Is ite find out whether the symbol is an equality function or the designated if-then-
else symbol, respectively. They return 0 (false) or 1 (true).
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void Init_signature(ATerm signature, int argc,char *argv[]);
void Declare_vars(ATermList vars);

ATerm Sort_of(ATerm t);
ATerm Is_var(ATerm t);
ATerm Is_func(ATerm t);
ATerm Is_map(ATerm t);
char Is_eq(ATerm t);
char Is_ite(ATerm t);

ATerm prettyprint(ATerm t);
ATerm parse(ATerm t);
ATermList prettyprint_decls(ATermList t);
ATermList parse_decls(ATermList t);

extern ATerm TRUE;
extern ATerm FALSE;
extern ATerm BOOL;

ATerm EQ(ATerm t, ATerm s);
ATerm AND(ATerm t, ATerm s);
ATerm OR(ATerm t, ATerm s);
ATerm IMPLIES(ATerm t, ATerm s);
ATerm NOT(ATerm t);
ATerm ITE(ATerm e, ATerm high, ATerm low);

ATermList generate_reflexivities();

Figure 5: Interface signature.h

Also some functions to convert terms and variable declarations from input format to internal for-
mat are provided. As an example, the external representation and(b,eq(x,y)) has as its internal
counterpart: "and#Bool#Bool"("b#","eq#Queue#Queue"("x#","y#")). Now prettyprint trans-
forms a term from internal to external format, and parse transforms the other way around. The
prettyprint decls and parse decls provide the same functionality on variable declarations.

The sort Bool and its constants, and functions for formula formation are provided. Here the
EQ-function takes into account the type of its arguments. ITE is the boolean if-then-else found at
initialization.

Finally, a list of reflexivity axioms of the form e([v(x,sort)],eq(x,x),T), for each equality symbol
eq:sort#sort->Bool can be generated. These rules are needed by the prover.

Remark. Currently, functions to construct signatures, variable declarations, and arbitrary function
applications are missing. Such a library should be designed for the whole toolset, not just for the
prover.

3.3 Algorithm

We now sketch the algorithm to construct a binary decision diagram from a formula, which is an
extension of the algorithm in [18]. The main idea is to create the if-then-else structure by repeated
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case splitting. The goal is to generate an ordered BDD (see Section 2.3), which is achieved by doing
the case-splits in a certain order. Moreover, we require the atoms to be in normal form w.r.t. the TRS
associated to the algebraic data type. The actual order on atoms and terms, and the strategy used for
term rewriting are parameters of the main algorithm. These issues will be dealt with in subsequent
sections.

Given a formula Φ, it is first normalized according to the rewrite system associated with the current
data specification, and the equations occurring in Φ are oriented such that in eq(s,t), s < t in a
given term ordering. It is assumed that the TRS rewrites every closed formula to T or F, and that it
has at least the following rules:

if(T,x,y) = x
if(F,x,y) = y
eq(x,x) = T

Moreover, we orient equations, such that eq(t,s) rewrites to eq(s,t) for all s < t.
The result of rewriting and orienting is called Φ↓. Let A be the smallest atom occurring in Φ↓, in

the given ordering on atoms. A will be a good candidate for the root of the ordered BDD. Next, two
new formulae are formed, Φ↓|A and Φ↓|¬A. Basically, these are obtained by replacing A in Φ↓ by T
and F, respectively. However, if A is of the form eq(s, t), Φ↓|A is obtained by replacing t by s. The
resulting formulae Φ↓|A and Φ↓|¬A are recursively transformed into BDDs B1 and B2. If B1 = B2,
the test A was redundant. So the complete algorithm becomes:

BDD(Φ) = ITE (A,B1, B2),

where

A = the smallest atom in Φ↓,
B1 = BDD(Φ↓|A)
B2 = BDD(Φ↓|¬A)
Ψ↓ = The normal form of Ψ in the TRS, with equations eq(s,t) oriented such that s < t.

ITE (A,B,C) =
{
B if B = C
if (A,B,C) otherwise

In fact, due to the substitution in case A is an equation, new atoms can emerge, which may be even
smaller than A. As a consequence, the resulting BDD is not always ordered. Therefore, the function
BDD() is repeated, until a fixed point is reached. In most cases, this fixed point is reached in a small
number of iterations, typically 1 or 2. For EQ-BDDs termination is guaranteed. Note that BDD(Φ)
is a formula itself, so BDD(BDD(Φ)) is well-defined.

The algorithm only replaces subterms by equal subterms, so the resulting BDD is always logically
equivalent to the original formula w.r.t. the algebraic specification. (Strictly speaking: enhanced with
reflexivity, symmetry, transitivity, congruence rules for eq-symbols, and case splits on booleans).

3.4 Ordering

A parameter of the algorithm above is the ordering on atoms and terms. The particular order influences
completeness, but it doesn’t influence soundness of the prover. We found some effective ordering
by experimentation. No theoretical completeness result exists until now. In particular, choosing a
different ordering influences both completeness and termination of the algorithm. We now describe
the orderings currently used in the prover in detail.

3.4.1 Ordering on atoms

This ordering is built from a number of different partial orders. Below we list these orders. They are
tried in sequence, until one of them applies. More formally, given >1 and >2, their combination is
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defined as:

s >1 t ∨ (s 6>1 t ∧ t 6>1 s ∧ s >2 t)

In fact this is only well-defined if the constituent orders are total preorders.

1. By type: boolean variables are smaller than equations between variables, which are smaller than
other equations, which are smaller than other boolean terms.

2. Equality eq(a, b) is smaller than equality eq(c, d), if either a < c in the term ordering, or a = c
and b < d in the term ordering.
THIS FEATURE IS CURRENTLY COMMENTED OUT IN THE PROVER. (See Section 3.4.3).

3. By address: s < t if s viewed as ATerm-address is smaller than t as ATerm-address. Note that
pointer comparison on terms is possible due to maximal sharing and because the ATerm garbage
collector never relocates a term.

3.4.2 Ordering on terms

This is also a sequential combination of the following sub-orderings:

1. By subterm: t < s if t is a subterm of s.

2. By type: terms starting with a constructor (func) are smaller than terms starting with a defined
symbol (map), which are smaller than variables.

