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Abstract

A speci�cation of a bakery protocol is given in �CRL� We provide a simple correctness criterion for the
protocol� Then the protocol is proven correct using a proof system that has been developed for �CRL�
The proof primarily consists of algebraic manipulations based on speci�cations of abstract data types and
elementary rules and axioms from process algebra�

AMS Subject Classi�cation ������ ��Q��� ��T�	�
CR Subject Classi�cation ������ F�
���
Keywords � Phrases� Abstract data types� Bakery Protocol� process algebra� proof checking� protocol
veri�cation�
Note� A slightly di�erent version of this paper appeared as �GK	��

� Introduction

The main purpose of this paper is to show that �CRL� or in more general terms process algebra
with abstract data types� o�ers a framework for reasoning about distributed systems� This is done
by the veri�cation of a bakery protocol� which is a non trivial protocol with unbounded state space�
Neither process algebra nor data type theory seems to form a suitable vehicle for the veri�cation of
this protocol on their own� showing that the veri�cation capacities of �CRL go beyond those found in
both its constituents� Actually� this observation has been con�rmed by the veri�cation of a number of
other �di�cult� protocols 	see e�g� 
BG��a� GP��� KS���� Process algebra in its basic form does not
include processes that are parametrised with data� parameterised sums� conditionals� parametrised
actions� etc�� and very importantly induction over these parameters� All these are essential in the
veri�cation given in this paper�
Our work structurally di�ers from the more conventional �assertional� veri�cation techniques 	see


Apt��� Apt�� CM����� These are mainly based on data and do not often allow for algebraic reductions
of processes� In particular� simple and elegant correctness identities such as given in section � cannot
be formulated�
There are two other points that deserve mention� First� the proof system of �CRL has been de�ned

in such way that it allows for automatic proof checking 
Sel��� BG��b� GP��� KS��� This is important�
as a minor mistake in a program or a protocol may have disastrous impacts� And actually� we have
so often detected �oversights� in calculations that we may expect that also the proof in this paper is
not completely �awless� The only way to systematically increase the reliability of proofs is by having
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these automatically checked using a computer tool� This of course does not decrease the value of this
paper� because �nding a proof remains the essential step in a veri�cation�

The other point is about the proof in this paper� Although initially the proof was not easy to
�nd due to the large number of possible proof strategies� the resulting proof follows a reasonable and
straightforward line of thought� This is promising� because we think that if we get more skill and
experience in doing calculations such as given in this paper� most communication protocols can be
veri�ed in �CRL by a �xed selection of standard strategies�

� The speci�cation of the Bakery Protocol

We describe a simple system that captures a well�known protocol that has been used over the centuries�
especially in bakery shops� and prove its correctness in the proof system for �CRL 
GP�b� GP�a��
We assume that the reader is familiar with �CRL which is a straightforward combination of process
algebra 
BW��� and abstract data types 
EM���� But see Appendix B for the axiom system of �CRL�

The Bakery Protocol derives its name from the well�known situation in a busy bakery where cus�
tomers pick a number when entering the shop in order to guarantee that they are served in proper
order� The system basically consists of n ��place bu�ers 	see Buf in Figure ��� that may each contain
a customer waiting to be served� Before waiting� each customer picks a sequence number 	which are
distributed modulo n� indicating when it is his turn� This is modeled by the in�sequencer INS in Fig�
ure �� A customer is served when his number matches that of the baker� modeled by the out�sequencer
OUTS in Figure �� The system is supposed to work on a �rst come �rst served basis� i�e� it should
behave like a queue� We take the existence of basic data types� which are in this case booleans and
natural numbers� for granted� These data types are speci�ed in appendix A� We also need modulo
calculations� e�g� for specifying the in�sequencer INS and out�sequencer OUTS� For this purpose �n

is introduced� which is addition modulo n� Its speci�cation can also be found in appendix A�

The customers are supposed to be given by a 	non empty� sortD� SortD contains a bottom element
d� for denoting unde�ned data elements� We have a sort queued that consists of queues of customers
	see appendix A for its speci�cation�� In order to attach a number to a customer the data type Pair
is introduced together with a pairing h � i and an equality function eq� We do not completely obey
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the syntax of �CRL to increase readability� e�g� by using in�x notation and omitting � for sequential
composition�

sort Pair

func h � i � D � nat� Pair

eq � Pair � Pair � Bool
var d� e � D

n�m � nat
rew eq	hd� ni� he�mi� � eq	d� e� and eq	n�m�

We also need queues which can contain pairs� Therefore� the data type queuep is introduced in
appendix A�
A bu�er process that can contain a customer with a ticket is straightforwardly speci�ed as follows�

act r�� s� � Pair
proc Buf �

P
p�Pair 	r�	p� � s�	p�� � Buf

A customer with a ticket� modeled by the pair hd� ii� can enter the bu�er at gate r� and leave it at
gate s��
By putting n of these bu�ers in parallel� we model that n customers can wait in the shop� As this is

the behaviour of a bag which is essentially described by processes� we call this process PBag� derived
from �Process bag��

proc PBag	n � nat� � � � eq	n� �� � 	Buf k PBag	n� ���

Note the way in which PBag has been recursively de�ned� e�g� PBag	�� � � k Buf which exactly
corresponds to our intuition because � k Buf � Buf ��

The process INS 	n� i� assigns a successive number modulo n to each customer� The number i rep�
resents the �rst number that is assigned� A customer enters at the entrance of the bakery� represented
by the action enter	d�� With a number he walks into the shop� which is modelled by s�	hd� ii�� The
fact that he directly enters a place in a bu�er is modelled by a communication between s� and r��
The process OUTS	n� i� selects the customer to be served� In this case i represents the �rst number
that will be served� Entering OUTS is modelled via the r� gate that must communicate with gate s��
After being served the customer leaves the counter via out�

act enter� out � D
s�� r�� c�� c� � Pair

proc INS	n� i�nat� �
P

d�D	enter	d� s�	hd� ii�� INS 	n� i�n ��
OUTS	n� i�nat� �

P
d�D	r�	hd� ii� out	d��OUTS 	n� i�n ��

The whole bakery B	n� is given by�

comm r��s� � c�� r��s� � c�
proc B	n�nat� � �I	�H 	INS	n� �� k PBag	n� k OUTS	n� ����

where I � fc�� c�g and H � fr�� s�� r�� s�g�

� The correctness criterion for the Bakery Protocol

The Bakery Protocol B	n� is supposed to work as a bounded queue of size n � �� there can be n
customers waiting in the bu�ers� one can be busy obtaining a number and one can already be selected

