
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Linearization in Parallel pCRL

J.F. Groote, A. Ponse, Y.S. Usenko

Software Engineering (SEN)

SEN-R0019 July 31, 2000

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301654368?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report SEN-R0019
ISSN 1386-369X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Linearization in Parallel pCRL

Jan Friso Groote1,2 Alban Ponse1,3 Yaroslav S. Usenko1

JanFriso.Groote@cwi.nl Alban.Ponse@cwi.nl Yaroslav.Usenko@cwi.nl

1CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

2Computing Science Department, Eindhoven University of Technology,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

3Programming Research Group, University of Amsterdam,

P.O. Box 41882, 1009 DB Amsterdam, The Netherlands

ABSTRACT

We describe a linearization algorithm for parallel pCRL processes similar to the one implemented in the linearizer

of the µCRL Toolset. This algorithm finds its roots in formal language theory: the ‘grammar’ defining a process

is transformed into a variant of Greibach Normal Form. Next, any such form is further reduced to linear form,

i.e., to an equation that resembles a right-linear, data-parametric grammar. We aim at proving the correctness

of this linearization algorithm. To this end we define an equivalence relation on recursive specifications in µCRL

that is model independent and does not involve an explicit notion of solution.

2000 Mathematics Subject Classification: 68Q10; 68Q42; 68Q65; 68Q85

1998 ACM Computing Classification System: D.2.1; D.2.4; D.3.1; D.3.3; F.3.2; I.1.1

Keywords and Phrases: µCRL, Process Algebra, Linearization of Recursive Specifications

1. Introduction

In this paper we address the issue of linearization of recursive specifications in the specification lan-
guage µCRL (micro Common Representation Language, [17, 13]). The language µCRL has been
developed under the assumption that an extensive and mathematically precise study of the basic
constructs of specification languages is fundamental to an analytical approach of much richer (and
more complicated) specification languages such as SDL [29], LOTOS [21], PSF [23, 24] and CRL [28].
Moreover, it is assumed that µCRL and its proof theory provide a solid basis for the design and
construction of tools for analysis and manipulation of distributed systems.

The language µCRL offers a uniform framework for the specification of data and processes. Data
are specified by equational specifications: one can declare sorts and functions working upon these
sorts, and describe the meaning of these functions by equational axioms. Processes are described in
process algebraic style, where the particular process syntax stems from ACP [3, 2, 11], extended with
data-parametric ingredients: there are constructs for conditional composition, and for data-parametric
choice and communication. As is common in process algebra, infinite processes are specified by means
of (finite systems of) recursive equations. In µCRL such equations can also be data-parametric. As
an example, for action a and adopting standard semantics for µCRL, each solution for the equation
X = a · X specifies (or “identifies”) the process that can only repeatedly execute a, and so does each
solution for Y(17) where Y(n) is defined by the data-parametric equation Y(n) = a · Y(n + 1) with
n ∈ Nat . An interesting subclass of systems of recursive equations consists of those that contain only
one linear equation. Such a system is called an LPE (Linear Process Equation). Here, linearity refers
both to the form of recursion allowed, and to a restriction on the process syntax allowed. The above
examples X = a ·X and Y(n) = a ·Y(n+1) are both LPEs. The restriction to LPE format still yields an

2

expressive setting (for example, it is not hard to show that each computable process over a finite set
of actions can be simply defined using an LPE containing only computable functions over the natural
numbers, cf. [27]). Moreover, in the design and construction of tools for µCRL, LPEs establish a basic
and convenient representation format. This applies, for example, to tools for generation of labeled
transition systems, or tools for optimization, deadlock checking, or simulation. The LPE format
stems from [6], in which the notion of a process operator is distinguished, and a proof technique for
dealing with convergent LPEs is defined. Furthermore, there is a strong resemblance between LPEs
and specifications in UNITY [10, 8]. The restriction to linear systems has a long tradition in process
algebra. For instance, restricting to so-called linear specifications, i.e., linear systems that in some
distinguished model have a unique solution per variable, various completeness results were proved in
a simple fashion (cf. [25, 4]). However, without data-parametric constructs for process specification,
the expressiveness is limited: only regular processes can be defined.

The language µCRL is considered to be a specification language because it contains ingredients that
facilitate in a straightforward, natural way the modeling of distributed, communicating processes. In
particular, it contains constructs for parallelism, encapsulation and abstraction. On the other hand,
as sketched above, LPEs constitute a basic fragment of µCRL in terms of expressiveness and tool
support. This explains our interest in transforming any system of µCRL equations into an equivalent
LPE, i.e., our interest to linearize µCRL process definitions. In this paper we do not consider full
µCRL as the source language for linearization, and allow only a restricted use of the above-mentioned
constructs. In [6], pCRL (pico CRL) was defined as a fragment of µCRL. Essentially, pCRL restricts
µCRL to the basic operations of process algebra, with data parametric choice, sequential composition
and conditionals. Typically, in an LPE only pCRL syntax occurs. Now, as the source language for
linearization we take parallel pCRL, an extension of pCRL in which a restricted use of more involved
operations, such as ‖ (parallel composition), is allowed. For example, in parallel pCRL the ‖ may not
occur in the scope of a recursion. Almost all real life, distributed processes have a straightforward
definition in parallel pCRL. In [7], a linearization procedure was sketched for a fragment of µCRL
which is similar to parallel pCRL.

We define the linearization algorithm on an abstract level, but in a very detailed manner. We
do not concern ourselves with the question if and in what way systems of recursive equations over
parallel pCRL define processes as their unique solutions (per variable). Instead, we argue that the
transformation is correct in a more general sense: we show that linearization “preserves all solutions”.
This means that if a particular parallel pCRL system of recursive equations defines a series of solutions
for its variables in some model, then the LPE resulting from linearization has (at least) the same
solutions for the associated process terms. Consequently, if the resulting LPE is such that one can
infer that these solutions are unique in some particular (process) model, then both systems define the
same processes in that model. In our algorithm, most transformation steps satisfy a stronger property:
the set of solutions is the same before and after the transformation. Both the detailed description
of the linearization algorithm itself, and the preservation of solutions, which technically speaking is
a notion of implication between process terms over different µCRL systems, can be considered the
contribution of this paper. To the best of our knowledge, a first description of a transformation of
(non-parallel) pCRL into an LPE like format was given in [5]. Transformation procedures from BPA
to Greibach Normal Forms were outlined in [1] and presented in [20].

Structure of the paper. In Section 2 we discuss parallel pCRL. Furthermore, we define im-
plication and equivalence between pCRL process terms defined over different pCRL specifications.
Sections 3, 4 and 5 fully describe the linearization procedure. In Section 3 we describe in detail the
first part of this transformation, which yields process definitions in so-called extended Greibach nor-
mal form. In Section 4 we define the LPE format, and describe the transformation from extended
Greibach normal form into this format. Then, in Section 5 we consider the effect of the typical parallel
pCRL operations on LPEs. The paper is ended with some conclusions in Section 6. In particular, we
provide some comments on our transformation, and relate our approach to other work.

2. Description of µCRL and Parallel pCRL 3

Acknowledgments. Thanks go to Jan Bergstra, Wan Fokkink, Bas Luttik, Faron Moller, Vincent
van Oostrom, Jaco van de Pol, and Mark van der Zwaag for helpful discussions and comments.

2. Description of µCRL and Parallel pCRL

In this section we first recall some general information about µCRL. Then we consider (recursive)
process definitions in detail, and define various notions of equivalence, among which equivalence be-
tween process terms defined over different µCRL specifications. Next, we shortly discuss guardedness
and dependency in process definitions. Finally, we introduce pCRL and parallel pCRL as fragments
of µCRL.

2.1 Theory of µCRL

First we define the signature and axioms for booleans which are quite standard and can be found for
instance in [9] (page 116). We use equational logic to prove boolean identities. Booleans are obligatory
in any µCRL specification.

Definition 2.1. The signature of Bool consists of constants t, f , unary operation not and binary
operations and , or , eq.

Note (Booleans). We use infix notation ¬,∧,∨,↔ for not , and , or , eq respectively.

Definition 2.2. The axioms of Bool are the ones presented in Table 1.

x ∧ y = y ∧ x x ∨ y = y ∨ x

(x ∧ y) ∧ z = x ∧ (y ∧ z) (x ∨ y) ∨ z = x ∨ (y ∨ z)
x ∧ x = x x ∨ x = x

x ∧ (x ∨ y) = x x ∨ (x ∧ y) = x

(x ∧ y) ∨ (x ∧ z) = x ∧ (y ∨ z) (x ∨ y) ∧ (x ∨ z) = x ∨ (y ∧ z)
x ∧ f = f x ∨ t = t

x ∧ ¬x = f x ∨ ¬x = t

x ↔ y = (x ∧ y) ∨ (¬x ∧ ¬y)

Table 1: Axioms of Bool .

Next we define the generalized equational theory of µCRL by defining its signature and the axioms.
The axioms are taken from, or inspired by [15, 16].

Note (Vector Notation). Tuples occur a lot in the language, so we use a vector notation for them.
Expression

−→
d is an abbreviation for d1, . . . , dn, where dk are data variables. Similarly, if type informa-

tion is given,
−−→
d:D is an abbreviation for d1:D1, . . . , dn:Dn for some natural number n. In case n = 0

the whole vector vanishes as well as brackets surrounding it. For instance a(
−→
d) is an abbreviation

for a in this case (here a is an action, this notion is introduced below). For all vectors
−→
d and −→e we

have
−→
d ,−→e =

−→
d, e. Thus

−→
d, e is an abbreviation for d1, . . . , dn, e1, . . . , en′

. We also write
−−→
d:D & e:E for

d1:D1, . . . , dn:Dn, e:E.
For any vector of variables

−→
d ,

−→
f (

−→
d) is an abbreviation for f1(

−→
d), . . . , fm(

−→
d) for some m ∈ Nat ,

where each fk(
−→
d) is a data term that may contain elements of

−→
d as free variables. As with vectors

4

of variables, in case m = 0 the vector of data terms vanishes. We often use
−→
t to express a data term

vector without explicitly denoting its variables.

Definition 2.3. The signature of µCRL consists of data sorts (or ‘data types’) including Bool as
defined above, and a distinct sort Proc of processes. Each data sort D is assumed to be equipped
with a binary function eq : D × D → Bool . (This requirement can be weakened by demanding
such functions only for data sorts that are parameters of communicating actions). The operational
signature of µCRL is parameterized by the set of action labels ActLab and a partial commutative and
associative function γ : ActLab × ActLab → ActLab such that γ(a1, a2) ∈ ActLab implies that a1, a2

and γ(a1, a2) have parameters of the same sorts. The process operations are the ones listed below:

• actions a(
−→
t) parameterized by data terms

−→
t , where a ∈ ActLab is an action label. More

precisely, a is an operation a :
−→
D → Proc.

• constants δ and τ of sort Proc.

• binary operations +, ·, ‖, bb, | defined on Proc, where | is defined using γ.

• unary Proc operations ∂H , τI , ρR for each set of action labels H, I ⊆ ActLab and action label
renaming function R : ActLab → ActLab such that a and R(a) have parameters of the same
sorts.

• ternary operation � � : Proc × Bool × Proc → Proc.

• binders
∑

d:D defined on Proc, for each data variable d of sort D.