3. By address: s < t if the ATerm-address of s is the smallest.

This ordering on terms is used to orient a single equality. An equality is ordered, if the right-hand side
is greater than the left-hand side. Such an equality is always used from right to left, so in substitutions,
the greater term is replaced by the smaller.

There is a problem, as the subterm-ordering is not a total preorder. So in fact it the smallest exten-
sion of the subterm-ordering should be taken, which in fact orders terms by depth. As a consequence
this relation is not transitive (which is not problematic for orienting equations). If the lexicographic
combination wasn’t commented out, the term ordering would also be used in comparing two equalities,
which would be problematic. We view a neat treatment of this ordering as future work.

3.4.3 Rationale

This section gives a motivation for the chosen orderings. It is mainly based on experiments, and we
have no fundamental results yet, except [18] in the case of EQ-BDDs.

Subterm. Consider the equation eq(f(x), x). This would be used to replace all x’s by f(x), which
doesn’t terminate. So the desired orientation is eq(x, f(x)). Hence f(x) must be bigger than x. For
termination, the subterm ordering must also be the first check in the list of orderings.

In combination with the lexicographic ordering on equations, this has another nice effect: Consider
equations eq(s, t) and eq(s, C[t]). Since t < C[t], also eq(s, t) < eq(s, C[t]). So eq(s, t) occurs above
eq(s, C[t]), and a substitution gives rise to eq(s, C[s]), which rewrites to false for many contexts C[].

Variables bigger than other terms. Substituting a closed term for a variable in a formula
eliminates that variable, which makes the formula smaller in some sense. Because the formula becomes
more specific, new rewrite rules may match. Typically, if x is replaced by 0 in some formula, some
more rewrite rules are applicable. Consider as an example: x = 0 → y + x = y. Replacing x by 0
triggers the rule y + 0 = y.
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Distinction constructor/defined symbols. In order to find inconsistencies like length(l)=2
∧ length(l)=3, we want to replace length(l) (defined) by 2 or 3 (constructor). So we orient it like
2=length(l) ∧ 3=length(l). After substitution we get 2=3, which probably reduces to F. This is
based on the observation that in many specifications different constructors yield unequal terms.

Furthermore, many rewrite rules match on constructors, so replacing a map by a func probably fires
some rewrite rule.

Lexicographic ordering of Equalities. Ordering equalities lexicographically is motivated by [18],
where completeness is shown in case equality is the only function symbol. Turning this off can have
bad results, like in: []=l --> []=untoe(in(d,l)). In order to use the equality []=l, it must occur
above (i.e. be smaller than) []=untoe(in(d,l)).

However, the lexicographic ordering can have bad effects on efficiency for certain formulae, that
frequently occur as invariants. Consider a formula of the following shape:

(0 = x ∨ 1 = x) ∧ (0 = y ∨ 1 = y) ∧ (0 = z ∨ 1 = z) ∧ . . .

Now, if 0 < 1 and x < y < z, the lexicographic ordering on these guards is:

0 = x < 0 = y < 0 = z < 1 = x < 1 = y < 1 = z < . . .

This is exactly the ordering in which the formula above has an exponential BDD! There is a much
more efficient ordering, which yields a linear BDD:

0 = x < 1 = x < 0 = y < 1 = y < 0 = z < 1 = z < . . .

For this reason, the lexicographic ordering on terms is NOT implemented in the current prover.
This makes the prover quicker on a number of examples. The unfortunate effect is that the prover is
not complete even when we only have equality as a function symbol.

ATerm addresses. In the end we need a total ordering. The address where a term is stored is
unique during a run of the program, and it is easy to compute. Using addresses makes the application
sensitive to small changes, like the chosen platform (sgi/i686/sun), or small changes in the formulae.
The recursive path ordering over the textual order of function declarations in the specification may
be a good alternative, which is currently not implemented.

3.5 Rewriter

3.5.1 Characteristics

The prover uses its own rewriter, and not the rewriter that was available in the µCRL toolset (librw).
Compared to librw the new rewriter has the following characteristics:

• It is an interpreter:

+ it has a quick startup;

+ it is easy to add new rules on the fly (this is currently not used);

– on the long run it is slower per step than a compiler.

• It uses hashing (memoization): old rewrite results are kept:

+ This is essential for highly shared terms, such as BDDs;

– This could result in unpredictably high memory demands.
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• It uses a left-sequential strategy:

+ this gives a better termination behaviour, especially for if-then-else terms.

The last reason was regarded important enough to construct a new rewriter. In this strategy, it is first
determined which arguments are needed by each rule (due to matching or non-left-linearities). Then,
given a term, its arguments are evaluated from left to right in principal, but a rewrite rule is tried as
soon as its needed arguments are normalized. See [27] for a complete description and justification of
this strategy. Here we explain it with an example:

if(T,x,y) = x
if(F,x,y) = y
and(F,x) = F
and(T,x) = x

In order to normalize if(b,s,t), the left-sequential strategy first rewrites b. In case this rewrites to
T, s is rewritten and the result will be returned, avoiding steps in t. If b rewrites to F, only t will
be rewritten and the result will be returned, avoiding steps in s. Only in case b might normalize to
some b’ different from T or F (probably since it is an open term), both s and t are rewritten, and the
answer if(b’,s’,t’) is returned. Similarly, if the first argument of a conjunction rewrites to F, the
right argument will not be normalized.

Besides saving a number of rewrite steps, this strategy allows rules of the following form:

div(x,y) = if(gt(y,x),0,1+div(minus(x,y),y))

which is non-terminating with innermost rewriting, but terminating on closed terms with left-sequential
rewriting, provided standard definitions of gt and minus are given.

3.5.2 Interface

Currently, rewriter.h provides the following interface:

int RWinitialiseRewriter(ATerm datatype, long rewritelimit, int casefunctions);
ATerm RWrewrite(ATerm t);
ATermList RWrewriteList(ATermList l);
void RWflush();

The rewritelimit and the casefunctions-switch are not used, but provided for compatibility with
librw. RWflush() can be used to explicitly empty the hash-table used for memoization, in case
memory-usage becomes too high. This is currently done by the prover after each call to Prove. Other
functions of librw, such as those connected to substitutions, are not implemented by the rewriter.