�In general� the identity � k x � x does not hold� e�g� consider the counter example � k a � a� �� a� However� the
identity � k Buf � Buf does hold because Buf is a non�terminating process�
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to be served� The �standard� speci�cation of a process Q	n� modelling a queue of size n containing
elements of D is�

proc Q	n � nat� b � queued� �P
d�D	enter	d� �Q	n� in	d� b��� � size	b� 	 n � � �

out	toe	b�� �Q	n� untoe	b�� � size	b� 
 � � �

Q	n � nat� � Q	n��d�

With this speci�cation of a queue the correctness of the Bakery Protocol is stated as follows�

n 
 �� B	n� � Q	n� ��

The condition n 
 � is necessary to guarantee that there is at least one bu�er place for a customer to
wait� Otherwise� as is easy to see� no customer can reach the counter�

� Basic lemmas for �CRL

In this section� we present a number of elementary lemmas that are used in the veri�cation of the
Bakery Protocol� These lemmas are interesting in their own right as it is very likely that they are
necessary in almost every veri�cation in �CRL�
In this section� we assume that the reader is familiar with the following conventions about open

terms and variables� The letters d� e� � � � stand for data variables� The symbols t� t�� t�� � � � stand for
data terms 	possibly containing variables�� The symbols b� b�� b�� � � � stand for data variables of sort
Bool and the symbols c� c�� c�� � � � stand for data terms of sort Bool� The letters x� y� z� � � � stand for
process variables� The symbols p� p�� p�� � � � stand for process terms�
The following lemma expresses that �CRL supports the Excluded Middle Principle�

Lemma ��� �Excluded Middle Principle�� Let � and � be two arbitrary property�formulas over a

given �CRL speci�cation�

�� If �� � and ��� � then ��

�� If b � t � � and b � f � � then ��

Proof�

�� See 
GP�a��

�� Immediate by ���� and BOOL��

�

Lemma ���� is an instance of the Excluded Middle Principle which is often applied in �CRL proofs�
for instance to prove the conditional identities in the next lemma�

Lemma ����

�� x � b � x � x�

�� x� x � b � � � x�

�� 	x� y� � b � z � x � b � z � y � b � z�

�� 	x� y� � b � y � x � b � � � y�





	� 	x � b � �� k y � 	x k y� � b � ��


� x j 	y � b � �� � 	x j y� � b � ��

�� p
ed� � p � eq	d� e� � � � p
ed�� provided that eq	d� e�� d � e�

�� a	d� � x j b	e� � y � 	a	d� � x j b	e� � y� � eq	d� e� � �� provided that d � e� eq	d� e��

These identities are frequently used in the veri�cation of the Bakery Protocol and �CRL veri�cations
in general�

Proof�

���� Easy with axioms COND�� COND� and Lemma �����

�� By COND�� COND�� CF and Lemma �����

�

The following lemma presents a rule which is derived from the SUM axioms� This rule appears to be
a powerful tool to eliminate sum expressions in �CRL calculations� We �rst introduce an auxiliary
proposition� which enables us to identify processes via summand inclusion�

Proposition ���� Let p � q be a shorthand for q � q�p expressing that p is a summand of q� Then
we have�

p � q � q � p� p � q�

Proof� q � q � p
A�
� p� q � p� �

Sometimes it is more convenient to reason with summands instead of equations�

Lemma ��� �Sum Elimination�� Assume that there is an equality function eq such that eq	d� e� �
t 	 d � e� Then

X

d�D

	p � eq	d� e� � �� � p
ed��

Proof� By showing summand inclusion in both directions 	Proposition ����


� Consider the following obvious identity

X

d�D

	p � eq	d� e� � ��
SUM�
�
X

d�D

	p � eq	d� e� � �� � p � eq	d� e� � �	��

By applying the substitution 
ed� to equation 	�� we obtain

X

d�D

	p � eq	d� e� � �� �
X

d�D

	p � eq	d� e� � �� � p
ed� � eq	e� e� � �	��

Note that the substitution does not a�ect both sum constructs above because in �CRL substi�
tutions do not change bound variables 	see 
GP�a��� By applying axiom COND� to the second
summand on the right hand side of equation 	��� we get

X

d�D

	p � eq	d� e� � �� �
X

d�D

	p � eq	d� e� � �� � p
ed��	��

�



�� By the calculation�

p�e�d�
SUM�
�

P
d�D�p�e�d��

�����
�

P
d�D�p � eq�d� e� � � � p�e�d��

SUM�
�

P
d�D�p � eq�d� e� � �� �

P
d�D�p�e�d��

SUM�
�

P
d�D�p � eq�d� e� � �� � p�e�d��

�

In the next lemma� we generalise axiom CM	 with a conditional construct and a sum operator


Lemma ��� �Left Merge with SUM and COND�� We assume that the variable d does not occur free
in term q�

��
P

d�D�a�d� � p� k q �
P

d�D�a�d� � �p k q��

��
P

d�D�a�d� � p � c � �� k q �
P

d�D�a�d� � �p k q� � c � ��

Proof�

�
 By the following calculation

P
d�D�a�d� � p� k q

SUM�
�

P
d�D�a�d� � p k q�

CM�
�

P
d�D�a�d� � �p k q��

�
 By the following calculation

P
d�D�a�d� � p � c � �� k q

SUM�
�

P
d�D�a�d� � p � c � � k q�

����	
�

P
d�D�a�d� � p k q � c � ��

CM�
�

P
d�D�a�d� � �p k q� � c � ��

�

There are two remarks about the lemma above
 At rst� note that we can avoid the restriction that
d is not allowed to occur free in q by renaming it with axiom SUM�
 So� the restriction is just a
formality and no generality is lost
 Secondly� note that in stating properties about sum expressions
as in �
�
�� we often use a boolean term c instead of a boolean variable b to be as general as possible

