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Abstract

We de�ne Lazy Term Rewriting Systems and show that they can be realized by local

adaptations of an eager implementation of conventional term rewriting systems� The overhead

of lazy evaluation is only incurred when lazy evaluation is actually performed�

Our method is modelled by a transformation of term rewriting systems� which concisely ex�

presses the intricate interaction between pattern matching and lazy evaluation� The method easily

extends to term graph rewriting�
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�� Introduction
It is well�known that outermost rewriting strategies often have a better termination
behaviour than innermost rewriting strategies �O�D���� Innermost strategies �also
called eager evaluation	 can be implemented much more e
ciently� however� We
propose to solve this dilemma by transforming a term rewriting system �TRS	 in
such a way that the termination behaviour of innermost rewriting is improved� At
the core of our transformation are established ideas of Ingermann �Ing�
� and Plotkin
�Plo����

The bad termination behaviour of innermost rewriting is illustrated by the TRS in
Figure 
 on page �� In this system� the term nth��� inf ��		 has an in�nite reduction

sequence inf ��	
���
� cons��� inf �s��				

���
� cons��� cons�s��	� inf �s�s��					

���
� � � �

This can be avoided by applying rule �
�
	 only once� before applying rule ��	�

nth��� inf ��		
���
� nth��� cons��� inf �s��				

���
� �� By postponing some reductions�

outermost rewriting may succeed in avoiding them altogether� Consider� however�
the term cons��� inf ��		� which does not terminate under an outermost reduction
strategy�
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inf �x	 � cons�x� inf �s�x			�
�
	

nth��� cons�x� y		 � x�
��	

nth�s�x	� cons�y� z		 � nth�x� z	�
��	

Figure 


Therefore� rather than simulating a pure outermost strategy� our transformation
simulates a variant of lazy evaluation� which is used to implement lazy functional
programming languages �PvE���� We will brie�y discuss this� During lazy evalua�
tion� non�outermost redexes are contracted in order to establish that the outermost
function symbol will never become part of a redex� The resulting term is said to be
in Weak Head Normal Form �WHNF	� E�g�� the term cons��� inf ��			 in the exam�
ple above is in WHNF� The �implicit	 routine which produces output for this term
recursively causes reduction to WHNF of the arguments� The term cons��� inf ��		
still leads to an in�nite computation� but meaningful output is produced during
this computation� Because rewriting of outermost redexes is expensive� it is usu�
ally avoided as much as possible� Arguments that can be rewritten eagerly without
a�ecting termination behaviour� are called strict� Strictness analysis �initiated by
Mycroft� �Myc���	 attempts to identify these arguments statically�

Now consider the TRS in Figure �� which di�ers only slightly from the one in
�gure 
�

inf �x	 � cons�x� thunk�x		�
��	

inst�thunk�x		 � inf �s�x		�
��	

nth��� cons�x� y		 � x�
��	

nth�s�x	� cons�y� z		 � nth�x� inst�z		�
��	

Figure �

The term nth��� inf ��		 still rewrites to �� but there are no in�nite reduction se�
quences� This example illustrates that only minor changes are needed to achieve the
desired e�ect� and that these changes can be made local to �lazy positions� �cf� the
second argument of cons	� To some extent� this explains the success of strictness
analysis� In many cases� only a few positions need a lazy treatment in order to
preserve termination�

The example also demonstrates the common observation that a good implemen�
tation of a lazy language spends most time in �eager mode�� Given the locality of
the changes above� it is worthwhile to investigate how an eager implementation can
be adapted to do some lazy evaluation� rather than adapting a lazy implementation
to do �a lot of	 eager evaluation�

We use laziness annotations to indicate argument positions where rewriting should
be postponed if possible� These annotations could be provided by the programmer
or by a strictness analyzer� In the latter case� all arguments that are not found to be
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strict� will get the annotation lazy� and the reductions performed by our implemen�
tation will correspond closely to the reductions performed by an implementation of
a lazy functional programming language using the same strictness analyzer�

Even though Figure � is a simpli�ed version of the result of our transformation�
applied to the TRS of Figure 
 �with only the second argument of cons annotated
with lazy	� it exhibits a peculiarity of our scheme� The term inf ��	 rewrites to
the normal form cons��� thunk��		� which is not a term in the original signature�
However� the term thunk��	 �called a �thunk� after Ingermann �Ing�
�	 represents
a �possibly in�nite	 term in the original system� which can be further approximated
by repeatedly replacing terms thunk�x	 by the normal form of inst�thunk�x		� Our
lazy normal forms �LNFs	 generalize the notion of WHNF� and the approximation
process corresponds to what is done by the output routine of an implementation of a
lazy functional language� We do not assume such an output routine� because leaving
the thunk in place o�ers the possibility of preventing uninteresting work� and yields
a larger class of terminating systems�

We give de�nitions and notations pertaining to term �graph	 rewriting in Sec�
tion �� our de�nition of lazy term rewriting in Section �� and a complete version
of the transformation sketched above in Section �� We make some remarks on a
realistic implementation in Section �� We end with a discussion of related work and
conclusions�

�� Term �graph� rewriting
We mostly repeat de�nitions and results from �Klo��� and �DJ����

A Term Rewriting System �TRS	 is a pair ��� R	 of a signature � and a set of
rewrite rules R� The signature � consists of�

� A countably in�nite set Var of variables x�� x�� � � �

� A non�empty set of function symbols F�G� � � �� each with an arity� which is
the number of arguments it requires� Function symbols with arity � are called
constant symbols�

The set of terms over � is the smallest set Ter��	 such that

� x�� x�� � � � � Ter��	�

� if F is an n�ary function symbol and t�� � � �tn � Ter��	 �n � �	� then F �t�� � � � � tn	
� Ter��	� The ti �i � 
� � � � � n	 are called the arguments�

Terms in which no variable occurs more than once are called linear�

A path in a term is represented as a sequence of positive integers� By tjp� we
denote the subterm of t at path p� For example� if t � push��� pop�push�y� z			�
then tj��� is the �rst subterm of t�s second subterm� which is push�y� z	� We will
say p � t if the path p is de�ned in t� i�e�� p leads to a subterm of t� The empty
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path �denoting the root	 is written �� We will call a set of paths P pre�x�reduced
if there are no pairs p� p� � P such that p is a pre�x of p�� We will call a set S of
subterms of s pre�x�reduced with respect to s if there is a pre�x�reduced set of paths
fp�� � � � � png such that S � fsjp� � � � � � sjpng� We write t�s�p for the term resulting
from the replacement of tjp by s in t�

A substitution � is a map from Ter��	 to Ter��	 satisfying ��F �t�� � � � � tn		 �
F ���t�	� � � � � ��tn		 for every function symbol F � By convention� we write t� instead
of ��t	�

A rewrite rule is a pair �t� s	 of terms � Ter��	� It will be written as t� s� Often
a rewrite rule will get a name� e�g� r� and we write r � t� s� Two conditions are
imposed�

� the LHS �left�hand side	 t is not a variable�

� the variables in the RHS �right�hand side	 s already occur in t�

A rewrite rule r � t� s determines a relation� the set of rewrites t� �r s
� for all

substitutions �� The LHS t� is called a redex �from �reducible expression�	� and the
RHS s� is called the contractum� Allowing replacement inside other terms� �r� the
one�step rewrite relation generated by r� is de�ned by�

ujp � t� � u�r u�s� �p

We call the relation �R� �r�R �r the rewrite relation de�ned by R� Usually� the
subscript R is omitted if it is clear from the context� Concatenating rewrite steps
we have �possibly in�nite	 rewrite sequences t� � t� � � � � or rewrites for short� If
t� � � � � � tn �n � �	� we also write t�

�
� tn� If t� � � � � � tn �n � 
	� we also

write t�
�
� tn and call tn a reduct of t�� A term t � Ter��	 is said to be in normal

form if there is no s such that t
�
�R s� It is understood that R does not contain

rewrite rules that are equal up to an bijective renaming of variables�

A TRS is called left�linear if all left�hand sides are linear� A TRS is called con�uent
if� for all terms t�� t�� t�� we have that t�

�
� t� and t�

�
� t� implies that there exists

a term t� such that t�
�
� t� and t�

�
� t�� A TRS is called terminating if there

are no in�nite rewrite sequences� In the sequel� we will only consider left�linear�
con�uent TRSs� However� we will not require TRSs to be terminating� Note that it
is undecidable whether a TRS is con�uent or terminating�

In general� a term can contain many redexes� In an implementation of a TRS� a
rewriting strategy determines which of the many possible rewrite sequences is chosen�
Con�uence guarantees unique normal forms�

In this article� we will assume the existence of an implementation of the leftmost�
innermost strategy �LI� the leftmost�innermost redex takes precedence	� By a trans�
formation� we will simulate lazy evaluation�

A typical implementation of an LI strategy for TRSs is given in �Heu���� where
the rules are compiled into a Lisp function� The body of this function consists of
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pattern matching code that determines which code is used for instantiation of the
RHS� The former code is produced by a pattern matching compiler� the latter code
is typically a number of nested function calls� with references to terms as arguments�
On many architectures� this type of recursive code performs badly� which leads to
several alternatives �TAL��� KW��� Bak����

Term graph rewriting �BvEJ����� where terms and rules are replaced by graphs�
can be seen as a restriction of rewriting with in�nite terms �KKSdV���� An imple�
mentation of term rewriting can be turned into an implementation of graph rewriting
by taking care that the sharing expressed by graphs is retained� Note that� in gen�
eral� this is not easy�

�� Lazy term rewriting
We de�ne lazy term rewriting as term rewriting with a restriction on the �one�step	
rewrite relation� First� we de�ne lazy signatures� which make a distinction between
eager argument positions and lazy argument positions�

The choice to annotate the arguments rather than the function symbols themselves
is not only motivated by compatibility with lazy functional languages� but has two
additional disadvantages� First� if functions are annotated� we must expect thunks
at every argument position� thus losing the locality of our transformation� Second�
for functions such as if�Bool�Exp�Exp�� it is more natural to annotate an argument
position than to annotate all function symbols that may occur there� Unfortunately�
not all TRSs can be made terminating by only annotating arguments �cf� the rule
inf �x	 � inf �x		�

A lazy signature includes a predicate � on function symbols and natural numbers�
where ��F� i	 � true means that the ith argument position of F �� � i � arity�F 		
is lazy� and ��F� i	 � false means that it is eager� As an abbreviation� we write
F ��� �	 for a function F of arity �� the �rst argument of which is eager and the
second argument of which is lazy�

This notion is easily extended to paths in terms�

De�nition

� For all terms t� � is an eager path in t�

� If p is an eager path in t and tjp � F �t�� � � � � tn	 with ���F� i	 for some i �
 �
i � n	 then p�i is eager�

� All other paths are lazy�

In other words� a path is eager precisely if it passes through eager arguments only�
A lazy path p is called directly lazy if p � p��i with p� eager� For example� given the
signature

fcons��� �	� bin��� �	g
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s t

t�

u� v�
m

l

e

l

e

g

If t� can be obtained from s
by replacing lazy subterms

LR

Figure �� Lazy Rewriting

and the terms t� � cons�x� cons�y� z		 and t� � bin�cons�x� y	� cons�x� z		� the paths

 in t� and 
� 
�
� �� ��
 in t� are eager ��
� ��� in t� and 
��� ��� in t� are lazy� of
which only ��
 and ��� in t� are not also directly lazy� With Lazy�t	� we will denote
the pre�x reduced set of lazy paths in t� and a subterm at a lazy path will be called
a lazy subterm�

With ��t	� we will denote the term obtained by replacing every lazy subterm of t
with the unique constant �� For any normal form n� ��n	 is exactly the part we are
interested in� We will say that terms t� and t� are ��equal� or equal up to �� when
��t�	 � ��t�	�

Ideally� we would like to rewrite a lazy subterm at path p only if this is needed to
establish a needed redex at an eager pre�x e of p� Then� the termination behaviour
of lazy rewriting would be at least as good as the termination behaviour of rewriting
only needed redexes�

If there are overlapping LHSs� however� the notion of needed redex cannot be
de�ned� Therefore� we give a weaker de�nition� which only requires that a redex
at an eager pre�x of p can be established by replacing lazy subterms� The ideal of
needed rewriting can be approximated by demanding a particular relation between
the lazy subterms and their replacements� We will not try to achieve this� because
most interesting relations seem to be either undecidable or hard to implement or
have such a large bias towards a particular strategy that they are unnatural as a
restriction on the rewrite relation� Instead� we try to make the restriction on the
rewrite relation as weak as possible� by considering only LHSs and outermost lazy
positions� The rewrite strategy is expected to approximate the ideal by avoiding as
much rewrites at lazy paths as reasonably possible� The transformation presented
in section � implements such a strategy�

We will �rst present our de�nition informally� using Figure � as illustration� Let
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the lazy path p consist of an eager path e� a lazy path l� and a path m� which may
be either eager or lazy� We allow rewriting at p � e�l�m in t only if at the eager
pre�x e� a redex g� can be established by replacing some lazy subterms of t� such
that the nonvariable part of g �shown as a triangle labeled with g	 overlaps with l�
The endpoints of lazy paths where rewriting is allowed� are indicated by a dotted
triangle� The actual rewrite at e�l�m is indicated by an arrow annotated with �LR��

Formally� this is described by the following de�nition�

De�nition s rewrites lazily to t� written s
LR
� t� if 	u� v � R� �� p such that

� sjp � u�

� t � s�v��p

� � p is eager in s� or

� p � e�l�m� where e is eager in s� e�l is lazy in s� and
	p�� � � � � pn � Lazy�s	� r�� � � � � rn� t

� � Ter��	� g� h � R� �

such that t� � s�r��p� � � � �rn�pn� t
�je � g� and gjl 
� V ar�

This restriction of the one�step rewrite relation yields an extended class of normal
forms� We will call these lazy normal forms �LNF�� For instance� given the TRS of
Figure 
� if ��cons� �	 � true � then cons��� inf��		 is an LNF which is not a normal
form� If ��f� i	 is true for all f� i LNF coincides with WHNF� If t is an LNF� we call
��t	 a ��LNF�

Because
LR
� is a restriction of �� it follows easily that termination is preserved�

We have that lazy rewriting is both correct and complete in the following sense�

Theorem � �Completeness� For all normal forms s of t� there is a ��equal LNF s��

Proof sketch s� can be constructed from the rewriting sequence t� � t� � � �� s by
directly performing the rewrites that are allowed� and maintaining a residual map
�O�D��� of the paths where rewriting is not allowed� When a path where rewriting
is forbidden is mapped to a context which is either eager� or may turn into a redex
by replacing lazy subterms� the suspended rewrite is also performed� Thus� all non�
preformed rewrites pertain either to a term that is deleted� or are mapped �by the
residual map	 to a lazy subterm in s�� Therefore� ��s�	 � ��s	

Theorem � �Correctness� If t is an LNF� then for all normal forms s of t� ��s	 �
��t	�

Proof From the de�nition� it follows that there are no redexes at eager paths� and
no lazy path leading to a redex has an eager pre�x which may become a redex by
replacing lazy subterms� Therefore� all eager paths in an LNF are stable

Corollary � If there is a unique normal form t of s� then all LNFs of s are ��equal
to t�
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From the fact that an arbitrary number of �irrelevant� rewrite steps can in general
be performed before the rewrite that turns a term into an LNF� it follows that
con�uence is not preserved� However� given the fact that we are only really interested
in ��n	 for any LNF n� it is fair to consider only ��con�uence�

De�nition A TRS R is ��con�uent if for every t�� t� and t�� if t� � t� and t� � t�
then there are terms t�� t	� such that t�

�
� t�� t�

�
� t	 and ��t�	 � ��t		�

Theorem � Lazy rewriting preserves ��con�uence�

Proof Suppose R is ��con�uent� and let t�� t� and t� be such that t�
LR
� t� and

t�
LR
� t�� Then there are ��equal terms t�� t	� and rewriting sequences s� � t�

�
� t�

and s� � t�
�
� t	� If at some term t� from the sequence s�� a rewrite at a �lazy	 path p

is forbidden by lazy rewriting� then no redex can later occur at an eager path above
p� Therefore� at all eager paths above p� t� has the same function symbol as t�� We
can thus skip the forbidden rewrite and all rewrites that occur below p� because they
only a�ect subterms that do not make a di�erence from the viewpoint of ��equality�
Repeating our reasoning for all other forbidden rewrites� we arrive at a term that is
��equal to t�� Similarly for s�

Of course� ��con�uence implies uniqueness up to � of LNFs�

�� A transformation to achieve laziness
We will specify a transformationL from TRSs to TRSs and a transformation T from
terms to terms� such that when T �t	 is rewritten by an innermost strategy in L�R	
to a normal form n� then ��n	 is the ��LNF of t with respect to R� The transformed
system avoids rewriting lazy subterms to a large extent �optimal avoidance is im�
possible in nonorthogonal TRSs	� Basically� the transformation T replaces all lazy
subterms of an input term by stable terms �thunks	� and L adds rules for �unthunk�
ing� both input thunks and thunks that encode right�hand sides� Furthermore� L
ensures that

� Lazy subterms of right�hand sides are thunked� so only stable terms are intro�
duced at lazy paths�

� When a subterm �matched to a variable	 is moved from a lazy lhs position into
an eager rhs position� it is unthunked� so thunks only occur at lazy positions�

� A lazy argument is unthunked before a match overlapping with it is rejected�

We start with some de�nitions� A thunk is a term with a special function symbol
� at the top� a name of a pattern �p	 as �rst argument� and a tuple of terms �denoted
by vecn�t�� � � � � tn		 as second argument�

��p�vecn�t�� � � � � tn		

Given a rule s � t� we call a variable migrating if it occurs at a directly lazy
position in s and at some eager position in t� Because we want to keep the e�ect of
our transformation local� rules must be added that �unthunk� migrating variables�
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	�
 The transformation L
L takes a TRS ��� R	� and transforms it into a system �� �N � A�RG�RI � R�	�
In the transformed system�

� N is a countably in�nite set of function symbols that do not occur in � �they
are used in thunks as names of patterns	� There is a set T � N of �tokens��
such that for every function symbol f in �� we have a unique tf � T �

� A is a set of �administrative� function symbols

f���� �	� ����	� inst��	� ���� �	� trueg �m�n�Nat fvecmn�lm�� � � � � lmn	g�

where � will be used as the top symbol of a thunk� �� is a predicate that
recognizes thunks� a function vecmn�lm� � � � lmn	 is used to �pack� n variables
in a thunk �m encodes the laziness annotations� the lmi are either � or �� Most
of the time� m will be omitted	� Finally� � is a projection function that makes
implementation of graph rewriting easy� which will be discussed in Section ��
�

� RG contains the general rules de�ning the projection � and the thunk�recognizer
���

��x� y	 � y

�����x� y		 � true

� RI contains the rules describing selective unthunking of input terms� For
every f with arity n� of which k are eager positions �with indices e�� � � � � ek	�
RI contains the rules �with cfi � N	�

inst���tf �vecn�x�� � � � � xn			 � cf�����xe�	� x�� � � � � xn	����	

cf��true� x�� � � � � xn	 � cf�����xe�	� x�� � � � � inst�xe�	� � � � � xn	����	

cf�����y	� xe�� � � � � xn	 � cf�����xe�	� x�� � � � � xe� � � � � � xn	���
�	

� � �

cfk�true� x�� � � � � xn	 � f�x�� � � � � inst�xek	� � � � � xn	���

	

cfk����y	� x�� � � � � xn	 � f�x�� � � � � xek � � � � � xn	���
�	

Here� ����	 starts the instantiation of a delayed term with function symbol f �
�������

	 handle the case that an argument �xe� and xek � respectively	 is still
thunked and ���
����
�	 handle the case that an argument is already unthun�
ked� Note that the distinction between thunked and unthunked arguments
relies on the partial function �� being evaluated eagerly�

� The rules in R� are obtained by applying the three transformations below �RHS
for thunk introduction� LR for left�right unthunking and LS for left�hand side
matching	 to R as follows� RHS until �xpoint� LR once for every equation in
the �xpoint� LS once for every equation in the result of LR�
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RHS �Thunk Introduction� This transformation is applicable to all rules r � s� t

where t contains a directly lazy path p� such that tjp is neither a variable� nor
a subterm already occurring in s� nor a thunk� Let ft�� � � � � tng be the set of
terms occurring in both s and tjp� and pre�x�reduced with respect to t� then
r is replaced by two rules �i unique in N	�

s � t���i�vecn�t�� � � � � tn		�p

inst���i�vecn�x�� � � � � xn			 � ����i�vecn�x�� � � � � xn		� t�ti	xi�	

Here ��vecn� i	 �� if and only if ti is a variable occuring at a directly lazy
context in s�

LR �Migrating Thunk Elimination� This transformation applies to rules r � s� t

containing migrating variables� Supposing ft�� � � � � tng is a set of subterms
which occur both in s and t� and which is pre�x�reduced with respect to t�
and let e�� � � � � ek be the indices of the migrating variables� then r is replaced
by the following rules� similar in form and intent to the rules in RI �

s � ci�����xe�	� t�� � � � � tn	

ci��true� x�� � � � � xn	 � ci�����xe�	� x�� � � � � inst�xe�	� � � � � xn	

ci�����y	� x�� � � � � xn	 � ci�����xe�	� x�� � � � � xe� � � � � � xn	

� � �

cik�true� x�� � � � � xn	 � cik���x�� � � � � inst�xek	� � � � � xn	

cik����y	� x�� � � � � xn	 � cik���x�� � � � � xek � � � � � xn	

cik���x�� � � � � xn	 � t�ti	xi�

LS �Matching Thunk Elimination� This transformation is applicable to rules
r � s� t if s contains nonvariable lazy positions� For every element i �
fi�� � � � � ing in the pre�x�reduced powerset of lazy paths in s� add a rule �all
nj and vj fresh	�

s���n�� v�	�i� � � � ���nn� vn	�in

� s�����n�� v�	� inst�n�� v�		�i����n�� v�	�i� � � � ���nn� vn	�in

	�� The transformation T
T thunks all non�variable lazy subterms of the original input term� by the token of
their outermost function symbol and their thunked arguments�

T �f�t�� � � � � tn	� � f�t��� � � � � t
�

n	 �where t�i � T �ti� i� ��f� i	 ��� otherwise t�i � Tl�ti�	

Tl�f�t�� � � � � tn	� � ��tf �vecn�Tl�t��� � � � � Tl�tn�		

T �x� � Tl�x� � x




� From transformation to implementation 		

	�� Correctness and completeness of the transformation
First� we remark that the transformation itself terminates� because every application
of RHS replaces one �non�thunked	 lazy argument by a thunk� and LR and LHS
terminate trivially�

Theorem 	 �Correctness of L and T � Given a TRS R and a term t� every step in
an innermost rewriting of T �t	 in L�R	 is either an administrative step �checking if

an argument is a thunk�� or it corresponds to a legal step in
LR
�R�

Proof Note that for all terms t� T �t	 has only R�redexes above lazy positions� be�
cause all lazy subterms are thunked by Tl� By RHS� all rules have been transformed
into rules that put stable terms at lazy paths� and LR preserves this property� The
only redexes at lazy paths are L�R	�redexes� introduced by LS� but the conditions
for application of LS imply that there is a nonvariable R�pattern overlapping with
the hole in which the redex is introduced� so the condition for lazy rewriting is
full�lled

Theorem 
 �Completeness of L and T � Given a TRS R and a term t� the normal
form tn of t with respect to L�R	 �if it exists� is ��equal to some LNF tl of t�

Proof Suppose that ��tn	 
� ��tl	� Because of correctness� we have that t
LR
� t�n�

where t�n is obtained from tn by replacing thunks with the RHSs they represent�

Because tl is a LNF� we have that t
LR
� tl� Lazy rewriting preserves ��con�uence� so

t�n cannot be a lazy normal form� This means that tn must either contain a normal
redex� or an administrative redex �because tn only di�ers from t�n by having thunks
at lazy paths� and LS introduces rules that remove any thunk which blocks matching
of a LHS	

�� From transformation to implementation
The transformation in Section � is useful both as a tool for experimentation� and as a
concise model of an implementation of lazy rewriting� To obtain an implementation
that can compete with special�purpose lazy implementations such as TIM ��FW���	
or the Spineless Tagless G�machine �STG� �JS���	� some details have to be changed�

First� in order to prevent multiple reductions of the same term� the TRS should
be interpreted as a graph rewriting system� We give details on this in Section ��
�

Second� some glaring ine
ciency is caused by the LS transformation� This can
be overcome by simulating the e�ect of LS in the pattern�matching code� which is
explained in Section ����


�
 Graph rewriting by adding sharing
By the following modi�cations� the advantages of graph rewriting are incorporated�

� In the implementation of T � sharing should be retained�




� From transformation to implementation 	�

� The function ���� �	 is implemented such� that it overwrites its �rst argument
�always a thunk	 with the LNF of its second argument �always the LNF cor�
responding with the thunk	� Note that this requires a �xed node size� or some
other means to avoid overwriting smaller with bigger nodes�

� If a subterm occurs both in LHS and RHS of some rule� no copy should be
made� Then it follows from the construction of the transformed system� that
thunks are never duplicated� so every thunk is only evaluated once�

� For cyclic graphs� the code that is generated for the construction of a right�
hand side must be modi�ed slightly� Without loss of generality� we consider
a prototypical RHS x � f�� � � � x� � � �	� For this RHS� the compiler should emit
code corresponding to inst�T 	� where T is a thunk for f�� � � � T� � � �	� Note
that this requires that the �address� of a node under construction is available
during the construction�


�� Optimizations
When implemented naively� our transformation has a large impact on the number
of equations� A worst�case analysis shows that the maximal number of additional
equations is

� ! n�r ! n��l ! �s

where n is the number of rules� r is the maximal number of nonvariable lazy positions
in a RHS� l is the maximal number of nonvariable lazy positions in a LHS� and s is
the number of lazy positions in the signature� It should be noted that� measured in
function symbols� the rules added by RHS are compensated for by a reduction in
size of the original rule� and s is generally small compared to n�

Thus� the only dangerous term is the exponential term in l� caused by the powerset
construction in transformation LS� We will illustrate both the problem and its
solution with an example� Assuming we have a signature fa� b� i��	� t��� �	g and a
rule i�t�a� b		� a� then LS adds the rules

i�t���p�vec�	� b		 � i�t�����p�vec�	� inst���p�vec�			� b		

i�t���p�vec�	� ��p
��vec�			 � i�t�����p�vec�	� inst���p�vec�			� ��p

��vec�			

i�t�a� ��p�vec�			 � i�t�a� ����p�vec�	� inst���p�vec�					

When a term i�t�x� y		 is rewritten� where both x and y are thunks which will
instantiate to a and b respectively� this leads to the following ine
ciencies�

� i and t are matched � times �� times to discover the thunks� and the last time
to �nd the original match	�

� the function symbol t is copied � times� because the subterm from the LHS
cannot be reused�



�� Related work 	�

This can be repaired by changing the pattern matching code to instantiate the
thunks� such that the rules introduced by LS are no longer needed �even though
they give a nice model of what is happening	� In pseudo code� the modi�ed code
reads as follows�

case x of

i�y�� case y of

t�z��z��� case z� of

a� label�� case z� of

b� continue�a� 	
 matched � 
	

thunk� inst�z��� goto label�

otherwise� return�x� 	
 normal form 
	

thunk� label�� case z� of

b� inst�z��

case z� of

a� continue�a� 	
 matched � 
	

otherwise� return�x� 	
 normal form 
	

thunk� inst�z��� goto label�

otherwise� return�x� 	
 normal form 
	

otherwise� return�x� 	
 normal form 
	

otherwise� 




otherwise� 




This pattern matching code is bigger than the code for the single rule in the original
system� but it is a very e
cient implementation of lazy pattern matching� because
it only does extra work �compared to the eager implementation	 if an unevaluated
thunk is encountered during matching�

The implementation can be further improved by implementing � as a tag�bit� ��
as a bit�test� and inst and vecn as built�in functions� Finally� the e�ect of the LR
transformation can be achieved by generating slightly di�erent code for right�hand
sides�

	� Related work
A very early related paper is �Plo���� which gives simulations of call�by�name by
call�by�value �eager evaluation	� and vice versa� in the context of the 
�calculus�
Call�by�name evaluation di�ers from lazy evaluation �or call�by�need	� Thunks are
not overwritten with the result of evaluation� but evaluated on every use �which is
essential in a language with side�e�ects	�

In the context of functional programs� �Amt��� developed an algorithm to trans�
form call�by�name programs into call�by�value equivalents� In �SW���� data�ow
analysis is done in order to minimize thunki�cation in this context�

In �OLT���� a continuation passing style �cps	 transformation of call�by�need into
call�by�value equivalents is given� To their knowledge� it is the �rst� Apart from the
fact that a particular 
�calculus is only one instance of a TRS� our transformation
di�ers mainly by completely integrating pattern matching of algebraic datatypes in
the transformation� It is unclear how much can be gained by taking pattern matching
into account in a transformation for a lazy functional implementation� An abstract



�� Related work 	�

approach to strictness analysis of algebraic datatypes is investigated in �Ben���� We
noted that the built�in pattern�matching �case	 and conditional constructs �if	 in
many lazy languages are often unnecessarily assumed to be strict �cf� �Bur�
�	�

The e�ect of our transformations of rewrite systems is somewhat similar in spirit
to the use of evaluation transformers in �Bur�
�� Not only in theory� but also in
practice� our technique does not rely on properties of built�in algebraic datatypes
such as lists or trees� In �BM���� some of the techniques in �Bur�
� are formulated
in the context of continuation passing transformations�

Another approach to obtain better termination properties are the sequential strate�
gies investigated by �HL�
� O�D���� In this approach� only needed redexes are rewrit�
ten� i�e�� redexes that would be rewritten in any reduction to a normal form� Un�
fortunately� neededness is only well�de�ned in TRSs that do not have overlapping
redexes� This restriction is hard to live with in practice�

To our knowledge� only the Clean �PvE��� and the OBJ� �GWM���� systems
support laziness annotations� Clean supports the annotation of strict arguments�
OBJ� features annotations for the evaluation order of arguments which are somewhat
more explicit than ours� It appears that a similar transformation can implement
OBJ�s annotations�

A rule occuring in the context of an E�uni�cation algorithm� presented in �MMR����
is called �lazy rewriting� in �Klo���� It might be interesting to investigate whether
our technique of implementing lazy rewriting on eager machinery is useful in that
context�

In CAML �Categorial ML� �CH���	 there are lazy constructors� which can be used
to achieve e�ects similar to our transformation� However� the transformation of the
program must then be carried out manually for the most part �only equivalents of
inst� �� and � are supplied by the implementation	�

It is obvious� that our last implementation of lazy term rewriting is similar to
the implementation of modern lazy functional languages� As far as we know� these
implementations are completely lazy by nature� but are optimized to perform as
much eager evaluation as possible�

Therefore� it is appropriate to provide a discussion of the cost of basic datastruc�
tures and actions in our scheme� compared with the cost in those implementations�
It should be noted that it is extremely di
cult ��JS���	 to assess the e�ect of di�erent
design choices on performance� so we will only give a qualitative discussion�

� Only a little structure ��� a thunk constant and a vector containing references
to subterms from the left�hand side	 occurs below a lazy position in any rhs af�
ter the transformation� This is comparable to the frames used in TIM �FW����
or the closures in the STG� Similarly to the latter� our scheme only uses space
for the subterms from the LHS that may actually be used later� In the ABC
machine �PvE���� complete graphs are built for lazy arguments� which is a
drawback compared to all other implementations�
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� No runtime cost is incurred when all arguments in the original TRS are anno�
tated eager� Even when all arguments are found to be strict� TIM and STG do
a function call to obtain the tag of a constructor term �this is the reason they
are called �tagless�	� whereas our implementation only needs to dereference a
pointer�

� There is no need for the dreaded indirection nodes ��O�D��� JL���� because �
full�lls this role every term �input or rhs	 is evaluated exactly once� either by
immediate innermost rewriting� or later� by overwriting the � node� In �JL����
the indirection nodes are also transformed away� but some very complicated
analysis is needed to arrive at this result� In the ABC machine� the indirection
nodes are indispensable�

� In the rules added by transformation LR� testing if a lazy argument is thunked�
is done by rewriting� Even if this is replaced by a bit�test implementation� a
subsequent call of inst must be done� This is less e
cient than the �tagless�
reduction which is done in both TIM and STG�

� Unthunking is only done if all eager pattern matching was succesfull� Because
the order of pattern matching and its e�ects on evaluation of subterms are
�xed in the semantics of lazy functional languages� this cannot be done in
the other implementations� Usually� the interaction between pattern matching
of algebraic datatypes and lazy evaluation is not incorporated in strictness
analysis�

Taking into account these points� we expect our scheme to perform better than ABC�
TIM or the STG� when there is a small number of lazy arguments�

In contrast with common opinion� we hold that laziness annotations provided
by the programmer are a suitable way of indicating lazy evaluation� We observe
that it is reasonable to require of a lazy functional programmer to make sure that
his program terminates� This requires a thorough understanding of both the pro�
gram and the operational semantics of the language� In our experience� this level
of understanding is adequate to provide complete laziness annotations� The truly
lazy programmer will of course use a strictness analyzer to assist in the process of
understanding his program�

We certainly do not want to imply that our scheme renders strictness analyzers
super�uous� Fine�grain strictness analysis can even be used to improve the result of
our transformation�


� Conclusions and acknowledgements
We have de�ned lazy rewriting and have generalized the notion of Weak Head Normal
Form to the less operational notion of Lazy Normal Form�

We have modeled lazy rewriting by a transformation of term rewriting systems�
which avoids rewriting of lazy subterms to a large extent �optimal avoidance is
impossible in nonorthogonal TRSs	� and completely integrates pattern matching of
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algebraic datatypes� When all arguments are annotated� the transformed system
computes WHNFs�

We derive an e
cient implementation on already e
cient eager machinery from
this model� Our method compares favourably to existing methods�

Our notion of Lazy Normal Forms �LNFs	 could also be helpful in an implemen�
tation of abstract rewriting� as described in �BE"���� or in the context of theorem
proving�

We would like to thank John Field for his very insightful comments on an earlier
version of this paper� and Jan Heering for his meticulous reading of a later version�
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