4. Description of the Tool Suite

The tool suite currently consists of four tools:

formcheck Check a formula in a data specification
invcheck Check an invariant for an LPO
invelm Simplify an LPO by using an invariant
confcheck Find confluent τ -summands

In the next sections, a description of these tools follows. For all tools, we give a short description,
explain the possible options, and give a number of examples. These examples have been tested in the
µCRL toolset version 2.9.0. Finally, we give an overview of the error messages in Section 4.5.
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4.1 Checking a Formula: formcheck

This tools checks whether a certain formula is true in a given data specification.

4.1.1 Usage

formcheck [-formula file] [-spec file.tbf] [options]

At least one of the -formula or -spec arguments is required. If only one is given, the other input
stream defaults to stdin. The following options are recognized:

-print prints the resulting BDDs
-counter prints counterexamples
-witness prints witness for the formulae
-version prints the version number
-help prints a help message

The formula file should contain an alternating list of variable declarations and formulae. A variable
declaration is of the form [v(v1, S1), . . . ,v(vn, Sn)], where each Si is a sort in the data type, and
the vi are variable names. The formulae are terms of type Bool, whose free variables should be
declared in the preceding variable declaration. The specification file.tbf should contain a linearized
µCRL specification. Only the data part of file.tbf is used. A report is written to stderr.

4.1.2 Description

This tool checks each formula in the formula file, by transforming it into an ordered BDD. It reports
for each formula a True, False or Don’t know message. The first two messages are generated when
the resulting BDD is T or F. Unlike in propositional BDDs, or in EQ-BDDs, a non-terminal BDD
doesn’t imply that the formula is satisfiable.

In case of a Don’t know answer, the resulting BDD can be inspected. With -print the BDD
is printed, which is not recommended for large BDDs, although the output is linear in the shared
size of the BDD. In larger cases -counter can be used, which prints a single counterexample to the
formula, that can be used for diagnostic purposes. The counterexample is a path in the BDD leading
to F, consisting of atoms and negated atoms. It is guaranteed that the original formula is false in
a model where all elements of the counterexample hold. However, it is not guaranteed that some
model of the counterexample exists. Such counterexamples (“false negatives”) are manifestations of
the incompleteness of the prover. Similarly, -witness prints a path to the T node.

4.1.3 Limitations

The tool has all limitations of the prover, see Section 3. To mention a few: it is not complete,
doesn’t apply induction and might not terminate. (The problem is undecidable anyway). Due to
incompleteness, counterexamples may be invalid. Possible reactions to a counterexample are: change
the formula or add laws to the specification.

4.1.4 Examples

Given the specification of D, Bool and Queue of Figure 2, the formula file can have the following form:

[[v(q,Queue),v(d,D)],
or(not(eq(q,empty)),eq(untoe(in(d,q)),empty)),
[v(d,D),v(e,D),v(f,D)],
or(not(or(eq(d,e),eq(d,f))),eq(toe(in(d,empty)),e))]
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The following dialogue is possible, where > denotes the prompt.

> formcheck -spec queue.tbf -formula form
1: True
2: Don’t know
> formcheck -counter -spec queue.tbf -formula form
1: True
2: Don’t know

FALSE SITUATION:
not(eq(d,e))
eq(d,f)
F

Here in the Don’t know case, a counterexample is printed. The counterexample prints one of the
paths to F. We see that the formula doesn’t hold in case d = f and d 6= e. It is easy to construct a
model for this situation, so we know that the formula is not valid.

4.2 Checking an Invariant: invcheck

invcheck checks whether a formula is an invariant of an LPO.

4.2.1 Usage

invcheck -invariant file [options]

The following options are recognized:

-generate generates formulae to stdout, without checking them
-all doesn’t terminate as soon as an invariant-violation is found
-verbose indicates to stderr for which summands the invariant holds
-print prints the resulting BDDs
-counter prints counterexamples
-version prints the version number
-help prints a help message

When -generate is absent, -verbose is turned on automatically, otherwise there would be no output
at all. Furthermore, -generate cannot be used in combination with -print or -counter.

This tool reads an LPO from stdin, and a conjectured invariant from file. This file should contain
exactly one formula, i.e. a term of type Bool. The formula may contain the parameters of the LPO as
free variables, but no other variables. invcheck reports on stderr for which summands the invariant
holds.

4.2.2 Description

This tool tries to prove that a given formula is an invariant of the LPO. Let the LPO be given by the
following summands

X(d : D) =
∑
i∈I

∑
ei:Ei

ai(fi(d, ei)).X(gi(d, ei)) / bi(d, ei) . δ

Let the initial state be init, and the formula be Φ(d). Then this tool tries to prove Φ(init) and for
all i ∈ I, the universal closure of Φ(d) ∧ bi(d, ei) → Φ(gi(d, ei)). The first proves that the invariant
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initially holds, the second that it is preserved by all transitions. The applicability of invariants to
LPOs dates back to [2].

As output to stderr, the tool indicates whether the initial state and which summands satisfy the
invariant. The tool terminates as soon as a counterexample is found, unless the -all flag is given.
The counterexample can be inspected by the -print or -counter options.

When -generate is on, invcheck doesn’t check the invariance formulae, but merely generates and
writes them to stdout, in the format understood by formcheck (Section 4.1). The main reason
is that the formula could be translated and submitted to other theorem provers, like PVS [25] or
Isabelle/HOL [26]. Note that this also requires a translation of the data specification.

In default operation the prover is called directly from within invcheck for the following reasons:
first, the file with all formulae can be very large because the textual representation has no subterm
sharing, and second, invcheck can stop as soon as a non-conforming summand has been found.

On default, invcheck terminates as soon as a summand is detected that doesn’t preserve the
invariant. With the flag -all the tool continues for the other summands. This is useful if one wants
to see which summands violate the invariant, or if one desires counterexamples for all summands.

4.2.3 Limitations

Besides the limitations of the prover, it should be noted that invcheck doesn’t perform induction
loading. The invariant should hold “as is”. Invariants that need a simultaneous induction proof
should be put in conjunction in one formula-file. Furthermore, it is not possible to express invariants
containing quantifiers. These can often be avoided by adding more functions to the specification. For
instance, the invariant on list L: ∀l. l ∈ L→ l < 5 could be replaced by max(L) < 5, after specifying
the function max which returns the maximum value in a list.