The partial function γ is called a communication function. If γ(a, b) = c this indicates that actions
with labels a and b can synchronize, becoming action c, provided that the data parameters of these
actions are equal. The constant δ represents a deadlocked process and the constant τ represents
some internal or hidden activity. The choice operator + and the sequential composition operator
· are well known. The merge operator ‖ represents parallel composition. The bb (left merge) and
| (communication merge) are auxiliary operations used to equationally define ‖. The encapsulation
operator ∂H(q) blocks actions in q with action labels in the set H , which is especially used to enforce
actions to communicate. The hiding operator τI(q) with a set of action labels I = {a, b . . .} hides
actions with these labels in q by renaming them to τ . The renaming operator ρR(q) where R is a
function from action labels to action labels renames each action with label a in q to an action with label
R(a). The operator p1�c�p2 is the if c then p1 else p2 operator, where c is an expression of type Bool .
The sum operator

∑
d:D p expresses a (potentially infinite) summation p[d := d0] + p[d := d1] + . . . if

data domain D = {d0, d1, . . .}.
Definition 2.4. Axioms of µCRL are the ones presented in Tables 2,3,4,5,6 and 7. We assume that

• + binds weaker, and · binds stronger than other operations.

• x, y, z are variables of sort Proc.

• c, c1, c2 are variables of sort Bool .

• d, d1, dn, d′, . . . are data variables (but not in
∑

d:D, where d is part of the operation).

• b stands for either a(
−→
d), or τ , or δ.

• −→
d =

−→
d′ is an abbreviation for eq(d1, d1′) ∧ . . . ∧ eq(dn, dn′), where

−→
d = d1 . . . dn and

−→
d′ =

d1′ . . . dn′.

2. Description of µCRL and Parallel pCRL 5

• the axioms where p and q occur are schemas ranging over all terms p and q of sort Proc, including
those in which d occurs freely.

• the axiom (SUM2) is a scheme ranging over all terms r of sort Proc in which d does not occur
freely.

The axioms in Table 7 (actually only (SC3)) are used only for the parallel composition elimination
(Section 5). Note that due to (SC3), the axioms (CM6), (CM9), (CT2), (CD2), (Cond9′) and (SUM7′)
become derivable. The axioms (B1) and (B2) are not used in the transformations described in this
paper, so they are also valid in models where these two axioms do not hold.

We use many sorted equational logic for processes and booleans, while other data types can have
slightly different proof rules, which may include induction principles, quantifier introduction principles,
etc. The proof theory of µCRL consists of proof rules for the data sorts, the rules of equational logic
for the booleans, and the rules of generalized equational logic [15] for the processes. Note that the
rules of generalized equational logic do not allow to substitute terms containing free variables if they
become bound. For example, in axiom (SUM1) we cannot substitute a(d) for x.

Definition 2.5. Two process terms p1 and p2 are (unconditionally) equivalent (notation p1 = p2) if
p1 = p2 is derivable from the axioms of µCRL and boolean identities by using many sorted generalized
equational logic ({µCRL,BOOL} ` p1 = p2). Here BOOL is used to refer to the specification of the
booleans, and the use of equational logic for deriving boolean identities.

Two process terms p1 and p2 are conditionally equivalent if {µCRL,BOOL,DATA} ` p1 = p2. Here
DATA is used to refer to the specification of all data sorts involved, and all proof rules that may be
applied.

x + y = y + x (A1)
x + (y + z) = (x + y) + z (A2)

x + x = x (A3)
(x + y) · z = x · z + y · z (A4)
(x · y) · z = x · (y · z) (A5)

x + δ = x (A6)
δ · x = δ (A7)
x · τ = x (B1)

z · (τ · (x + y) + x) = z · (x + y) (B2)

Table 2: Basic axioms of µCRL.

2.2 Systems of Recursion Equations

We assume a fixed and infinite set Procnames = {X, Y, Z, . . .} of process names with type information
associated to them. We extend the sort Proc of processes by allowing the process names in P ⊆
Procnames as variables of type

−→
D → Proc. These terms are further called (µCRL) process terms and

the set of all of them is denoted by Terms(P). The free data variables in a process term are those not
bound by

∑
d:D occurrences. We write DVar for the set of all free and bound data variables that can

occur in a term.

6

x ‖ y = (x bb y + y bb x) + x | y (CM1)
b bb x = b · x (CM2)

(b · x) bb y = b · (x ‖ y) (CM3)
(x + y) bb z = x bb z + y bb z (CM4)

(b · x) | b′ = (b | b′) · x (CM5)
b | (b′ · x) = (b | b′) · x (CM6)

(b · x) | (b′ · y) = (b | b′) · (x ‖ y) (CM7)
(x + y) | z = x | z + y | z (CM8)
x | (y + z) = x | y + x | z (CM9)

a(
−→
d) | a′(−→d′) = γ(a, a′)(

−→
d) �

−→
d =

−→
d′ � δ if γ(a, a′) is defined (CF1)

a(
−→
d) | a′(−→d′) = δ otherwise (CF2)

τ | b = δ (CT1)
b | τ = δ (CT2)
δ | b = δ (CD1)
b | δ = δ (CD2)

Table 3: Axioms for parallel composition in µCRL.

Definition 2.6. A process equation is an equation of the form X(
−−−−→
dX:DX) = qX, where X is a process

name with a list of data parameters
−−−−→
dX:DX, and qX is a process term, in which only the data variables

from
−→
dX may occur freely. We write rhs(X) for qX, pars(X) for

−→
dX, and type(X) for

−→
DX.

Definition 2.7. Let P ⊆ Procnames be a finite set of process names such that each process name is
uniquely typed. A (finite) non-empty set G of process equations over Terms(P) is called a (finite)
system of process equations if each process name in P occurs exactly once at the left. The set of
process names (with types) that appear within G is denoted as |G| (so, |G| = P). We use rhs(X, G),
pars(X, G) and type(X, G) to refer to the corresponding parts of the equation for X in G.

Although the original definition of a µCRL specification allows to have the same process names
with different types, we do not treat this possibility here as it would make the explanation only more
long-winded.

Definition 2.8. Let G be a finite system of process equations, X be a process name in it, and
−→
t be

a data term vector of type type(X, G). Then the pair (X(
−→
t), G) is called a process definition. We use

the abbreviation (X, G) for (X(pars(X, G)), G).

Example 2.9. Both G1 = {X = a·Y, Y = b·X, Z = X‖Y} and G2 = {T(n:Nat) = a(even(n))·T(S(n))}
with even : Nat → Bool as expected and S : Nat → Nat the successor function, are examples of
systems of process equations. All of (X, G1), (T, G2), (T(m), G2) are process definitions.

Definition 2.10. Process term q directly depends on process name X if this name occurs in q. Process
name X directly depends on process name Y in a system of process equations G if rhs(X, G) directly
depends on Y. Process term q depends on X in G if it either directly depends on it, or there is a
sequence of process names Y1, . . . ,Yn = X such that q directly depends on Y1 and for each i < n, Yi

directly depends on Yi+1. Process name X depends on Y in G if rhs(X, G) depends on it.

We note that the combination of the given data specification with a system G of process equations
determines a µCRL specification in the sense as defined in [17]. Such a specification depends on a

2. Description of µCRL and Parallel pCRL 7

x � t � y = x (Cond1)
x � f � y = y (Cond2)
x � c � y = x � c � δ + y � ¬c � δ (Cond3)

(x � c1 � δ) � c2 � δ = (x � c1 ∧ c2 � δ) (Cond4)
(x � c1 � δ) + (x � c2 � δ) = x � c1 ∨ c2 � δ (Cond5)

(x � c � δ) · y = (x · y) � c � δ (Cond6)
(x + y) � c � δ = x � c � δ + y � c � δ (Cond7)
(x � c � δ) bb y = (x bb y) � c � δ (Cond8)
(x � c � δ) | y = (x | y) � c � δ (Cond9)
x | (y � c � δ) = (x | y) � c � δ (Cond9′)

(x � c � δ) · (y � c � δ) = (x · y) � c � δ (Sca)

Table 4: Axioms for conditions in µCRL.

finite subset act of ActLab and on comm, an enumeration of γ restricted to the labels in act. So a
finite system G implicitly describes a finitary based language.

For a consistent (meaningful) specification, i.e., a Statically Semantically Correct specification,
it is necessary that all objects are specified only once, that all typing is respected and that the
communications in comm are specified in a functional way. Furthermore, the eq functions for the
data sorts should have the following properties:

{DATA, eq(d, e) = t} ` d = e and {DATA, x = y} ` eq(d, e) = t

All data sorts that are introduced during the linearization must have eq functions satisfying these
properties.

2.3 Equivalence of Process Definitions

We introduce equivalence over systems of process equations in a stepwise manner. Let G1 and G2

be systems of process equations, and assume that the common data sorts of G1 and G2 are equally
defined. Then DATA(G1, G2) represents all data specifications occurring in G1 and G2 and all proof
rules adopted for these data. We first define (conditional) implication between process terms, and
then the equivalence.

In the following definition, derivabilities of the form {µCRL,BOOL,DATA} ∪ G1 ` φ are required.
In this case, the axioms from µCRL,BOOL and DATA may be used to derive φ, as well as the process
equations in G1. However, we restrict derivability by requiring that the (data-parametric) process
names from G1 are considered as (data-parametric) constants. For example, if G1 = {X = a · X}, we
may use X = a · X as an axiom in {µCRL,BOOL,DATA} ∪ {X = a · X} ` φ, but X may not be used
as a variable that can be instantiated (e.g., {µCRL,BOOL,DATA} ∪ {X = a · X} 6` a = a · a).
Definition 2.11. Let G1, G2 be systems of process equations with |G1| = {X1 . . .Xn} and |G2| =
{Y1 . . . Ym}. Let furthermore DATA be such that it contains DATA(G1, G2), i.e., DATA contains all
data sorts and associated proof rules of DATA(G1, G2).

We say that (X1(
−→
t1), G1) conditionally implies (Y1(

−→
t2), G2) (notation (X1(

−→
t1), G1) ⇒c (Y1(

−→
t2), G2))

for some (possibly open) data term vectors
−→
t1 ,

−→
t2 over DATA if for j = 1, . . . , m there is a set of

8

∑
d:D

x = x (SUM1)

∑
e:D

r =
∑
d:D

(r[e := d]) (SUM2)

∑
d:D

p =
∑
d:D

p + p (SUM3)

∑
d:D

(p + q) =
∑
d:D

p +
∑
d:D

q (SUM4)

∑
d:D

(p · x) = (
∑
d:D

p) · x (SUM5)

∑
d:D

(p bb x) = (
∑
d:D

p) bb x (SUM6)

∑
d:D

(p | x) = (
∑
d:D

p) | x (SUM7)

∑
d:D

(x | p) = x | (
∑
d:D

p) (SUM7′)

∑
d:D

(∂H(p)) = ∂H(
∑
d:D

p) (SUM8)

∑
d:D

(τI(p)) = τI(
∑
d:D

p) (SUM9)

∑
d:D

(ρR(p)) = ρR(
∑
d:D

p) (SUM10)

∑
d:D

(p � c � δ) = (
∑
d:D

p) � c � δ (SUM12)

Table 5: Axioms for sums in µCRL.

mappings gYj : type(Yj) → Terms({X1 . . . Xn}) such that

{µCRL,BOOL,DATA} ∪ G1 ` X1(
−→
t1) = gY1(

−→
t2) and

∀j ∈ 1..m
(
{µCRL,BOOL,DATA} ∪ G1 ` gYj (

−→
d′j) = rhs(Yj) [∀k Yk(t′) := gYk

(t′)]
)

If DATA identities are not used in these derivations we say that (X1(
−→
t1), G1) (unconditionally) implies

(Y1(
−→
t2), G2) (notation (X1(

−→
t1), G1) ⇒ (Y1(

−→
t2), G2)). In case (X(pars(X, G1)), G1) (conditionally)

implies (Y(pars(Y, G2)), G2) we say that (X, G1) (conditionally) implies (Y, G2) (notation (X, G1) ⇒
(Y, G2) ((X, G1) ⇒c (Y, G2))).