Otherwise b can never be substituted by a term containing a variable d� as substitution may not create
bound variables

Next� we generalise axiom CM� with a conditional construct and a sum operator


Lemma ��� �Communication with SUM and COND�� Let d� e � D and d� � D� be variables� and let
t � D a term� Assume there is an equality function eq such that eq�d� e� � t � d � e� and variable d
does not occur free in terms q and c�� Variable d� does not occur free in p� c and c��

��
P

d�D�a�d� � p� j b�e� � q � �a�e� j b�e�� � �p�e�d� k q�

��
P

d�D�a�d� � p � c � �� j b�e� � q � �a�e� j b�e�� � �p�e�d� k q� � c�e�d� � �

��
P

d�D�a�d� � p � c � �� j
P

d��D��b�t� � q� �
P

d��D���a�t� j b�t�� � �p�t�d� k q� � c�t�d� � ��

�



��
P

d�D�a�d� � p � c� � �� j
P

d��D��b�t� � q � c� � �� �P
d��D���a�t� j b�t�� � �p�t�d� k q� � c��t�d� and c� � ��

Proof�

�
 By the following calculation

P
d�D�a�d� � p� j b�e� � q
SUM�
�

P
d�D�a�d� � p j b�e� � q�

����

�

P
d�D��a�d� � p j b�e� � q� � eq�d� e� � ��

SumEl�
� a�e� � p�e�d� j b�e� � q

CM�
� �a�e� j b�e�� � �p�e�d� k q�

Note that the assumption eq�d� e� � t � d � e is needed for application of lemmas �
�
� and �
�
�Sum Elimination� in the calculation above


�
 By the following calculation

P
d�D�a�d� � p � c � �� j b�e� � q
SUM�
�

P
d�D��a�d� � p � c � �� j b�e� � q�

�����
�

P
d�D��a�d� � p j b�e� � q� � c � ��

����

�

P
d�D���a�d� � p j b�e� � q� � eq�d� e� � �� � c � ��

SumEl�
� �a�e� � p�e�d� j b�e� � q� � c � �

CM�
� �a�e� j b�e�� � �p�e�d� k q� � c � �

Then by the substitution rule SUB �see �GP��a�� we have

X
d�D

�a�d� � p � c � �� j b�e� � q � �a�e� j b�e�� � �p�e�d� k q� � c�e�d� � �

as the substitution �e�d� does not e�ect the right�hand side of this equation


	
 By the following calculation

P
d�D�a�d� � p � c � �� j

P
d��D��b�t� � q�

SUM�
�

P
d��D��

P
d�D�a�d� � p � c � �� j �b�t� � q��

�����
�

P
d��D���a�t� j b�t�� � �p�t�d� k q� � c�t�d� � ��

�
 In a similar way as the proof of �
�
	


�

In the proofs given above we often needed an equality function eq for comparing elements of data
type D� In order to have the rather desirable property that eq�d� e� � d � e� one can extend the

�



specication of D with a selector function if and four axioms
 This is formulated in Lemma �
�
 The
axioms are due to Jan Bergstra


sort D
func � � �

eq � D �D � Bool
if � Bool�D �D � D

var d� e � D
rew � � �

if �t� d� e� � d
if �f� d� e� � e
eq�d� d� � t

if �eq�d� e�� d� e� � e

Lemma ���� Let d� e be variables of sort D� and let eq be the equality function speci�ed above� Then�
eq�d� e�� d � e�

� The correctness proof of the Bakery Protocol

In this section we prove that the Bakery Protocol B�n� indeed satises the criterion as stated in section
	
 The proof transforms the process style description in two steps into a data style description
 First�
we use the fact that PBag�n� behaves as a �standard� bounded bag which is usually described by a data
type bag
 This fact has already be proven in �CRL �see �Kor����
 Then we show that this bounded
bag combined with the in�sequencer INS and the out�sequencer OUTS is equal to the bounded queue
described above


Part I� PBag�n� is a bounded bag

The standard behaviour of a bounded bag is specied as follows�

proc DBag�n � nat� b � queuep� �P
p�Pair�r��p� �DBag�n� in�p� b��� � size�b� 	 n � � �P
p�Pair�s��p� � DBag�n� rem�p� b�� � test�p� b� � ��

The D in DBag refers to �Data�
 Although the data type queuep is actually a queue� it has been
extended with functions test and rem �remove� which makes it possible to use it as a bag

The next theorem taken from �Kor��� says that PBag�n� behaves like a bounded bag of size n


Theorem ��	� PBag�n� � DBag�n��p��

Proof� By induction on n and RSP �see �Kor����
 �

Part II� B�n� is a queue

The second part of showing the Bakery Protocol correct consists of proving INS�i� n� and OUTS�i� n�
in combination with the DBag�n� equal to a bounded queue

The essential observation in our proof is to distinguish the following four situations�

� No customer is busy getting a ticket and no customer is being served by the baker


� No customer is busy getting a ticket but there is a customer being served by the baker


� A customer is busy getting a ticket and no customer is being served by the baker


�



	 A customer is busy getting a ticket and another customer is being served by the baker


In order to calculate with the four situations above we make these explicit as processes

Imagine the ideal situation towards which we are working� namely a queue b of customers
 How

are these customers distributed over the bakery in situation 	� The customer that entered the queue
rst is being served by the baker
 So� toe�b� is in OUTS � ready to leave the bakery
 The person that
entered the queue last is still picking a number
 So hd�b� is in INS 
 All other persons in the queue
are waiting with a ticket in PBag 
 They are assigned consecutive numbers which is modelled by the
function number�i� n� b�
 It makes a queue of pairs �queuep� out of a queue of customers b � queued
by taking the elements in b and number it from the end to the start of b� starting with i� modulo n

Below the four situations are described as processes CQ�� � � � � CQ�
 The number n indicates the size
of the queue �the actual size of the queue is n � ��� b is the queue of customers and i is the number
on the ticket of the rst customer
 Note that the behaviour of CQj is chosen to be � if i � n or the
size of the queue b is too small or too large
 In these cases the values of i� n and b do not matter

For instance in case of CQ� if size�b� 	 �� then there cannot be customers in both INS and OUTS �
which does not conform to the intention of CQ�


proc CQ��n � nat� i � nat� b � queued� �

fc��c�g��fr��s��r��s�g�

INS�n� i�n size�b�� k
DBag�n� number�i� n� b�� k
OUTS �n� i���

�size�b� � n and i 	 n � �

CQ��n � nat� i � nat� b � queued� �

fc��c�g��fr��s��r��s�g�

INS�n� i�n size�b�� k
DBag�n� number�i�n �� n� untoe�b��� k
out�toe�b��OUTS �n� i�n ����

�� 	 size�b� � n� � and i 	 n � �

CQ��n � nat� i � nat� b � queued� �

fc��c�g��fr��s��r��s�g�

s��hhd�b�� i�n size�tl�b��i� INS�n� i�n size�b�� k
DBag�n� number�i� n� tl�b��� k
OUTS �n� i���

�� 	 size�b� � n� � and i 	 n � �

CQ��n � nat� i � nat� b � queued� �

fc��c�g��fr��s��r��s�g�

s��hhd�b�� i�n size�tl�b��i� INS�n� i�n size�b�� k
DBag�n� number�i�n �� n� tl�untoe�b���� k
out�toe�b��OUTS �n� i�n ����

�� 	 size�b� � n� � and i 	 n � �

Note that obviously CQ��n� ���d� � B�n� if n � �

Now let us consider say CQ��n� i� b� and pose the question what the behaviour of CQ� would be


The process CQ��n� i� b� can perform an action enter�d� and arrive in the situation CQ��n� i� in�d� b���
namely the situation where customer d is busy picking a ticket
 If size�b� � �� there is a customer
in CQ��n� i� b� that can become served by the baker
 So� via an internal step CQ��n� i� b� becomes
CQ��n� i� b�
 This analysis can be made in all four cases
 In other words� CQj substituted for Gj

should satisfy the equations below
 Indeed this is conrmed by Theorem �
�
	


�



proc G��n � nat� i � nat� b � queued� �P
d�D�enter�d�G��n� i� in�d� b��� � size�b� � n and i 	 n � � �


 G��n� i� b� � � 	 size�b� � n and i 	 n � �

G��n � nat� i � nat� b � queued� �P
d�D�enter�d�G��n� i� in�d� b���

�� 	 size�b� � n� � and i	n � � �
out�toe�b��G��n� i�n �� untoe�b��

�� 	 size�b� � n� � and i 	 n � �

G��n � nat� i � nat� b � queued� �

 G��n� i� b� � � 	 size�b� � n and i 	 n � � �

 G��n� i� b� � � 	 size�b� � n� � and i 	 n � �

G��n � nat� i � nat� b � queued� �

 G��n� i� b� � � 	 size�b� � n� � and i 	 n � � �
out�toe�b��G��n� i�n �� untoe�b��

�� 	 size�b� � n� � and i 	 n � �

Now it is tempting to state that the queue Q�n� b� is a solution of G��n� i� b�
 But this can not easily be
shown
 The most important reason is that Q must perform 
 �steps in a rather irregular way in order
to be a solution
 We model this by dening the following four processes Qj �j � �� �� �� 	�
 Obviously�
Q��n� ���d� is equal to Q�n���
 Qj�n� i� b� is also a solution for Gj�n� i� b� from which it follows that
Qj�n� i� b� � CQ�n� i� b�
 Combination of these facts leads to the correctness of the protocol


proc Q��n � nat� i � nat� b � queued � �
�Q�n� �� b� � empty�b� � 
 Q�n� �� b��
�size�b� � n and i 	 n � �

Q��n � nat� i � nat� b � queued � �
Q�n� �� b� � � 	 size�b� � n� � and i 	 n � �

Q��n � nat� i � nat� b � queued � �

 Q�n� �� b� � � 	 size�b� � n� � and i 	 n � �

Q��n � nat� i � nat� b � queued � �
�Q�n� �� b� � eq�size�b�� n� �� � 
 Q�n� �� b��

�� 	 size�b� � n� � and i 	 n � �

Theorem ��
� Let i� n � nat� b � queued �

�� n � �� B�n� � CQ��n� ���d��

�� n � �� Q�n� �� � Q��n� ���d��

�� n � �� CQj�n� i� b� � Qj�n� i� b� for j � �� �� �� 	�

�� n � �� Q�n� �� � B�n��

Proof�

�
 B�n� � 
I�H�INS�n� �� k PBag�n� k OUTS�n� ���
	��
� 
I�H�INS�n� �� k DBag�n��p� k OUTS�n� ���

��



� CQ��n� ���d�

�
 Immediate using the denitions of Q�n�nat� and Q��n� i�nat� b�queued �


	
 We show that both CQj�n� i� b� and Qj�n� i� b� are solutions for the equations dening Gj�n� i� b�

As Gj�n� i� b� is guarded �see appendix B� this immediately implies that CQj�n� i� b� � Qj�n� i� b�
�j � �� �� �� 	�
 First we show that the processes CQj�n� i� b� satisfy the equations for Gj and
then we do the same for Qj�n� i� b�
 In each case the proof consists of a straightforward expansion
using Theorem �
� and �
� and the applications of some lemmas about data given in appendix
A


CQ��n� i� b�
� 
fc��c�g��fr��s��r��s�g�

INS�n� i�n size�b�� k
DBag�n� number�i� n� b�� k OUTS�n� i���

�size�b� � n and i 	 n � �

��	
�
P

d�D�enter�d�

fc��c�g��fr��s��r��s�g�

s��hd� i�n size�b�i� INS�n� i�n size�b� �n �� k
DBag�n� number�i� n� b�� k OUTS�n� i����

�size�b� � n and i 	 n � �
� 
fc��c�g��fr��s��r��s�g�

�
P

p�Pair �s��p�DBag�n� rem�p� number�i� n� b���

�test�p� number�i� n� b�� � �� kP
d�D�r��hd� ii� out�d��OUTS �n� i�n ��� k

INS�n� i�n size�b����
�size�b� � n and i 	 n � �

�����
�
P

d�D�enter�d�CQ��n� i� in�d� b��� � size�b� � n and i 	 n � �
� 
fc��c�g��fr��s��r��s�g�P

d�D�c��hd� ii�
�DBag�n� rem�hd� ii� number�i� n� b��� k
out�d�OUTS �n� i�n ���
�test�hd� ii� number�i� n� b�� � ��� k