4.2.4 Examples

Consider the specification of the queues in Figures 2 and 3. Notice that the LPO (Figure 4) has
parameters q and q0. We now try to prove the wrong statement that q0 is always empty, so we put
the formula eq(q0,empty) in the file queue inv. Then we get the following dialogue:

> mcrl -regular -tbfile queue
> invcheck -counter -invariant queue_inv < queue.tbf
Init OK ..X
No! (summand 3 violates invariant)

FALSE SITUATION:
eq(empty,q0)
ne(q)
F

First the specification is linearized (mcrl). Then the invariant is checked. It holds initially, and it is
preserved by the first two summands, but not by the third one. The counterexample is valid. It shows
exactly under which conditions the invariant is violated.

Below an alternative dialogue is given, where the formulae are first generated by invcheck, and
then checked by formcheck and a diagnostic BDD is required. Note that in this case formcheck finds
the formulae on stdin.

> mcrl -regular -tbfile queue
> invcheck -generate -invariant queue_inv < queue.tbf | \

formcheck -print -spec queue.tbf
1: True
2: True
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3: True
4: Don’t know

BDD: (node): atom --> (high) , (low)
------------------------------------
(0): F
(1): T
(2): ne(q) --> (0) , (1)
(3): eq(empty,q0) --> (2) , (1)
------------------------------------
Total number of nodes: 4

This shows that the counterexample above was the only branch to the F leaf.

4.3 Simplification using Invariants: invelm

This tool uses an invariant to eliminate unreachable summands. It can also be used to transform the
guards into BDD-form.

4.3.1 Usage

invelm [options]

The following options are recognized:

-invariant file an invariant is used, but NOT checked
-simplify rewrites guards into simplified form
-summand <n> only eliminates/simplifies the n’th summand
-witness provides a witness for summands that seem to be reachable
-silent no output on stderr
-version prints the version number
-help prints a help message

This tool reads an LPO from stdin and writes an LPO to stdout. It optionally reads a formula
from an invariant-file. This formula should be a term of type Bool in the signature of the input LPO,
which may contain parameters of the LPO as free variables, but no other free variables. It is assumed
that this formula is an invariant of the LPO.

If -invariant is missing, it is set to T(rue) by default. This is especially useful with the flag
-simplify.

4.3.2 Description

When the guard of some summand is false, it will never be executed. But even when the guard of a
summand is satisfiable, it might happen that all states where the guard holds are unreachable. Such
a summand will never be executed either. Given an invariant Φ, approximating the set of reachable
states, invcheck can eliminate such summands. Given an LPO

X(d : D) =
∑
i∈I

∑
ei:Ei

ai(fi(d, ei)).X(gi(d, ei)) / bi(d, ei) . δ

and an invariant Φ, it removes all summands i such that Φ(d) ∧ bi(d, ei) is provably equivalent to F.
If the guard is different from F, it is kept unaltered, except when the -simplify option is used. In

that case, the condition bi(d, ei) is replaced by the BDD of Φ(d) ∧ bi(d, ei). This might be useful, for
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instance, if by the invariant a certain parameter has some constant value. After invelm -simplify,
constelm [17] will detect this fact and replace this parameter by that constant value. In the case of a
vacuous invariant, invelm -simplify just transforms all guards of an LPO into BDD-form, removing
all summands with unsatisfiable guards. With -summand <n> the operation can be restricted to a
single summand.

Remark. Note that it is not checked whether the provided invariant actually holds. Application
of invelm is only sound after checking the invariant, for instance by using invcheck (Section 4.2).

4.3.3 Limitations

This tool is incomplete, because the invariant might also be true for some unreachable states. Even
with an appropriate invariant, the prover might not find the contradiction, which can be inspected by
using -witness.

4.3.4 Examples

In the queue-example, none of the summands can be removed without changing the behaviour of the
system. We can however show the danger of using the invalid invariant eq(q0,empty):

> invelm -invariant queue_inv < queue.tbf > /dev/null
.
summand 2 removed.

The false invariant contradicts the guard of the second summand (Figure 4). So invelm removes this
summand. See Section 5.2 for a useful application of invelm.

4.4 Checking Confluence: confcheck

This tool checks which τ -summands are confluent w.r.t. all other summands, and marks these on
request.

4.4.1 Usage

confcheck [options]

The following options are recognized

-mark writes LPO, marking confluent tau-summands as ctau to stdout
-generate generates formulae without checking to stdout
-invariant file the formula in file is used as invariant
-summand <n> checks confluence of n’th summand only (should be a tau)
-all doesn’t terminate on detection of the first non-confluence
-silent suppresses information on confluent taus to stderr
-print prints resulting BDDs
-counter prints counterexamples
-version prints the version number
-help prints a help message

-silent may only be present in combination with -mark or -generate, otherwise there is no output
at all. Furthermore, -generate and -mark cannot be used together, because confcheck cannot know
which summands to mark if it doesn’t check the formulae itself. Finally, -generate together with
-counter or -print is meaningless.
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This tool reads a linearized µCRL specification from stdin. It is assumed that for all parameter
sorts of the LPO an eq-symbol is declared and defined to be real equality. On request, confcheck
writes an LPO to stdout. It optionally reads an invariant from the invariant-file; this should be a
term of type Bool, whose free variables are among the LPO parameters. Information on confluent
τ -summands is written to stderr, unless -silent.

4.4.2 Description

confcheck checks which τ -summands are confluent. Optionally, with -generate it only generates the
required formulae, to be checked by another prover. With -mark it outputs the same LPO, replacing
the confluent tau-summands by ctau. This information can be used by a state space generator,
see [4] and the applications in Section 5. Finally, invariants can be used (by -invariant) in order
to facilitate theorem proving. These invariants must be checked separately, for instance by invcheck
(see Section 4.2).

In default operation, confcheck terminates for each tau-summand, as soon as another summand is
detected which is not confluent with the former. With the -all flag, confcheck will continue, which
is useful if one wants to know all summands that a certain tau-summand doesn’t commute with. With
-summand n the operation can be restricted to a single summand.

Confluence was introduced in the LPO-setting in [22]. In [19], partial confluence was introduced,
and used as a reduction technique on state graphs. Next, [4] considered partial confluence at LPO
level, in the sense that each τ -summand can be either confluent or not. There also a method is
described, to use confluence information during the generation of state spaces, resulting in smaller,
but still branching bisimilar, state spaces. Given an LPO,

X(d : D) = . . .
+

∑
ei:Ei

ai(fi(d, ei)).X(gi(d, ei)) / bi(d, ei) . δ
+ . . .
+

∑
ej :Ej

τ.X(gj(d, ej)) / bj(d, ej) . δ
+ . . .

τ -summand j is called confluent, if it commutes with all summands i (including j), see Figure 6. We
approximate this by the following formula: for all i ∈ I, and ∀d : D.∀ei : Ei.∀ej : Ej , Inv(d)

∧ bi(d, ei)
∧ bj(d, ej)

→


bi(gj(d, ej), ei)
∧ bj(gi(d, ei), ej)
∧ eq(fi(d, ei), fi(gj(d, ej), ei))
∧ eq(gi(gj(d, ej), ei), gj(gi(d, ei), ej))


If ai happens to be τ itself, this formula can even be weakened to the following:

 Inv(d)
∧ bi(d, ei)
∧ bj(d, ej)

→


eq(gi(d, ei), gj(d, ej))
∨

(
bi(gj(d, ej), ei)

∧ bj(gi(d, ei), ej)
∧ eq(gi(gj(d, ej), ei), gj(gi(d, ei), ej))

)


The situation is depicted in Figure 6, where the nodes denote states and the arrows transitions,
labeled with action/condition pairs.

4.4.3 Limitations

First, confcheck uses eq symbols for all parameters occurring in the state vector, so these should be
declared and specified by the user. It is assumed that these symbols denote equality.
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τ / bi(d, ei)ai(fi(d, ei)) / bi(d, ei)
τ / bj(d, ej)

gj(d, ej)gi(d, ei)

τ / bj(gi(d, ei), ej) ai(fi(gj(d, ej), ei) / bi(gj(d, ej), ei)

d d

gi(d, ei) = gj(d, ej)

gj(gi(d, ei), ej) = gi(gj(d, ej), ei)

τ / bj(d, ej)

Figure 6: Confluence diagrams

Since the prover currently doesn’t deal with existential quantifiers at all, the generated confluence
formulae are more restricted than necessary. Ideally, the formulae have an extra existential quantifi-
cation, cf. [22], as follows: ∀d : D.∀e1 : Ei.∀e2 : Ej .∃e3 : Ei.∃e4 : Ej . Inv(d)

∧ bi(d, e1)
∧ bj(d, e2)

→


bi(gj(d, e2), e3)
∧ bj(gi(d, e1), e4)
∧ eq(fi(d, e1), fi(gj(d, e2), e3))
∧ eq(gi(gj(d, e2), e3), gj(gi(d, e1), e4))


4.4.4 Examples

Given the specification of Figure 2 and 3, we can try to prove confluence as follows:

> confcheck <queue.tbf
tau summand 3:Not confluent with summand 1
> confcheck -counter < queue.tbf
tau summand 3:Not confluent with summand 1

FALSE SITUATION:
eq(in(toe(q),q0),in(toe(in(d_a1,q)),q0))
not(eq(in(d_a1,untoe(q)),untoe(in(d_a1,q))))
ne(q)
F

Confluence of the τ -summand could not be proved, but the given counterexample is not convincing.
Of course, for non-empty q, we have: untoe(in(d,q)) = in(d,untoe(q)), but the prover doesn’t
notice. In fact, this law can be proved from the specification only by using induction. As the prover
doesn’t use induction, we have to specify the information above algebraically:

toe(in(d,q)) = if(ne(q),toe(q),d)
untoe(in(d,q)) = if(ne(q),in(d,untoe(q)),empty)

After adding the above rules to the specification, we try again:

> mcrl -tbfile -regular queue_rules
> confcheck < queue_rules.tbf
tau summand 3:...Confluent with all summands!

Note that we now proved confluence of an infinite state protocol, as the queue is unbounded.
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4.5 Error Messages

Below is a list of error messages that occur in one or more of the tools described in this section.

1. Specify at least one of -formula or -spec

2. Invariant file required ’-invariant file’

3. The -formula file should contain a list of declarations/formulae

4. Variable declaration list [v(x,sort),...] expected

5. Variable declaration v(x,sort) expected.

6. readFromTextFile: parse error at line -, col -.
This denotes a syntax error in the formula file (e.g. forgotten bracket).

7. Function or variable f#type not found.
The symbol f with arguments of type type has not been declared.

8. No if-then-else symbol found.
There must be some symbol of type Bool#Bool#Bool -> Bool, which is a requirement of the
prover (see Subsection 3.2.1).

9. Equality on sort "type" is not declared
confcheck needs the equality on all types of LPO parameters

10. Summand <n> is not a tau-summand.
For confcheck, the -summand <n> option must indicate a tau-summand.

5. Applications

In this section we show how the prover can be embedded in the verification methodology of the µCRL
toolset. In the current approach, a µCRL specification is first linearized to an LPO (Linear Process
Operator). The operational semantics of such an LPO gives rise to an LTS (Labeled Transition
System), representing the whole state space. At the level of an LTS various verification techniques
exist, such as visual inspection, or model checking [9, 14].

However, the LTS is often too large to generate and investigate; it may even become infinite.
Therefore, several analysis tools at the level of the LPO exist that simplify the LPO with techniques
from static analysis [17]. The simplified LPO leads to a branching bisimilar, but hopefully smaller
LTS. By providing theorem proving assistance, we add powerful tools for this reduction. By using
confcheck one can mark the confluent τ -summands. The enhanced instantiator (along the lines of [4])
uses this information in order to generate a smaller but branching bisimilar state space. See Figure 7
for an overview of this verification methodology.

In the subsequent sections, we show the success of this combination of symbolic and brute force
verification approaches, by showing the different sizes of the state spaces generated before and after
symbolic analysis of the LPO, for two examples.

5.1 DKR Leader Election Protocol

In this section, we apply the confluence technique in the verification of the leader election protocol of
Dolev, Klawe and Rodeh [13]. The full specification of DKR is in the µCRL toolset distribution. A
correctness proof, involving manual linearization, was given in [15].