We state without proof:

Lemma 2.12. Let G1 and G2 be systems of process equations, and let the set H of process equations
be such that Gi ∪ H is a system of process equations (i = 1, 2). If G1 ⇒ G2, then G1 ∪ H ⇒ G2 ∪H,
and if G1 ⇒c G2, then G1 ∪ H ⇒c G2 ∪ H.

Definition 2.13. Process definition (X(
−→
t1), G1) is equivalent to process definition (Y(

−→
t2), G2) (no-

tation (X(
−→
t1), G1) = (Y(

−→
t2), G2)) if both (X(

−→
t1), G1) ⇒ (Y(

−→
t2), G2) and (Y(

−→
t2), G2) ⇒ (X(

−→
t1), G1).

Similarly, if (X(pars(X, G1)), G1) = (Y(pars(Y, G2)), G2) we say that (X, G1) is equivalent to (Y, G2).
The conditional equivalence (notation =c) is defined in the same way.

2. Description of µCRL and Parallel pCRL 9

∂H(b) = b if b = τ or (b = a(
−→
d) and a /∈ H) (D1)

∂H(b) = δ otherwise (D2)
∂H(x + y) = ∂H(x) + ∂H(y) (D3)
∂H(x · y) = ∂H(x) · ∂H(y) (D4)

∂H(x � c � δ) = ∂H(x) � c � δ (D5)

τI(b) = b if b = δ or (b = a(
−→
d) and a /∈ I) (T1)

τI(b) = τ otherwise (T2)
τI(x + y) = τI(x) + τI(y) (T3)
τI(x · y) = τI(x) · τI(y) (T4)

τI(x � c � δ) = τI(x) � c � δ (T5)
ρR(δ) = δ (RD)
ρR(τ) = τ (RT)

ρR(a(
−→
d)) = R(a)(

−→
d) (R1)

ρR(x + y) = ρR(x) + ρR(y) (R3)
ρR(x · y) = ρR(x) · ρR(y) (R4)

ρR(x � c � δ) = ρR(x) � c � δ (R5)

Table 6: Axioms for renaming operators in µCRL.

(x bb y) bb z = x bb (y ‖ z) (SC1)
x | y = y | x (SC3)

(x | y) | z = x | (y | z) (SC4)
x | (y bb z) = (x | y) bb z (SC5)

Table 7: Axioms for Standard Concurrency in µCRL.

Finally, G1 = G2 if |G1| = |G2| and for all X ∈ |G1|, (X, G1) = (X, G2).

Note that on systems of process equations, the relations = and =c are equivalences, and the rela-
tions ⇒ and ⇒c are reflexive and transitive. The following simple examples demonstrate the use of
Definitions 2.13 and 2.11.

Example 2.14. Let G1 = {X = a · Y, Y = b · X} and G2 = {X = a · b · X}. We can show that
(X, G1) = (X, G2). The implication from left to the right can be shown by choosing gX = X. The
reverse direction can be shown by choosing gX = X and gY = b · X.

Example 2.15. Let G1 = {X(b:Bool) = a(b) · X(¬b)} and G2 = {Y(n:Nat) = a(even(n)) · Y(S(n))}.
We can show that (X(t), G1) ⇒c (Y(0), G2) by choosing gY(n) = X(even(n)). In this case we need
to show that X(t) = gY(0) (which follows from even(0) = t) and that X(even(n)) = a(even(n)) ·
X(even(S(n))). This latter identity follows from X(b) = a(b)·X(¬b) and the data identity even(S(n)) =
¬even(n). If we assume the existence of a function n : Bool → Nat , defined by n(t) = 0 and n(f) = 1,
we can prove that (X(b), G1) ⇒c (Y(n(b)), G2) using the same function gY(n) and the data identities
even(n(b)) = b and even(S(n(b))) = ¬b, both of which seem reasonable.

10

We do not have any of the reverse implications: consider the model with carrier set Nat , in which
a(b) is interpreted as 1, and sequential composition as +. Then Y(0) has many solutions, whereas
X(t) has none.

Below we argue that the basic Definition 2.11 characterizes preservation of solutions.

Proposition 2.16. Let G1, G2 be systems of process equations with |G1| = {X1 . . . Xn} and |G2| =
{Y1 . . . Ym}. Let (X1(

−→
t1), G1) ⇒c (Y1(−→u1), G2) and let M be a model of µCRL, Bool , DATA and G1.

If P ∈ M is a solution for X1(
−→
t1) then P is also a solution for Y1(−→u1).

Proof. Let P1 ∈ M be a solution for X1(
−→
t1). So, there are processes Pi (i = 1, . . . , n) that solve the

equations of G1 for Xi(
−→
ti). By (X1(

−→
t1), G1) ⇒c (Y1(−→u1), G2) there are functions gYi (i = 1, . . . , m) such

that M |= X1(
−→
t1) = gY1(

−→u1). Furthermore, the derivability of gYj (
−→
dj

′) = rhs(Yj) [∀k Yk(t′) := gYk
(t′)]

(j = 1, . . . , m) yields that P1 is also a solution for Y1(−→u1) in G2.

The following lemma shows that by applying a µCRL axiom to the right hand side of an equation
we get an equivalent system.

Lemma 2.17. Let p1, p2 be process terms such that p1 = p2. Let G be a system of process equations,
and X be a process name in it such that p1 is a subterm of rhs(X, G). Let G′ consist of equations in
G, but in the equation defining X an occurrence of p1 is replaced by p2. Then G = G′.

The following lemma shows that by replacing a subterm of the right hand side of an equation by a
fresh process name, and adding the equation for it, we get an equivalent process definition for each
process name in the original system.

Lemma 2.18. Let G be a system of process equations, and X be a process name in it. Let p be a
subterm of rhs(X, G) with free data variables d1:D1, . . . , dn:Dn =

−−→
d:D in it. Let Y be a process name,

Y /∈ G. Let G′ consist of equations in G, but in the equation defining X an occurrence of p is replaced
by Y(

−→
d), and the equation Y(

−−→
d:D) = p is added to G. Then for any Z ∈ |G| we have (Z, G) = (Z, G′).

Proof. To prove that (Z, G) ⇒ (Z, G′) we take gZ(pars(Z)) = Z(pars(Z)) for all Z ∈ |G|, and gY = p.
To prove the other direction we just take gZ(pars(Z)) = Z(pars(Z)) for all Z ∈ |G|.

The following lemma shows that under certain conditions we can substitute a process name by its
right hand side in a right hand side of an equation.

Lemma 2.19. Let G be a system of process equations, and X be a process name in it. Let Y(
−→
t) be a

subterm of rhs(X, G) for some Y 6= X. Let G′ consist of equations in G, but in the equation defining
X an occurrence of Y(

−→
t) is replaced by rhs(Y, G)[pars(Y, G) :=

−→
t]. Then we have that G = G′.

Proof. In both directions we take the mappings gX to be the identity mappings.

The following lemma says that we can add dummy data parameters to a process equation, or remove
such parameters.

Lemma 2.20. Let G be a system of process equations, and X be a process name in it with parameters
d1, . . . , dn. Suppose that di does not occur freely in rhs(X, G). Let G′ be as G, but the process name
X is replaced by X′ and pars(X′, G′) = d1, . . . di−1, di+1, . . . dn. Then for all Y ∈ |G| ∧ Y 6= X we have
(Y, G) = (Y, G′), and (X(d1, . . . , dn), G) = (X′(d1, . . . di−1, di+1, . . . dn), G′).

Proof. In both directions we take the mappings gY (for Y 6= X) to be the identity mappings. In one
direction gX′(d1, . . . di−1, di+1, . . . dn) = X(d1, . . . dn) and gX(d1, . . . dn) = X′(d1, . . . di−1, di+1, . . . dn).

2. Description of µCRL and Parallel pCRL 11

In many cases we are interested in a process definition (X, G) for a fixed process name X. The
following lemma states that we can drop a defining equation for a process name Y 6= X, in cases when
the X does not depend on Y, and Y does not depend on itself, under the condition that the resulting
set of equations will form a system of process equations (Definition 2.7).

Lemma 2.21. Let G be a system of process equations, and X, Y be process names in it such that X
does not depend on Y, and Y does not depend on itself. Let G′ contain all equations in G except the
defining equation for Y. If G′ is a system of process equations, then we have (X, G) = (X, G′).

Proof. In the direction from left to the right we use the identity mapping for gZ. In the reverse
direction we use the same mapping, but gY = rhs(Y, G).

2.4 Guardedness

In this paper we use a slightly different notion of guardedness as the one used in [16].

Definition 2.22. An occurrence of a process name X in a process term p is completely guarded if
there is a subterm p′ of p of the form q · p′′ containing this occurrence of X, where q is a process term
containing no process names.

A process term is called completely guarded if every occurrence of a process name in it is completely
guarded. Note that a term that contains no process names is completely guarded.

A system of process equations G is completely guarded if for any X ∈ |G|, rhs(X, G) is a completely
guarded term.

Definition 2.23. A process definition (X, G) is (unconditionally) guarded if there is a process defini-
tion (X′, G′) such that G′ is a completely guarded system of process equations, and (X, G) = (X′, G′).

Definition 2.24. Let G be a system of process equations. A Process Name Unguarded-Dependency
Graph (PNUDG) is an oriented graph with the set of nodes |G|, and edges defined as follows: X → Y
belongs to the graph if Y is not completely guarded in rhs(X, G).

Lemma 2.25. If the PNUDG of a finite system of process equations G is acyclic, then G is guarded.

Proof. Given a system G we replace each unguarded occurrence of a process name by its right hand
side. By Lemma 2.19 we get an equivalent system. Due to the fact that PNUDG is acyclic, we need
to perform the replacement only finitely many times, and after that we get a completely guarded
system.

The following example shows that the converse of Lemma 2.25 does not hold.

Example 2.26. System G consisting of one equation X = X � f � δ is guarded, but its PNUDG
contains the cycle X → X.

2.5 Parallel pCRL

We define (parallel) pCRL processes as a subset of µCRL processes.

Definition 2.27. Let G be a system of process equations. A process term in Terms(|G|) is called a
pCRL process term in G if it has the syntax

p ::= a(
−→
t) | δ | Y(

−→
t) | p + p | p · p |

∑
d:D

p | p � c � p (2.1)

and can directly depend only on process names whose right hand sides are also pCRL process terms.
A process name is called a pCRL process name if its right hand side is a pCRL process term.

12

Definition 2.28. Let G be a system of process equations. A process term in Terms(|G|) is called a
parallel pCRL process term in G if it has the syntax

q ::= Y(
−→
t) | q ‖ q | τI(q) | ∂H(q) | ρR(q) (2.2)

and directly depends only on process names whose right hand side are pCRL or parallel pCRL process
terms. It is called a parallel pCRL process name if its right hand side is a parallel pCRL process term.

