
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Lazy rewriting on eager machinery

J.F.Th. Kamperman and H.R. Walters

Computer Science/Department of Software Technology

CS-R9461 1994

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301654147?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report CS-R9461
ISSN 0169-118X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Lazy Rewriting on Eager Machinery

J�F�Th� Kamperman �jasper�cwi�nl�

H�R� Walters �pum�cwi�nl�

CWI

P�O� Box ������ ���� GB Amsterdam� The Netherlands

Abstract

We de�ne Lazy Term Rewriting Systems and show that they can be realized by local

adaptations of an eager implementation of conventional term rewriting systems� The overhead

of lazy evaluation is only incurred when lazy evaluation is actually performed�

Our method is modelled by a transformation of term rewriting systems� which concisely ex�

presses the intricate interaction between pattern matching and lazy evaluation� The method easily

extends to term graph rewriting�

CR Subject Classi�cation ������� D���� �Programming languages�� Processors

	 Compilers� Optimization
 D���� �Programming Techniques�� Applicative �Functional

Programming
 D����� Logic Programming�

AMS Subject Classi�cation ������� ��N��� Compilers and generators
 ��Q��� Models

of Computation
 ��Q��� Rewriting Systems

Keywords � Phrases� lazy term rewriting� program transformation�

Note� Partial support received from the European Communities under the ESPRIT project ����

�Compiler Generation for Parallel Machines 	 COMPARE
�

�� Introduction
It is well�known that outermost rewriting strategies often have a better termination
behaviour than innermost rewriting strategies �O�D���� Innermost strategies �also
called eager evaluation	 can be implemented much more e
ciently� however� We
propose to solve this dilemma by transforming a term rewriting system �TRS	 in
such a way that the termination behaviour of innermost rewriting is improved� At
the core of our transformation are established ideas of Ingermann �Ing�
� and Plotkin
�Plo����

The bad termination behaviour of innermost rewriting is illustrated by the TRS in
Figure
 on page �� In this system� the term nth��� inf ��		 has an in�nite reduction

sequence inf ��	
���
� cons��� inf �s��				

���
� cons��� cons�s��	� inf �s�s��					

���
� � � �

This can be avoided by applying rule �
�
	 only once� before applying rule ��	�

nth��� inf ��		
���
� nth��� cons��� inf �s��				

���
� �� By postponing some reductions�

outermost rewriting may succeed in avoiding them altogether� Consider� however�
the term cons��� inf ��		� which does not terminate under an outermost reduction
strategy�

�� Introduction �

inf �x	 � cons�x� inf �s�x			�
�
	

nth��� cons�x� y		 � x�
��	

nth�s�x	� cons�y� z		 � nth�x� z	�
��	

Figure

Therefore� rather than simulating a pure outermost strategy� our transformation
simulates a variant of lazy evaluation� which is used to implement lazy functional
programming languages �PvE���� We will brie�y discuss this� During lazy evalua�
tion� non�outermost redexes are contracted in order to establish that the outermost
function symbol will never become part of a redex� The resulting term is said to be
in Weak Head Normal Form �WHNF	� E�g�� the term cons��� inf ��			 in the exam�
ple above is in WHNF� The �implicit	 routine which produces output for this term
recursively causes reduction to WHNF of the arguments� The term cons��� inf ��		
still leads to an in�nite computation� but meaningful output is produced during
this computation� Because rewriting of outermost redexes is expensive� it is usu�
ally avoided as much as possible� Arguments that can be rewritten eagerly without
a�ecting termination behaviour� are called strict� Strictness analysis �initiated by
Mycroft� �Myc���	 attempts to identify these arguments statically�

Now consider the TRS in Figure �� which di�ers only slightly from the one in
�gure
�

inf �x	 � cons�x� thunk�x		�
��	

inst�thunk�x		 � inf �s�x		�
��	

nth��� cons�x� y		 � x�
��	

nth�s�x	� cons�y� z		 � nth�x� inst�z		�
��	

Figure �

The term nth��� inf ��		 still rewrites to �� but there are no in�nite reduction se�
quences� This example illustrates that only minor changes are needed to achieve the
desired e�ect� and that these changes can be made local to �lazy positions� �cf� the
second argument of cons	� To some extent� this explains the success of strictness
analysis� In many cases� only a few positions need a lazy treatment in order to
preserve termination�

The example also demonstrates the common observation that a good implemen�
tation of a lazy language spends most time in �eager mode�� Given the locality of
the changes above� it is worthwhile to investigate how an eager implementation can
be adapted to do some lazy evaluation� rather than adapting a lazy implementation
to do �a lot of	 eager evaluation�

We use laziness annotations to indicate argument positions where rewriting should
be postponed if possible� These annotations could be provided by the programmer
or by a strictness analyzer� In the latter case� all arguments that are not found to be

	� Term
graph� rewriting �

strict� will get the annotation lazy� and the reductions performed by our implemen�
tation will correspond closely to the reductions performed by an implementation of
a lazy functional programming language using the same strictness analyzer�

Even though Figure � is a simpli�ed version of the result of our transformation�
applied to the TRS of Figure
 �with only the second argument of cons annotated
with lazy	� it exhibits a peculiarity of our scheme� The term inf ��	 rewrites to
the normal form cons��� thunk��		� which is not a term in the original signature�
However� the term thunk��	 �called a �thunk� after Ingermann �Ing�
�	 represents
a �possibly in�nite	 term in the original system� which can be further approximated
by repeatedly replacing terms thunk�x	 by the normal form of inst�thunk�x		� Our
lazy normal forms �LNFs	 generalize the notion of WHNF� and the approximation
process corresponds to what is done by the output routine of an implementation of a
lazy functional language� We do not assume such an output routine� because leaving
the thunk in place o�ers the possibility of preventing uninteresting work� and yields
a larger class of terminating systems�

We give de�nitions and notations pertaining to term �graph	 rewriting in Sec�
tion �� our de�nition of lazy term rewriting in Section �� and a complete version
of the transformation sketched above in Section �� We make some remarks on a
realistic implementation in Section �� We end with a discussion of related work and
conclusions�

�� Term �graph� rewriting
We mostly repeat de�nitions and results from �Klo��� and �DJ����

A Term Rewriting System �TRS	 is a pair ��� R	 of a signature � and a set of
rewrite rules R� The signature � consists of�

� A countably in�nite set Var of variables x�� x�� � � �

� A non�empty set of function symbols F�G� � � �� each with an arity� which is
the number of arguments it requires� Function symbols with arity � are called
constant symbols�

The set of terms over � is the smallest set Ter��	 such that

� x�� x�� � � � � Ter��	�

� if F is an n�ary function symbol and t�� � � �tn � Ter��	 �n � �	� then F �t�� � � � � tn	
� Ter��	� The ti �i �
� � � � � n	 are called the arguments�

Terms in which no variable occurs more than once are called linear�

A path in a term is represented as a sequence of positive integers� By tjp� we
denote the subterm of t at path p� For example� if t � push��� pop�push�y� z			�
then tj��� is the �rst subterm of t�s second subterm� which is push�y� z	� We will
say p � t if the path p is de�ned in t� i�e�� p leads to a subterm of t� The empty

	� Term
graph� rewriting �

path �denoting the root	 is written �� We will call a set of paths P pre�x�reduced
if there are no pairs p� p� � P such that p is a pre�x of p�� We will call a set S of
subterms of s pre�x�reduced with respect to s if there is a pre�x�reduced set of paths
fp�� � � � � png such that S � fsjp� � � � � � sjpng� We write t�s�p for the term resulting
from the replacement of tjp by s in t�

A substitution � is a map from Ter��	 to Ter��	 satisfying ��F �t�� � � � � tn		 �
F ���t�	� � � � � ��tn		 for every function symbol F � By convention� we write t� instead
of ��t	�

A rewrite rule is a pair �t� s	 of terms � Ter��	� It will be written as t� s� Often
a rewrite rule will get a name� e�g� r� and we write r � t� s� Two conditions are
imposed�

� the LHS �left�hand side	 t is not a variable�

� the variables in the RHS �right�hand side	 s already occur in t�

A rewrite rule r � t� s determines a relation� the set of rewrites t� �r s
� for all

substitutions �� The LHS t� is called a redex �from �reducible expression�	� and the
RHS s� is called the contractum� Allowing replacement inside other terms� �r� the
one�step rewrite relation generated by r� is de�ned by�

ujp � t� � u�r u�s� �p

We call the relation �R� �r�R �r the rewrite relation de�ned by R� Usually� the
subscript R is omitted if it is clear from the context� Concatenating rewrite steps
we have �possibly in�nite	 rewrite sequences t� � t� � � � � or rewrites for short� If
t� � � � � � tn �n � �	� we also write t�

�
� tn� If t� � � � � � tn �n �
	� we also

write t�
�
� tn and call tn a reduct of t�� A term t � Ter��	 is said to be in normal

form if there is no s such that t
�
�R s� It is understood that R does not contain

rewrite rules that are equal up to an bijective renaming of variables�

A TRS is called left�linear if all left�hand sides are linear� A TRS is called con�uent
if� for all terms t�� t�� t�� we have that t�

�
� t� and t�

�
� t� implies that there exists

a term t� such that t�
�
� t� and t�

�
� t�� A TRS is called terminating if there

are no in�nite rewrite sequences� In the sequel� we will only consider left�linear�
con�uent TRSs� However� we will not require TRSs to be terminating� Note that it
is undecidable whether a TRS is con�uent or terminating�

In general� a term can contain many redexes� In an implementation of a TRS� a
rewriting strategy determines which of the many possible rewrite sequences is chosen�
Con�uence guarantees unique normal forms�

In this article� we will assume the existence of an implementation of the leftmost�
innermost strategy �LI� the leftmost�innermost redex takes precedence	� By a trans�
formation� we will simulate lazy evaluation�

A typical implementation of an LI strategy for TRSs is given in �Heu���� where
the rules are compiled into a Lisp function� The body of this function consists of

�� Lazy term rewriting �

pattern matching code that determines which code is used for instantiation of the
RHS� The former code is produced by a pattern matching compiler� the latter code
is typically a number of nested function calls� with references to terms as arguments�
On many architectures� this type of recursive code performs badly� which leads to
several alternatives �TAL��� KW��� Bak����

Term graph rewriting �BvEJ����� where terms and rules are replaced by graphs�
can be seen as a restriction of rewriting with in�nite terms �KKSdV���� An imple�
mentation of term rewriting can be turned into an implementation of graph rewriting
by taking care that the sharing expressed by graphs is retained� Note that� in gen�
eral� this is not easy�

�� Lazy term rewriting
We de�ne lazy term rewriting as term rewriting with a restriction on the �one�step	
rewrite relation� First� we de�ne lazy signatures� which make a distinction between
eager argument positions and lazy argument positions�

The choice to annotate the arguments rather than the function symbols themselves
is not only motivated by compatibility with lazy functional languages� but has two
additional disadvantages� First� if functions are annotated� we must expect thunks
at every argument position� thus losing the locality of our transformation� Second�
for functions such as if�Bool�Exp�Exp�� it is more natural to annotate an argument
position than to annotate all function symbols that may occur there� Unfortunately�
not all TRSs can be made terminating by only annotating arguments �cf� the rule
inf �x	 � inf �x		�

A lazy signature includes a predicate � on function symbols and natural numbers�
where ��F� i	 � true means that the ith argument position of F �� � i � arity�F 		
is lazy� and ��F� i	 � false means that it is eager� As an abbreviation� we write
F ��� �	 for a function F of arity �� the �rst argument of which is eager and the
second argument of which is lazy�

This notion is easily extended to paths in terms�

De�nition

� For all terms t� � is an eager path in t�

� If p is an eager path in t and tjp � F �t�� � � � � tn	 with ���F� i	 for some i �
 �
i � n	 then p�i is eager�

� All other paths are lazy�

In other words� a path is eager precisely if it passes through eager arguments only�
A lazy path p is called directly lazy if p � p��i with p� eager� For example� given the
signature

fcons��� �	� bin��� �	g

�� Lazy term rewriting �

s t

t�

u� v�
m

l

e

l

e

g

If t� can be obtained from s
by replacing lazy subterms

LR

Figure �� Lazy Rewriting

and the terms t� � cons�x� cons�y� z		 and t� � bin�cons�x� y	� cons�x� z		� the paths

 in t� and
�
�
� �� ��
 in t� are eager ��
� ��� in t� and
��� ��� in t� are lazy� of
which only ��
 and ��� in t� are not also directly lazy� With Lazy�t	� we will denote
the pre�x reduced set of lazy paths in t� and a subterm at a lazy path will be called
a lazy subterm�

With ��t	� we will denote the term obtained by replacing every lazy subterm of t
with the unique constant �� For any normal form n� ��n	 is exactly the part we are
interested in� We will say that terms t� and t� are ��equal� or equal up to �� when
��t�	 � ��t�	�

Ideally� we would like to rewrite a lazy subterm at path p only if this is needed to
establish a needed redex at an eager pre�x e of p� Then� the termination behaviour
of lazy rewriting would be at least as good as the termination behaviour of rewriting
only needed redexes�

If there are overlapping LHSs� however� the notion of needed redex cannot be
de�ned� Therefore� we give a weaker de�nition� which only requires that a redex
at an eager pre�x of p can be established by replacing lazy subterms� The ideal of
needed rewriting can be approximated by demanding a particular relation between
the lazy subterms and their replacements� We will not try to achieve this� because
most interesting relations seem to be either undecidable or hard to implement or
have such a large bias towards a particular strategy that they are unnatural as a
restriction on the rewrite relation� Instead� we try to make the restriction on the
rewrite relation as weak as possible� by considering only LHSs and outermost lazy
positions� The rewrite strategy is expected to approximate the ideal by avoiding as
much rewrites at lazy paths as reasonably possible� The transformation presented
in section � implements such a strategy�

We will �rst present our de�nition informally� using Figure � as illustration� Let

�� Lazy term rewriting �

the lazy path p consist of an eager path e� a lazy path l� and a path m� which may
be either eager or lazy� We allow rewriting at p � e�l�m in t only if at the eager
pre�x e� a redex g� can be established by replacing some lazy subterms of t� such
that the nonvariable part of g �shown as a triangle labeled with g	 overlaps with l�
The endpoints of lazy paths where rewriting is allowed� are indicated by a dotted
triangle� The actual rewrite at e�l�m is indicated by an arrow annotated with �LR��

Formally� this is described by the following de�nition�

De�nition s rewrites lazily to t� written s
LR
� t� if 	u� v � R� �� p such that

� sjp � u�

� t � s�v��p

� � p is eager in s� or

� p � e�l�m� where e is eager in s� e�l is lazy in s� and
	p�� � � � � pn � Lazy�s	� r�� � � � � rn� t

� � Ter��	� g� h � R� �

such that t� � s�r��p� � � � �rn�pn� t
�je � g� and gjl
� V ar�

This restriction of the one�step rewrite relation yields an extended class of normal
forms� We will call these lazy normal forms �LNF�� For instance� given the TRS of
Figure
� if ��cons� �	 � true � then cons��� inf��		 is an LNF which is not a normal
form� If ��f� i	 is true for all f� i LNF coincides with WHNF� If t is an LNF� we call
��t	 a ��LNF�

Because
LR
� is a restriction of �� it follows easily that termination is preserved�

We have that lazy rewriting is both correct and complete in the following sense�

Theorem � �Completeness� For all normal forms s of t� there is a ��equal LNF s��

Proof sketch s� can be constructed from the rewriting sequence t� � t� � � �� s by
directly performing the rewrites that are allowed� and maintaining a residual map
�O�D��� of the paths where rewriting is not allowed� When a path where rewriting
is forbidden is mapped to a context which is either eager� or may turn into a redex
by replacing lazy subterms� the suspended rewrite is also performed� Thus� all non�
preformed rewrites pertain either to a term that is deleted� or are mapped �by the
residual map	 to a lazy subterm in s�� Therefore� ��s�	 � ��s	