When trying confcheck on the file DKRleader2, as included in the µCRL standard distribution,
the tool will complain about the absence of an if-then-else function and appropriate eq-functions.
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Static analysis [17]:

parelm
constelm

sumelm

Symbolic analysis

uses confluence reduction [4]

confcheck

Theorem proving assistance:

invcheck
invelm

LTSLPO
µCRL

specification
instantiatormcrl

Figure 7: Verification methodology of µCRL toolset

Therefore we add the if-then-else on the booleans, as well as equality on Table, which occurs as a
parameter type:

map if:Bool#Bool#Bool->Bool
var b,b1,b2:Bool
rew if(T,b1,b2) = b1

if(F,b1,b2) = b2
if(b,b1,b1) = b1

map eq:Table#Table->Bool
var d,e,s,j:nat

TB:Table
q: Queue

rew eq(emt,emt) = T
eq(emt,in(j,d,e,s,q,TB)) = F
eq(in(j,d,e,s,q,TB),emt) = F

The type Table is introduced during manual linearization [15]. This table consists of the values of
the variables d,e,s:Nat and q:Queue, for each component j.

5.1.1 Adding Equations for Open Terms

Let us first try to use confcheck on the first summand. We get the following report:

> mcrl -tbfile -nocluster -regular2 DKRleader2
> confcheck -counter -summand 1 < DKRleader2.tbf
tau summand 1:Not confluent with summand 1
FALSE SITUATION:
...
eq(S(S(S(S(S(0))))),get_s(j_a1,TB))
eq(S(S(S(S(S(0))))),get_s(j_tau1,TB))
eq(S(S(S(S(S(0))))),

get_s(j_a1,upd_q(... , j_tau1,
upd_s(S(S(S(S(0)))),j_tau1,TB))))

not(eq(S(S(S(S(S(0))))),
get_s(j_tau1,upd_q(... , j_a1,

upd_s(S(S(S(S(0)))),j_a1,TB)))))



5. Applications 25

...
F

The counterexample can be refuted as follows: Taking into account that upd q doesn’t change the
s-value, the last two clauses are equivalent to:

eq(S(S(S(S(S(0))))),
get_s(j_a1,upd_s(S(S(S(S(0)))),j_tau1,TB)))

not(eq(S(S(S(S(S(0))))),
get_s(j_tau1,upd_s(S(S(S(S(0)))),j_a1,TB))))

Now there are two cases: Either eq(j a1,j tau1) holds, but then the last two clauses contradict each
other. Or, alternatively, not(eq(j a1,j tau1)), but then the upd s has no effect and the last two
clauses can be simplified further to:

eq(S(S(S(S(S(0))))), get_s(j_a1,TB))
not(eq(S(S(S(S(S(0))))), get_s(j_tau1,TB)))

The last clause now contradicts the third clause of the counterexample shown above.
This analysis shows that the trace is not a valid counterexample. The prover couldn’t detect this,

because appropriate rewrite rules relating the various get x and upd y functions are missing. So we
add the following rules to the specification:

var v,i,j:nat
TB:Table
q: Queue
b : Bool

rew get_d(i,upd_d(v,j,TB)) = if(eq(i,j),v,get_d(i,TB))
get_e(i,upd_e(v,j,TB)) = if(eq(i,j),v,get_e(i,TB))
get_s(i,upd_s(v,j,TB)) = if(eq(i,j),v,get_s(i,TB))
get_q(i,upd_q(q,j,TB)) = if(eq(i,j),q,get_q(i,TB))

get_d(i,upd_e(v,j,TB)) = get_d(i,TB)
get_d(i,upd_s(v,j,TB)) = get_d(i,TB)
get_d(i,upd_q(q,j,TB)) = get_d(i,TB)
get_e(i,upd_d(v,j,TB)) = get_e(i,TB)
get_e(i,upd_s(v,j,TB)) = get_e(i,TB)
get_e(i,upd_q(q,j,TB)) = get_e(i,TB)
get_s(i,upd_d(v,j,TB)) = get_s(i,TB)
get_s(i,upd_e(v,j,TB)) = get_s(i,TB)
get_s(i,upd_q(q,j,TB)) = get_s(i,TB)
get_q(i,upd_d(v,j,TB)) = get_q(i,TB)
get_q(i,upd_e(v,j,TB)) = get_q(i,TB)
get_q(i,upd_s(v,j,TB)) = get_q(i,TB)

After adding these rules, we try again:

> confcheck -counter < DKRleader2.tbf
tau summand 1:Not confluent with summand 1

FALSE SITUATION:
not(eq(upd_q(qin(get_d(j_a1,TB),get_q(j_a1,TB)),j_a1,

upd_s(S(S(S(S(0)))),j_a1,
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upd_q(qin(get_d(j_tau1,TB),get_q(j_tau1,TB)),j_tau1,
upd_s(S(S(S(S(0)))),j_tau1,TB)))),

upd_q(qin(get_d(j_tau1,TB),get_q(j_tau1,TB)),j_tau1,
upd_s(S(S(S(S(0)))),j_tau1,
upd_q(qin(get_d(j_a1,TB),get_q(j_a1,TB)),j_a1,
upd_s(S(S(S(S(0)))),j_a1,TB))))))

This counterexample is also invalid, because the order in which various updates are performed can often
be commuted. Note that adding commutative laws easily spoils termination. These considerations
give rise to the addition of the following rules, ordering updates on different variables, and deleting
overwritten updates:

var d,e,s,v,v’,i,j:nat
TB:Table
q,q’: Queue

rew upd_d(d,j,upd_s(s,i,TB)) = upd_s(s,i,upd_d(d,j,TB))
upd_e(e,j,upd_s(s,i,TB)) = upd_s(s,i,upd_e(e,j,TB))
upd_q(q,i,upd_s(s,j,TB)) = upd_s(s,j,upd_q(q,i,TB))
upd_d(d,j,upd_q(q,i,TB)) = upd_q(q,i,upd_d(d,j,TB))
upd_e(e,j,upd_q(q,i,TB)) = upd_q(q,i,upd_e(e,j,TB))
upd_e(e,i,upd_d(d,j,TB)) = upd_d(d,j,upd_e(e,i,TB))

upd_d(v,i,upd_d(v’,i,TB)) = upd_d(v,i,TB)
upd_e(v,i,upd_e(v’,i,TB)) = upd_e(v,i,TB)
upd_s(v,i,upd_s(v’,i,TB)) = upd_s(v,i,TB)
upd_q(q,i,upd_q(q’,i,TB)) = upd_q(q,i,TB)

This doesn’t completely solve the problem, because two different updates of the same variable with
different indices could still occur. These are exchanged by the following magical rule:

var s,s’,i,j:nat
TB,TB’:Table

rew eq(upd_s(s,i,upd_s(s’,j,TB)),upd_s(s’,j,upd_s(s,i,TB’)))
= if(eq(i,j),

eq(upd_s(s,i,TB),upd_s(s’,j,TB’)),
if(eq(TB,TB’),

T,
eq(upd_s(s,i,upd_s(s’,j,TB)),

upd_s(s,i,upd_s(s’,j,TB’)))))

Similar rules are added for the d,e,q-variables. Additionally, some other rules are added, also after
considering the generated counterexamples.

var d,i,j,k:nat
q: Queue
TB: Table

rew toe(qin(d,q))=if(empty(q),d,toe(q))
untoe(qin(d,q))= if(empty(q),emq,qin(d,untoe(q)))
eq(prev(i,k),prev(j,k)) = or(eq(i,j),eq(k,0))
gt(0,i) = F
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gt(i,i) = F
gt(max(i,j),get_e(k,TB)) = not(geq(get_e(k,TB),max(i,j)))

Here the last rule was needed to detect the contradiction between gt(max(i,j),get e(k,TB)) and
gt(get e(k,TB),max(i,j)).

5.1.2 Results

After adding the equations reported in the previous section, all summands of DKRleader2 can be
proven confluent. This information can be used to generate a marked LPO. Now we can generate
a state space from the original LPO with the instantiator, or from the marked LPO, with the
algorithm by [4]. These are invoked as follows:

> confcheck -mark <DKRleader2.tbf >DKRleader2.mark.tbf
> instantiator -i DKRleader2.tbf
> instantiator -i -confluent ctau DKRleader2.mark.tbf

We did the same experiment for a network of 3, 5 and 7 nodes, respectively. The results are shown
in Table 1. From this table it appears that the state space generated with an increasing number of
parties grows quite rapidly. When using confluence, the state space will be constant, viz. one process
claims to be the leader. Internally, the instantiator visits some more states, but only a fraction of the
complete state space is visited. Note that the confluence formulae must be proved too, but this is
only done once and is not influenced by the number of parties. Checking all confluence formulae takes
less than one second. However, the user interaction involved by completing the data specification was
considerable.

Table 1: Results for the DKR leader election protocol

original visited final
# components # st # tr # st # tr # st # tr

3 67 124 34 33 2 1
5 864 2687 76 75 2 1
7 18254 77055 222 221 2 1

5.2 Splice Coordination Architecture

In this section, we apply the confluence method to two applications that coordinate via the Splice
architecture [5]. In particular, we take the detailed Splice-description in µCRL from [12], see also [11].
The specification provides a detailed description of how Splice-agents communicate via Ethernet.

5.2.1 Invariants

Initially, the confluence formulae appeared to be false. Inspection of the counterexamples showed that
a divergence would occur when different applications would start a conversation with the same agent,
or when two agents would connect to the same Ethernet-socket. These scenarios are not possible,
but in order to exclude this behaviour, we need the following invariant, which was found manually
and completed by inspecting the LPO and with the help of the output of confcheck -counter and
invcheck -counter:
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and(or( eq(agentAddress,address1),
and(eq(agentAddress,noAddress),

eq(s125,x2p1(x2p0(x2p0(one0)))))),
and(or( eq(agentAddress0,address2),

and(eq(agentAddress0,noAddress),
eq(s126,x2p1(x2p0(x2p0(one0)))))),

and(
and( or( eq(EthernetAddress0,noAddress), eq(EthernetAddress0,address1)),
and( or( eq(node2,noAddress), eq(node2,address1)),
and( or( eq(node3,noAddress), eq(node3,address1)),
and( or( eq(node0,noAddress), eq(node0,address1)),

or( eq(node1,noAddress), eq(node1,address1)))))),
and( or( eq(EthernetAddress00,noAddress), eq(EthernetAddress00,address2)),
and( or( eq(node20,noAddress), eq(node20,address2)),
and( or( eq(node30,noAddress), eq(node30,address2)),
and( or( eq(node00,noAddress), eq(node00,address2)),

or( eq(node10,noAddress), eq(node10,address2)))))))))

5.2.2 Confluence Checking and Marking

Given this invariant, the following dialogue is reasonable:

> mcrl -tbfile -regular2 -binary mysplice
> constelm mysplice.tbf | sumelm > mysplice.cs.tbf
...
Constelm: Number of removed parameter(s):7
Constelm: Number of remaining parameter(s) of output LPO:108
Constelm: Written 57 summands
...
> invcheck -invariant sp_invariant < mysplice.cs.tbf
Init OK .........................................................
Yes! invariant holds on all summands!
> invelm -invariant sp_invariant < mysplice.cs.tbf > mysplice.csi.tbf
..
summand 3 removed.
summand 5 removed..........................................
summand 48 removed.
summand 50 removed.......
> confcheck -mark <mysplice.csi.tbf >mysplice.csim.tbf

The output of the last command is displayed in Figure 8. First, the specification is linearized (mcrl)
and the generated LPO is simplified (using constelm, sumelm [17, 28]). This removes 7 parameters.
The resulting LPO has 108 parameters and 57 summands. The invariant is checked on the simplified
LPO with invcheck. It appears to hold. Hence it is safe to use the invariant in order to eliminate
the unreachable summands by invelm. Four summands are removed by this procedure. The resulting
LPO is used as the basis for confcheck. Its output can be found in Figure 8. Apparently, three
τ -summands are detected and marked as confluent. For this result it was essential to remove the
unreachable summands with the means of the invariant of the previous section. Alternatively, instead
of using invelm first, one can immediately apply confcheck as follows:

> confcheck -invariant sp_invariant -mark <mysplice.cs.tbf >mysplice.csim.tbf

This will find seven confluent summands, four of which owing to the -invariant option.
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tau summand 1:.....................................................Confluent with all summands!

tau summand 2:.....Not confluent with summand 6

tau summand 3:.....................................................Confluent with all summands!

tau summand 4:....Not confluent with summand 5

tau summand 5:...Not confluent with summand 4

tau summand 22:....Not confluent with summand 5

tau summand 25:.Not confluent with summand 2

tau summand 44:.Not confluent with summand 2

tau summand 45:....Not confluent with summand 5

tau summand 46:.....................................................Confluent with all summands!