Example 2.29. Referring to G1 and G2 as defined in the previous Example 2.9, X + a is a pCRL
process term in G1, and X, X ‖ X and X ‖ Y are parallel pCRL process terms in G1. Furthermore,
P(S(n)) with n a variable of sort Nat and a(even(0)) · P(0) are pCRL process terms in G2. Finally,
X ‖ a is not a (parallel) pCRL process term in G1.

In the following definition we define what a parallel pCRL process definition is. For this definition
we assume that we have a µCRL specification that is Statically Semantically Correct (cf. [17]), that
is, in which the data types, actions, communication functions and processes are all well-defined. The
first two restrictions posed in the definition below distinguish parallel pCRL as a subset of µCRL.
The third one is present to disallow parallel process names on which the head process name does not
depend.

Definition 2.30. Let G be a finite system of process equations, and (X, G) be a process definition.
(X, G) is called a parallel pCRL process definition if X is a (parallel) pCRL process name, and

• all of the process names in G are either pCRL or parallel pCRL process names;

• no parallel pCRL process name depends on itself;

• process name X depends on all parallel pCRL process names in G, but not on itself.

It is called a pCRL system of process equations if all process names in it are pCRL process names.

It follows from Definitions 2.30 and 2.28 that for every (parallel) pCRL process definition (X, G),
either X is a pCRL process name, or it depends on a pCRL process name in G.

Example 2.31. Referring to G1 as defined in Example 2.9, (Z, G1) is a parallel pCRL process defi-
nition, but (X, G1) is not.

3. Transformation to Extended Greibach Normal Form

As the input for the linearization procedure we take a (parallel) pCRL process definition (X, G) such
that PNUDG of G is acyclic. The system of process equations G can be partitioned in two parts: G1

and G2, where G1 has pCRL equations, and G2 parallel pCRL equations. G2 can be empty, in which
case X is a pCRL process name. Otherwise X is a parallel pCRL process name.

In this section we transform G1 into a system of process equations G′
1 in Extended Greibach Normal

Form. The resulting system will contain process equations for all process names in |G1| with the same
names and types of data parameters involved, as well as, possibly, other process equations. After that
we need to linearize the process definition (X, G′), where G′ = G′

1 ∪ G2.
Below we define the Extended Greibach Normal Form (EGNF) and pre-Extended Greibach Normal

Form (pre-EGNF). From this point on we assume that a(
−→
t) with possible indices can also be an

abbreviation for τ . This is done to make the normal form representations more concise.

Definition 3.1. A pCRL process equation is in pre-EGNF iff it is of the form:

X(
−−→
d:D) =

∑
i∈I

∑
−−−→
ei:Ei

pi(
−−→
d, ei) � ci(

−−→
d, ei) � δ

3. Transformation to Extended Greibach Normal Form 13

where pi(
−−→
d, ei) are terms of the following syntax:

p ::= a(
−→
t) | Y(

−→
t) | a(

−→
t) · p | Y(

−→
t) · p (3.0)

A pCRL process equation is in EGNF iff it is of the form:

X(
−−→
d:D) =

∑
i∈I

∑
−−−→
ei:Ei

ai(
−→
fi (

−−→
d, ei)) · pi(

−−→
d, ei) � ci(

−−→
d, ei) � δ+

∑
j∈J

∑
−−−→
ej :Ej

aj(
−→
fj (

−−→
d, ej)) � cj(

−−→
d, ej) � δ

where I and J are disjoint, and all pi(
−−→
d, ei) are terms of the following syntax:

p ::= Y(
−→
t) | Y(

−→
t) · p

Finally, a finite system of process equations is in (pre-)EGNF iff all its equations are.

Note (Sum Notation). Apart from functions
∑

d:D p that are included in the syntax of process terms,
we use the following abbreviations. Expression

∑
−−→
d:D

is an abbreviation for
∑

d1:D1 . . .
∑

dn:Dn . In case
n = 0,

∑
−−→
d:D

p is an abbreviation for p. Expression
∑

i∈I pi, where I is a finite set, is an abbreviation
for pi1 + · · · + pin such that {i1, . . . , in} = I. In case I = ∅, ∑

i∈I pi is an abbreviation for δ.

Note (Conditions). As follows from the above definition, any process equation in pre-EGNF or EGNF
must have a condition in each summand. However, this is not a necessary restriction. In case a
summand q does not have a condition, it is an abbreviation for q � t � δ.

3.1 Preprocessing

We first transform G1 into G1
1. This can be seen as a preprocessing step that possibly renames

bound data variables. For instance
∑

d:D((
∑

d:E a(d)) · b(d)) is replaced by
∑

d:D((
∑

e:E a(e)) · b(d)),
where e is a fresh variable. We replace each equation X(

−−−−→
dX:DX) = pX in G1 with the equation

X(
−−−−→
dX:DX) = S0({−→dX}, pX), where S0 : DVar × Terms(|G1|) → Terms(|G1|) is defined in the following

way:

S0(S, f(p1, . . . , pn)) → f(S0(S, p1), . . . , S0(S, pn)) if f is not
∑
d:D

S0

(
S,

∑
d:D

p
)
→

{∑
d:D S0(S ∪ {d}, p) if d /∈ S∑
e:D S0(S ∪ {e}, p[d := e]) if d ∈ S

where e is a fresh variable.

Proposition 3.2. Let G1
1 be the result of applying the preprocessing to G1. Then G1

1 = G1.

Proof. The statement follows from Lemma 2.17 if we apply axiom (SUM2).

As can easily be seen, the preprocessing step does not increase the size or the number of equations
in the system.

14

p ::= a(
−→
t) | δ | X(

−→
t) | p1 · p | p2 + p2 | p3 � c � δ |

∑
d:D

p4

p1 ::= a(
−→
t) | X(

−→
t) | p1 · p | p2 + p2

p2 ::= a(
−→
t) | X(

−→
t) | p1 · p | p2 + p2 | p3 � c � δ |

∑
d:D

p4

p3 ::= a(
−→
t) | X(

−→
t) | p1 · p

p4 ::= a(
−→
t) | X(

−→
t) | p1 · p | p3 � c � δ |

∑
d:D

p4

Table 8: Syntax of terms after simple rewriting.

3.2 Reduction by Simple Rewriting

By applying term rewriting we get an equivalent set of process equations to the given one, but with
terms in right hand sides having the more restricted form as presented in Table 8.

The rewrite rules that we apply to the right hand sides of the equations are listed in Table 9. The
symbols

∑
d:D are treated in this rewrite system as function symbols, not as binders. This is justified

by the fact that we have renamed all nested bound variables, which allows the use of first order term
rewriting. We call the function induced by the rewrite rules rewr : Terms(|G|) → Terms(|G|) for a
given system of process equations G.

x + δ → x (RA6)
δ · x → δ (RA7)∑

d:D

δ → δ (RSUM1′)

∑
d:D

(x + y) →
∑
d:D

x +
∑
d:D

y (RSUM4)

(∑
d:D

x
)
· y →

∑
d:D

(x · y) (RSUM5)

(∑
d:D

x
)

� c � δ →
∑
d:D

x � c � δ (RSUM12)

δ � c � δ → δ (RCOND0′)
(x � c1 � δ) � c2 � δ → x � c1 ∧ c2 � δ (RCOND4)

(x + y) � c � δ → x � c � δ + y � c � δ (RCOND7)
(x � c � δ) · y → (x · y) � c � δ (RCOND6)

Table 9: Rewrite rules defining rewr .

Before applying the rewriting we eliminate all terms of the form � � with the third argument
being different from δ with the following rule:

y 6≡ δ =⇒ x � c � y → x � c � δ + y � ¬c � δ (RCOND3)

3. Transformation to Extended Greibach Normal Form 15

The rewriting is performed modulo the following rules:

x + y = y + x

x + (y + z) = (x + y) + z

(x · y) · z = x · (y · z)

The optimization rules presented in Table 10 are not needed to get the desired restricted syntactic
form, but can be used to simplify the terms. They could be applied with higher priority than the rules
in Table 9 to achieve possible reductions. Note that the rule (RSCA′) could lead to optimizations
only in cases when x is completely guarded, and y or z are not.

x + x → x (RA3)
x � c � x → x (RCOND0)
x � t � y → x (RCOND1)
x � f � y → y (RCOND2)

x � c1 � δ + x � c2 � δ → x � c1 ∨ c2 � δ (RCOND5)
(x1 � c � x2) · (y1 � c � y2) → x1 · y1 � c � x2 · y2 (RSCA)

x · (y � c � z) → x · y � c � x · z (RSCA′)

Table 10: Optimization rules.

Proposition 3.3. The commutative/associative term rewriting system of Table 9 is strongly termi-
nating.

Proof. Termination can be proved by using the following order on the operations: � c � > · >
� c � δ >

∑
> +.

Lemma 3.4. For any process term p not containing p1 � c � p2, where p2 6≡ δ, we have that rewr(p)
has the syntax defined in Table 8.

Proof. Let q = rewr(p). It can be seen from the rewrite rules that they preserve the syntax in
Definition 2.27. Suppose q does not satisfy the syntax defined in Table 8. The following possibilities
exist, and all of them imply that q is reducible.

• q = δ · p1. Can be reduced by (RA7).

• q = (p1 � c � δ) · p2. Can be reduced by (RCOND6).

• q = (
∑

d:D p1) · p2. Can be reduced by (RSUM5).

• q = δ + p1. Can be reduced by (RA6).

• q = δ � c � δ. Can be reduced by (RCOND0′).

• q = (p1 + p2) � c � δ. Can be reduced by (RCOND7).

• q = (p1 � c1 � δ) � c2 � δ. Can be reduced by (RCOND4).

• q = (
∑

d:D p1) � c � δ. Can be reduced by (RSUM12).

16

• q =
∑

d:D δ. Can be reduced by (RSUM1′).

• q =
∑

d:D(p1 + p2). Can be reduced by (RSUM4).

Proposition 3.5. Let G2
1 be the result of applying the rewriting to G1

1. Then G2
1 = G1

1.

Proof. Taking into account that G1
1 does not contain nested occurrences of bound variables, each

rewrite rule is a consequence of the axioms of µCRL. By Lemma 2.17 we get G2
1 = G1

1.

As the result of applying simple rewriting the number of equations obviously remains the same.
The process terms may grow with a constant factor, but the number of occurrences of action labels
and process names does not increase. The data terms and the number of their occurrences may grow
with a constant factor, too.

3.3 Adding New Process Equations

In this step we reduce the complexity of terms in the right hand sides of the G2
1 equations even

further by the introduction of new process equations. In some cases we take a subterm of a right
hand side and substitute it by a fresh process name parameterized by (at least) all free variables that
appear in that subterm. As the result we get a system of process equations G3

1 with equations in
pre-EGNF. Such a transformation can be done for all equations X(

−−−−→
dX:DX) = pX by replacing them

with X(
−−−−→
dX:DX) = S1(

−−−−→
dX:DX, pX).

S1(S, a(
−→
t)) → a(

−→
t)

S1(S, δ) → δ

S1(S, X(
−→
t)) → X(

−→
t)

S1(S, p1 · p2) → S2(S, p1 · p2)
S1(S, p1 + p2) → S1(S, p1) + S1(S, p2)

S1(S, p � c � δ) → S2(S, p) � c � δ

S1

(
S,

∑
d:D

p
)
→

∑
d:D

S1(S & d:D, p)

S2(S, a(
−→
t)) → a(

−→
t)

S2(S, δ) → (Y := fresh var); add
(
Y = δ

)
S2(S, X(

−→
t)) → X(

−→
t)

S2(S, p1 · p2) → S2(S, p1) · S2(S, p2)

S2(S, p1 + p2) → (Y := fresh var)(S); add
(
Y(S) = S1(S, p1 + p2)

)
S2(S, p � c � δ) → (Y := fresh var)(S); add

(
Y(S) = S1(S, p � c � δ)

)
S2

(
S,

∑
d:D

p
)
→ (Y := fresh var)(S); add

(
Y(S) = S1

(
S,

∑
d:D

p
))

Here fresh var represents a fresh process name, and add represents addition of the equation to the
resulting system. Thus formally, S1 and S2 operate on sets of equations, not on equations themselves.
In the following we provide a simple example of the transformation.

Example 3.6. Let G = {X(d:D) = a(d) · (b(d) + X(f(d)))} be a given system of process equations.
After applying the transformation we get the system G′ = {X(d:D) = a(d) · Y(d), Y(d:D) = b(d) +
X(f(d))} which is in pre-EGNF.

3. Transformation to Extended Greibach Normal Form 17

Proposition 3.7. The functions S1 and S2 are well defined.

Proof. Using the order on the operations S1 > +, S1 >
∑

, S2 > · it can be shown that the infinite
recursion is not possible for any admissible arguments given.

Lemma 3.8. All process equations in G3
1 are in pre-EGNF.

Proof. It is easy to see that S2 produces terms that satisfy the syntax (3.0) from Definition 3.1. The
transformation S1 can add only +,

∑
or �� operations to them at the correct places. The only

interesting transformation to consider is S1

(
S,

∑
d:D p

)
→ ∑

d:D S1(S & d:D, p), as we need to show
that p is not of the form p1 + p2. This follows from the fact that p satisfies the syntax defined in
Table 8.

Proposition 3.9. For any process name X in G2
1 we have (X, G3

1) = (X, G2
1).

Proof. The statement follows from Lemma 2.18.

The transformation described in this subsection does not increase the size of terms. The number of
processes may increase linearly in the size of terms in the original system.

3.4 Guarding

Next we transform the equations of G3
1 in such a way that each sequential term starts with an action

(or τ). To this end, we define the function guard : DVar ×Terms(|G|) → Terms(|G|) in the following
way:

guard
(
S,

∑
i∈I

∑
−−−→
ei:Ei

pi � ci � δ
)

= rewr
(∑

i∈I

∑
−−−→
ei:Ei

guard(S ∪ {−→ei}, pi) � ci � δ
)

guard(S, a(
−→
t)) = a(

−→
t)

guard(S, Y(
−→
t)) = guard

(
S, S0

(
S \ {pars(Y)}, rhs(Y)

)[
pars(Y) :=

−→
t

])
guard(S, p1 · p2) = rewr ′(guard(S, p1) · p2)

Here we use functions rewr and S0 from previous subsections. The function rewr ′ represents the
rewrite system of rewr extended with the following rule.

(x + y) · z → x · z + y · z (RA4)

Proposition 3.10. For any finite system G3
1 with acyclic PNUDG, and any process name X in it,

the function guard is well-defined on rhs(X, G3
1).

Proof. Let n be the number of equations in G3
1, and m be the maximal number of process names in

sequences pi for all i ∈ I. Suppose that guard is applied more than n ·m times on a term. This means
that a process name Y is substituted more than once, which contradicts to the fact that PNUDG is
acyclic.

We define the system G4
1 in the following way. For each equation

X(
−−→
d:D) =

∑
i∈I

∑
−−−→
ei:Ei

pi(
−−→
d, ei) � ci(

−−→
d, ei) � δ

18

in G3
1 we put

X(
−−→
d:D) = guard

(
{−−→d:D},

∑
i∈I

∑
−−−→
ei:Ei

pi(
−−→
d, ei) � ci(

−−→
d, ei) � δ

)

into G4
1.

Lemma 3.11. The equations in G4
1 are in pre-EGNF and all sequential process terms in the right

hand sides of its equations start with an action.

Proof. Due to Proposition 3.10 we can apply induction on the definition of guard . The second and third
clauses of the definition are trivial. The first one is brought to the desired form by applying (RCOND4)
and (RSUM4) from Table 9. The fourth clause is brought to the desired form by applying (RA4), and
then (RSUM5) and (RCOND6) from Table 9.

Proposition 3.12. Let G3
1 and G4

1 be defined as above. Then G3
1 = G4

1.

Proof. According to Lemma 2.19 and Lemma 2.17 all transformations performed by guard lead to
equivalent systems. We note that care has been taken to rename some data variables during the
substitution (in the third clause of guard definition) in order to make the substitution and the following
applications of the axioms sound.

The transformation performed in this step does not increase the number of equations, but their sizes
may grow exponentially, due to application of (RA4). An example of such an exponential growth is
given below.

Example 3.13. Let n be a natural number and let the system of process equations G contain the
following n equations.

X0 = a + b

. . .

Xn = Xn−1 · a + Xn−1 · b
By induction on n it is easy to show that after applying guarding we get Xn =

∑
p∈{a,b}n p where

{a, b}n is a set of all strings of length n consisting of a and b occurrences. Indeed, for n = 0 this is
trivial. For n > 0 we get

Xn =


 ∑

p∈{a,b}n−1

p


 · a +


 ∑

p∈{a,b}n−1

p


 · b =

∑
p∈{a,b}n−1

(p · a) +
∑

p∈{a,b}n−1

(p · b) =
∑

p∈{a,b}n

p

This example shows that the term in the right hand side of the equation for Xn contains 2n sum-
mands after the transformation.

3.5 Postprocessing

Finally, we transform all equations of G4
1 into EGNF. This transformation can be seen as a simple

postprocessing step in which we eliminate all actions that appear not leftmost in the right hand sides
in the equations. This elimination is obtained by introducing a new process name Xa for each action
a that occurs inside the process terms pi, with parameters corresponding to those of the action. Thus
we add equations Xa(

−−−→
da:Da) = a(

−→
da) to the system, and replace the occurrences of the action a(

−→
t) by

Xa(
−→
t).

4. From EGNF to LPE 19

Proposition 3.14. Let the system G′
1 of process equations be obtained after the postprocessing of the

system G4
1 as described above. Then for all X ∈ G4

1 we have (X, G′
1) = (X, G4

1) and G′
1 is in EGNF.

Proof. According to Lemma 2.18 this transformation is correct and leads to a system that obviously
is in EGNF.

As a possible optimization during the postprocessing step, the following slightly different strategy
can be applied. If we encounter a subterm a · Y in pi, we replace it by a new process name (with
the parameters for both a and Y), and add the equation for it to the system. This optimization goes
along the lines of a so-called regular linearization procedure (see Conclusion), which is a more general
case of such an optimization.

Summary. In this section we described the transformation of a finite system G = G1 ∪ G2 with
acyclic PNUDG and G2 containing all parallel pCRL process equations into a system G′ = G′

1 ∪ G2

with G′
1 in EGNF. For each X ∈ |G1|,
(X, G1) = (X, G1

1) (“Preprocessing”, by Proposition 3.2)
= (X, G2

1) (“Rewriting”, by Proposition 3.5)
= (X, G3

1) (“Adding new equations”, by Proposition 3.9)
= (X, G4

1) (“Guarding”, by Proposition 3.12)
= (X, G′

1) (“Postprocessing”, by Proposition 3.14).

By Lemma 2.12 it follows that (X, G) = (X, G′) for each X ∈ |G|.

4. From EGNF to LPE

In this section we transform the system of process equations G′ = G′
1 ∪G2 where G′

1 is in EGNF (cf.
Definition 3.1) into G′′ = G′′

1 ∪ G′
2, where

• G′′
1 consists of a single linear process equation with a specially constructed parameter list;

• if G2 is not empty, it is transformed into G′
2 with the same set |G2| of process names, but

taking the effect of the transformation from G′
1 into G′′

1 into account (references to G′
1 process

identifiers may have to be adapted).

Definition 4.1. A process equation is called a linear process equation (LPE) if it is of the form

X(
−−→
d:D) =

∑
i∈I

∑
−−−→
ei:Ei

ai(
−→
fi (

−−→
d, ei)) · X(−→gi (

−−→
d, ei)) � ci(

−−→
d, ei) � δ+

∑
j∈J

∑
−−−→
ej :Ej

aj(
−→
fj (

−−→
d, ej)) � cj(

−−→
d, ej) � δ

where I and J are disjoint sets of indices.

We note that the transformation described in this section is uni-directional, i.e., is formulated in
terms of ⇒c. We again give counter examples for the associated reverse implications.

4.1 Formal Parameters Harmonization

In this subsection we make the formal parameters of all (non-parallel) pCRL process names in G′
1 to

be the same, and adapt the parallel pCRL equations in G2 in an appropriate way. This is done to
be able to compress all (non-parallel) pCRL equations in one process equation. The harmonization is
defined by the following steps.

20

1. We rename the data variables with the same names, but different types in different processes.
This can be easily done (see Section 3.1).

2. We create the common list of data parameters
−−→
d:D by taking the set of all data parameters in

the pCRL equations, and giving some order to it.

3. For each pCRL process name X in G′
1 we define a mapping MX from its parameter list

−→
DX to

the common parameter list
−→
D . This mapping is such that each newly created parameter is a

constant. (Recall that a correct µCRL specification contains constants for each declared data
sort.)

4. Then we replace all left hand sides of the pCRL process equations X(
−−−−→
dX:DX) by X(

−−→
d:D), and

all pCRL process name occurrences Y(
−→
t) in the right hand sides of all the equations in G′ by

Y(MY(
−→
t)).

Proposition 4.2. Let the system G5
1 ∪G1

2 of process equations be obtained after harmonization of the
system G′

1 ∪ G2 as described above. Then for all X ∈ |G′
1|, (X(

−−→
d:D), G5

1) = (X(
−−−−→
dX:DX), G′

1), and for
all X ∈ |G2|, (X, G5

1 ∪ G1
2) = (X, G′

1 ∪ G2).

Proof. By Lemma 2.20 it follows that this transformation yields an equivalent system of equations.

We remark that a more optimal strategy than ‘global harmonization’ is to merge as many data
parameters as possible. This can be achieved by renaming parameters of some processes so that they
match the parameters of other processes, and therefore are not introduced in the general parameter
list. In this case the number of parameters of some type s in the general list will be the maximal
number of parameters of this type in an equation. A drawback of this optimization is the fact that
we may lose parameter name information for some process names.

4.2 Making One Process Equation

Let G5
1 be a system of n pCRL process equations in EGNF with the same formal parameters.

X1(
−−→
d:D) =

∑
i∈I1

∑
−−−→
ei:E

1
i

a1
i (
−→
f1

i (
−−→
d, ei)) · p1

i (
−−→
d, ei) � c1

i (
−−→
d, ei) � δ+

∑
j∈J1

∑
−−−→
ej :E

1
j

a1
j(
−→
f1

j (
−−→
d, ej)) � c1

j (
−−→
d, ej) � δ

. . .

Xn(
−−→
d:D) =

∑
i∈In

∑
−−−→
ei:E

n
i

an
i (
−→
fn

i (
−−→
d, ei)) · pn

i (
−−→
d, ei) � cn

i (
−−→
d, ei) � δ+

∑
j∈Jn

∑
−−−→
ej :E

n
j

an
j (
−→
fn

j (
−−→
d, ej)) � cn

j (
−−→
d, ej) � δ

4. From EGNF to LPE 21

We define the system G6
1 as a single EGNF process equation in the following way:

X(s:State,
−−→
d:D) =

∑
i∈I1

∑
−−−→
ei:E

1
i

a1
i (
−→
f1

i (
−−→
d, ei)) · S(p1

i (
−−→
d, ei)) � c1

i (
−−→
d, ei) ∧ s = 1 � δ+

∑
j∈J1

∑
−−−→
ej :E

1
j

a1
j(
−→
f1

j (
−−→
d, ej)) � c1

j(
−−→
d, ej) ∧ s = 1 � δ

+ · · ·+∑
i∈In

∑
−−−→
ei:E

n
i

an
i (
−→
fn

i (
−−→
d, ei)) · S(pn

i (
−−→
d, ei)) � cn

i (
−−→
d, ei) ∧ s = n � δ+

∑
j∈Jn

∑
−−−→
ej :En

j

an
j (
−→
fn

j (
−−→
d, ej)) � cn

j (
−−→
d, ej) ∧ s = n � δ

where S(Xs(
−→
t)) = X(s,

−→
t), and S(Xs(

−→
t) · p) = X(s,

−→
t) · S(p).

The data type State is an enumerated data type with equality predicate. Natural numbers are
normally used for State, though a finite data type is, of course, sufficient.

Let the system G5
1∪G1

2 of process equations be obtained after harmonization of the system G′
1∪G2

as described above. Then for all X ∈ |G′
1|, (X(

−−→
d:D), G5

1) = (X(
−−−−→
dX:DX), G′

1), and for all X ∈ |G2|,
(X, G5

1 ∪ G1
2) = (X, G′

1 ∪ G2). During the current step we construct the system G6
1 consisting of the

single equation for X and the set G2
2 being G1

2 with all pCRL process terms Xi(
−→
t) replaced by X(i,

−→
t)

for each 1 ≤ i ≤ n.

Proposition 4.3. Let G5
1 be a system of n process equations in EGNF, each with formal parameters−−→

d:D, and let State enumerate 1, . . . , n. Let furthermore G5
1 ∪G1

2 be a system of parallel pCRL process
equations and G6

1 ∪ G2
2 be the result of the transformation described above. Then for any s:State,

data term vector
−→
t , and any X ∈ |G5

1|, (X(s,
−→
t), G6

1) =c (Xs(
−→
t), G5

1). Finally, for each X ∈ |G1
2|,

(X, G6
1 ∪ G2

2) =c (X, G5
1 ∪ G1

2).

Proof. The equivalence is easy to derive with the following functions: gXi(
−→
t) = X(i,

−→
t) for each

i:State, and gX(s,
−→
t) = Xs(

−→
t). Note that identities of sort State are used in the derivations.

4.3 Introduction of a Stack

The final step in the linearization of pCRL processes consists of the introduction of a stack parameter
which allows to model a sequential composition of process names with parameters as a single process
term. In the case that such sequential compositions do not occur in the equation, we do not apply
this step. For the particular transformation described here, it is necessary that the process equation
to be transformed is data-parametric. This need not be the case after application of all preceding
transformation steps. For instance the equation X = a ·X · . . . ·X + b does not have a data parameter.
In this case we need to add a dummy data parameter (over a singleton data type, cf. Lemma 2.20)
to apply the following transformation.

Let G6
1 be a single pCRL process equation in EGNF:

X(
−−→
d:D) =

∑
i∈I

∑
−−−→
ei:Ei

ai(
−→
fi (

−−→
d, ei)) · X(

−→
t1i) · . . . · X(

−→
tni

i) � ci(
−−→
d, ei) � δ+

∑
j∈J

∑
−−−→
ej :Ej

aj(
−→
fj (

−−→
d, ej)) � cj(

−−→
d, ej) � δ

22

We define G′′
1 by the single process equation for Z in the following way:

Z(st :Stack ,
−−→
d:D) =∑

i∈I

∑
−−−→
ei:Ei

ai(
−→
fi (

−−→
d, ei)) · Z(push(

−→
t2i , . . . , push(

−→
tni

i , st) . . .),
−→
t1i) � ci(

−−→
d, ei) � δ

+
∑
j∈J

∑
−−−→
ej :Ej

aj(
−→
fj (

−−→
d, ej)) · Z(pop(st),

−−−−→
get(st)) � st 6= 〈 〉 ∧ cj(

−−→
d, ej) � δ

+
∑
j∈J

∑
−−−→
ej :Ej

aj(
−→
fj (

−−→
d, ej)) � st = 〈 〉 ∧ cj(

−−→
d, ej) � δ

where
−−−−→
get(st) = get1(st), . . . , getn(st).

The data type Stack is a standard stack data type with constructors 〈 〉 representing the empty
stack, and push(

−→
t , st) inserting the new element

−→
t to the top of the stack st . We use the equality

predicate on stacks, but a predicate that checks if a stack is empty can be used instead. The function
get i(st) returns the ith element of the top of st , and the function pop(st) returns the stack value
st without its top element. See [19] for details on implementing data types in µCRL. To prove the
following proposition we use an induction principle on the data type Stack , namely that every value
of type stack is either empty or the result of an insertion to another value of this type.

During the current step we construct the system G′′
1 consisting of the single equation for X and the

set G′
2 being G2

2 with all pCRL process terms X(
−→
t) replaced by Z(〈 〉,−→t).

Proposition 4.4. Let systems G6
1 and G′′

1 as described above be given. Then for any data term vector−→
t we have (X(

−→
t), G6

1) ⇒c (Z(〈 〉,−→t), G′′
1). Let furthermore G6

1 ∪ G2
2 be a system of parallel pCRL

process equations and G′′
1 ∪ G′

2 be the result of the transformation described above. Then for any
X ∈ |G2

2|, (X, G6
1 ∪ G2

2) ⇒c (X, G′′
1 ∪ G′

2).

Proof. We define gZ(st ,
−→
d) = X(

−→
d) � st = 〈 〉 � X(

−→
d) · gZ(pop(st),

−−−−→
get(st)). To prove the implication

we consider two cases. First, if the stack st is empty we have gZ(st ,
−→
t) = X(

−→
t). It can be shown by

induction on n that

gZ(push(
−→
t2 , . . . , push(

−→
tn , 〈 〉) . . .),

−→
t1) = X(

−→
t1) · . . . · X(

−→
tn)

When we apply this gZ to the equation for Z and use the identities of the sort Stack , we get an identity
which is the same as the equation for X.

In second case, if the stack st = push(st ′,
−→
t′) for some stack value st ′ and data term vector

−→
t′ , we

have gZ(st ,
−→
t) = X(

−→
t) · gZ(st ′,

−→
t′). By induction on n it can be shown that

gZ(push(
−→
t2 , . . . , push(

−→
tn , st) . . .),

−→
t1) = X(

−→
t1) · . . . · X(

−→
tn) · gZ(st ′,

−→
t′)

When we apply this gZ to the equation for Z and use the identities of the sort Stack , we get the
following identity:

X(
−→
d) · gZ(st ′,

−→
t′) =

∑
i∈I

∑
−−−→
ei:Ei

ai(
−→
fi (

−−→
d, ei)) · X(

−→
t1i) · . . . · X(

−→
tni

i) · gZ(st ′,
−→
t′) � ci(

−−→
d, ei) � δ

+
∑
j∈J

∑
−−−→
ej :Ej

aj(
−→
fj (

−−→
d, ej)) · gZ(st ′,

−→
t′) � cj(

−−→
d, ej) � δ

This identity is derivable from the equation for X by applying axioms (A4), (SUM5) and (Cond6).

5. From Parallel pCRL to LPE 23

The following example [26] shows that the reverse implication does not hold in every model. It is
easy to see that if data parameters do not matter, the stack is isomorphic to a counter which can be
implemented by means of natural numbers.

Example 4.5. Let G1 = {X = a · X · X} and G2 = {Z(n:Nat) = a · Z(succ(n))}. Consider the
model with integers Z as the carrier set, and the operations · → +, a → −1. The equation in G1

has the unique solution X = 1, while the equation in G2 has infinitely many solutions Z(n) = n + c,
where c ∈ Z. For a more elaborated model that includes interpretations of other µCRL operations
see Example 5.2.

Summary. This section is about the transformation of a finite system G′ = G′
1 ∪ G2 with acyclic

PNUDG and G′
1 in EGNF into a system G′′ = G′′

1 ∪ G′
2 with G′′

1 an LPE and G′
2 appropriately

updated. For each X ∈ |G′|,

(X, G′) = (X′, G5
1 ∪ G1

2) (“Harmonization”, by Proposition 4.2)
=c (X′′, G6

1 ∪ G2
2) (“One equation”, by Proposition 4.3)

⇒c (X′′′, G′′) (“One LPE”, by Proposition 4.4).

Here the primed versions of X represent the possible updates of parameters, as prescribed by the
propositions mentioned.

5. From Parallel pCRL to LPE

As the result of the previous section we have obtained G′′ = G′′
1 ∪ G′

2, where G′′
1 is an LPE and G′

2 a
(possibly empty) set of parallel pCRL process equations. In this section we show that the parallel part
of G′′ can be eliminated. First we take a general point of view, and show that LPEs are closed under
the parallel pCRL process operations, viz. parallel composition, encapsulation, hiding, and renaming
(see Definition 2.28). Then we show that with these results and those from Sections 3 and 4, the
transformation of G′′ into a single LPE can be carried out. We note that the transformation described
in this section is uni-directional, and we give counterexamples for the associated reverse implications.

5.1 Parallel Composition of LPEs

Let G be a system of process equations in which each of (X(
−→
dX), G) and (Y(

−→
dY), G) is defined by an

LPE, and that contains an equation Z(
−−−→
dX, dY) = X(

−→
dX) ‖ Y(

−→
dY). Assume that the LPEs for X and Y

have no common data variables, and are defined in the following way:

X(
−−−−→
dX:DX) =

∑
i∈I

∑
−−−→
ei:Ei

ai(
−→
fi (

−−−→
dX, ei)) · X(−→gi (

−−−→
dX, ei)) � ci(

−−−→
dX, ei) � δ+

∑
j∈J

∑
−−−→
ej :Ej

aj(
−→
fj (

−−−→
dX, ej)) � cj(

−−−→
dX, ej) � δ

Y(
−−−−→
dY:DY) =

∑
i∈I′

∑
−−−→
e′

i:E
′
i

a′i(
−→
f ′

i (
−−−→
dY, e′i)) · Y(

−→
g′i (

−−−→
dY, e′i)) � c′i(

−−−→
dY, e′i) � δ+

∑
j∈J′

∑
−−−→
e′

j :E
′
j

a′j(
−→
f ′

j (
−−−→
dY, e′j)) � c′j(

−−−→
dY, e′j) � δ

24

where I∩J = I ′∩J ′ = ∅. We construct the equation for Z(
−−−−−−−−−→
dX:DX, dY:DY), being equal to X(

−→
dX)‖Y(

−→
dY),

as follows.

Z(
−−−−−−−−−→
dX:DX, dY:DY) =∑

i∈I

∑
−−−→
ei:Ei

ai(
−→
fi (

−−−→
dX, ei)) · Z(−→gi (

−−−→
dX, ei),

−→
dY) � ci(

−−−→
dX, ei) � δ

+
∑
j∈J

∑
−−−→
ej :Ej

aj(
−→
fj (

−−−→
dX, ej)) · Y(

−→
dY) � cj(

−−−→
dX, ej) � δ

+
∑
i∈I′

∑
−−−→
e′

i:E
′
i

a′i(
−→
f ′

i (
−−−→
dY, e′i)) · Z(

−→
dX,

−→
g′i (

−−−→
dY, e′i)) � c′i(

−−−→
dY, e′i) � δ

+
∑
j∈J′

∑
−−−→
e′

j :E
′
j

a′j(
−→
f ′

j (
−−−→
dY, e′j)) · X(

−→
dX) � c′j(

−−−→
dY, e′j) � δ

+
∑

(k,l)∈IγI′

∑
−−−−−−−−→
ek:Ek,el:E

′
l

γ(ak, a′l)(
−→
fk(

−−−→
dX, ek)) · Z(−→gk(

−−−→
dX, ek),

−→
g′l (

−−−→
dY, e′l))

�
−→
fk(

−−−→
dX, ek) =

−→
f ′

l (
−−−→
dY, e′l) ∧ ck(

−−−→
dX, ei) ∧ c′l(

−−−→
dY, e′l) � δ

+
∑

(k,l)∈IγJ′

∑
−−−−−−−−→
ek:Ek,el:E

′
l

γ(ak, a′l)(
−→
fk(

−−−→
dX, ek)) · Y(

−→
g′l (

−−−→
dY, e′l))

�
−→
fk(

−−−→
dX, ek) =

−→
f ′

l (
−−−→
dY, e′l) ∧ ck(

−−−→
dX, ei) ∧ c′l(

−−−→
dY, e′l) � δ

+
∑

(k,l)∈JγI′

∑
−−−−−−−−→
ek:Ek,el:E

′
l

γ(ak, a′l)(
−→
fk(

−−−→
dX, ek)) · X(−→gk(

−−−→
dX, ek))

�
−→
fk(

−−−→
dX, ek) =

−→
f ′

l (
−−−→
dY, e′l) ∧ ck(

−−−→
dX, ei) ∧ c′l(

−−−→
dY, e′l) � δ

+
∑

(k,l)∈JγJ′

∑
−−−−−−−−→
ek:Ek,el:E

′
l

γ(ak, a′l)(
−→
fk(

−−−→
dX, ek))

�
−→
fk(

−−−→
dX, ek) =

−→
f ′

l (
−−−→
dY, e′l) ∧ ck(

−−−→
dX, ei) ∧ c′l(

−−−→
dY, e′l) � δ

where PγQ = {(p, q) ∈ P × Q | γ(ap, a
′
q) is defined}.

Proposition 5.1. Let G′ contain the equations for X, Y and Z defined above. Let G contain the
equations for X and Y, and the equation Z(

−−−→
dX, dY) = X(

−→
dX) ‖ Y(

−→
dY). Then (Z, G) ⇒ (Z, G′).

Proof. We use the identity mapping for gX, gY, gZ. Then the equations for X and Y are proven trivially
because they are the same in G and G′. To prove the equation for Z first apply the axiom (CM1) to
get Z = (X(

−→
dX)bbY(

−→
dY)+Y(

−→
dY)bbX(

−→
dX))+X(

−→
dX)|Y(

−→
dY). Then we replace X and Y in the left hand sides

of bb and in both sides of | by their right hand sides. After that we apply the axioms (CM4), (SUM6),
(Cond8), (CM2) and (CM3) to eliminate bb, and the axioms (CM8), (CM9), (SUM7), (SUM7′),
(Cond9), (Cond9′), (CM5), (CM6), (CM7), (CF1), (CF2),(CT1), (CT2), (CD1), (CD2) to eliminate |.
Note that before applying the axioms for sums we might need to apply (SUM2), and after elimination
bb and | we might need to apply (A7) and (A6). After that we apply the identity x ‖ y = y ‖ x,
which is derivable from axioms (CM1), (A1) and (SC3), to replace all occurrences of Y(

−→
t′) ‖X(

−→
t) by

X(
−→
t) ‖ Y(

−→
t′), and finally we replace all X(

−→
t) ‖ Y(

−→
t′) by Z(

−→
t ,

−→
t′) using the equation for Z in G. As

the result we get the equation for Z in G′.

In the following example we present a model of µCRL based on the trace model [12], but in which the

5. From Parallel pCRL to LPE 25

sequential composition operation is commutative and idempotent. This model is used in Example 5.3
to show that the reverse implication of Proposition 5.1 does not hold in every model.

Example 5.2. Let ActLab be a finite set of action labels and γ be the totally undefined function.
Consider the model with carrier set

(
2(2ActLab\∅) \ ∅

)
∪ {>,⊥}, and the operations defined as follows:

• For each a ∈ ActLab a(
−→
t) → {{a}}

• δ → > and τ → ⊥
• + → ∪, where S ∪> = > ∪ S = S and S ∪ ⊥ = ⊥ ∪ S = ⊥
• ·, ‖, bb, | → ∗, where S ∗S′ = {s∪ s′ | s ∈ S ∧ s′ ∈ S′}, S ∗> = >∗S = > and S ∗⊥ = ⊥∗S = S.

• ∂H → eH , where eH({{a}}) = {{a}} if a /∈ H , eH({{a}}) = > if a ∈ H , eH(S ∪ S′) =
eH(S) ∪ eH(S′), eH(S ∗ S′) = eH(S) ∗ eH(S′), eH(>) = >, eH(⊥) = ⊥

• τI → hI , where hI is defined in a similar way as eH .

• ∑
d:D → id , where id is the identity mapping.

• x � c � y → if (c, x, y), where if (c, x, y) is the if-then-else mapping.

Example 5.3. Let G = {X = a ·X, Y = b ·Y, Z = X‖Y} and G′ = {X = a ·X, Y = b ·Y, Z = a ·Z+b ·Z}.
In the model defined in Example 5.2 the equations for X in both G and G′ have the following solutions:

{{a}}, {{a, b}}, {{a}, {a, b}}, >
while the equations for Y have the following solutions:

{{b}}, {{a, b}}, {{b}, {a, b}}, >
The equation for Z in G has two solutions {{a, b}} and >, while the equation for Z in G′ has five
solutions {{a, b}}, {{a}, {a, b}}, {{b}, {a, b}}, {{a}, {b}, {a, b}} and >.

5.2 Encapsulation, Hiding and Renaming of LPEs

Let G be an LPE defining X as in the previous section, A be a set of action labels, and R be a
renaming function. We construct LPEs for Z1 being equal to ∂A(X), Z2 being equal to τA(X), and Z3

being equal to ρR(X), in the following way:

Z1(
−−−−→
dX:DX) =

∑
i∈I1

∑
−−−→
ei:Ei

ai(
−→
fi (

−−−→
dX, ei)) · Z1(−→gi (

−−−→
dX, ei)) � ci(

−−−→
dX, ei) � δ

+
∑
j∈J1

∑
−−−→
ej :Ej

aj(
−→
fj (

−−−→
dX, ej)) � cj(

−−−→
dX, ej) � δ

Here and in the equations below we assume that I1 = {i ∈ I | ai /∈ A} and J1 = {j ∈ J | aj /∈ A}.

Z2(
−−−−→
dX:DX) =

∑
i∈I1

∑
−−−→
ei:Ei

ai(
−→
fi (

−−−→
dX, ei)) · Z2(−→gi (

−−−→
dX, ei)) � ci(

−−−→
dX, ei) � δ

+
∑
j∈J1

∑
−−−→
ej :Ej

aj(
−→
fj (

−−−→
dX, ej)) � cj(

−−−→
dX, ej) � δ

+
∑

i∈I\I1

∑
−−−→
ei:Ei

τ · Z2(−→gi (
−−−→
dX, ei)) � ci(

−−−→
dX, ei) � δ

+
∑

j∈J\J1

∑
−−−→
ej :Ej

τ � cj(
−−−→
dX, ej) � δ

26

Z3(
−−−−→
dX:DX) =

∑
i∈I

∑
−−−→
ei:Ei

R(ai)(
−→
fi (

−−−→
dX, ei)) · Z3(−→gi (

−−−→
dX, ei)) � ci(

−−−→
dX, ei) � δ

+
∑
j∈J

∑
−−−→
ej :Ej

R(aj)(
−→
fj (

−−−→
dX, ej)) � cj(

−−−→
dX, ej) � δ

Proposition 5.4. Let G′
1 contain the equations for X and Z1 defined above, G′

2 contain the equations
for X and Z2 defined above, and G′

3 contain the equations for X and Z3 defined above. Let G1 contain
the equations for X and Z1(

−−−−→
dX:DX) = ∂A(X(

−→
dX)), G2 contain the equations for X and Z2(

−−−−→
dX:DX) =

τA(X(
−→
dX)), and G3 contain the equations for X and Z3(

−−−−→
dX:DX) = ρR(X(

−→
dX)). Then we have G1 ⇒ G′

1,
G2 ⇒ G′

2 and G3 ⇒ G′
3.

Proof. To prove the implications we use the identity mappings for gX, gZ1 , gZ2 and gZ3 . The equations
for X are proven trivially. For the other equations we substitute X by its right hand side and apply
the axioms (D3), (SUM8), (D5), (D4), (D1), (D2), (A7), (A6) to push ∂A inside; the axioms (T3),
(SUM9), (T5), (T4), (T1), (T2) to push τA inside; the axioms (R3), (SUM10), (R5), (R4), (R1), (RT),
(RD) to push ρR inside. After that we use the equations for Z1, Z2, Z3 in G1, G2, G3 respectively to to
eliminate the operators ∂A, τA and ρR completely and arrive at equations for Z1, Z2, Z3 in G′

1, G
′
2, G

′
3

respectively.

The following examples show that the reverse implications of the latter proposition do not hold in
every model.

Example 5.5. Let G1 = {X = a · X + b · X, Z1 = ∂{b}(X)} and G′
1 = {X = a · X + b · X, Z1 = a · Z1}.

Consider the model from Example 5.2. The equations for X in both G1 and G′
1 have the following

solutions:

{{a, b}}, {{a}, {a, b}}, {{b}, {a, b}}, {{a}, {b}, {a, b}}, >

The equation for Z1 in G1 has two solutions {{a}} and >, while the equation for Z1 in G′
1 has four

solutions {{a}}, {{a, b}}, {{a}, {a, b}} and >.

Example 5.6. Let G2 = {X = a · X, Z2 = τ{a}(X)} and G′
2 = {X = a · X, Z2 = τ · Z2}. Consider the

branching bisimulation model [12]. The equation for Z2 in G2 has the unique solution Z2 = τ , while
the equation for Z2 in G′

2 has infinitely many solutions Z2 = τ ·p, where p is any element of the model.

Example 5.7. Let G3 = {X = a ·X+b ·X, Z3 = ρR(X)} and G′
3 = {X = a ·X+b ·X, Z3 = a ·Z3}, where

R(a) = R(b) = a. Consider the model from Example 5.2. The equation for Z3 in G3 has two solutions
{{a}} and >, while the equation for Z3 in G′

3 has four solutions {{a}}, {{a, b}}, {{a}, {a, b}} and >.

5.3 Towards an LPE

Let G′′ = G′′
1 ∪G′

2 be a system of process equations with G′′
1 an LPE and G′

2 containing parallel pCRL
process equations. If G′

2 is empty we are done. Otherwise, let (X, G′′) be the process definition to be
transformed. We substitute the right hand sides for all parallel pCRL process names (other than X)
in G′

2 and obtain the set G′′
2 with a single process equation for X, such that (X, G′′) = (X, G′′

1 ∪ G′′
2).

We finish the description of our transformation of G′′ into a single LPE by describing how G′′
2 can be

integrated with G′′
1 . A general strategy is to apply an innermost/outermost reduction along the lines

of Propositions 5.1 and 5.4, occasionally adding or replacing process equations.
We consider a typical case (but note that many variants are conceivable):

G′′
1 = {Y(

−−−−→
dY:DY) = pY}

G′
2 = {X(

−−−−→
dX:DX) = τI(∂H(Y(

−→
t) ‖ Y(−→u)))}

6. Conclusions 27

and proceed in a stepwise manner. First we reduce the ‖-occurrence, so transform G′
2 into

G3
2 = {X(

−−−−→
dX:DX) = τI(∂H(Z(

−→
t ,−→u))), Z(

−−−−→
dY:DY,

−−−−→
eY:DY) = Y(

−→
dY) ‖ Y(−→eY)}

where −→eY is a fresh copy of
−→
dY. With Lemma 2.18 it follows that for all Y ∈ |G′′|, (Y, G′′) = (Y, G′′

1∪G3
2).

According to Proposition 5.1, there exists a system H with Z defined by a number of linear equations
in the process names Z and Y such that (Z, G′′

1 ∪G3
2) ⇒c (Z, H), and for the remaining process names

Y ∈ |G′′|, (Y, G′′) = (Y, G′′
1 ∪ G3

2) ⇒c (Y, H). Comparing the newly created system H of process
equations with G′′, we see that it contains one parallel pCRL operation less, and one more pCRL
process equation consisting of the linear equation for Z. Next, with Propositions 4.2 and 4.3 this
system can be transformed into a system H ′ that contains a single LPE, say over process name U,
and the equation X(

−−−−→
dX:DX) = τI(∂H(U(−→u))) where application of these propositions prescribes the

value vector −→u . With Proposition 5.4 we can resolve the encapsulation and hiding operation in a
similar fashion. This yields a system of process equations H ′′ that consists of an LPE over process
name V and the equation X(

−−−−→
dX:DX) = V(−→v), and (X, H ′) ⇒ (X, H ′′). Now the last step of this final

transformation is the conclusion (X, H ′′) = (V(−→v), Glin), where Glin contains only the LPE for V.
The description above illustrates the last part of our transformation. Without further proof we

state the following result.

Proposition 5.8. Let G′′ = G′′
1 ∪ G′

2 be a system of process equations as described above (G′′
1 an

LPE, and G′
2 containing parallel pCRL process equations). Then G′′ can be transformed via in-

nermost/outermost reduction into a system Glin that contains one single LPE, and that satisfies
(X, G′′) ⇒c (X′(

−→
tX′), Glin) for a certain value vector

−→
tX′ .

6. Conclusions

We described a transformation of parallel pCRL process definitions into a linear format, and argued
that this transformation is correct. Our correctness argument is not tied to some particular model, and
also applies to process definitions that do not necessarily imply that the models have unique solutions.
Furthermore, this transformation is idempotent in the following sense: applying the transformation
to an LPE yields the same LPE.

The algorithm underlying the transformation into LPE format basically matches the one that is
currently implemented in the µCRL toolset [14]. Of course, during the process of linearization many
optimizations are conceivable, some of which can only be applied in a certain context. We have
already mentioned some optimization rewrite rules (Table 10) that can be applied during one of the
linearization steps. Another optimization can be performed in the cases where a new process name is
introduced. There can be a choice of what parameters to use for the new process name in order to fetch
the complicated structure of data terms involved. Furthermore, there are many (minor) optimizations,
such as the rewriting of conditions or the elimination of constant parameters. Due to the fact that the
LPE format provides such a simple process structure, we feel that this type of optimizations can be
best performed after the transformation into the LPE format. Such optimizations include rewriting
of data terms, eliminations of redundant variables and constants, abstract interpretation, and so on.

There are two particular optimizations that we want to mention here in more detail: regular lin-
earization and clustering of actions. The first of these is based on [22], and applies to the situation
where regularity follows from the absence of termination in a recursion, like in X = a ·X ·X. Restrict-
ing to standard process semantics for µCRL, an LPE that specifies the same behavior is X = a · X.
However, this optimization is model dependent, as there can be models in which the two equations
have different sets of solutions. For some other cases, also dealt with in [22] and used in the µCRL
toolset, these optimizations can be justified on a general level using the equivalence of systems of
process equations. For example, the system G1 = {X = a · Y · X, Y = b} can be transformed into
G2 = {X = a · Z, Z = b · X}, and we can prove that (X, G1) = (X, G2), thus showing that this

28 REFERENCES

transformation is sound in every model. As for ‘clustering of actions’, we refer to Definition 2.7,
Theorem 2.8 and Theorem A.4 in [18]. The transformation allows to optimize an LPE to a form in
which every action label occurs at most twice (either as a termination action or not). The constructed
LPE is equivalent to the original one. During the transformation the sums

∑
i∈I and

∑
j∈J which in

Definition 4.1 represent the abbreviations for alternative compositions, are changed to the ‘real’ sums
over enumerated data types. We note that both these latter optimizations are implemented in the
current version of the µCRL toolset.

In the future we plan to work on extending the linearization procedure to cover the full syntax
of µCRL. Furthermore, the procedure can be extended to handle the timed version of the language.
Finally, additional extensions to the language like interrupts, process creation and priorities could be
investigated, as there is a practical demand for these facilities.

References

[1] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of bisimulation equivalence for pro-
cesses generating context-free languages. Journal of the ACM, 40(3):653–682, July 1993.

[2] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theoretical Computer
Science 18. Cambridge University Press, 1990.

[3] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication. Information and
Computation, 60(1/3):109–137, 1984.

[4] J.A. Bergstra and J.W. Klop. A complete inference system for regular processes with silent
moves. In F.R. Drake and J.K. Truss, editors, Proceedings Logic Colloquium 1986, pages 21–81,
Hull, 1988. North-Holland. First appeared as: Report CS-R8420, CWI, Amsterdam, 1984.

[5] J.A. Bergstra and A. Ponse. Translation of a muCRL-fragment to I-CRL. In Methods for the
Transformation and analysis of CRL. Deliverable 46/SPE/WP5/DS/A/007/b1, SPECS RACE
Project no. 1046, pages 125–148. Available through GSI Tecsi, May 1991.

[6] M.A. Bezem and J.F. Groote. Invariants in process algebra with data. In B. Jonsson and
J. Parrow, editors, CONCUR’94, pages 401–416. LNCS 836, Springer-Verlag, 1994.

[7] D.J.B. Bosscher and A. Ponse. Translating a process algebra with symbolic data values to linear
format. In U.H. Engberg, K.G. Larsen, and A. Skou, editors, Proceedings of the Workshop on
Tools and Algorithms for the Construction and Analysis of Systems, Aarhus, Denmark, volume
NS-95-2 of BRICS Notes Series, pages 119–130. Department of Computer Science, University of
Aarhus, May 1995.

[8] J.J. Brunekreef. Process specification in a UNITY format. In A. Ponse, C. Verhoef, and
S.F.M. van Vlijmen, editors, Algebra of Communicating Processes, Utrecht 1994, Workshops
in Computing, pages 319–337. Springer-Verlag, 1995.

[9] S. Burris and H.P. Sankappanavar. A Course in Universal Algebra. Number 78 in Graduate
Texts in Mathematics. Springer-Verlag, 1981.

[10] K.M. Chandy and J. Misra. Parallel Program Design. A Foundation. Addison-Wesley, 1988.

[11] W.J. Fokkink. Introduction to Process Algebra. Texts in Theoretical Computer Science. An
EATCS Series. Springer-Verlag, 2000.

REFERENCES 29

[12] R.J. van Glabbeek. The linear time – branching time spectrum II; the semantics of se-
quential systems with silent moves. Manuscript. Preliminary version available by ftp at
ftp://boole.stanford.edu/pub/spectrum.ps.gz, 1993. Extended abstract in E. Best, edi-
tor: Proceedings CONCUR’93, 4th International Conference on Concurrency Theory, Hildesheim,
Germany, August 1993, LNCS 715, Springer, pp. 66–81.

[13] J.F. Groote. The syntax and semantics of timed µCRL. Report SEN-R9709, CWI, The Nether-
lands, 1997.

[14] J.F. Groote and B. Lisser. Tutorial and Reference Guide for the µCRL toolset version 1.0. CWI,
1999. Available from http://www.cwi.nl/∼mcrl/mutool.html.

[15] J.F. Groote and S.P. Luttik. Undecidability and completeness results for process algebras with
alternative quantification over data. Report SEN-R9806, CWI, The Netherlands, July 1998.
Available from http://www.cwi.nl/∼luttik/; submitted for publication.

[16] J.F. Groote and A. Ponse. Proof theory for µCRL: A language for processes with data. In D.J.
Andrews, J.F. Groote, and C.A. Middelburg, editors, Semantics of Specification Languages, pages
232–251. Workshop in Computing Series, Springer-Verlag, 1994.

[17] J.F. Groote and A. Ponse. The syntax and semantics of µCRL. In A. Ponse, C. Verhoef, and
S.F.M. van Vlijmen, editors, Algebra of Communicating Processes 1994, pages 26–62. Workshop
in Computing Series, Springer-Verlag, 1995.

[18] J.F. Groote and J. Springintveld. Focus points and convergent process operators. A proof strategy
for protocol verification. Technical Report 142, Department of Philosophy, Utrecht University,
1995. ftp://ftp.phil.uu.nl/pub/logic/PREPRINTS/preprint142.ps.Z.

[19] J.F. Groote and J.J. van Wamel. Algebraic data types and induction in µCRL. Technical Report
P9409, University of Amsterdam, Programming Research Group, 1994.

[20] Y. Hirshfeld and F. Moller. Decidability results in automata and process theory. In F. Moller and
G. Birtwistle, editors, Logics for Concurrency: Structure versus Automata, LNCS 1043, pages
102–148, Berlin, 1996. Springer-Verlag.

[21] ISO/IEC. LOTOS — a formal description technique based on the temporal ordering of observa-
tional behaviour. International Standard 8807. International Organization for Standardization,
— Information Processing Systems — Open Systems Interconection, Genève, September 1988.

[22] S. Mauw and J.C. Mulder. Regularity of BPA-systems is decidable. In B. Jonsson and J. Parrow,
editors, Proc. CONCUR ’94, LNCS 836, pages 34–47. Springer Verlag, 1994.

[23] S. Mauw and G.J. Veltink. A process specification formalism. Fundamenta Informaticae, XIII:85–
139, 1990.

[24] S. Mauw and G.J. Veltink, editors. Algebraic Specification of Communication Protocols. Cam-
bridge Tracts in Theoretical Computer Science 36. Cambridge University Press, 1993.

[25] R. Milner. A complete inference system for a class of regular behaviours. Journal of Computer
and System Sciences, 28:439–466, 1984.

[26] V. van Oostrom. Personal communications, 2000.

[27] A. Ponse. Computable processes and bisimulation equivalence. Formal Aspects of Computing,
8(6):648–678, 1996.

30 REFERENCES

[28] SPECS-Semantics and Analysis. Definition of MR and CRL Version 2.1. Deliverable
46/SPE/WP5/DS/A/017/b1. SPECS RACE Project no. 1046. Available through GSI Tecsi,
1990.

[29] Specification and description language (SDL). ITU-T Recommendation Z.100, 1994.