INS�n� i�n size�b����
�size�b� � n and i 	 n � �

A�����SumEl�
� P

d�D�enter�d�CQ��n� i� in�d� b��� � size�b� � n and i 	 n � �
� 
fc��c�g��fr��s��r��s�g�

�c��htoe�b�� ii�
�DBag�n� rem�htoe�b�� ii� number�i� n� b���� k
out�toe�b��OUTS �n� i�n ��� k

INS�n� i�n size�b����
�� 	 size�b� � n and i 	 n � �

A�����TI�
�
P

d�D�enter�d�CQ��n� i� in�d� b��� � size�b� � n and i 	 n � �
� 
 � 
fc��c�g��fr��s��r��s�g�

INS�n� i�n size�b�� k

��



DBag�n� number�i�n �� n� untoe�b��� k
out�toe�b��OUTS�n� i�n ����

�� 	 size�b� � n and i 	 n � �

�
P

d�D�enter�d�CQ��n� i� in�d� b��� � size�b� � n and i 	 n � �
� 
 CQ��n� i� b� � � 	 size�b� � n and i 	 n � �

The calculations showing that CQj�n� i� b� satisfy the equation dening G� are analogous to the
ones given above
 They are omitted here but can be found in the full version �GK���


We continue by showing that the processes CQj�n� i� b� also satisfy the equation for G�


CQ��n� i� b�
� 
fc��c�g��fr��s��r��s�g�

s��hhd�b�� i�n size�tl�b��i� INS�n� i�n size�b�� k
DBag�n� number�i� n� tl�b��� k OUTS�n� i���

�� 	 size�b� � n� � and i 	 n � �

������ �����
� 
fc��c�g��fr��s��r��s�g�

�c��hhd�b�� i�n size�tl�b��i�
�INS �n� i�n size�b�� k
DBag�n� in�hhd�b�� i�n size�tl�b��i�

number�i� n� tl�b�����
�size�b� � n � �� k OUTS�n� i���

�� 	 size�b� � n� � and i 	 n � �
� 
fc��c�g��fr��s��r��s�g�P

d�D�c��hd� ii�
�DBag�n� rem�hd� ii� number�i� n� tl�b���� k
out�d�OUTS �n� i�n ���

�test�hd� ii� number�i� n� tl�b��� � �� k
s��hhd�b�� i�n size�tl�b��i� INS�n� i�n size�b����

�� 	 size�b� � n� � and i 	 n � �

TI��A����
� 
 CQ��n� i� b� � � 	 size�b� � n and i 	 n � �
� 
fc��c�g��fr��s��r��s�g�P

d�D�c��hd� ii�
�DBag�n� rem�hd� ii� number�i� n� tl�b���� k
out�d�OUTS �n� i�n ���

�test�hd� ii� number�i� n� tl�b��� � �� k
s��hhd�b�� i�n size�tl�b��i� INS�n� i�n size�b����

�� 	 size�b� � n� � and i 	 n � �

A�����SumEl��TI�
�


 CQ��n� i� b� � � 	 size�b� � n and i 	 n � �
� 
 � 
fc��c�g��fr��s��r��s�g�

s��hhd�b�� i�n size�tl�b��i� INS�n� i�n size�b�� k
DBag�n� rem�htoe�b�� ii� number�i� n� tl�b���� k
out�toe�b��OUTS �n� i�n ����

�� 	 size�b� � n� � and i 	 n � �

A���

� 
 CQ��n� i� b� � � 	 size�b� � n and i 	 n � �

��



� 
 CQ��n� i� b� � � 	 size�b� � n� � and i 	 n � �

That CQj�n� i� b� even satisfy the equation for G� can be shown in a similar way as above
 These
calculations are omitted here but can be found in �GK���


Now we show that the processes Qj�n� i� b� are solutions for the equations for G�� � � � � G�
 It is
worth noting that the only place where the 
 �laws are used is below


Q��n� i� b�
� �Q�n� �� b� � empty�b� � 
 Q�n� �� b��

�size�b� � n and i 	 n � �
T�
� �

P
d�D�enter�d�Q�n� �� in�d� b��� � empty�b��P
d�D�enter�d�Q�n� �� in�d� b�� � 
 Q�n� �� b���

�size�b� � n and i 	 n � �
� �

P
d�D�enter�d�Q�n� �� in�d� b�� � size�b� � n � �� �


 Q��n� i� b� � size�b� � � � �� � empty�b��
�
P

d�D�enter�d�Q�n� �� in�d� b�� � size�b� � n � �� �

 Q��n� i� b� � size�b� � � � �� � size�b� � n and i 	 n � �

������T�
�

P
d�D�enter�d�Q��n� i� in�d� b��� � size�b� � n and i 	 n � �

� 
Q��n� i� b� � � 	 size�b� � n and i 	 n � �

The processes Qj�n� i� b� are also a solution of the dening equation for G�


Q��n� i� b�
� Q�n� �� b� � � 	 size�b� � n� � and i 	 n � �
�
P

d�D�enter�d�Q�n� �� in�d� b���
�� 	 size�b� � n� � and i 	 n � �

� out�toe�b��Q�n� �� untoe�b�� � � 	 size�b� � n and i 	 n � �
T�
�
P

d�D�enter�d�Q��n� i� in�d� b���
�� 	 size�b� � n� � and i 	 n � �

� out�toe�b��Q��n� i�n �� untoe�b��
�� 	 size�b� � n� � and i 	 n � �

Note that we need that n � � in the second step below to show that the processes Qj�n� i� b� are
a solution for the equation for G�


Q��n� i� b�
� 
 Q�n� �� b� � � 	 size�b� � n� � and i 	 n � �
� 
 Q�n� �� b� � � 	 size�b� � n and i 	 n � �
� 
 Q�n� �� b� � � 	 size�b� � n� � and i 	 n � �
T�
� 
 Q��n� i� b� � � 	 size�b� � n and i 	 n � �
� 
 Q��n� i� b� � � 	 size�b� � n� � and i 	 n � �

And last� we show that CQj�n� i� b� also satises the equation for Q�


Q��n� i� b�
� �Q�n� �� b� � eq�size�b�� n� �� � 
 Q�n� �� b��

�� 	 size�b� � n� � and i 	 n � �
T�
� �out�toe�b��Q�n� �� untoe�b�� � eq�size�b�� n� ���

�
 Q�n� �� b� � out�toe�b��Q�n� �� untoe�b����
�� 	 size�b� � n� � and i 	 n � �

�	



������A���	�A����
�


 Q�n� �� b� � � 	 size�b� 	 n� � and i 	 n � �
� out�toe�b��Q�n� �� untoe�b��

�� 	 size�b� � n� � and i 	 n � �
T�
� 
 Q��n� i� b� � � 	 size�b� 	 n� � and i 	 n � �
� out�toe�b��Q��n� i�n �� untoe�b��

�� 	 size�b� � n� � and i 	 n � �

�
 Now� given the calculations above� this proof is straightforward�

Q�n� ��
	����
� Q��n� ���d�

	����
� CQ��n� ���d�

	����
� B�n��

�
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A Elementary data types

In this appendix� we specify the data types that are used in the specication and in proof of the Bakery
Protocol
 Furthermore� the properties of the data types needed for the verication of the Bakery are
presented as data laws together with their proofs


A�� About booleans

The predened booleans extended with their well�known connectives not� and� or� are often used in
the Bakery proof
 The �rewrite� rules for the added connectives are consistent with the predened
rules BOOL� and BOOL�


sort Bool
func t� f �� Bool

not � Bool� Bool
and � Bool�Bool� Bool
or � Bool�Bool� Bool

var b� b�� b�� b� � Bool
rew not�t� � f

not�f� � t

t and b � b
f and b � f

t or b � t

f or b � b

Lemma A�	�

�� p � b � q � q � not�b� � p�

�The symbols ��������� are reserved in the proof system of �CRL as operators for connecting properties�

��



�� p � b� or b� � � � p � b� � � � p � b� � ��

�� b� and b� � b��

�� b� or b� � b��

	� b� and b� � b� and b��

Proof� By COND�� COND� and Lemma �
�
 �

A�� About natural numbers

The natural numbers represented by sort nat play an important role in both the specication and
the verication of the Bakery Protocol
 Below the operators on natural numbers �� P �Predecessor��
S���� �monus�� ���� 	��� if � eq used in this paper are specied
 �We will use inx notation wherever
we nd it convenient to do so
�

sort nat
func � �� nat

S� P � nat� nat
���� � nat� nat� nat
eq����� 	��� nat� nat� Bool
if � Bool� nat� nat� nat

var n�m� z � nat
rew P ��� � �

P �S�n�� � n
n� � � n
n� S�m� � S�n�m�
n� � � n
n� S�m� � P �n�m�
eq�n� n� � t

if �eq�n�m�� n�m� � m
n � � � t

� � S�n� � f

S�n� � S�m� � n � m
n � m � m � n
n � m � n � S�m�
n 	 m � S�n� � m
if �t� n�m� � n
if �f� n�m� � m

The if function given above will be used for specifying modulo arithmetic in section A
	


Notation A�
� We write n � m for n � m � t
 Idem for ��� and 	
 We write eq�n�m� for
eq�n�m� � t
 We write � for S��� and � for S�S����


Lemma A���

�� eq�n�m� � t � n � m�

�� n � m 	 
�n � m��

�� n� �m� z� � �n�m� � z�

�� n�m � m� n�

	� n � m � not�n 	 m��


� etc�

Proof� By �nested� induction on nat �see �TD����
 �

��



A�� About modulo arithmetic

On top of the natural numbers nat we specify the mod operator and the �m operator �addition modulo
m� as follows


func mod � nat� nat� nat
� � nat� nat� nat� nat

var n� n��m � nat
rew n mod � � n

n mod m � if �n � m� �n�m� mod m�n�
n�m n� � �n� n�� mod m

Lemma A���

�� n� �m n� � n� �m n��

�� �n� �m n�� �m n� � n� �m �n� �m n���

�� n� � �� �n� mod n�� 	 n��

�� �n� mod n�� mod n� � n� mod n��

A�� About data queues

In this section� we specify the data type queued which can contain elements of a set D of customers
 D
may be nite or innite� but it should at least contain a bottom element d� for denoting an undened
data element
 We assume that D is equipped with an equality function eq � D �D � Bool that has
the desired property eq�d� e� � t � d � e�

sort D
func d� � D

d�� � � � � dn � D
eq � D �D � Bool

The specication of queued is given below


sort queued
func �d �� queued

in � rem � D � queued � queued
test � D � queued � Bool
size � queued � nat
hd � toe � queued � D
tl � untoe � queued � queued
if � Bool� queued � queued � queued
empty � queued � Bool

var d� e � D
b� c � queued

rew test�d��d� � f

test�d� in�e� b�� � if �eq�d� e�� t� test�d� b��
rem�d��d� � �d

rem�d� in�e� b�� � if �eq�d� e�� b� in�e� rem�d� b���
size��d� � �
size�in�d� b�� � S�size�b��
hd��d� � d�
hd�in�d� b�� � d

��



toe��d� � d�
toe�in�d��d�� � d
toe�in�d� in�e� b��� � toe�in�e� b��
tl��d� � �d

tl�in�d� b�� � b
untoe��d� � �d

untoe�in�d��d�� � �d

untoe�in�d� in�e� b��� � in�d� untoe�in�e� b���
empty�b� � eq�size�b�� ��

Lemma A���

�� size�untoe�b�� � size�b�� ��

�� size�tl�b�� � size�b�� ��

�� 
b � �d � in�hd�b�� tl�b�� � b�

�� size�b� � �� b � �d�

	� 
b � �d � test�d� tl�b�� or eq�d� hd�b�� � test�d� b��


� rem�hd�b�� b� � tl�b��

�� size�b� � �� b � �p�

�� b � �p � size�b� � n�

The function number is specied as follows


sort queuep
func �p �� queuep

number � nat� nat� queued � queuep
rew number�i� n��d� � �p

number�i� n� in�d� b�� � in�hd� i�n size�b�i� number�i� n� b��

Here queuep is exactly the same data type as queued except that it contains elements of sort Pair
instead of sort D