tau summand 47:....Not confluent with summand 5

tau summand 48:...............................................Not confluent with summand 48

tau summand 49:...............................................Not confluent with summand 48

tau summand 50:..................................................Not confluent with summand 51

tau summand 51:.................................................Not confluent with summand 50

tau summand 52:.Not confluent with summand 2

tau summand 53:..............................................Not confluent with summand 47

Figure 8: Output of confcheck on splice.csi.tbf

5.2.3 Effect on State Space Generation

We can now generate the full state space as a labeled transition system (LTS) in various ways. The
instantiator [28] generates an LTS from an LPO. Using an algorithm due to Stefan Blom [4], the
instantiator can use information on confluent τ -summands, as marked by confcheck. Alternatively,
an LTS in SVC-file-format can be reduced by svcconf [19], showing the smallest state space that can
be reached by repeatedly using local partial confluence at the level of LTSs. Finally, an LTS in BCG-
file-format can be reduced modulo branching equivalence, using a tool from the Caesar/Aldébaran
toolset [14]. A typical run goes as follows:

> instantiator -i mysplice.csi.tbf
> instantiator -i -confluent ctau mysplice.csim.tbf
> aut2svc mysplice.csi.aut
> svcconf mysplice.csi.svc
> svcinfo mysplice.csi.red.svc
> bcg_io mysplice.csim.aut mysplice.csim.bcg
> bcg_min -branching -normal mysplice.csim.bcg mysplice.csim_b.bcg
> bcg_min -strong -normal mysplice.csim.bcg mysplice.csim_s.bcg
> aldebaran -info mysplice.csim_b.bcg
> aldebaran -info mysplice.csim_s.bcg

The sizes of the state space vary as indicated in Table 2.

Table 2: Sizes of various state graphs of SPLICE

Method States Transitions
instantiator (standard) 561661 1533318
instantiator -confluent (visited) 410841 1030516
instantiator -confluent (final) 304426 924101
svcconf 124990 368002
bcg min -strong 15373 55310
bcg min -branching 1557 6501
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Roughly speaking, using local confluence, the state space can be reduced to 20% of the original half
million states (i.e. a reduction of 80%). The drawback of this approach is that the larger space must
be generated first. The symbolic approach reduces it only to 50%, but internally the instantiator visits
75% of the states, so it never considers 25% of the states. With branching bisimulation, a reduction
to 0.25% is possible. This huge difference can have at least two origins:

• There is a lot of symmetry, in the sense that different states give rise to isomorphic subgraphs.

• Stronger forms of confluence are needed to remove the internal τ -structure

As an indication, we also reduced the state space modulo strong bisimulation, which leaves the internal
structure intact, but eliminates a lot of symmetry. This shows that a reduction to 2.5% is possible by
removing symmetric parts of the state space, without taking into account the structure of the internal
behaviour. It is not clear, however, how to exploit this symmetry at the symbolic level.

6. Conclusions and Directions for Future Work

Although at an experimental level, the prover was successful in checking certain invariance/confluence
properties of large applications. Some invariance properties were needed in order to prove the con-
fluence properties. After confluence detection and marking, a smaller state space was generated than
without using this knowledge. Experiments showed that the decision procedures of PVS [25] and
Isabelle/HOL [26] couldn’t deal with these large, automatically generated, formulae. We now indicate
a number of possible directions for future work.

User Interaction. Using the -print and -counter options the user gets some diagnostics on
the reason why the prover fails. An incomplete proof can be repaired by adding equations to the
specification. This is a quite indirect interaction, compared to theorem provers like those mentioned
above. It is still open whether from the BDD more interesting diagnostics can be computed, which
could provide a better user interaction.

Another point to be mentioned is that in order to know the parameters of the LPO (needed for
the invariants) and the sequence of the summands (needed to interpret the output of confcheck
and invcheck), the user must inspect the LPO, which is in fact not meant to be human readable.
Currently, the information in the LPO cannot be easily traced back to the original specification.

For the DKR-protocol user interaction was quite tedious, although straightforward. For the SPLICE-
specification user-interaction consisted of providing an invariant, which was not trivial to find by hand.

Completeness of the specification. Algebraic specifications are often meant to be complete
for closed terms only. However, the prover applies rewriting on open terms. At present, there is no
clear criterion for the specification to be complete. The prover doesn’t use induction but only applies
equational reasoning. Hence for completeness, it is needed that all open theorems are derivable
equationally. This would lead to the notion of ω-completeness [1]. However, many specifications don’t
have an ω-complete extension, or it is hard to find one. Currently, using the diagnostics of -counter
can be helpful for incrementally adding equations to the specification.

Induction/Invariants. An alternative to equations for open terms, is adding induction principle
to the prover. See [8, 10] for contributions to inductive theorem proving. This could also be helpful
when proving invariants. Another obvious step would be to generate simple invariants automatically,
along the lines of [3].

Another point is that it is not clear how to use derived equations/invariants. By adding the invariant
to each formula to be proved, the formulae become too big to construct BDDs, and the BDDs contain
redundant information. Instead of constructing the BDD of I ∧ Φ, it would be more appropriate to
construct the smallest BDD for Φ, given that I is known.
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Improvements on Algorithm. Some ideas to improve the prover algorithm could be to incor-
porate the congruence closure algorithm [24] to check satisfiability of paths. Also techniques from
constraint programming could be useful to deal with inequalities. Another issue is to investigate com-
pleteness for subcases (e.g. the case where the only functions are free constructors). Here the role of
the orders, and the role of an ω-complete specification must be clarified. Finally, an extension with
quantifiers would make the prover even more useful. The confluence formulae can be weakened with
existential quantifiers. Many invariants require universal quantification.

Symmetry and Bisimulation. Ultimately, the goal of confluence analysis is to reduce the size of
the generated state space. As one of the examples showed, a promising step is to exhibit bisimulation
at the symbolic level. Can simple forms of symmetry/bisimulation be expressed by formulae on
LPO-level?

An alternative and seemingly feasible approach is a tool which, given specification and implemen-
tation in LPO-format, and a state mapping, checks whether the mapping is a branching bisimulation
(cf. focus conditions in [23]).
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