Theorem � �Correctness� If t is an LNF� then for all normal forms s of t� ��s	 �
��t	�

Proof From the de�nition� it follows that there are no redexes at eager paths� and
no lazy path leading to a redex has an eager pre�x which may become a redex by
replacing lazy subterms� Therefore� all eager paths in an LNF are stable

Corollary � If there is a unique normal form t of s� then all LNFs of s are ��equal
to t�

�� A transformation to achieve laziness �

From the fact that an arbitrary number of �irrelevant� rewrite steps can in general
be performed before the rewrite that turns a term into an LNF� it follows that
con�uence is not preserved� However� given the fact that we are only really interested
in ��n	 for any LNF n� it is fair to consider only ��con�uence�

De�nition A TRS R is ��con�uent if for every t�� t� and t�� if t� � t� and t� � t�
then there are terms t�� t	� such that t�

�
� t�� t�

�
� t	 and ��t�	 � ��t		�

Theorem � Lazy rewriting preserves ��con�uence�

Proof Suppose R is ��con�uent� and let t�� t� and t� be such that t�
LR
� t� and

t�
LR
� t�� Then there are ��equal terms t�� t	� and rewriting sequences s� � t�

�
� t�

and s� � t�
�
� t	� If at some term t� from the sequence s�� a rewrite at a �lazy	 path p

is forbidden by lazy rewriting� then no redex can later occur at an eager path above
p� Therefore� at all eager paths above p� t� has the same function symbol as t�� We
can thus skip the forbidden rewrite and all rewrites that occur below p� because they
only a�ect subterms that do not make a di�erence from the viewpoint of ��equality�
Repeating our reasoning for all other forbidden rewrites� we arrive at a term that is
��equal to t�� Similarly for s�

Of course� ��con�uence implies uniqueness up to � of LNFs�

�� A transformation to achieve laziness
We will specify a transformationL from TRSs to TRSs and a transformation T from
terms to terms� such that when T �t	 is rewritten by an innermost strategy in L�R	
to a normal form n� then ��n	 is the ��LNF of t with respect to R� The transformed
system avoids rewriting lazy subterms to a large extent �optimal avoidance is im�
possible in nonorthogonal TRSs	� Basically� the transformation T replaces all lazy
subterms of an input term by stable terms �thunks	� and L adds rules for �unthunk�
ing� both input thunks and thunks that encode right�hand sides� Furthermore� L
ensures that

� Lazy subterms of right�hand sides are thunked� so only stable terms are intro�
duced at lazy paths�

� When a subterm �matched to a variable	 is moved from a lazy lhs position into
an eager rhs position� it is unthunked� so thunks only occur at lazy positions�

� A lazy argument is unthunked before a match overlapping with it is rejected�

We start with some de�nitions� A thunk is a term with a special function symbol
� at the top� a name of a pattern �p	 as �rst argument� and a tuple of terms �denoted
by vecn�t�� � � � � tn		 as second argument�

��p�vecn�t�� � � � � tn		

Given a rule s � t� we call a variable migrating if it occurs at a directly lazy
position in s and at some eager position in t� Because we want to keep the e�ect of
our transformation local� rules must be added that �unthunk� migrating variables�

�� A transformation to achieve laziness �

	�
 The transformation L
L takes a TRS ��� R	� and transforms it into a system �� �N � A�RG�RI � R�	�
In the transformed system�

� N is a countably in�nite set of function symbols that do not occur in � �they
are used in thunks as names of patterns	� There is a set T � N of �tokens��
such that for every function symbol f in �� we have a unique tf � T �

� A is a set of �administrative� function symbols

f���� �	� ����	� inst��	� ���� �	� trueg �m�n�Nat fvecmn�lm�� � � � � lmn	g�

where � will be used as the top symbol of a thunk� �� is a predicate that
recognizes thunks� a function vecmn�lm� � � � lmn	 is used to �pack� n variables
in a thunk �m encodes the laziness annotations� the lmi are either � or �� Most
of the time� m will be omitted	� Finally� � is a projection function that makes
implementation of graph rewriting easy� which will be discussed in Section ��
�

� RG contains the general rules de�ning the projection � and the thunk�recognizer
���

��x� y	 � y

�����x� y		 � true

� RI contains the rules describing selective unthunking of input terms� For
every f with arity n� of which k are eager positions �with indices e�� � � � � ek	�
RI contains the rules �with cfi � N	�

inst���tf �vecn�x�� � � � � xn			 � cf�����xe�	� x�� � � � � xn	����	

cf��true� x�� � � � � xn	 � cf�����xe�	� x�� � � � � inst�xe�	� � � � � xn	����	

cf�����y	� xe�� � � � � xn	 � cf�����xe�	� x�� � � � � xe� � � � � � xn	���
�	

� � �

cfk�true� x�� � � � � xn	 � f�x�� � � � � inst�xek	� � � � � xn	���

	

cfk����y	� x�� � � � � xn	 � f�x�� � � � � xek � � � � � xn	���
�	

Here� ����	 starts the instantiation of a delayed term with function symbol f �
�������

	 handle the case that an argument �xe� and xek � respectively	 is still
thunked and ���
����
�	 handle the case that an argument is already unthun�
ked� Note that the distinction between thunked and unthunked arguments
relies on the partial function �� being evaluated eagerly�

� The rules in R� are obtained by applying the three transformations below �RHS
for thunk introduction� LR for left�right unthunking and LS for left�hand side
matching	 to R as follows� RHS until �xpoint� LR once for every equation in
the �xpoint� LS once for every equation in the result of LR�

�� A transformation to achieve laziness 	

RHS �Thunk Introduction� This transformation is applicable to all rules r � s� t

where t contains a directly lazy path p� such that tjp is neither a variable� nor
a subterm already occurring in s� nor a thunk� Let ft�� � � � � tng be the set of
terms occurring in both s and tjp� and pre�x�reduced with respect to t� then
r is replaced by two rules �i unique in N	�

s � t���i�vecn�t�� � � � � tn		�p

inst���i�vecn�x�� � � � � xn			 � ����i�vecn�x�� � � � � xn		� t�ti	xi�	

Here ��vecn� i	 �� if and only if ti is a variable occuring at a directly lazy
context in s�

LR �Migrating Thunk Elimination� This transformation applies to rules r � s� t

containing migrating variables� Supposing ft�� � � � � tng is a set of subterms
which occur both in s and t� and which is pre�x�reduced with respect to t�
and let e�� � � � � ek be the indices of the migrating variables� then r is replaced
by the following rules� similar in form and intent to the rules in RI �

s � ci�����xe�	� t�� � � � � tn	

ci��true� x�� � � � � xn	 � ci�����xe�	� x�� � � � � inst�xe�	� � � � � xn	

ci�����y	� x�� � � � � xn	 � ci�����xe�	� x�� � � � � xe� � � � � � xn	

� � �

cik�true� x�� � � � � xn	 � cik���x�� � � � � inst�xek	� � � � � xn	

cik����y	� x�� � � � � xn	 � cik���x�� � � � � xek � � � � � xn	

cik���x�� � � � � xn	 � t�ti	xi�

LS �Matching Thunk Elimination� This transformation is applicable to rules
r � s� t if s contains nonvariable lazy positions� For every element i �
fi�� � � � � ing in the pre�x�reduced powerset of lazy paths in s� add a rule �all
nj and vj fresh	�

s���n�� v�	�i� � � � ���nn� vn	�in

� s�����n�� v�	� inst�n�� v�		�i����n�� v�	�i� � � � ���nn� vn	�in

	�� The transformation T
T thunks all non�variable lazy subterms of the original input term� by the token of
their outermost function symbol and their thunked arguments�

T �f�t�� � � � � tn	� � f�t��� � � � � t
�

n	 �where t�i � T �ti� i� ��f� i	 ��� otherwise t�i � Tl�ti�	

Tl�f�t�� � � � � tn	� � ��tf �vecn�Tl�t��� � � � � Tl�tn�		

T �x� � Tl�x� � x

� From transformation to implementation 		

	�� Correctness and completeness of the transformation
First� we remark that the transformation itself terminates� because every application
of RHS replaces one �non�thunked	 lazy argument by a thunk� and LR and LHS
terminate trivially�

Theorem 	 �Correctness of L and T � Given a TRS R and a term t� every step in
an innermost rewriting of T �t	 in L�R	 is either an administrative step �checking if

an argument is a thunk�� or it corresponds to a legal step in
LR
�R�

Proof Note that for all terms t� T �t	 has only R�redexes above lazy positions� be�
cause all lazy subterms are thunked by Tl� By RHS� all rules have been transformed
into rules that put stable terms at lazy paths� and LR preserves this property� The
only redexes at lazy paths are L�R	�redexes� introduced by LS� but the conditions
for application of LS imply that there is a nonvariable R�pattern overlapping with
the hole in which the redex is introduced� so the condition for lazy rewriting is
full�lled

Theorem
 �Completeness of L and T � Given a TRS R and a term t� the normal
form tn of t with respect to L�R	 �if it exists� is ��equal to some LNF tl of t�

Proof Suppose that ��tn	
� ��tl	� Because of correctness� we have that t
LR
� t�n�

where t�n is obtained from tn by replacing thunks with the RHSs they represent�

Because tl is a LNF� we have that t
LR
� tl� Lazy rewriting preserves ��con�uence� so

t�n cannot be a lazy normal form� This means that tn must either contain a normal
redex� or an administrative redex �because tn only di�ers from t�n by having thunks
at lazy paths� and LS introduces rules that remove any thunk which blocks matching
of a LHS	

�� From transformation to implementation
The transformation in Section � is useful both as a tool for experimentation� and as a
concise model of an implementation of lazy rewriting� To obtain an implementation
that can compete with special�purpose lazy implementations such as TIM ��FW���	
or the Spineless Tagless G�machine �STG� �JS���	� some details have to be changed�

First� in order to prevent multiple reductions of the same term� the TRS should
be interpreted as a graph rewriting system� We give details on this in Section ��
�

Second� some glaring ine
ciency is caused by the LS transformation� This can
be overcome by simulating the e�ect of LS in the pattern�matching code� which is
explained in Section ����

�
 Graph rewriting by adding sharing
By the following modi�cations� the advantages of graph rewriting are incorporated�

� In the implementation of T � sharing should be retained�

� From transformation to implementation 	�

� The function ���� �	 is implemented such� that it overwrites its �rst argument
�always a thunk	 with the LNF of its second argument �always the LNF cor�
responding with the thunk	� Note that this requires a �xed node size� or some
other means to avoid overwriting smaller with bigger nodes�

� If a subterm occurs both in LHS and RHS of some rule� no copy should be
made� Then it follows from the construction of the transformed system� that
thunks are never duplicated� so every thunk is only evaluated once�

� For cyclic graphs� the code that is generated for the construction of a right�
hand side must be modi�ed slightly� Without loss of generality� we consider
a prototypical RHS x � f�� � � � x� � � �	� For this RHS� the compiler should emit
code corresponding to inst�T 	� where T is a thunk for f�� � � � T� � � �	� Note
that this requires that the �address� of a node under construction is available
during the construction�

�� Optimizations
When implemented naively� our transformation has a large impact on the number
of equations� A worst�case analysis shows that the maximal number of additional
equations is

� ! n�r ! n��l ! �s

where n is the number of rules� r is the maximal number of nonvariable lazy positions
in a RHS� l is the maximal number of nonvariable lazy positions in a LHS� and s is
the number of lazy positions in the signature� It should be noted that� measured in
function symbols� the rules added by RHS are compensated for by a reduction in
size of the original rule� and s is generally small compared to n�

Thus� the only dangerous term is the exponential term in l� caused by the powerset
construction in transformation LS� We will illustrate both the problem and its
solution with an example� Assuming we have a signature fa� b� i��	� t��� �	g and a
rule i�t�a� b		� a� then LS adds the rules

i�t���p�vec�	� b		 � i�t�����p�vec�	� inst���p�vec�			� b		

i�t���p�vec�	� ��p
��vec�			 � i�t�����p�vec�	� inst���p�vec�			� ��p

��vec�			

i�t�a� ��p�vec�			 � i�t�a� ����p�vec�	� inst���p�vec�					

When a term i�t�x� y		 is rewritten� where both x and y are thunks which will
instantiate to a and b respectively� this leads to the following ine
ciencies�

� i and t are matched � times �� times to discover the thunks� and the last time
to �nd the original match	�

� the function symbol t is copied � times� because the subterm from the LHS
cannot be reused�

�� Related work 	�

This can be repaired by changing the pattern matching code to instantiate the
thunks� such that the rules introduced by LS are no longer needed �even though
they give a nice model of what is happening	� In pseudo code� the modi�ed code
reads as follows�

case x of

i�y�� case y of

t�z��z��� case z� of

a� label�� case z� of

b� continue�a� 	
 matched �
	

thunk� inst�z��� goto label�

otherwise� return�x� 	
 normal form
	

thunk� label�� case z� of

b� inst�z��

case z� of

a� continue�a� 	
 matched �
	

otherwise� return�x� 	
 normal form
	

thunk� inst�z��� goto label�

otherwise� return�x� 	
 normal form
	

otherwise� return�x� 	
 normal form
	

otherwise�

otherwise�

This pattern matching code is bigger than the code for the single rule in the original
system� but it is a very e
cient implementation of lazy pattern matching� because
it only does extra work �compared to the eager implementation	 if an unevaluated
thunk is encountered during matching�

The implementation can be further improved by implementing � as a tag�bit� ��
as a bit�test� and inst and vecn as built�in functions� Finally� the e�ect of the LR
transformation can be achieved by generating slightly di�erent code for right�hand
sides�

	� Related work
A very early related paper is �Plo���� which gives simulations of call�by�name by
call�by�value �eager evaluation	� and vice versa� in the context of the
�calculus�
Call�by�name evaluation di�ers from lazy evaluation �or call�by�need	� Thunks are
not overwritten with the result of evaluation� but evaluated on every use �which is
essential in a language with side�e�ects	�

In the context of functional programs� �Amt��� developed an algorithm to trans�
form call�by�name programs into call�by�value equivalents� In �SW���� data�ow
analysis is done in order to minimize thunki�cation in this context�

In �OLT���� a continuation passing style �cps	 transformation of call�by�need into
call�by�value equivalents is given� To their knowledge� it is the �rst� Apart from the
fact that a particular
�calculus is only one instance of a TRS� our transformation
di�ers mainly by completely integrating pattern matching of algebraic datatypes in
the transformation� It is unclear how much can be gained by taking pattern matching
into account in a transformation for a lazy functional implementation� An abstract

�� Related work 	�

approach to strictness analysis of algebraic datatypes is investigated in �Ben���� We
noted that the built�in pattern�matching �case	 and conditional constructs �if	 in
many lazy languages are often unnecessarily assumed to be strict �cf� �Bur�
�	�

The e�ect of our transformations of rewrite systems is somewhat similar in spirit
to the use of evaluation transformers in �Bur�
�� Not only in theory� but also in
practice� our technique does not rely on properties of built�in algebraic datatypes
such as lists or trees� In �BM���� some of the techniques in �Bur�
� are formulated
in the context of continuation passing transformations�

Another approach to obtain better termination properties are the sequential strate�
gies investigated by �HL�
� O�D���� In this approach� only needed redexes are rewrit�
ten� i�e�� redexes that would be rewritten in any reduction to a normal form� Un�
fortunately� neededness is only well�de�ned in TRSs that do not have overlapping
redexes� This restriction is hard to live with in practice�

To our knowledge� only the Clean �PvE��� and the OBJ� �GWM���� systems
support laziness annotations� Clean supports the annotation of strict arguments�
OBJ� features annotations for the evaluation order of arguments which are somewhat
more explicit than ours� It appears that a similar transformation can implement
OBJ�s annotations�

A rule occuring in the context of an E�uni�cation algorithm� presented in �MMR����
is called �lazy rewriting� in �Klo���� It might be interesting to investigate whether
our technique of implementing lazy rewriting on eager machinery is useful in that
context�

In CAML �Categorial ML� �CH���	 there are lazy constructors� which can be used
to achieve e�ects similar to our transformation� However� the transformation of the
program must then be carried out manually for the most part �only equivalents of
inst� �� and � are supplied by the implementation	�

It is obvious� that our last implementation of lazy term rewriting is similar to
the implementation of modern lazy functional languages� As far as we know� these
implementations are completely lazy by nature� but are optimized to perform as
much eager evaluation as possible�

Therefore� it is appropriate to provide a discussion of the cost of basic datastruc�
tures and actions in our scheme� compared with the cost in those implementations�
It should be noted that it is extremely di
cult ��JS���	 to assess the e�ect of di�erent
design choices on performance� so we will only give a qualitative discussion�

� Only a little structure ��� a thunk constant and a vector containing references
to subterms from the left�hand side	 occurs below a lazy position in any rhs af�
ter the transformation� This is comparable to the frames used in TIM �FW����
or the closures in the STG� Similarly to the latter� our scheme only uses space
for the subterms from the LHS that may actually be used later� In the ABC
machine �PvE���� complete graphs are built for lazy arguments� which is a
drawback compared to all other implementations�

�� Conclusions and acknowledgements 	�

� No runtime cost is incurred when all arguments in the original TRS are anno�
tated eager� Even when all arguments are found to be strict� TIM and STG do
a function call to obtain the tag of a constructor term �this is the reason they
are called �tagless�	� whereas our implementation only needs to dereference a
pointer�

� There is no need for the dreaded indirection nodes ��O�D��� JL���� because �
full�lls this role every term �input or rhs	 is evaluated exactly once� either by
immediate innermost rewriting� or later� by overwriting the � node� In �JL����
the indirection nodes are also transformed away� but some very complicated
analysis is needed to arrive at this result� In the ABC machine� the indirection
nodes are indispensable�

� In the rules added by transformation LR� testing if a lazy argument is thunked�
is done by rewriting� Even if this is replaced by a bit�test implementation� a
subsequent call of inst must be done� This is less e
cient than the �tagless�
reduction which is done in both TIM and STG�

� Unthunking is only done if all eager pattern matching was succesfull� Because
the order of pattern matching and its e�ects on evaluation of subterms are
�xed in the semantics of lazy functional languages� this cannot be done in
the other implementations� Usually� the interaction between pattern matching
of algebraic datatypes and lazy evaluation is not incorporated in strictness
analysis�

Taking into account these points� we expect our scheme to perform better than ABC�
TIM or the STG� when there is a small number of lazy arguments�

In contrast with common opinion� we hold that laziness annotations provided
by the programmer are a suitable way of indicating lazy evaluation� We observe
that it is reasonable to require of a lazy functional programmer to make sure that
his program terminates� This requires a thorough understanding of both the pro�
gram and the operational semantics of the language� In our experience� this level
of understanding is adequate to provide complete laziness annotations� The truly
lazy programmer will of course use a strictness analyzer to assist in the process of
understanding his program�

We certainly do not want to imply that our scheme renders strictness analyzers
super�uous� Fine�grain strictness analysis can even be used to improve the result of
our transformation�

� Conclusions and acknowledgements
We have de�ned lazy rewriting and have generalized the notion of Weak Head Normal
Form to the less operational notion of Lazy Normal Form�

We have modeled lazy rewriting by a transformation of term rewriting systems�
which avoids rewriting of lazy subterms to a large extent �optimal avoidance is
impossible in nonorthogonal TRSs	� and completely integrates pattern matching of

References 	�

algebraic datatypes� When all arguments are annotated� the transformed system
computes WHNFs�

We derive an e
cient implementation on already e
cient eager machinery from
this model� Our method compares favourably to existing methods�

Our notion of Lazy Normal Forms �LNFs	 could also be helpful in an implemen�
tation of abstract rewriting� as described in �BE"���� or in the context of theorem
proving�

We would like to thank John Field for his very insightful comments on an earlier
version of this paper� and Jan Heering for his meticulous reading of a later version�

References
�Amt��� Torben Amtoft� Minimal thunki�cation� In Third International Work�

shop on Static Analysis� Padova� Italy� volume ��� of Lecture Notes in
Computer Science� pages �
�#���� Springer�Verlag�
����

�Bak��� Henry G� Baker� Cons should not cons its arguments� part II� Cheney
on the M�T�A� Draft Memorandum� January
����

�Ben��� P�N� Benton� Strictness properties of lazy algebraic datatypes� In Third
International Workshop on Static Analysis� Padova� Italy� volume ���
of Lecture Notes in Computer Science� pages ���#�
�� Springer�Verlag�

����

�BE"��� Didier Bert� Rachid Echahed� and Bjarte M� "stvold� Abstract rewrit�
ing� In Third International Workshop on Static Analysis� Padova�
Italy� volume ��� of Lecture Notes in Computer Science� pages
��#
���
Springer�Verlag�
����

�BM��� Geo�rey Burn and Daniel Le M$etayer� Cps�translation and the cor�
rectness of optimising compilers� Technical Report DoC��%��� Imperial
College� Department of Computing�
����

�Bur�
� Geo�rey Burn� Lazy Functional Languages� Abstract Interpretation and
Compilation� Pitman�
��
�

�BvEJ���� H�P� Barendregt� M�C�J�D� van Eekelen� J�R�W�Glauert� J�R� Kenn�
away� M�J� Plasmeijer� and M�R� Sleep� Term graph rewriting� In J�W�
de Bakker� A�J� Nijman� and vol� II P�C� Treleaven� editors� Proceed�
ings PARLE��� Conference� volume ��� of Lecture Notes in Computer
Science� pages
�
#
��� Springer Verlag�
����

�CH��� Guy Cousineau and G$erard Huet� The CAML primer� Technical report�
Inria�
���� Version ����
� available by ftp from ftp�inria�fr�

�DJ��� N� Dershowitz and J��P Jouannaud� Rewrite systems� In J� van Leeuwen�
editor� Handbook of Theoretical Computer Science� Vol B�� pages ���#
���� Elsevier Science Publishers�
����

�FW��� Jon Fairbairn and Stuart Wray� Tim� A simple� lazy abstract machine
to execute supercombinators� In Gilles Kahn� editor� Functional Pro�
gramming Languages and Computer Architecture� volume ��� of Lecture

References 	�

Notes in Computer Science� pages ��#��� Springer�Verlag�
����

�GWM���� J�A� Goguen� T� Winkler� J� Meseguer� K� Futatsugi� and J�P� Jouan�
naud� Introducing OBJ� In J�A� Goguen� D� Coleman� and R� Gallimore�
editors� Applications of Algebraic Speci�cation Using OBJ� Cambridge
University Press�
���� To Appear�

�Heu��� Thierry Heuillard� Compiling conditional rewriting systems� In S� Ka�
plan and J�P� Jouannaud� editors� Proceedins of the First International
Workshop on Conditional Term Rewriting Systems� volume ��� of Lec�
ture Notes in Computer Science� pages

#
��� Springer�Verlag�
����

�HL�
� G� Huet and J��J� L$evy� Computations in orthogonal rewriting systems
part I and II� In J��L� Lassez and G� Plotkin� editors� Computational
Logic� essays in honour of Alan Robinson� pages ���#���� MIT Press�

��
�

�Ing�
� P�Z� Ingermann� Thunks # a way of compiling procedure statements
with some comments on procedure declarations� Communications of the
ACM� ��
	���#���
��
�

�JL��� Simon L Peyton Jones and David Lester� Implementing Functional Lan�
guages � A Tutorial� Prentice Hall�
����

�JS��� Simon L Peyton Jones and Jon Salkild� The Spineless Tagless G�
machine� In Functional Programming and Computer Architecture� pages

��#��
� ACM�
����

�KKSdV��� J�R� Kennaway� J�W� Klop� M�R� Sleep� and F�J� de Vries� The ade�
quacy of term graph rewriting for simulating term rewriting� In Ronan
Sleep� Rinus Plasmeijer� and Marko van Eekelen� editors� Term Graph
Rewriting� Theory and Practice� John Wiley & Sons Ltd�
����

�Klo��� J�W� Klop� Term rewriting systems� In S� Abramsky� D� Gabbay� and
T� Maibaum� editors� Handbook of Logic in Computer Science� Volume
��� pages
#

�� Oxford University Press�
����

�KW��� J� F� Th� Kamperman and H�R� Walters� ARM� abstract rewriting ma�
chine� Technical Report CS������ Centrum voor Wiskunde en Informat�
ica�
���� Available by ftp from ftp�cwi�nl�%pub%gipe as KW���ps�Z�

�MMR��� A� Martelli� C� Moiso� and C�F� Rossi� An algorithm for uni�cation in
equational theories� In Proceedings of the Symposium on Logic Program�
ming� pages
��#
��� IEEE Computer Society�
����

�Myc��� Alan Mycroft� The theory and practice of transforming call�by�need into
call�by�value� In B� Robinet� editor� International Symposium on Pro�
gramming� volume �� of Lecture Notes in Computer Science� Springer�
Verlag�
����

�O�D��� M�J� O�Donnell� Computing in Systems Described by Equations� vol�
ume �� of Lecture Notes in Computer Science� Springer�Verlag�
����

�OLT��� Chris Okasaki� Peter Lee� and David Tarditi� Call�by�need and

References 	�

continuation�passing style� Lisp and Symbolic Computation� ����#���

����

�Plo��� G� D� Plotkin� Call�by�name� call�by�value and the
�calculus� Theoret�
ical Computer Science�
�
	�
��#
���
����

�PvE��� M J� Plasmeijer and M C J D� van Eekelen� Functional Programming
and Parallel Graph Rewriting� Addison Wesley�
����

�SW��� Paul Steckler and Mitchell Wand� Selective thunki�cation� In
First International Static Analysis Symposium� Namur� Belgium�
����� September
���� also available by ftp as sas���ps�Z from
ftp�ccs�neu�edu�%pub%people%steck�

�TAL��� David Tarditi� Anurag Acharya� and Peter Lee� No assembly required�
Compiling Standard ML to C� Technical Report CMU�CS����
��� School
of computer Science� Carnegie Mellon University� November
����

