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ABSTRACT

We incorporate equations in binary decision diagrams (BDD). The resulting objects are called EQ-BDDs. A

straightforward notion of ordered EQ-BDDs (EQ-OBDD) is de�ned, and it is proved that each EQ-BDD is logically

equivalent to an EQ-OBDD. Moreover, on EQ-OBDDs satis�ability and tautology checking can be done in constant

time.

Several procedures to eliminate equality from BDDs have been reported in the literature. Typical for our approach

is that we keep equalities, and as a consequence do not employ the �nite domain property. Furthermore, our setting

does not strictly require Ackermann's elimination of function symbols. This makes our setting much more amenable

to combinations with other techniques in the realm of automatic theorem proving, such as term rewriting.

We introduce an algorithm, which for any propositional formula with equations �nds an EQ-OBDD that is

equivalent to it. The algorithm is proved to be correct and terminating, by means of recursive path ordering.

The algorithm has been implemented, and applied to benchmarks known from literature. The performance of a

prototype implementation is comparable to existing proposals.

2000 Mathematics Subject Classi�cation: 03B10, 03B20, 03B35, 03B70, 68T15
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1. Introduction

Motivation and background. The correctness of hardware designs can be formally expressed in propo-
sitional logic. For scaling up the veri�cation of such hardware correctness formulae, it appears to be
useful to extend propositional logic with uninterpreted functions over arbitrary domains, and equality
(=) on these domains [15]. Parts of the hardware design that are not essential for the veri�cation can
be abstracted from, by replacing them by a function symbol. Equality is used for instance to express
equivalence of speci�cation and design. Now the task is to check satis�ability (or tautology) of formulae
of propositional logic with equality and uninterpreted function symbols (EUF). Such a method usually
proceeds in three steps:

1. Elimination of function symbols

2. Reduction to propositional logic

3. Check with an existing BDD-package

Ad 1. By a result due to Ackermann [1], the function symbols can be eliminated, at the cost of
introducing new variables and congruence constraints. In essence, subterms like F (x) and F (y) are
replaced by new variables f1 and f2, and the the functionality constraint x = y ! f1 = f2 is added.
This yields a formula of propositional logic with equality, which is satis�able if, and only if, the original
formula is.
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Ad 2. Such formulae have the �nite domain property, which means that they are satis�able if, and
only if, they are satis�able in a suitably large �nite model; the number of di�erent variables is an upper
bound. Then, a variable over a domain of size n can be replaced by dlogne fresh boolean variables.
Ad 3. Checking satis�ability of propositional formulae is often performed using Binary Decision Dia-

grams (BDDs) [6] (see also [7, 10]). In an ordered BDD (OBDD) a strict order on the variables is imposed.
The resulting data structure yields unique representations for boolean functions, which are quite com-
pact for large classes of formulae. By uniquess, checking tautology, contradiction or satis�ability of the
resulting OBDD can be performed in constant time.

Recent contributions. Three recent papers [12, 8, 17] re�ne the aproach mentioned above in various
directions. Ackermann's reduction (Step 1) is improved by Bryant et al. [8] in the following way: In order
to avoid the functionality constraints, the subterms F (x) and F (y) are replaced by f1 and the if-then-else
term ITE(x = y; f1; f2), respectively. The functionality constraints are now built in automatically. Their
main contribution, however, is to distinguish between function symbols that occur in positive equations
only (p-symbols) and other function symbols (g-symbols). This allows to restrict attention to maximally
diverse interpretations, in which p-symbols can be interpreted by a �xed value. This technique reduces
the number of boolean variables obtained by step 2, the reduction to propositional logic.
Pnueli et al. [17] use Ackermann's reduction (step 1) and improve step 2, by providing heuristics to

obtain lower estimates for the domains. These estimates are obtained by taking the structure of the
formula into account. Their major case distinction is also between positive and negative occurrences of
equations.
Goel et al. [12] improve step 2, by avoiding bit vectors for �nite domains at all. Instead, they introduce

boolean variables eij , representing the equation xi = xj . In fact, this method does not rely on the �nite
model property. However, the resulting BDD has to be traversed with care. A satisfying interpretation
in the BDD might violate transitivity constraints of the form eij ^ ejk ! eik. The question whether an
OBDD has a transitivity-consistent satisfaction is proved to be NP-complete.
In a technical report, Bryant et al. [9] improve on the latter method by predicting which transitivity

instances might be needed. Only these are added to the propositional formula before the BDD is built.
The distinction between positive and negative equations is bene�cial again, for in the special case they
studied, most transitivity constraints appear to correspond with p-symbols, which have been replaced by
�xed bit patterns.
The similarity between all these methods is that they reduce the original EUF formula to propositional

logic, and then use an existing BDD package to check satis�ability. All approaches have a blow-up
especially when equations occur negatively. This blow-up is caused because either the domains, or the
number of transitivity constraints get large.

Our approach. We introduce EQ-BDDs, which are BDDs whose internal nodes may contain equations
between variables (similar to the eij variables). In this way, step 2 is avoided completely and the equalities
are maintained, at the expense of generalizing the BDD theory and reconstructing a BDD-package.
We extend the notion of orderedness so that it covers the equality laws for reexivity, symmetry,

transitivity and substitution. The main idea is that in an ordered EQ-BDD (EQ-OBDD) of the form
ITE(x = y; P;Q), all occurrences of y in P , must have been substituted by x. By means of term rewriting
techniques, we show that every EQ-BDD is equivalent to an EQ-OBDD.
Contrary to OBDDs, EQ-OBDDs are not unique, in the sense that di�erent EQ-OBDDs may still

be logically equivalent. However, we show that in an EQ-OBDD, each path from the root to a leaf is
consistent. As a corollary, 0 is the only contradictory EQ-OBDD, and 1 is the only tautological one.
Every other EQ-OBDD is satis�able. So satis�ability and tautology checking on EQ-OBDDs can still be
done in constant time, as opposed to [12], where transitivity violations have to be taken into account.
We present an algorithm for converting propositional formulae (or circuits) containing equations into

an EQ-OBDD. We were not able to �nd an e�cient generalization of the usual bottom-up algorithm,
where logical operations are repeatedly applied to already constructed OBDDs. Each operation can be
performed in polynomial time, Bryant's Apply algorithm [6], which runs in quadratic time. This yields
relatively e�ective procedures to transform a propositional logical formula into an OBDD.
Instead, we use a generalization of the top-down method (cf. [10]), which is based on repeated appli-

cation of Shannon's expansion with the \smallest" equation x = y:

�()
�
(x = y ^ �jx=y) _ (x 6= y ^ �jx6=y)

�
;

where in �jx=y we replace all occurences of y by x.
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The ine�ciency usually attributed to this top-down approach is avoided by using memoization tech-
niques and maximal sharing. We have made a prototype implemention in C, which uses the ATerm

library [5] to manipulate terms in maximally shared representation. We applied this implementation on
the benchmarks used in [17, 19] and we exprimented with various variable orderings. It appears that our
ideas yield a feasible procedure, and that the performance is comparable to the approach in [17].
Our original motivation for investigating OBDDs with equality is our interest in the veri�cation of

distributed programs and protocols. In this setting, functions are generally interpreted and domains are
often in�nite, and have structure. This disallows the use of both Ackermann's function elimination and the
�nite domain property. In our setting we do not use the �nite model property, whereas [8, 17] essentially
depend on it. Furthermore, we envisage that function symbols can straightforwardly be incorporated
into EQ-BDDs, both constructor and de�ned functions. It is not clear to us how to incorporate these in
[12, 8, 17]. The fact that equality is incorporated directly, instead of encoded, can give BDD-techniques
a much more prominent place in interactive theorem provers like PVS [18].
The fact that our prototype implementation performs comparably well as existing proposals indicates

that extendibility does not necessarily come with a loss in e�ciency.

2. EQ-BDDs

Our aim is to check satis�ability and tautology of propositional formulae with equality. In this paper,
we assume that function symbols have been eliminated, for instance with Ackermann's function elimina-
tion [1]. We now de�ne a syntax for formulae. First assume a set P of proposition (boolean) variables
(typically p, q, : : : ) and a set V of domain variables (typically x, y, z, : : : ).

De�nition 1 Formulae are expressions satisfying the following syntax:

� ::= 0 j 1 j P j V = V j :� j � ^ � j ITE(�;�;�)

We use x 6= y as an abbreviation of :(x = y) and 	 _ � as an abbreviation of :(:� ^ :	). Here
ITE(�;	;�) is called an if-then-else formula. It is equivalent to (� ^ 	) _ (:� ^ �). In order to avoid
confusion, we write � for syntactic equality, for instance x � y means that x and y are the same variable.
It is easy to extend the syntax with other connectives, but they can be handled as the existing ones and
only add notational complexity.
The semantics is standard. Given a domain for the variables D, and interpretation functions I : V!D

and J : P!f0;1g, a formula � evaluates to either 0 (False) or 1 (True); this is denoted by [B]IJ , and
can straightforwardly be de�ned by induction over the syntactic structure of �.

De�nition 2

[0]IJ = 0
[1]IJ = 1
[p]IJ = J(p)

[x = y]IJ =

�
1, if I(x) = I(y)
0, otherwise

[:�]IJ =

�
1, if [�]IJ = 0
0, otherwise

[� ^	]IJ =

�
1, if [�]IJ = 1 and [	]IJ = 1
0, otherwise

[ITE(�;	;�)]IJ =

�
[	]IJ , if [�]

I
J = 1

[�]IJ , otherwise

So a formula can be seen as a representation of a predicate of its input variables. Note that di�erent
formulae may be logically equivalent, in the sense that they represent the same predicate. Formally, �
and 	 are logically equivalent, if and only if for all D; I; J , [�]IJ = [	]IJ . A formula � is valid in D, if
[�]IJ = 1 for all I : V!D and J : P!f0;1g. Formula � is a tautology (also called: universally valid),
if it is valid in all domains D. � is said to be satis�able if for some domain D and interpretations I , J ,
[�]IJ = 1. Otherwise it is called contradictory. Finally, we write S ` � if � is provable from the set of
formulae S. A formalization of the proof system is regarded out of scope for this report; one can think
of natural deduction with axioms for reexivity, symmetry and transitivity.

Example 3 Consider the formula ITE(x = y;1; x = z _ y = z). It is true when x, y and z range over a
domain with two elements, so it is satis�able. But it is not universally valid. It's negation is satis�able
(although a satisfaction cannot be found in every domain).
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We now turn to the study of EQ-BDDs, which can be seen as a subset of formulae, and turn to arbitrary
formulae in Section 3. In the subsequent sections EQ-BDDs and ordered EQ-BDDs are introduced. It is
proved that every EQ-BDD is equivalent to an ordered EQ-BDD, and that on the latter the satis�ability
check can be done in constant time.

2.1 Ordered EQ-BDDs
A binary decision diagram (BDD [7, 10]) is a DAG, whose internal nodes contain guards, and whose leaves
are labeled 0 (low, false) or 1 (high, true). Each node contains two distinguished outgoing edges, called
low and high. In ordinary BDDs, the guards solely consist of proposition variables. The only di�erence
between ordinary BDDs and EQ-BDDs is that in the latter, a guard can also consist of equations between
domain variables. EQ-BDDs can be depicted as follows (the low/false edges are dashed):

x=y

y=z

01

We reason mainly about EQ-BDDs as a restricted subset of the formulae, although in implementations
we always treat these formulae as maximally shared DAGs. There are constants to represent the nodes
0 or 1. Furthermore, we use the if-then-else function ITE(g; t1; t2) where g is a guard, or label of a node
in the BDD, t1 is the high node and t2 is the low node. Guards can be proposition variables in P , or
equations of the form x = y where x and y are domain variables (V ).

De�nition 4 We de�ne the set G of guards and B of EQ-BDDs,

G ::= P j V = V
B ::= 0 j 1 j ITE(G;B;B)

The EQ-BDD depicted above can be written as: ITE(x = y;1; ITE(y = z;1;0)).
In order to compute whether an EQ-BDD is tautological or satis�able, it will �rst be ordered. In an

ordered EQ-BDD, the guards on a path may only appear in a �xed order. To this end, we impose a total
order on P [ V (e.g. x � p � y � z � q). This order is extended lexicographically to guards as follows:

De�nition 5 (Order on guards)

p � q as given above
(x = y) � p if, and only if, x � p
p � (x = y) if, and only if, p � x

(x = y) � (u = v) if, and only if, either x � u, or x � u and y � v.

Given this order, we can now de�ne what we mean by an ordered EQ-BDD. We use some elementary
terminology from term rewrite systems (TRSs), which can for instance be found in [16, 3]. In particular, a
normal form is a term to which no rule can be applied. A system is terminating if every rewrite sequence
is �nite.

De�nition 6 A BDD is ordered if, and only if, it is a normal form w.r.t. the following term rewrite
system, called Order:

1. ITE(G; T; T )! T .

2. ITE(G; ITE(G; T1; T2); T3)! ITE(G; T1; T3).

3. ITE(G; T1; ITE(G; T2; T3))! ITE(G; T1; T3).

4. ITE(G1; ITE(G2; T1; T2); T3)! ITE(G2; ITE(G1; T1; T3); ITE(G1; T2; T3)),
provided G1 � G2.

5. ITE(G1; T1; ITE(G2; T2; T3))! ITE(G2; ITE(G1; T1; T2); ITE(G1; T1; T3)),
provided G1 � G2
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x=z

x=yx=y

x=z x=zy=z

x=y

10

x=y

x=z

10

18 12

1

1

1

Figure 1: Deriviation of transitivity of equality in EQ-BDDs

6. ITE(x = x; T1; T2)! T1.

7. ITE(y = x; T1; T2)! ITE(x = y; T1; T2),
provided x � y

8. ITE(x = y; T1[y]; T2)! ITE(x = y; T1[x]; T2), provided x � y and y occurs in T1.

The �rst rule is called the idempotence rule. Rule 1{5 are the standard rules to obtain ordered BDDs,
but note that G ranges over propositional variables and equations between domain variables. The usual
rule for obtaining maximal sharing is left out, because terms are always regarded as maximally shared
DAGs. Rules 6{8 capture the properties of equality, viz. reexivity, symmetry, and substitutivity. From
these rules, transitivity can be derived, as we show in the following example. Note that in rule 8 all
instances of y in T1 are replaced by x. From a term rewriting perspective this is non-standard, because it
is a non-local rule. We could also have stipulated that at least or exactly one occurrence of y is replaced,
as this does not a�ect the transitive closure of the rewrite relation.

Example 7 (Transitivity) Transitivity is now derived automatically, as the following derivation shows
(we assume x � y � z):

ITE(x = y; ITE(y = z; ITE(x = z;1;0);1);1)
8
! ITE(x = y; ITE(x = z; ITE(x = z;1;0);1);1)
2
! ITE(x = y; ITE(x = z;1;1);1)
1
! ITE(x = y;1;1)
1
! 1

This rewrite sequence is depicted in Figure 1

In a normal form no rewrite rules are applicable. Hence it is easy to see that in an ordered EQ-BDD,
the guards along a path occur in strictly increasing order (otherwise rule 2/3/4/5 would be applicable),
in all guards of the form x = y, it must be the case that x � y (otherwise rule 6/7 would be applicable).
Note that the transformations indicated by the rules are sound, in the sense that they yield logically
equivalent EQ-BDDs.

2.2 Termination
We have de�ned EQ-OBDDs as the normal forms of a rewrite system operating on EQ-BDDs. We
now show that for each EQ-BDD an equivalent EQ-OBDD exists by showing that the TRS Order

always terminates (i.e. is strongly normalizing). To this end, we use the powerful recursive path ordering
(RPO) [11, 3]. We use that in EQ-BDDs the �rst argument of ITE is always a guard. We will apply
RPO on trees, where the guards are the internal nodes, and 1 and 0 are the leaves. To emphasize this,
we write g(T; U) instead of ITE(g; T; U) in the termination proof.
RPO needs an ordering on the function symbols. For this we just use the total order on guards of

De�nition 5, with 1 and 0 added as minimal elements. We use the following de�nition of the recursive
path order:

De�nition 8 s � f(s1; s2) �rpo g(t1; t2) � t if, and only if, one of the following holds:
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� (I) s1 �rpo t, or s2 �rpo t;

� (II) f � g and s �rpo t1 and s �rpo t2;

� (III) f � g and either s1 �rpo t1 and s2 �rpo t2, or s2 �rpo t2 and s1 �rpo t1.

Here x �rpo y means: x �rpo y or x � y. From the literature, it is well known that this de�nition yields
an order (in particular the relation is transitive), which is well-founded and monotone, so it is useful in
proving termination.

Lemma 9 Let x occur at least once in T [x]. If x � y, then T [x] �rpo T [y].

Proof: Induction on T , using monotonicity of �rpo. �

Lemma 10 The rewrite system in De�nition 6 is terminating.

Proof: It su�ces to prove that each rewrite rule is contained in �rpo.

1. g(T1; T1) �rpo T1 by (I).

2. g(T1; T2) �rpo T1 by (I). Hence, by (III), g(g(T1; T2); T3) �rpo g(T1; T3).

3. Similarly.

4. By (I), g2(T1; T2) �rpo T1 and g2(T1; T2) �rpo T2. So by (III), g1(g2(T1; T2); T3) �rpo g1(T1; T3) and
g1(g2(T1; T2); T3) �rpo g1(T2; T3). Hence by (II),
as g1 � g2, g1(g2(T1; T2); T3) �rpo g2(g1(T1; T3); g1(T2; T3)).

5. Similarly.

6. g(T1; T2) �rpo T1 by (I).

7. Let g1 � y = x and g2 � x = y. By the side condition, g1 � g2. By (I), g1(T1; T2) �rpo T1 and
g1(T1; T2) �rpo T2, so by (II) g1(T1; T2) �rpo g2(T1; T2).

8. Let g � x = y, and assume the proviso, y � x. By lemma 9, T1[y] �rpo T1[x]. By monotonicity of
�rpo, g(T1[y]; T2) �rpo g(T1[x]; T2).

This proves the containment of the rewrite relation in �rpo, so this system is terminating [11]. �

Corollary 11 Every EQ-BDD is equivalent to some EQ-OBDD.

2.3 Satis�ability checking
Traditional OBDDs are unique representations of boolean functions, which makes OBDDs very useful to
check equivalence between formulae. For EQ-OBDDs, however, this uniqueness property does not hold,
as the following examples show.

Example 12 Let x � y � z. Consider the EQ-BDDs ITE(x = y;1; ITE(y = z;0;1)) and ITE(x =
z;1; ITE(y = z;0;1)). These represent the predicates y = z ! x = y and y = z ! x = z, which are
logically equivalent. Both are ordered, because no rewrite rule is applicable. But they are clearly not
identical.
Another example is formed by the following EQ-BDDs: ITE(y = z;1;0) and ITE(x = y; ITE(x =

z;1;0); ITE(y = z;1;0)). Here the redundant test x = y is not removed, because in the left-subtree a
substitution took place. The situation is depicted in Figure 2.

Although EQ-OBDDs do not have the uniqueness property, satis�ability or tautology checking can still
be done in constant time. The rest of this section is devoted to the proof of this statement.

De�nition 13 Paths are sequences of 0's and 1's. We let letters �, � and  range over paths, and write
" for the empty sequence. We write � v � if � is a pre�x of �, i.e. there exists a path  such that �: � �.
Let T be an EQ-BDD. We de�ne the set of sequences of T , notation seq(T ), as follows:

� seq(0) = ; and seq(1) = ;.

� seq(ITE(g; T1; T2)) = f"g [ f1:� j � 2 seq(T1)g [ f0:� j � 2 seq(T2)g.
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y=z ' x=y

01

01 x=z y=z

Figure 2: Two logically equivalent EQ-OBDDs

For a path � 2 seq(T ) we write T j� for the guard at the end of path �, inductively de�ned by:

� ITE(G; T1; T2)j" = G.

� ITE(G; T1; T2)j1:� = T1j� (the high branch).

� ITE(G; T1; T2)j0:� = T2j� (the low branch).

We also de�ne the theory up to the node reachable by path � 2 seq(T ), notation Th(T; �), inductively on
an EQ-BDD T :

� Th(T; ") = ;.

� Th(T; �:1) = Th(T; �) [ fT j�g.

� Th(T; �:0) = Th(T; �) [ f:T j�g.

Example 14 Let T � ITE(x = y;1; ITE(y = z; ITE(x = z;1;0);1)). Then the guard at path 0:1 is:
T j0:1 � x = z. The theory at that point is: Th(T; 0:1) = fx 6= y; y = zg.

A theory S is called inconsistent, if S ` p and S ` :p, otherwise S is called consistent. Given a BDD T
and � 2 seq(T ), we say that � is consistent, if Th(T ; �) is consistent.
The analysis of EQ-OBDDs depends on the following rather syntactic lemma. The �rst states that in

EQ-OBDDs y does not occur below the high branch of x = y; the second states that y does not occur
positively above x = y.

Lemma 15 Let T be an EQ-OBDD, and �; � 2 seq(T ) be consistent paths.

1. If T j� � x = y and �:1 v �, then T j� 6� z = y and T j� 6� y = z.

2. If T j� � x = y and �:1 v �, then T j� 6� z = y and T j� 6� y = z.

3. If Th(T; �) ` x = z and x � z, then for some y, y = z 2 Th(T; �).

Proof: (1) If T j� contains y, rewrite step 8 would be applicable, which contradicts orderedness.
(2) If T j� � z = y rewrite step (8) would be applicable. Assume T j� � y = z. Note that x � y, as

x = y appears in the EQ-OBDD, so x = y � y = z. Hence, on the path between the nodes labelled with
y = z and x = y, at least one of the steps (4,5) would be applicable. Both cases contradict orderedness
of T .
(3) From Th(T; �) ` x = z, we can show by considering the shortest sequence of equations proving

x = z that for some y (possibly x � y), either

� y = z 2 Th(T; �) and Th(T; �) n fy = zg ` x = y. In this case the lemma obviously holds. Or,

� z = y 2 Th(T; �) and Th(T; �) n fz = yg ` x = y. But this is impossible for ordered T , as by (1)
and (2), y does not occur in Th(T; �) n fz = yg. So, Th(T; �) n fz = yg 6` x = y.

�

We can now prove that each guard in an EQ-OBDD is logically independent from those occuring above
it.
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Lemma 16 Let T be an EQ-OBDD and let � 2 seq(T ) be a consistent path. It holds that

1. Th(T; �) 6 `T j� and

2. Th(T; �) 6 ` :T j�.

Proof: If T j� � p, then by orderedness, p does not occur in Th(T; �), so the theorem follows (this is
similar to the traditional BDD-case). Now let T j� � x = z. Hence, x � z.
(1) Assume Th(T; �) ` x = z. By Lemma 15.3, for some y, y = z 2 Th(T; �). Then rewrite step 8 is

applicable, which contradicts orderedness.
(2) Assume Th(T; �) ` x 6= z. By Lemma 15.2, no positive equations containing z occur in Th(T; �).

Hence for some y, y 6= z 2 Th(T; �) and Th(T; �) ` y = x. Then y � x � z and by Lemma 15.3, for
some w, w = x 2 Th(T; �). But then rewrite step 8 would be applicable, which contradicts orderedness.
�

Combining the two previous lemmas, we can prove that in an ordered EQ-BDD, each path is consistent.

Theorem 17 Let T be an EQ-OBDD and � 2 seq(T ) be a path. Then Th(T; �) is consistent.

Proof: With induction on �, we can prove that Th(T; �) is consistent:

� Th(T; ") = ;, which is consistent.

� Th(T; �:1) = Th(T; �) [ fT j�g, which is consistent by the induction hypothesis and lemma 16.2.

� Th(T; �:0) = Th(T; �) [ f:T j�g, which is consistent by the induction hypothesis and lemma 16.1.

�

Corollary 18 It is now obvious to conclude the following:

� The only tautological EQ-OBDD is 1.

� The only contradictory EQ-OBDD is 0.

� All other EQ-OBDDs are satis�able only.

Proof: As every path in an EQ-OBDD is consistent, there exist a suitable domain D and interpretation
functions I and J which allows this path to be taken. So, if the EQ-OBDD is tautological, every path
must end in a 1. Because rewrite rule 1 of Order is not applicable, the EQ-OBDD is equal to 1.
Similarly, for contradictions. �

3. Algorithm for checking tautology and satisfiability

The previous sections introduce EQ-BDDs with their properties and give a rewrite system to order them.
We are now interested in constructing EQ-BDDs out of formulae. In traditional BDDs, a formula is
inductively translated into OBDDs directly. We will call this the \bottom-up" algorithm. Given two
ordered BDDs, the logical operations (conjunction, disjunction, etc.) can be performed in polynomial
time by Bryant's Apply algorithm. It is not clear how to generalize this to an e�cient method for
EQ-OBDDs, however. When two EQ-OBDDs are combined, new substitutions must be done in both
of them. After these substitutions, the sub-OBDDs will not be ordered, in general. We can of course
re-order them by using the rewrite system Order, but the advantage of having a polynomial Apply has
been lost.
As an alternative, we use a top-down approach, which in the context of OBDDs has for instance been

described in [10]. This approach is based on the Shannon expansion. For propositional logic, this reads:

�() (:p ^�j:p) _ (p ^�jp)() ITE(p;�jp;�j:p)

Taking for p the smallest propositional variable in the ordering, this Shannon expansion can be used to
create a root node for p, and recursively continuing with two subfunctions that do not contain p. The
number of variables in the formula decreases. So, this process terminates. Because at each step the
smallest variable is taken, the resulting BDD is ordered.
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When p is an equation, say x = y, the Shannon expansion still holds. In the formula �jx=y, we assume
that x = y, so we are allowed to substitute y for x. This leads to the following variant of the Shannon
expansion:

� () (x 6= y ^ �jx6=y) _ (x = y ^ �jx=y)
() ITE(x = y;�jx=y;�x6=y)

This is recursively applied, with x = y the smallest equation in �, oriented in such a way that x � y
in the variable order. But due to the substitutions it is not guaranteed that the resulting EQ-BDD is
ordered. However, we show that repeatedly applying the Shannon expansion does lead to an EQ-OBDD.

3.1 A topdown algorithm
We now describe the algorithm precisely and prove soundness and termination. We introduce a term
rewrite system Simplify, which removes superuous occurrences of 0 and 1 and orients all guards. It is
clearly terminating and conuent.

De�nition 19 The TRS Simplify consists of the following rules:

0 ^ x ! 0
x ^ 0 ! 0
1 ^ x ! x
x ^ 1 ! x

:1 ! 0
:0 ! 1
ITE(1; x; y) ! x
ITE(0; x; y) ! y

x = x ! 1
y = x ! x = y if x � y

We write �# for the normal form of � obtained by this rewrite system. � is called simpli�ed, if � � �#.

We introduce an auxiliary operation �js, where � is a formula and s a guard or the negation of a guard.
We assume that � is simpli�ed. Note that every closed formula rewrites to 0 or 1. Also note that ordered
EQ-BDDs are simpli�ed.

De�nition 20 We de�ne �js, where s is p, :p, x = y or x 6= y inductively on the structure of �. We
start with the case where � is a guard g. In this case, �js is de�ned via the following table, where g is
put in the rows, and s in the columns:

p x = y

q
1 if p � q
q if p 6� q

q

u = v u = v

1 if u � x and v � y
x = v if u � y and v 6� y
u = x if u 6� y and u 6� x and v � y
u = v if u 6� y and v 6� y

:p x 6= y

q
0 if p � q
q if p 6� q

q

u = v u = v
0 if u � x and v � y

u = v otherwise

We now continue the recursive de�nition of �:

0js � 0
1js � 1
(:�)js � :(�js)
(�1 ^ �2)js � (�1js) ^ (�2js)
ITE(�1;�2;�3)js � ITE(�1js;�2js;�3js)

Example 21 Let � � x = z ^ y = z and g � x = z and assume x � y � z. Then �jg � 1 ^ y = x and
�j:g � 0 ^ y = z. After simpli�cation, we get: �jg# � x = y and �j:g# � 0.

We are now ready to de�ne the basis top-down transformation algorithm:

De�nition 22 Let � be a simpli�ed formula. We de�ne the algorithm Topdown as follows:

� Topdown(1) � 1
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� Topdown(0) � 0

� Let g be the smallest guard occurring in �. Then

Topdown(�) � ITE(g;Topdown(�jg#);Topdown(�j:g#))

where

ITE(g; T; U) �

�
T if T � U

ITE(g; T; U) otherwise.

Note that due to substitions, new equalities can be introduced, but this happens on the y. Therefore
we need no heuristics to limit the quadratic number of possible equations. We have termination and
soundness of the algorithm Topdown.
It is clear that for any formula �, Topdown(�) always yields a simpli�ed EQ-BDD. We now show

that the algorithm Topdown terminates, by using as a size #(�), the number of occurrences of guards
in the EQ-BDD, viewed as tree.

De�nition 23

#(0) = 0
#(1) = 0
#(p) = 1

#(x = y) = 1
#(:�) = #(�)

#(� ^	) = #(�) +#(	)
#(ITE(�;	;�)) = #(�) +#(	) +#(�)

Note that none of the rules from Simplify increases the number of guards, so we have the following:

Lemma 24 For any formula �, we have #(�) � #(�#).

Lemma 25 Let � be a simpli�ed formula, and let g be a simpli�ed guard.

(1) #(�) � #(�jg) (3) if g occurs in �, then #(�) > #(�jg)
(2) #(�) � #(�j:g) (4) if g occurs in �, then #(�) > #(�j:g)

Proof: Simultaneous formula induction on �. This boils down to checking that in the table of De�ni-
tion 20, each guard is replaced by at most one other guard. �

Theorem 26 The algorithm Topdown always terminates.

Proof: Within Topdown(�) there are recursive calls to Topdown(�jg#) and Topdown(�j:g#). By
the previous lemmata, #(�) > #(�jg#) and similar for :g. So, in each recursive call of Topdown the
size strictly decreases, and hence Topdown must terminate. �

Now we show that the algorithm Topdown is sound in the sense that Topdown(�) is equivalent to �.

Lemma 27 For any formula �, simpli�ed formula 	 and simpli�ed guard g, we have:

(1) �() �# (2) g ) (	() 	jg) (3) :g ) (	() 	j:g)

Proof: (1) Each rewrite step is sound. (2,3) It is easy to check this for guards. For arbitrary 	 it then
follows by structural formula induction. �

Theorem 28 (soundness) For any formula �, we have: �() Topdown(�)

Proof: Induction over #(�). The base case is trivial. The induction step is as follows:

�
() ITE(g;�;�) Idempotence
() ITE(g;�jg;�j:g) Lemma 27.(2,3)
() ITE(g;�jg#;�j:g#) Lemma 27.1
() ITE(g;Topdown(�jg#);Topdown(�j:g#)) Induction hypothesis
() ITE(g;Topdown(�jg#);Topdown(�j:g#)) Idempotence

�
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1

[ x 6= y ^ (x = z ^ y = z) ]

[x = z ^ y = z]

[y=x]

[ITE(x = y; 0; ITE(x = z; ITE(x = y; 1; 0); 0))0]

[ITE(x=z;0;0)][ITE(x=z;1;0)]

x=z

[ ITE(x = z; 0; 0) ]

x 6= y ^ (x = z ^ y = z)

x=z

[ITE(x = z; ITE(x = y;1; 0); 0)][x = z ^ y = z]

x = z ^ y = z
[y=x]

x=y

x=y

1 0

x=z

x=y

0

x=y

0

x=z

1

x=z0

x=y

0

Figure 3: Examples where Topdown does not yield an EQ-OBDD

3.2 Iteration of Topdown
Unfortunately, it is not the case that Topdown(�) is always ordered, for (at least) two di�erent reasons,
as the following example shows. These situations are depicted in Figure 3. In this �gure, the call graph
of Topdown is depicted, which corresponds to the non-reduced EQ-BDD (i.e. lacking the idempotence
rule 1 of De�nition 6). Here dashed nodes are not in the EQ-BDD. The argument of Topdown is put
in square brackets.

Example 29 Assume x � y � z.

� Consider Topdown(x = z ^ y = z) � ITE(x = z; ITE(x = y;1;0);0). First, the smallest guard in
� is put at the top and it is used to substitute the high branch. This may create an even smaller
guard.

� The second example is

Topdown(x 6= y ^ (x = z ^ y = z)) �
ITE(x = y;0; ITE(x = z; ITE(x = y;1;0);0))0:

In the low branch, x = y is replaced by 0, but due to substitutions in the recursive call, new
occurrences of x = y may be generated. Note that this second example is a dangerous one as after
one application of Topdown it still contains unsatis�able paths, which erroneously could lead one
to believe that the EQ-BDD represents a satis�able formula.

The following lemmas and subsequent corollary indicate how an EQ-OBDD can be constructed. Note
that in the previous example, an EQ-OBDD is found by another application of Topdown. We propose to
apply Topdown repeatedly to a formula �, until a �xed point is reached. In the benchmarks presented
in Section 3.3 at most 2 iterations of Topdown were required to obtain an EQ-OBDD. We now prove
that the �xed point will always be reached, and that it is an ordered EQ-BDD.

Lemma 30 Let � be a simpli�ed EQ-BDD and g be a simpli�ed guard. It holds that:

(1) � �rpo �jg# (3) if g occurs in �, then � �rpo �jg#
(2) � �rpo �j:g# (4) if g occurs in �, then � �rpo �j:g#
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Proof: We apply recursive path ordering, where 0 and 1 are lowest in the ordering of function symbols.
Moreover, we view each application ITE(g; T; U) as an application of guard g to arguments T and U ,
similarly as in the proof of Lemma 10, ordered by � of De�nition 5.
Proofs can be given with simultaneous induction on the structure of �. We provide two interesting

fragments of the proof, namely where � is of the form ITE(u = v; T; U) and g has the form x = y in the
cases (1) and (3). Note that x � y and u � v, because � and g are simpli�ed.
First consider case (1). By de�nition �jg# � ITE((u = v)jg#; T jg#; U jg#)#. First observe that (u = v)jg#

either equals 1, x = v (if u � y), u = x (if v � y and u � x), x = u (if v � y and x � u) or u = v. The
case v = x does not occur, for we would have v � x � y � u � v.
In the �rst case �jg# � T jg#. Using the induction hypothesis, T �rpo T jg#. By property (I) of recursive

path orderings it follows that � �rpo T and hence � �rpo �jg#. In the next three cases, it is obvious
that x = v � u = v and u = x � u = v and x = u � u = v, respectively. Now using a similar argument
as above, we can show that � �rpo T jg# and � �rpo U jg#. So, by property (II) of RPOs it follows that
� �rpo �jg#. In the last case, where (u = v)jg# � u = v, we �nd by the induction hypothesis T �rpo T jg#
and U �rpo U jg#. By property (III) of RPOs it follows that � �rpo �jg#.
Now consider case (3). Note that in case (1) we proved that � �rpo �jg# in all but the case where

(u = v)jg# � u = v. So, we only need to consider this case. As g occurs in �, it must occur in T or in
U . As the cases are symmetric, we can without loss of generality assume that g occurs in T . Via the
induction hypothesis it follows that T �rpo T jg#. Furthermore, by case (1) U �rpo U jg#. So, by property
(III) of RPOs we can conclude that

� �
ITE(u = v; T; U) �rpo

ITE(u = v; T jg#; U jg#) �
ITE((u = v)jg#; T jg#; U jg#) �
�jg#:

�

Lemma 31 Let � be a simpli�ed EQ-BDD.

1. � �rpo Topdown(�).

2. � is ordered i� � � Topdown(�).

Proof: The proof of case 1 is given �rst. We prove this theorem with induction on #(�). Note that
if � does not contain a guard then it is equal to 1 or 0, and this theorem is trivial. So, assume �
contains at least one guard and let g be the smallest guard occurring in �. Recall from Lemma 24, 25
that #(�) > #(�jg#) and similar for :g.
Then Topdown(�) = ITE(g;Topdown(�jg#);Topdown(�j:g#)). By induction hypothesis and

Lemma 30, we have:

(*)
� �rpo �jg# �rpo Topdown(�jg#)
� �rpo �j:g# �rpo Topdown(�j:g#)

First assume Topdown(�jg#) � topdown(�j:g#). Then Topdown(�) � Topdown(�jg#) and we
are done by (*).
Now assume Topdown(�jg#) 6� topdown(�j:g#). Then

Topdown(�) � ITE(g;Topdown(�jg#);Topdown(�j:g#)):

Note that � must have the form � � ITE(h; T; U). As g is the smallest guard, one of the following two
cases must hold.

� g � h. In this case �jg# � T jg#. Using Lemma 30 and the induction hypothesis, we can conclude
T �rpo T jg# � �jg# �rpo Topdown(�jg#). Similarly, U �rpo Topdown(�j:g#). By case (III) of
RPO it follows that � �rpo Topdown(�).

� h � g. Using (*) we can immediately apply case (II) of RPO we can conclude that � �rpo

Topdown(�).

Now we provide the proof of the second item of this lemma. This proof is split in the following cases:
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=) We must show that if � is ordered, then � � topdown(�). We prove this by induction on the
structure of �. The case where � equals 0 or 1 is trivial. So, consider the case where � �
ITE(g; T; U). As � is ordered and g is the smallest guard of �, g does not occur in T or U . Also,
if g � x = y, y does not occur in T . Moreover, T and U are ordered, hence it is also simpli�ed. So,
�jg# � T and �j:g# � U . Note that T 6� U .

Topdown(�) �
ITE(g;Topdown(�jg#);Topdown(�j:g#)) �
ITE(g;Topdown(T );Topdown(U)) � induction hypothesis
ITE(g; T; U) �
�

(= In this case we must show that if � � Topdown(�), then � is ordered. So, suppose � is not ordered.
Then one of the rules of Order (De�nition 6) can be applied. It is clear by the construction of
Topdown(�), that rules 1, 6, 7 and 8 are not applicable, so on some part the guards are not strictly
increasing. Locate the largest sub-EQ-BDD 	 in � of the form ITE(g; T; U) where g is not bigger
than all guards below it in 	. Obviously, 	 6� Topdown(	). Now a simple inductive argument
shows that � 6� Topdown(�).

�

Corollary 32 Let � be a simpli�ed formula. Iterated application of Topdown to � leads in a �nite
number of steps to an EQ-OBDD equivalent to �.

Proof: After one application of Topdown, � is transformed into a simpli�ed EQ-BDD. So, iterated
application of Topdown leads to a sequence �;�1;�2; : : : of which each �i (i � 1) is a simpli�ed EQ-
BDD. By Lemma 31.1 the sequence �1;�2; : : : is decreasing in a well-founded way. Hence, at a certain
point in the sequence we �nd that �i � �i+1. By Lemma 31.2 �i is the required EQ-OBDD. Note that
by Lemma 31.2 �i is the �rst ordered EQ-BDD in the sequence. �

We conclude with the complete algorithm to transform an arbitrary formula � to EQ-OBDD:

EQ-OBDD(�)
	 := �# ;
� := ? ;
while � 6= 	 do

� := 	 ;
	 := topdown(	) ;

od
return 	 ;

We stress that in the benchmarks we never needed more than 2 iterations. This is not generally the
case:

Claim 33 Given a � b � c � d � e � f , the following EQ-BDD needs 4 iterations:
ITE(a = f; ITE(a = e; d = e; c = d); b = c). The intermediate EQ-BDDs have size 9,13,23 and 21,
respectively. This can be checked with our implementation.

3.3 Implementation and Benchmarks
In order to study the performance of Topdown, we made an implementation and used it to check
the benchmarks reported in [17, 19]. The authors report to have comparable performance as in [12].
Unfortunately, we could not obtain the benchmarks used in [8]. We �rst describe the benchmarks, then
the implementation, including some variable orderings we used, and �nally present the results.

Benchmarks. The benchmark formulae can be obtained from [19] and most of them could be solved
with the methods described in [17]. Each formula is known to be a tautology. They originate from
compiler optimization; each formula expresses that the source and target code of a compilation step
are equivalent. We used the versions where Ackermann's function elimination has been applied [1], but
domain minimization [17] has not yet been applied. In fact, our method does not rely on the �niteness
of domains at all. The benchmark formulae extend the formulae of De�nition 1 in various ways:
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� The domain variables range over the non-negative integers, and integer constants are allowed.

� Certain variables are declared as boolean variables and range over the subset f0;1g of the integers.
Boolean variables can occur in equations.

� A special constant �1 is present, which is not an element of the domain of the variables.

� The ITE construct is applied on arbitrary integer expressions.

� The formulae are stored in shared form, by using macro-de�nitions. For complexity-considerations
they should be regarded as circuits.

Example 34 Let p be a boolean variable, and let x and y be integers. The following is a typical example
of a formula in this extended format: Let X � p = ITE(x = y;0; 2). If x = y, this evaluates to p = 0,
i.e. :p; otherwise, it reduces to p = 2, i.e. 0 (false), as boolean variables range over f0;1g.
Note that in 5 = ITE(p = x; 5; 4), p = x should not be regarded as a guard. The only guard in this

example is p. This formula is equivalent to (p ^ x = 1) _ (:p ^ x = 0).

These extensions can be dealt with by adding some new reduction rules:

m = n ! 0 if m and n are di�erent integer constants
x = �1 ! 0 if x is a domain variable
�1 = x ! 0 if x is a domain variable
p = m ! 0 if p is a boolean variable,

and m is an integer constant di�erent from 0 and 1
m = p ! 0 if p is a boolean variable,

and m is an integer constant di�erent from 0 and 1

We now have a new type of guards, of the form c = x, where c is an integer constant. The ordering on
guards is extended as follows, where each entry displays the condition when the guards in the left are
smaller than the guards on the right. This is a total ordering on oriented guards, provided the sets of
boolean and integer variables are disjoint. In the following, p and q are boolean variables, u and v are
integer variables and c and d are integer constants.

� q u = v d = u

p p � q p � u p � u

x = y x � q
x � u_

(x � u ^ y � v)
x � u

c = x x � q x � u
x � u_

(x � u ^ c < d)

Prototype implementation. We have made a prototype implementation of the Topdown algorithm.
As programming language we used C, including the ATerm-library [5]. The basic data types in this
library are ATerms and ATermTables. ATerms are terms, which are internally represented as maximally
shared DAGs. As a consequence, syntactical equality of terms can be tested in constant time. The
basic operations are term formation and decomposition, which are also performed in constant time.
ATermTables implement hash tables of dynamic size, with the usual operations. The ATerm-library also
provides memory management functionality, by automatically garbage collecting unreferenced terms. By
representing formulae and BDDs as ATerms, we are sure that they are always a maximally shared DAG.
Care has to be taken in order to avoid that during some computation, shared subterms are processed

more than once. Therefore all recursive procedures, like \�nd the smallest variable", \simplify" and �js
are implemented using a hash table to implement memoization. In this way, syntactically equal terms
are processed only once, and the time complexity for computing these functions is linear in the number
of nodes in the DAG, which is the number of di�erent subterms in the formulae.
Also the Topdown-function itself uses a hash table for memoization. This contributes to its e�ciency:

Consider a formula 	 which is symmetric in p and q (for instance: (p^ q)_�, or (p^�)_ (q^�)). Then
(	jp#)j:q# � (	j:p#)jq#. Due to memoization, only one of them will actually be computed.
Still, the Topdown function has worst case exponential behavior, which is unavoidable, because in

the propositional case (i.e. excluding equations) it builds an OBDD from a propositional formula in
one iteration. Due to the various hash tables, the memory demands are rather high. This memory



Implementation and Benchmarks 15

Nr. �le [17, 19] t bt wft bwft ft bft r br

022 :0.16 :13 :16 4:28 1:32 | 3:34:20 17:01 7:50
025 :0.2 :0.3 :0.3 :3.6 :3.0 :2.8 :2.9 :0.1 :0.1
027 :1.7 12:37 10:55 9:53 | | | | |
032 :0.1 :3.2 :3.2 :56 4:16 29:01 20:40 5:02 4:12
037 :0.15 2:17 :2.3 2:51 :4.1 :20 :5.9 7:28 :12
038 :0.18 :17 :0.4 :7.2 :0.3 :09 :0.5 :6.8 :0.3
043 | | | | | | | | |
044 :0.1 :3.7 :2.0 :1.4 :1.5 :7.2 :1.8 0:28 :1.6
046 :0.13 | | | | | | | |
049 | | | | 5:13 | | :0.3 :0.1

Figure 4: Timing results for the benchmarks

consumption could still be optimized, for instance by using result pointers instead of hash tables for
memoization, as in [2]. However, this is not supported by the ATerm-library.

So far we have considered arbitrary variable orderings, but an implementation must choose one. It
is well known that the size of an OBDD and the e�ciency of the BDD-operations crucially depend on
the variable ordering. It is NP-hard to �nd the optimal variable ordering. Various heuristics exist for
guessing a good ordering on the variables. We implemented two of these heuristics. Both heuristics are
inspired by heuristics for propositional BDDs; see for instance [10].
Both heuristics construct an ordering by inspecting the original formula. Consider the formula, rep-

resented as a maximally shared DAG. Note that due to maximal sharing, each variable occurs at most
once. The fanin heuristic chooses a variable with the maximal number of incoming edges as the smallest
variable; this is a local property of the DAG. The weight heuristic also takes into account the distance
to the root. The motivation is that nodes higher up in the DAG contribute more to the �nal result. The
root gets weight 1, and the other nodes sum up the weights they get from their parents. Furthermore,
each node divides its own weight equally among its children. So

weight(m) =

(
1; if m is the rootP

n2parents(m)
weight(n)
fanout(n)

We computed the weights after a �rst simpli�cation of the formula, using the term rewriting system
of De�nition 19. This eliminates some variables that do not contribute to the �nal result, giving them
weight 0. We have used the following basic variable orders:

mnemonic a < b
(t)extual a is declared earlier than b in the text �le
(r)everse a is declared later than b in the text �le
(f)anin fanin(a) > fanin(b)
(w)eights weight(a) > weight(b)
(b)ooleans a is a boolean variable and b a domain variable

Note that only (t) and (r) are total. As we need a total order, we used lexicographic combinations.
The total order lex (b; f; t) for instance means: First use ordering (b); if the results are equal, then use
ordering (f); if the results are still equal, use ordering (t).

Results. Having explained the benchmarks and all ingredients of the implementation, we can now
present the results. They can be found in Figure 4. The �rst column contains the number of the �les,
as given in [19]. The second column contains the times reported in [19], obtained by the method of [17].
The other columns show our results, using various variable orderings, as explained earlier (here bft means
lex (b; f; t)). Each entry is in minutes, i.e. a : b:c means a minutes, and b:c seconds. With | we denote
that a particular instance could not be solved, due to lack of memory. The times are including the time
to start the executable, I/O and transforming the benchmarks to the ATerm format. We used an IRIX
machine with 300 MHz and where the processes could use up to 1.5 GB internal memory.
The table shows that we can solve 8 out of 10 formulae. In this respect our method is comparable

to [17]. The exact times are not very relevant, because we have made a prototype implementation,
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Nr. �le t bt wft bwft ft bft r br

022 1 1 1 1 | 1 1 1
025 1 1 1 1 1 1 1 1
027 2 2 2 | | | | |
032 2 2 2 1 2 2 1 1
037 1 1 1 1 1 1 1 1
038 1 1 1 1 1 1 2 1
043 | | | | | | | |
044 2 2 2 2 2 2 2 2
046 | | | | | | | |
049 | | | 1 | | 1 1

Figure 5: Number of iterations for the benchmarks

Nr. �le initial �rst normalization �rst iteration (t)
dom bool intern dom bool intern dom bool intern

022 59 49 985 51 49 561 | | |
025 45 55 281 45 55 158 | | |
027 21 60 566 21 60 367 21 60 58254
032 16 48 524 15 46 366 15 46 437
037 12 26 931 12 26 767 | | |
038 6 14 833 6 14 702 | | |
043 158 72 1694 155 72 1205 | | |
044 39 14 372 38 14 234 37 14 657
046 70 35 661 68 35 455 | | |
049 163 75 1694 159 74 1202 | | |

Figure 6: Size of the benchmarks and intermediate results

without incorporating all well-known optimizations applied in BDD-packages, whereas [19] could use an
existing, well-tuned BDD-package.
As expected, the variable ordering is very important, although there is no clear winner. It appears

that the textual ordering, as provided and used by [19], happens to perform quite well. In most cases,
splitting on the boolean variables before splitting on equations is pro�table. Remarkably, the di�cult
049 can be solved very quickly by just reversing the textual order on variables.
We also counted the number of iterations of Topdown that were needed in order to reach an EQ-

OBDD (see Figure 5. Remarkably, the maximum number of iterations was 2. Most benchmarks even
reached a �xed point in the �rst iteration. Finally, to get an impression of the size of the various formulae,
we counted the number of domain and boolean variables, and the number of internal nodes, before and
after the �rst normalization. As an indication, we also mention the size of the intermediate EQ-BDDs,
in case two iterations were needed using the textual ordering (Figure 6).
We conclude that the algorithm Topdown is feasible. This is quite remarkable, as the top-down

method is usually regarded as ine�cient. We attribute this to the use of maximal sharing and memoization
techniques. In the next example, it is more e�ective than using Apply, especially in combination with
the weight heuristics.

Example 35 Consider the formula X � p ^ (� ^ :p). Note that weight(p) � 3=4. Hence p will be the
smallest variable. Note that X jp# � 0 and X j:p# � 0, so Topdown terminates in one call, detecting
the contradiction. The usual Apply algorithm will completely build the tree for �, potentially resulting
in an exponential blow-up.

4. Conclusion

We incorporated equations in BDDs directly, without encodings. The resulting objects are called EQ-
BDDs. A straightforward notion of ordered EQ-BDDs is de�ned, and it is proved that each EQ-BDD is
logically equivalent to some EQ-OBDD. Moreover, on EQ-OBDDs satis�ability and tautology checking
can be done in constant time.
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We also introduced an algorithm, which for any propositional formula with equations �nds an EQ-
OBDD that is logically equivalent to it. The algorithm is proved to be sound and terminating, by means
of recursive path ordering. The algorithm has been implemented, and applied to benchmarks known from
literature. The performance is comparable to existing methods.

Future work. Various improvements within our framework are still possible. To mention only a few, we
could add other rewrite rules, in order to recognize structural properties of the formulae, like �^:�) 0.
This technique is also used in [2]. The BEDs introduced in that paper are quite similar to the objects in our
implementation: maximally shared term representations with nodes for guards and boolean connectives.
Other improvements would be to investigate whether various other BDD-techniques can be incorporated,
like choosing (and changing) the variable ordering dynamically, complemented edges, ITE-standard triples
etc. In order to reduce the needed iterations of Topdown, it could be checked before the recursive call
to Topdown whether a smaller equation occurs in �jg #. We have not investigated the e�ect, because
the benchmarks terminated after at most 2 iterations.
We think that it is important future work to extend EQ-BDDs with function symbols. Our original

motivation behind this article comes from our investigation into the analysis of distributed systems and
protocols. The behaviour of these systems is described in the process algebra �CRL [13], in the style of
LOTOS [4]. By applying the ideas of for instance [14], properties of the state space are expressed as huge
formulae, mainly consisting of the general boolean connectives, the ITE predicate and equations between
arbitrary data terms. It quickly becomes obvious that we need automatic means to at least reduce the
size of these formulae, and hence we started investigating EQ-BDDs.
In distributed system speci�cations, data is usually speci�ed by algebraic data types. Data manipu-

lation is usually based on term rewriting. For this reason, function symbols cannot be eliminated, and
the domains are generally structured and often in�nite. Also interactive theorem provers like PVS [18]
would greatly bene�t from BDD-procedures that deal with equations and function symbols adequately.
Contrary to the existing proposals [12, 8, 17], our approach forms an extendible basis. We might allow

function symbols in EQ-BDDs. In the algorithm, the rewrite rules of the data domain can be applied to
the TRS Simplify.
In this way, one is able to prove that x � y _ x 6= y is a tautology. Obviously this is not true when the

interpretation of functions is free (eg. interpret � as <). However, consider the following de�nition of �
in terms of rewrite rules, where S denotes the succesor function:

x < 0 ! 0
x < S(y) ! x � y
x � y ! x < y _ x = y

An EQ-BDD proof with auxiliary rewrite rules of x � y _ x 6= y looks as follows:

x�xx�y

x=y

001

rewriting

1

x=y x=y

1

1

y : =x

Note that combining EQ-BDDs with additional rewrite rules is not fully trivial. For instance, a term like
x � y cannot be further reduced. It would be interesting to see under which conditions the basic theory
on the existence of ordered EQ-BDDs and the algorithm can be extended to function symbols.
Another point requiring attention is that in general, algebraic data domains force in�nite domains,

disallowing the use of the �nite domain property. Consider for instance 8y: x � y where x and y are
natural numbers. This formula is obviously false. However, in a �nite interpretation of the natural
numbers this formula would be satis�able.
Sometimes, a formula can only be proven using the structure of a data domain. Consider for instance

x � S(0)! x = 0 _ x = S(0), which yields the following EQ-OBDD
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1

x=S(0)

x=0

x � S(0)

0

In order to show that this OBDD a tautology, it is required to know that each natural number can
either be written as 0 or as S(y) for some natural number y. This requires the use of case distinction
and induction principles, a hard �eld which has as far as we know never been addressed in the realm of
BDDs.

Acknowledgments. We like to thank Ofer Shtrichman for making his benchmarks publicly available,
and for his kind help in getting us started with them.
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