Lemma A���

�� size�b� � n�
test�hd� ii� number�i� n� b�� � �eq�d� toe�b�� and size�b� � ���

�� size�b� � n�
test�hd� ii� number�i� n� b�� � �size�b� � � and eq�d� toe�b����

�� size�b� � n�
rem�htoe�b�� ii� number�i� n� b�� � number�i�n �� n� untoe�b���

�� size�b� � �� size�tl�b�� 	 n � size�b� � n�

	� size�b� � ��
size�number�i�n �� n� tl�untoe�b���� 	 n � size�b� 	 n� ��


� size�number�i� n� b�� � size�b��

�� size�b� � n�
in�hhd�b�� i�n size�tl�b��i� number�i� n� tl�b��� � number�i� n� b��

�� � 	 size�b� � n�
rm�htoe�b�� ii� number�i� n� tl�b��� � number�i�n �� n� tl�untoe�b����

��



A� x� y � y � x CF n�t��m�t�
A� x� �y � z� � �x� y� � z
A� x� x � x �

�
�n�m��t� if �n�m� �
� otherwise

A� �x� y� � z � x � z � y � z
A� �x � y� � z � x � �y � z�
A� x� � � x
A� � � x � � CD� ��x � �

CD� x�� � �
CM� x k y � x k y � y k x� x�y CT� 
�x � �
CM� a k x � a � x CT� x�
 � �
CM� a � x k y � a � �x k y�
CM� �x� y� k z � x k z � y k z DD �H��� � �
CM� a � x�b � �a�b� � x DT �H�
� � 

CM� a�b � x � �a�b� � x D� �H�n�t�� � n�t� if n �� H
CM� a � x�b � y � �a�b� � �x k y� D� �H�n�t�� � � if n � H
CM	 �x� y��z � x�z � y�z D� �H�x � y� � �H�x� � �H�y�
CM
 x��y � z� � x�y � x�z D� �H�x � y� � �H�x� � �H�y�

Table �� The axioms of ACP in �CRL


B An overview of the proof theory for �CRL

B�� The proof system

In �GP��a� a proof system has been given which allows to prove identities about processes with data

Table � lists the axioms of ACP in �CRL� followed by the axioms of Standard Concurrency in Table �
and the axioms for hiding in Table 	
 For an explanation of these axioms we refer to �BW���� except
for the following points
 In the tables x� y are process variables and p� q are process terms in which
the variable d may occur
 The letters t�� � � � � tn stand for data terms� and t for a sequence of data
terms where � is the empty sequence
 The symbols a� b represent �� 
 or range over �declared� actions
n�t�� where n�t� represents n if t � �
 � is the pre�communication function such that ��n�� n�� � n�
if a rule comm n��n� � n� appears in the �CRL specication
 Otherwise ��n�� n�� � �
  is the
symmetrical closure of �
 We write �n�m� � if  is dened on n and m

Tables �� � and � lists the typical �CRL axioms and rules for interaction between data and processes


The axioms for summation are denoted by SUM� the axioms for the conditional by COND and the
rules for the booleans by BOOL

Beside the axioms and rules mentioned above� �CRL incorporates two other important proof prin�

ciples
 First� it supports an principle for induction not only on data but also on data in processes
 The
second principle is RSP �Recursive Specication Principle� taken from �BW��� extended to processes
with data
 Informally� it says that each guarded recursive specication has at most one solution


�x k y� k z � x k �y k z� �x�y��z � x��y�z�

x k � � x� x��y k z� � �x�y� k z

x�y � y�x x��y�z� � � Handshaking

Table �� Axioms of Standard Concurrency �SC�


��



TID 
I��� � �

TIT 
I�
� � 


TI� 
I�n�t�� � n�t� if n �� I

TI� 
I�n�t�� � 
 if n � I

TI� 
I�x� y� � 
I�x� � 
I�y�

TI� 
I�x � y� � 
I�x� � 
I�y�

Table 	� Axioms for abstraction


SUM�
P

d�D�p� � p if d not free in p

SUM�
P

d�D�p� �
P

e�D�p�e�d�� if e not free in p

SUM�
P

d�D�p� �
P

d�D�p� � p

SUM�
P

d�D�p� � p�� �
P

d�D�p�� �
P

d�D�p��

SUM�
P

d�D�p� � p�� �
P

d�D�p�� � p� if d not free in p�
SUM�

P
d�D�p� k p�� �

P
d�D�p�� k p� if d not free in p�

SUM�
P

d�D�p��p�� �
P

d�D�p���p� if d not free in p�
SUM	

P
d�D��H�p�� � �H�

P
d�D�p��

SUM

P

d�D�
I �p�� � 
I�
P

d�D�p��

D

SUM��
p� � p�P

d�D�p�� �
P

d�D�p��

provided d not free in
the assumptions of D

Table �� Axioms for summation


COND� x � t � y � x

COND� x � f � y � y

Table �� Axioms for the conditional construct


BOOL� 
�t � f�

BOOL� 
�b � t�� b � f

Table �� Axioms for Bool�

��



B�� Adding ��laws to the proof system

The proof system as presented above is considered as a kernel and does not yet contain axioms for 
� In
this section� we extend the proof theory with axioms for 
 as we need these axioms in the verication
of the Bakery Protocol
 One can add the 
 �laws of Table � taken from Milner �Mil��� to the proof
system
 These axioms correspond to the well�known observation equivalence
 These axioms can be

T� x 
 � x

T� 
 x � 
 x� x

T	 a �
 x� y� � a �
 x� y� � a x

Table �� 
 �laws for observation equivalence


added to the proof system under the restriction that the a and b in the ACP axioms of �CRL do not
range over 
� Otherwise� we are able to derive inconsistent identities �see �BW���� page ����
 The
axioms in Table � model the interaction between 
 and the other operators �see �BW����


TM� 
 k x � 
x

TM� 
x k y � 
�x k y�

TC	 
x�y � x�y

TC� x�
y � x�y

Table �� Completing 
 �laws for observation equivalence


Another point is that the axiom �x�y� k z � x��y k z� of standard concurrency is not consistent in
the context of the 
 �laws given in Table �
 It must be replaced by the weaker axiom �x�ay� k z �
x��ay k z�

The RSP rule mentioned above is restricted to guarded systems of process�equations
 A denition

for guardedness that works in a setting of Milner�s observation equivalence can be given as follows�

De�nition B�	 �Guardedness of G�� A term p is a guard i��

 p � ��

 p � n�t�� � � � � tn� or p � n and n is an action label�

 p � q� � q� with � � f�� �t�g and q� and q� are guards�

 p � q� � q� with � � f�� k� k g and q� or q� are guards�

 p � q��q��

 p �
P

x�S�q�� and q� is a guard�

 p � �nl�q�� with nl being a list of names� and q� is a guard


Let G be a system of process�equations and let N be the left�hand side of one of the equations of G

We say that N is guarded in r� where r is a subterm of one of the right�hand sides of G� i�

 r � q� � q� with � � f�� k� �� �t�g� and N is guarded in q� and q��

 r � q� � q� with � � f�� k g and N is guarded in q�� and q� is a guard or N is guarded in q��

 r �
P

x�S�q�� and N is guarded in q��

��



 r � �nl�q�� with nl being a list of names� and N is guarded in q��

 r � � or r � 
 �

 r � n� for a name n� and N �� n��

 r � n��u�� � � � � um�� and N �� n��xi�� � � � � ximi
�


If N is not guarded in r we say that N appears unguarded in r

The Identi�er Dependency Graph of G� notation IDG�G�� is constructed as follows�

 each left�hand side of the equations of G is a node�

 if N is a node of IDG�G� and N � r � G� then there is an edge N � N � for any node N � that
appears unguarded in r


We call G guarded i�

 IDG�G� is well founded� i
e
 does not contain an innite path� and

 none of the right�hand sides of G has a subterm of the form 
nl�q�� where nl is a list of names


�

References

�SoSL��� D
J
 Andrews� J
F
 Groote� and C
A
 Middelburg� editors
 Proceedings of the Interna
tional Workshop on Semantics of Speci�cation Languages
 Workshops in Computer Science�
Springer Verlag� ����


�Apt��� K
R
 Apt
 Ten years of Hoare�s logic� a survey� part I
 ACM Transactions on Programming
Languages and Systems� 	�����	����	� ����


�Apt��� K
R
 Apt
 Ten years of Hoare�s logic� a survey� part II� Nondeterminism
 Theoretical
Computer Science� ����	����� ����


�BW��� J
C
M
 Baeten and W
P
 Weijland
 Process Algebra
 Cambridge Tracts in Theoretical
Computer Science ��
 Cambridge University Press� ����


�BG�	a� M
A
 Bezem and J
F
 Groote
 A correctness proof of a one bit sliding window protocol
in �CRL
 Technical Report ��� Logic Group Preprint Series� Utrecht University� ���	
 To
appear in the Computer Journal� Volume 	����� ����


�BG�	b� M
A
 Bezem and J
F
 Groote
 A formal verication of the alternating bit protocol in the
calculus of constructions
 Technical Report ��� Logic Group Preprint Series� Utrecht Uni�
versity� March ���	


�CM��� K
M
 Chandy and J
 Misra
 Parallel Program Design� A Foundation
 Addison�Wesley� ����


�EM��� H
 Ehrig and B
 Mahr
 Fundamentals of algebraic speci�cations I� volume � of EATCS
Monographs on Theoretical Computer Science
 Springer�Verlag� ����


�GK��� J
F
 Groote and H
 Korver
 A correctness proof of the bakery protocol in �CRL
 Logic
Group Preprint Series ��� Dept
 of Philosophy� Utrecht University� October ����


�GK��� J
F
 Groote and H
P
 Korver
 A correctness proof of the bakery protocol in �CRL
 In
A
 Ponse� C
 Verhoef� and S
F
M
 van Vlijmen� editors� Algebra of Communicating Processes�
Utrecht� ����� Workshops in Computing� pages �	���
 Springer�Verlag� ����


��



�GP�	� J
F
 Groote and J
C
 van de Pol
 A bounded retransmission protocol for large data packets

A case study in computer checked verication
 Technical Report ���� Logic Group Preprint
Series� Utrecht University� ���	


�GP��a� J
F
 Groote and A
 Ponse
 Proof theory for �CRL� a language for processes with data

In D
J
 Andrews� e
a
 �SoSL���� pages �	�����
 Full version is available as CWI Report
CS�R��	�� Amsterdam� The Netherlands� August ����


�GP��b� J
F
 Groote and A
 Ponse
 The syntax and semantics of �CRL
 In this volume


�GW��� R
J
 van Glabbeek and W
P
 Weijland
 Branching time and abstraction in bisimulation
semantics �extended abstract�
 In G
X
 Ritter� editor� Information Processing ��� pages ��	�
���
 North�Holland� ����
 Full version available as Report CS�R����� CWI� Amsterdam�
����


�Kor��� H
 Korver
 Protocol Veri�cation in �CRL
 PhD thesis� University of Amsterdam� ����


�KS��� H
 Korver and J
 Springintveld
 A computer�checked verication of Milner�s scheduler
 In
M
 Hagiya and J
C
 Mitchel� editors
 Proceedings of the �nd International Symposium on
Theoretical Aspects of Computer Software� TACS ���� Sendai� Japan� pages �������� volume
��� of Lecture Notes in Computer Science
 Springer�Verlag� ����


�Mil��� R
 Milner
 Communication and Concurrency
 Prentice�Hall International� Englewood Cli�s�
����


�Sel�	� M
P
A
 Sellink
 Verifying process algebra proofs in type theory
 In Andrews et al
 �SoSL����
pages 	���		�


�TD��� A
S
 Troelstra and D
 van Dalen
 Constructivism in Mathematics� An Introduction �vol I�

North�Holland� ����


��


