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Abstract

The timed automaton model of ���� ��� is a general model for timing	based systems
 A notion of timed

action transducer is here de�ned as an automata	theoretic way of representing operations on timed automata


It is shown that two timed trace inclusion relations are substitutive with respect to operations that can be

described by timed action transducers
 Examples are given of operations that can be described in this way� and

a preliminary proposal is given for an appropriate language of operators for describing timing	based systems
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�� Introduction

The timed automaton model of ���� ��� is a general model for timing	based systems
 It is
intended as a basis for formal reasoning about such systems� in particular� for veri�cation
of their correctness and for analysis of their complexity
 In ���� ���� we develop a full range
of simulation proof methods for timed automata� these methods are used in ��� �� ��� to
verify the correctness of timed protocols for communication� audio control and real	time
process control� respectively
 In this paper� we continue the development by studying process
algebras for the same model
 Eventually� we envision using a combination of proof methods�
perhaps even using several in the veri�cation of single system
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A timed automaton is an automaton �or labelled transition system� with some additional
structure
 There are three types of actions� time�passage actions� visible actions and the
special internal action � 
 All except the time	passage actions are thought of as occurring
instantaneously
 To specify times� a dense time domain is used� speci�cally� the nonnegative
reals� and no lower bounds are imposed on the times between events
 Two notions of external
behavior are considered
 First� as the �nite behaviors� we take the �nite timed traces� each of
which consists of a �nite sequence of timed visible actions together with a �nal time
 Second�
as the in�nite behaviors� we take the admissible timed traces� each of which consists of a
sequence of timed visible actions that can occur in an admissible execution� i
e
� an execution
in which time grows unboundedly


The timed automatonmodel permits description of algorithms and systems at di�erent lev	
els of abstraction
 We say that one timed automatonA implements another timed automaton
B if the sets of �nite and admissible timed traces of A are included in the corresponding trace
sets of B
 Justi�cation for the use of trace inclusions to de�ne �implementation� appears� for
example� in the work of Gawlick� Segala� S�gaard	Andersen and Lynch ����
 Basically� this
justi�cation amounts to showing that the set of admissible timed traces of A is not trivial

Doing this depends on a classi�cation of the visible actions of A as input actions or output
actions� as in the I�O automaton model of ����
 Then A is required to have the property
that each of its �nite executions can be extended to an admissible execution in a way that
includes any given �non	Zeno� input pattern
 Showing that this property holds for a given
timed automaton A is an interesting problem� but we do not address this problem in this
paper


In the untimed setting� bisimulation equivalences have been reasonably successful as no	
tions of implementation between transition systems ��� ���
 Consequently� bisimulation
equivalences have also been proposed as implementation relations for the timed setting
��� ��� �� ��� ���
 However� we do not believe that bisimulations will turn out to be very use	
ful as implementation relations in the timed case
 The problem is that they do not allow one
to abstract in speci�cations from the often very complex timing behavior of implementations
�see Chapter �� of ���� for an example�


Since we believe that timed trace inclusion does form a good notion of implementation�
we are interested in identifying operations on timed automata for which the timed trace
inclusion relation is substitutive
 This substitutivity is a prerequisite for the compositional
veri�cation of systems using timed automata
 It should also enable veri�cation of systems
using a combination of compositional methods and methods based on levels of abstraction


We represent operations by automaton	like objects that we call action transducers� rather
than� for example� using SOS speci�cations ����
 For an example of an action transducer�
consider the operation jjj of interleaving parallel composition
 It can be described by an
automaton with a single state s and transitions �one for each action a��

s a��
���a�

s and s a��
���a�

s�

The left transition says that the composition can perform an a action when its �rst argument
performs an a	action� while the right transition says that the composition can perform an a
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action when its second argument does so
 Together� the transitions say that the automaton
A jjj B can do an a	step whenever one of its arguments can do so
 In the SOS approach� the
same operator jjj can be described by inference rules �one for each action a��

x
a� x�

x jjj y a� x� jjj y and
y

a� y�

x jjj y a� x jjj y��

The two styles of describing operators� SOS and action transducers� are quite similar
 In fact�
it is shown in ��� how SOS speci�cations in a variant of a format proposed by De Simone
���� can be translated to equivalent action transducers� and vice versa


However� action transducers are more convenient for our purposes
 First� although it is
easy to see how SOS speci�cations determine automata� it is less clear how to regard them as
de�ning operations on automata
 For action transducers� this correspondence is more direct

Second� as noted by Larsen and Xinxin ����� action transducers are a convenient tool for
studying compositionality questions� and their use tends to simplify proofs
 Third� action
transducers can easily be de�ned to allow multiple start states
 Multiple start states have
turned out to be useful in untimed automaton formalisms for concurrency such as the I�O
automaton model� and we would like to include them
 We do not know how to model start
states in the setting of SOS


As mentioned above� the action transducers we consider have multiple start states
 They
also include holes� which describe locations for holding argument automata
 In fact� our
transducers also allow holes to be colored� which allows us to express the condition that
several holes �those of the same color� must hold copies of the same automaton
 The concepts
of multiple start states and of colored holes are not present in ����


The major result of our paper is that the timed trace inclusion relation is substitutive
with respect to all operations that can be described by our action transducers� provided they
satisfy a number of conditions that concern the handling of internal and time	passage steps


After proving substitutivity for a general class of operations� we describe many examples
of speci�c operations that fall into this class
 These include most of the usual untimed
operations from process algebra� in particular� sequential and parallel composition� external
choice� action hiding and renaming
 Other untimed operations included are an interrupt
operation similar to those used in Extended LOTOS ���� and CSP ����� disjoint union� and
a binary version of Kleene�s star
 We also describe several timed operations as timed action
transducers� a CLOCK operation directly inspired by the clock variables of ��� ��� a BOUND
operation that can block the passage of time� and a RATE operation that can change the speed
of its argument
 On the other hand� there are several operators that have been proposed in
the literature that do not �t our format of action transducers� in particular� the CCS	style
choice operation present in ��� �� ��� ���
 This operation cannot be expressed as a timed
action transducer because the timed trace inclusion relation is not substitutive with respect
to it


We brie�y consider the design of an appropriate language of operators for describing timing	
based systems
 Such a language should consist of a small number of basic operations� both
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timed and untimed� out of which more complex operations can be built
 The basic and
derived operations together should be su�cient to describe most interesting timing	based
systems
 As a starting point� we believe that such a language ought to include the basic
untimed operations that are already well understood and generally accepted
 To this end� we
describe a simple and general construction� inspired by Nicollin and Sifakis ����� to transform
any untimed operation into a timed one that behaves essentially the same and moreover does
not use or constrain the time
 By applying this construction to the well	known untimed
operations� we obtain a collection of corresponding timed operations that we believe should
be included in a real	time process language


The untimed operations alone are not enough� however� a real	time process language also
must include operations that use and constrain time explicitly
 Of the many possibilities� we
would like to identify a small number that can be used for constructing all the others
 For
this purpose� we tentatively propose our CLOCK� BOUND and RATE operations mentioned
above
 Using only these operations and untimed operations� we can construct many of the
other timed operations appearing in the literature� including a very general timer similar
to that used in the timed �	automata model of Alur and Dill ���� the timeout construct of
Timed CSP ���� ���� and the execution delay operation of the timed process algebra ATP
����
 We can also de�ne a minor variant of Alur and Dill�s timed automata ���� as well as the
�nite	state subcase of the timed automaton model of Merritt� Modugno and Tuttle ����
 All
of this provides evidence of the power of our proposed language


The decidability and closure properties of Alur	Dill automata suggest that they can be
regarded as a real	time analog of classical �nite automata
 In the untimed setting� a crucial
characteristic of algebras like CCS is that they can easily describe �nite automata
 Thus by
analogy� a natural requirement for a real	time process language is that it can easily describe
Alur	Dill automata
 Nicollin� Sifakis and Yovine ���� give a translation from ATP into Alur	
Dill automata� but do not investigate the reverse translation
 In fact it appears that� besides
our language� only the real	time ACP language of Baeten and Bergstra ��� is su�ciently
expressive to allow for a direct encoding of Alur	Dill automata


We present our de�nitions and results for timed systems by �rst presenting related de�ni	
tions and results for untimed systems� and then building upon those to obtain the correspond	
ing timed concepts
 Thus� byproducts of our results for timed systems include a de�nition
and a substitutivity theorem for untimed action transducers� as well as a demonstration that
the most commonly used untimed operations can be expressed as action transducers
 These
byproducts may be of some interest in themselves


In summary� we believe that the main contributions of the paper are� ��� the de�nitions
of action transducers and timed action transducers� ��� the substitutivity results for traces
and timed traces� ��� the presentation of a large number of interesting operators� timed and
untimed� as action transducers� and ��� a preliminary proposal for a process language for
timed systems
 We see these all as pieces of a uni�ed proof methodology for timed systems
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�� The Untimed Setting

We begin by describing action transducers for the untimed setting
 Later� the concepts needed
for the timed setting will be de�ned in terms of corresponding concepts for the untimed
setting


��� Automata
An �untimed� automaton A consists of�

� a set states�A� of states�
� a nonempty set start�A� � states�A� of start states�

� a set acts�A� of actions that includes the internal action � � and

� a set steps�A� � states�A�� acts�A�� states�A� of steps


We let s� s�� u� u��

 range over states� and a�

 over actions
 The set ext�A� of external actions
is de�ned by ext�A�

�
� acts�A��f�g
 We write s� a�A s as a shorthand for �s�� a� s� � steps�A�


We suppress the subscript A where no confusion is likely
 Automaton A is called �nite if all
its components are �nite sets


The term event will be used to refer to an occurrence of an action in a sequence


��� Executions and Traces
An execution fragment of A is a �nite or in�nite alternating sequence s�a�s�a�s� � � � of states
and actions of A� beginning with a state� and if it is �nite also ending with a state� such that

for all i� si
ai��� si��
 An execution of A is an execution fragment that begins with a start

state
 A state s of A is reachable if it is the last state of some �nite execution of A


For � � s�a�s�a�s� � � � an execution fragment� trace��� is de�ned as the sequence obtained
from a�a� � � � by removing all � �s
 A sequence � of actions is a trace of A if A has an execution
� with � � trace���
 We write traces��A�� traces��A� and traces�A� for the sets of �nite�
in�nite and all traces of A� respectively
 These notions induce three preorders on automata�
we de�ne A 	� B

�
� traces��A� � traces��B�� A 	� B

�
� traces��A� � traces��B�� and

A 	 B
�
� traces�A� � traces�B�
 Recall that the kernel of a preorder v is the equivalence 


de�ned by x 
 y
�
� x v y � y v x
 We denote by 
�� 
� and 
 � the respective kernels of

these preorders


��� Action Transducers
We now de�ne a notion of action transducer� as an explicit representation of certain oper	
ations on automata
 We consider operations with a possibly in�nite set of arguments
 As
placeholders for these arguments� an action transducer contains a set of colors
 Sometimes we
will �nd it useful to make several copies of an argument automaton
 To this end a transducer
is equipped with a set of holes and a mapping that associates a color to each hole
 The
idea is that we plug into each hole the argument automaton for which the color of the hole
serves as placeholder
 As a useful analogy one can consider the way in which a term with free
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variables determines an operation on terms� here the variables play the role of colors� and the
occurrences of variables serve as holes
 As the rest of its �static� description� a transducer
has an associated global set of actions� and� for each color� a local set of actions


The �dynamic� part of a transducer is essentially an automaton� a set of states� a nonempty
set of start states� and a step relation
 The elements of the step relation are �	tuples of source
state� action� trigger and target state
 Here the trigger is a function that tells� for each hole�
whether the argument automaton in that hole idles or participates in the step� and if it
participates� by which action


����� De�nition Formally� an �action	 transducer T consists of�

� a set states�T � of states�
� a nonempty set start�T � � states�T � of start states�

� a set holes�T � of holes�
� a set colors�T � of colors�
� for each hole i� a color color�T� i��
� a set acts�T � of actions that includes � �
� for each color c� a set acts�T� c� of actions that includes � but excludes the noaction
symbol ��

� a set steps�T � � states�T �� acts�T �� triggers�T �� states�T �� where triggers�T � is
the set of maps � that assign to each hole i either � or an action in acts�T� color�T� i��


We say that hole i participates in a step �s�� a� �� s� if ��i� �� �� hole i is active in s� if it
participates in some step starting with s�
 For each state s�� we de�ne active�T� s�� as the set
of holes that are active in s�


We de�ne the sets of external actions of T by ext�T �
�
� acts�T � � f�g� and� for each

c� ext�T� c�
�
� acts�T� c�� f�g
 We write s� a��

� T
s instead of �s�� a� �� s� � steps�T �� and

suppress the argument T when no confusion is likely
 We often represent a trigger � by the
set f�i� a� j ��i� � a �� �g


����� Executions and traces An execution fragment of T is a �nite or in�nite alternating
sequence s�a���s�a���s� � � � of states� actions and triggers of T � beginning with a state� and
if it is �nite also ending with a state� such that for all i� si

ai����
�i��

si��
 An execution of T is an

execution fragment that begins with a start state


For � � s�a���s�a���s� � � � an execution fragment and i a hole� we de�ne
trace���

�
� �a�a� � � ��dext�T ��

trace��� i�
�
� ����i����i� � � ��dext�T� color�T� i���
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����� Relation with automata We view action transducers as a generalization of automata

Speci�cally� if A is an automaton� then the associated action transducer trans�A� has the
same states� start states and actions as A� empty sets of holes and colors� and its step relation
given by�

s� a��
� trans�A�

s
�
� � �  � s� a�A s�

In this way� automata are embedded into the class of action transducers
 We will frequently
identify an automaton with its corresponding action transducer


Conversely� if T is an action transducer� then we can de�ne an associated automaton�
aut�T �
 Namely� aut�T � inherits the sets of states� start states and actions of T � and has its
step relation de�ned by

s� a�aut�T� s
�
� �� � s� a��

� T
s�

It is not hard to see that� for any automaton A� aut�trans�A�� � A� and for any transducer
T with an empty set of holes� trans�aut�T �� � T 


����
 Combining transducers and automata We de�ne the meaning of a transducer as an
operation on automata
 First� de�ne an automaton assignment for T to be a function 	 that
maps each color c of T to an automaton in such a way that acts�	�c�� � acts�T� c�
 Suppose
	 is an automaton assignment for T � and let Z be the function that associates an automaton
to each hole� by the rule Z�i� � 	�color�T� i��
 Then T �	� is the automaton A given by�

� states�A� � f�s� z� j s � states�T � and z maps each hole i of T to a state of Z�i�g�
� start�A� � f�s� z� j s � start�T � and z maps each hole i of T to a start state of Z�i�g�
� acts�A� � acts�T �� and

� �s�� z�� a�A �s� z� if and only if

�� � s� a��
� T

s � �i � �if ��i� � � then z��i� � z�i� else z��i�
��i��Z�i� z�i���

Thus� the steps of the automaton T �	� are just those that are allowed by the transducer T �
using triggers that describe steps allowed by the automata in the holes


Lemma ��� Suppose T is an action transducer and 	 is an automaton assignment for T �
Then T �	� is an automaton�

It is useful to have explicit terminology for the sequence of triggers that are used to justify
the steps in an execution of T �	�
 Thus� suppose that � � �s�� z��a��s�� z��a��s�� z�� � � �
is an execution of T �	�
 Suppose that for each hole i and each j � �� sj�� aj��

�j T
sj and
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if �j�i� � � then zj���i� � zj�i� else zj���i�
�j�i�� Z�i� zj�i�
 Then we say that the sequence

���� � � � is a trigger sequence for �
 By de�nition of T �	� every execution has at least one
trigger sequence �there may be more than one�


Lemma ��� Suppose that T is a transducer� 	 is an automaton assignment for T � and
� � �s�� z��a��s�� z��a��s�� z�� � � � is an execution of T �	� with trigger sequence � � ���� � � ��
Then � � s�a���s�a���s� � � � is an execution of T � and for each hole i of T � trace��� i� �
traces�	�color�T� i����

����� Remarks The importance of transducers for process algebra and concurrency theory
was �rst noted by Larsen and Xinxin ����� who introduced a certain type of transducer�
which they call context systems� to study compositionality questions in the setting of process
algebra
 Our transducers generalize those of Larsen and Xinxin ���� in several respects� the
distinction between colors and holes� which allows us to copy arguments� is new here
 Also�
Larsen and Xinxin ���� only consider operations with a �nite number of arguments� and a
setting where automata just have one start state and no explicit set of associated actions


Note that� since we always start copies of an argument automaton from a start state�
our notion of copying is di�erent from that of Bloom� Istrail and Meyer ���� who also allow
copying from intermediate states
 As a consequence� the trace preorder is substitutive for
our operations� whereas it is not substitutive in general for the operations of ���


In this section we have de�ned the semantics of a transducer as an operation on automata

In fact� it is often useful to interpret transducers in a more general �and somewhat more
complex� way� as operations on transducers
 We leave this generalization to the reader


��
 Substitutivity
We say that a relation R on a class of automata A is substitutive for an action transducer T
if for all automaton assignments 	� 	� for T with range A�

�c � colors�T � � 	�c� R 	��c� � T �	� R T �	���

In this subsection we present two substitutivity results for untimed action transducers
 These
results depend on certain additional assumptions involving the internal steps of the argu	
ments
 We express these assumptions in the following de�nition of the subclass of � �respecting
action transducers
 Then we show that 	� and 	 are substitutive for all transducers in this
class


An action transducer T is � 	respecting if it satis�es the following constraints�

�
 For each state s and for each hole i that is active in s� T contains a clearing step� i
e
�

a step s ���f�i���g s


�
 The only steps with � in the range of the trigger are clearing steps� i
e
� if s� a��
�

s and

��i� � � � then s� a��
�

s is a clearing step for s� and i
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�
 Only �nitely many holes participate in each step� i
e
� if s� a��
�

s then fi j ��i� �� �g is
�nite


Condition � says that the transducer must permit the component automata to take internal
steps� by means of special clearing steps of the transducer� whereas Condition � says that
clearing steps are the only steps of the transducer that permit internal steps of the com	
ponents
 Condition � does not explicitly mention internal steps� however� this condition is
needed in the substitutivity proof because of complications caused by internal steps
 Condi	
tions � and � slightly strengthen similar constraints that are presented in ���� in the setting
of SOS
 Condition � does not occur in ���� because there only operations with a �nite number
of arguments are considered
 However� a similar constraint appears in the I�O automaton
model of ����


Theorem ��� The relations 	� and 	 on automata are substitutive for all � �respecting
action transducers�

Proof Let T be a � 	respecting action transducer
 We show that 	 is substitutive for T 

The proof that 	� is substitutive for T is similar but slightly simpler

Suppose 	� 	 � are automaton assignments for T such that� for all c� 	�c� 	 	��c�� and

suppose that � � traces�T �	��
 We have to prove that � � traces�T �	���
 For this� de�ne
Z

�
� 
i�	�color�T� i�� and Z � �

� 
i�	��color�T� i��
 Then Z�i� 	 Z��i� for each hole i


Since � � traces�T �	��� T �	� has an execution

� � �s�� z��a��s�� z��a��s�� z�� � � �

with trace��� � �
 Let ���� � � � be a trigger sequence for �� and let

� � s�a���s�a���s� � � �

By Lemma �
�� � is an execution of T � and �i
�
� trace��� i� � traces�Z�i��� for all i
 Since

Z�i� 	 Z��i�� we obtain �i � traces�Z��i��� for all i
 Therefore� Z��i� has� for each i� an
execution �i with trace��i� � �i
 Let �� be the sequence obtained from � by removing all
clearing steps
 Then �� is a execution of T and trace��� � � �


Informally speaking� our job is to �paste� together �� and the �i to obtain an execution of
T �	��
 We construct an automaton A that describes several allowable ways to do this pasting
and that generates executions of T �	�� with the required properties
 The set of states of A
consists of all valuations of the following state variables in their domains�

� a variable frag ranging over the set of execution fragments of T 
 This variable denotes
the part of �� that still has to be dealt with
 The initial value of frag is ��


� for each hole i� a variable frag i ranging over execution fragments of Z��i�
 This variable
denotes the part of �i that still has to be pasted together with �the remainder of� ��

The initial value of frag i is �i
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BASIC

Precondition

� frag begins with sa�

� for all holes i that participate in the �rst step of frag �
frag

i
begins with an ��i� step

E�ect

remove the �rst step from frag�
for each hole i that participates in the �rst step of frag do

remove the �rst step from frag
i
�

append to exec an a followed by the state of T ���� composed
from the �rst states of frag and all the frag

i

CLEARING

Precondition

� frag contains at least one step
� hole i� participates in the �rst step of frag
� frag i� begins with a � step

E�ect

remove the �rst step from fragi� �
append to exec a � followed by the state of T ���� composed

from the �rst states of frag and all the fragi

Figure �� Algorithm for pasting together �� and the �i


� a variable exec ranging over �nite executions of T �	��
 The limit of the values of exec
will be the execution of T �	�� in which we are interested
 The initial value of exec is
the trivial execution consisting of the state composed from the �rst states of �� and the
�rst states of the �i


Automaton A has actions CLEARING and BASIC � which correspond to the two di�erent
types of actions of T �	 ��� clearing steps� and �basic� steps
 The transitions of A are de�ned
using precondition�e�ect style in Figure ��
 The intuition is that� while building an execution
of T �	��� automaton A peels o� initial steps of �� and the �i
 If the remainder of �� starts
with an a step and� for each hole i that participate in this step� the remainder of �i starts
with the action required for hole i� then A can perform a BASIC step
 If� for some hole i�
the remainder �i starts with a � step then A can perform a corresponding CLEARING step�
provided that i participates in the next step of ��


We leave it to the reader to check that the de�nition of A is type correct� in the sense that
each variable is only assigned values in its domain


�Here and elsewhere we use Lamport�s ���� list notation for conjunction� In this notation the formula
b� � b� � � � � bn is written as the aligned list

� b�

� b�

���
� bn
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Pick an arbitrary maximal execution � � u�b�u�b�u� � � � of A
 Since the only way that exec
is modi�ed is by appending values� we can de�ne �� as the limit of the values of exec along
�
 By construction� �� is an execution of T �	��
 We claim that trace���� � �


In order to see this� we �rst establish that A satis�es the following invariant properties

Here we write u�v for the value of state variable v of A in state u


�
 For all reachable states u of A� trace�u�exec� trace�u�frag� � �


�
 For all reachable states u of A and for all holes i� trace�u�frag i � � trace�u�frag � i�


Proof By simple inductive arguments


Using Invariants � and �� we next prove two claims


Claim �
 Suppose u is a reachable state of A and u�frag is not a single state execution
fragment
 Then u has an outgoing step


Proof Let s� a��
�

s be the �rst step of u�frag 
 If� for some hole i that participates in this �rst

step� u�frag i begins with a � 	step� then a CLEARING action is enabled in u
 If� for no hole
i that participates in the �rst step� frag i starts with a � step� then it follows by Invariant �
that� for each of these holes i� fragi starts with an ��i� step
 But this means that a BASIC
action is enabled in u


Claim �
 Execution � has no in�nite su�x that consists of CLEARING steps only


Proof Suppose that starting from some state un� � consists entirely of CLEARING steps

That is� from un onwards all the steps of � simulate � steps of components that participate
in the �rst step of un�frag 
 Because T is � 	respecting� there are only �nitely many such
participants
 Consider any individual participant i
 By Invariant �� un�fragi contains an
��i� step after �nitely many � steps
 Therefore� only �nitely many CLEARING steps in �
correspond to � steps of i
 Thus� � contains only a �nite number of consecutive CLEARING
starting from un� a contradiction


Now we return to the proof that trace���� � �
 Again we consider cases


�
 Suppose � contains only �nitely many BASIC actions
 By Claim �� execution � does
not have an in�nite su�x that consists of CLEARING steps only� so � is �nite
 Suppose
un is the �nal state of �
 Then� by Claim �� un�frag consists of a single state execution
fragment
 In combination with Invariant �� this gives trace�un �exec� � �
 But �� is
de�ned as the limit of un�exec� so �� � un�exec
 Hence trace���� � �


�
 Suppose � contains in�nitely many BASIC actions
 Since frag is initially ��� and each
BASIC step removes a step from ��� it follows that �� is in�nite
 By Invariant ��
trace�uj �exec� is a pre�x of � for each j
 Since each step of �� is eventually simulated
in ��� trace���� � �
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Hence� � � t�traces�T �	���� as required
 This completes the proof of the theorem


In Section �
�� we give an example to show that	� is not substitutive� even for � 	respecting
action transducers
 The converse of Theorem �
� does not hold� there are many examples
of non	� 	respecting action transducers for which 	� and 	 are substitutive
 We give one
example in Section �
�


�� An Untimed Process Algebra

In this section� we give several examples of operations that can be expressed as action trans	
ducers� all these operations are directly inspired by operations from well	known �untimed�
process algebras such as CSP ����� CIRCAL ����� CCS ����� Extended LOTOS ���� and ACP
���
 Our motivation for presenting these examples is twofold� �rst� they serve as an illus	
tration of how familiar process algebraic operations can be de�ned using action transducers�
and second� the resulting language Lu will form the basis of a timed process algebra that we
will de�ne in Section 


��� Preliminaries
We �rst describe a number of conventions so that� in most cases� we do not have to specify
the static part of transducers explicitly
 To begin with� we adopt the convention that� unless
otherwise speci�ed� the sets of holes and colors are the same� and the coloring function is the
identity
 Often� the set of colors will be an initial fragment f�� � � � � ng of the natural numbers

In this case we write T �A�� � � � � An� for T �
c�Ac�
 We also use in�x notation in the case of
binary operations
 All action transducers that we de�ne are parameterized by the action
sets of their arguments
 Some of the action transducers also have other parameters
 Unless
stated otherwise� the �global� action set of a transducer can be obtained by taking the set of
all actions that occur in steps of the transducer


We �nd it convenient to structure external actions as nonempty �nite sets of labels� and to
identify � with the empty set of labels
 This will permit a component automaton to perform
several activities �labels� together� which the transducer can handle separately
 For instance�
the sequential composition transducer� described below� takes advantage of composite actions�
a component can perform an arbitrary label simultaneously with a termination label� and
the transducer handles these two in di�erent ways
 The idea to choose sets of labels as the
structure of actions was �rst introduced in CIRCAL� but is used in other algebras as well� for
instance in Extended LOTOS
 Typically� the generalization to multiple label actions increases
the expressive power of a process algebra


We regard non	composite external actions as a special case of composite actions� identifying
the non	composite action a with the set fag
 For each transducer T we de�ne labels�T � �

�S
ext�T �
 Similarly we de�ne� for each color c� labels�T� c�

�
�
S
ext�T� c�


In our language we assume a special label
p
to indicate successful termination and to

transfer control to a subsequent process
 Symbol
p
is in the label set of all transducers in

the language as well as in the label sets of all their colors
 The language has been designed
such that any �closed� expression denotes an automaton in which no further transitions are
possible after a transition whose label contains

p
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��� Operators
����� Actions For any �nite set a of labels with

p �� a� we introduce a transducer a
 This
transducer performs the composite action consisting of a together with the termination labelp
� and then halts
 The transducer has two states s and t� it starts in s� performs action

a � fpg� and then terminates in t�

s a�fpg��� t

By the correspondence described earlier� transducer a can equally well be regarded as an
automaton


����� Sequential composition Transducer ��� describes the binary sequential composition
operation of Extended LOTOS
 The transducer has two states s� and s�
 In the start state
s�� the transducer runs its �rst argument up to successful termination� and then in state s�
the transducer runs its second argument
 The steps are �for all actions a� b of the �rst and
second argument� respectively��

s�
a��f���a�g s� if

p �� a

s�
a�fpg��f���a�g s� if

p � a

s�
b��f���b�g s�

Note that� unlike in ACP� a � � is di�erent from a �for a �� ��� because in the second automaton
successful termination occurs simultaneously with a whereas in the �rst automaton it occurs
after the a


����� External choice The external choice operation � is taken from CSP
 This operation�
which is parameterized by a �nite index set I � waits for the �rst external action of any of
its arguments and then runs that argument
 The transducer has distinct states si� for each
i � I � plus an additional state s� which is the start state
 The steps are �for all i and all
actions a of the i	th argument��

s ���f�i���g s

s a��f�i�a�g si if a �� �

si
a��f�i�a�g si

We write STOP for external choice over an empty index set
 STOP is the simplest action
transducer from our language
 It has no holes� no colors� no steps� a single state� a single
action

p
� and no steps
 STOP represents the inactive agent� capable of no action whatsoever


����
 Disjoint union Parameterized by a �nite index set I � transducer t takes the disjoint
union of automata indexed by I 
 The t construct exploits the feature of multiple start states

For each i � I � the transducer has a distinct state si� which is also a start state� and steps
�for all actions a of the i	th argument��
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si
a��f�i�a�g si

Operation t behaves in a similar way to the internal choice operation u of CSP� it runs
one� nondeterministically chosen argument
 An interesting di�erence between the operational
semantics of t and u is that in a � �b t c� the choice between b and c is made before execution
of the a� whereas in a � �b u c� this choice is made after the a has been done
 This becomes
apparent from the automata for these expressions� which are displayed in Figure �
 Modulo
trace equivalence� the di�erences between the two operations disappear� for all automata A
and B� A t B 
 A uB


� �q q

� �q q

� �
q q

a a

fb�pg fc�pg

a � �b t c�

�q

�q
�
��
�
�R

a

� �
q q

� �
q q

fb�pg fc�pg

a � �b u c�

Figure �� The di�erence between t and u


����� Relabeling For each function f on labels such that f�l� �
p
i� l �

p
� we introduce

a unary relabeling operation f that renames actions of its argument according to f 
 The
transducer has a single state s� which is the start state� and steps �for all actions a of the
argument� and with f lifted to sets of labels��

s f�a���f���a�g s

���� Parallel composition The binary transducer k describes the parallel composition or
dot operation of CIRCAL
 This operation generalizes the usual de�nition of composition�
taking into account the composite nature of actions� in the case where all actions of the
arguments are singletons or � � the operator behaves just as the composition operator of CSP
and the I�O automata model
 The transducer has a single state s� which is the start state�
and steps �for all actions a� b of the �rst and second argument� respectively��

s a��f���a�g s if a � labels�k� �� � 
s b��f���b�g s if b � labels�k� �� � 

s a�b��f���a�����b�g s if a � labels�k� �� � b� labels�k� �� �� 
When specifying systems it is often convenient to use a derived operator kH that only requires
its arguments to synchronize on a set of labels H � fpg
 Suppose A and B are automata
with label sets LA and LB � respectively� and suppose H is a set of non	

p
labels
 We de�ne

AkHB �
� Untag�Tag��A�kTag��B���
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where Untag and Tagi �i � �� �� are relabeling functions given by�

Tagi�l�
�
�

�
li if l � �LA � LB��H
l otherwise

Untag�l�
�
�

�
k if l �� kj � k � �LA � LB��H� j � f�� �g
l otherwise

The idea behind this de�nition is that �rst the functions tag� and tag� rename those labels
of A and B on which we do not want to synchronize so that they are distinct
 Then after the
resulting automata have been composed in parallel� the function Untag renames the tagged
labels back to what they were originally

Note that the k and kH operators are commutative and associative


����� Hiding The unary hiding operation nL hides all elements from a set L of labels by
removing them from all actions of its argument
 The transducer has a single state s� which
is the start state� and steps �for all a��

s a�L��f���a�g s

����� Interrupts The binary transducer � is very similar to the disruption composition of
Extended LOTOS and the interrupt operation of CSP
 The transducer has three states s��
s� and t
 In start state s�� the transducer runs its �rst argument until the second argument
performs an external action� if and when this occurs� the transducer moves to state s� in
which the �rst argument is disabled and the second argument takes over
 If in state s� the
�rst argument terminates successfully� the transducer moves to the termination state t
 The
steps are �for all actions a� b of the �rst and second argument� respectively��

s�
a��f���a�g s� if

p �� a s�
���f�����g s�

s�
a��f���a�g t if

p � a s�
b��f���b�g s� if b �� �

s�
b��f���b�g s�

����� Iteration We introduce iteration in our language by means of a binary version of
Kleene�s star operator� A � B is the automaton that chooses between A and B� and upon
successful termination of A has this choice again
 A key identity satis�ed by the operator is

A � B 
 A � �A � B� � B�

Kleene�s star operation is best known in its unary form� but in fact the original operator
introduced by Kleene in ���� was binary
 Recently� the binary star has been studied in the
context of ACP in ��� ���

The iteration construct exploits the ability of transducers to copy their arguments� it

uses an in�nite number of copies of both the �rst and the second argument
 Formally� the
transducer has colors f�� �g� holes f�� �� � � �g � f��� ��� � � �g� and a coloring function that� for
i � N�� maps hole i to color � and hole i� to color �
 The transducer has states fsi� li� ri j
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i � N�g
 In state si� the transducer chooses between execution of the i	th copy of the �rst
argument or execution of the i	th copy of the second argument
 In state li� the transducer is
running the i	th copy of the �rst argument� and in state ri the transducer runs the i	th copy
of the second argument
 The initial state is s�� and the steps are �for all actions a and b of
the �rst and second argument� respectively��

si
a��f�i�a�g li if

p �� a �� � li
a��f�i�a�g li if

p �� a

si
a�fpg��f�i�a�g si�� if

p � a li
a�fpg��f�i�a�g si�� if

p � a

si
b��f�i��b�g ri if b �� � ri

b��f�i��b�g ri

si
���f�i���g si si

���f�i����g si

Using the � operator� we can easily de�ne the unary looping operator �� which restarts its
argument upon each successful termination�

A� �
� A �

STOP�

Despite what the notation might suggest� operator � does not run A a �nite number of times
and then stop� In a choice context the STOP process should be viewed as the absence of an
alternative� each time the �	transducer is faced with a choice between A and STOP� it must
choose the A

As an example of the iteration and looping constructs� consider the following expression�

which describes an automatic switch	o� mechanism�

SWITCH
�
� �sw on � �sw on � sw o� ����

The system allows the environment to switch on a lamp at any time by pushing some button�
once the lamp has been switched on� it will remain on� even if the button is pushed again�
until it is switched o� by the system
 In Section � we will come back to this example and
show how we can add real	time constraints to make it more interesting


��� Expressivity of Lu

We de�ne Lu to be the language consisting of all �closed� expressions built with the operations
of Section �
�
 Since all the corresponding transducers are � 	respecting� it follows from
Theorem �
� that the preorders 	� and 	 are substitutive for all the operations in Lu

The automata denoted by expressions in Lu are always acyclic but need not be �nite
 In

particular� each nontrivial use of the iteration construct gives rise to an automaton with an
in�nite number of reachable states
 However� under the condition that no t occurs within the
�rst argument of a �	operator� each expression in Lu has a tree unfolding which is isomorphic
to the tree unfolding of a �nite automaton
 In the case of expressions where t occurs within
the �rst argument of a �	operator� the underlying automaton will still be trace equivalent
to a �nite automaton� but no longer �tree equivalent� �consider the automaton denoted by
�a t b��� this automaton has in�nitely many start states� one for each in�nite sequence
over fa� bg�
 All automata denoted by Lu	expressions further have the property that after a
transition with a label containing

p
� no further steps are possible
 The following theorem

states that Lu is universally expressive for the class of �nite automata with this property
 In
the proof of this result all operators of the language play a role




�� An Untimed Process Algebra 	�

Theorem ��� Suppose that A is a �nite automaton in which no further steps are possible
after a transition whose label contains

p
� Then the tree unfolding of A is isomorphic to the

tree unfolding of the automaton associated to some expression in Lu�

Proof �Sketch� Without loss of generality� we may assume that A only has a single start
state� any �nite automaton with n � � start states is tree equivalent to the disjoint union of
n copies of this automaton in which the set of start states is restricted to a singleton

Also without loss of generality� we may assume that A has no self	loops� i
e
� steps of the

form s
a� s� for each �nite automaton with such self	loops one can construct an equivalent

�nite automaton without them� for instance by adding a boolean �history variable� that
records whether the number of transitions thus far is even

Let states�A� � fs�� � � � � sng� let start�A� � fs�g� and let S be short for steps�A�
 In the

Lu	expression that encodes A� we use elements of S as auxiliary labels
 The expression is

�X� kS � � � kS Xn�nS�
where� for i � ��

X�
�
� ��non �nal step� � wait��

� �nal step�� � �nal step other ��

Xi
�
� �wait i � ��non �nal stepi � wait i�

� �nal stepi�� � �nal step other i�

where� for i � ��
wait i

�
� �ft�Sjtarget�t��si�

p��action�t�g ftg�
non �nal stepi

�
� �ft�Sjsource�t��si�

p��action�t�g ftg � action�t��

�nal stepi
�
� �ft�Sjsource�t��si�p�action�t�g ftg � action�t��

�nal step other i
�
� �ft�Sjsource�t���si�p�action�t�g ftg�

��
 Counterexamples
An example of an operation for which 	� is not substitutive is parallel composition over an
in�nite index set I 
 We have a 
� � � a but not

ki�I�a� 	� ki�I�� � a��
Another example is the version of �binary� parallel composition obtained by requiring the
argument automata to synchronize on � 
 Here one loses substitutivity since a 
� � � a but
not aka 	� �� � a�ka
 Note that neither of these two examples is � 	respecting

It is not the case that preorder 	� is substitutive for all � 	respecting transducers
 For

instance� we have � 
� STOP but not � � a� 	� STOP � a�

As an example of a non	� 	respecting transducer for which 	� and 	 are substitutive�

consider the choice operation  from CCS
 The transducer for this operation can be obtained
by removing all clearing steps from the initial state of the transducer for �� and instead
allowing a to range over � in the second equation as well� so that � 	steps can force the choice

The resulting transducer is clearly not � 	respecting
 In Section 
�� we will show that the
timed trace preorders are not substitutive for the timed version of the CCS choice operation
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�� The Timed Setting

Now we extend the notions described in Section � to the case of timed systems
 We follow the
same general outline� introducing time systematically into all of the de�nitions and results



�� Timed Automata
We use a slight variant of the timed automaton model from ����
� A timed automaton A is an
automaton whose set of actions includes R�� the set of positive reals
 Actions from R� are
referred to as time�passage actions
 We let d� d�� � � � range over R� and� more generally� t� t�� � � �
over the set R of real numbers
 The set of visible actions is de�ned by vis�A�

�
� ext�A��R�


We assume that a timed automaton satis�es the following axioms


S� If s� d� s�� and s�� d�� s� then s� d�d
�� s


For the second axiom� an auxiliary de�nition is needed
 A trajectory for a step s� d� s is a
function w � ��� d�� states�A� such that w��� � s�� w�d� � s� and

w�t�
t��t� w�t�� for all t� t� � ��� d� with t  t��

Now we can state the second axiom


S� Each step s
d� s� has a trajectory


Axiom S� gives a natural property of time� namely that if time can pass in two steps� then
it can also pass in a single step
 The trajectory axiom S� is a kind of converse to S�� it
says that any time	passage step can be ��lled in� with states for each intervening time� in a
�consistent� way
 For a further discussion of this axiom we refer to ���� ���



�� Timed Traces
Executions of timed automata correspond to what are called sampling computations in �����
they provide information about a run of a system at a countable number of points in time

In ����� a notion of timed execution is also de�ned for timed automata� these are alternating
sequences of trajectories and actions� which correspond to the super�dense computations of
����
 It can be argued that timed executions provide a more precise representation of the
behavior of real	time systems than �sampling� executions
 However� our trajectory axiom
S� guarantees that for each �sampling� execution of a timed automaton there exists a cor	
responding timed execution
 This means that the full externally visible behavior of timed
automata can already be inferred from the technically much simpler �sampling� executions�
as follows� suppose � � s�a�s�a�s� � � � is an execution fragment of a timed automaton A
 For
each index j� let tj be given by

t� � ��

tj�� � if aj�� � R
� then tj  aj�� else tj �

The limit time of �� notation ltime���� is the smallest element of R�� � f�g larger than or
equal to all the tj � i
e
� we de�ne ltime���

�
� supj�tj�
 We say � is admissible if ltime��� ���

�The di�erence is just the explicit indication of the amount of elapsed time in the time	passage action
instead of using a �now function that associates the current time to a state�
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and Zeno if it is an in�nite sequence but with a �nite limit time
 The timed trace t�trace���
associated with � is de�ned by

t�trace���
�
� ���a�� t���a�� t�� � � ��d�vis�A�� R

���� ltime�����

Thus� t�trace��� records the visible actions of � paired with their times of occurrence� as well
as the limit time of the execution

A pair � is a timed trace of A if it is the timed trace of some �nite or admissible execution

of A
 Thus� we explicitly exclude the timed traces that originate from Zeno executions
 We
write t�traces�A� for the set of all timed traces of A� t�traces��A� for the set of �nite timed
traces� i
e
� those that originate from �nite executions� and t�traces	�A� for the admissible
timed traces� i
e
� those that originate from admissible executions
 These notions induce three
preorders on timed automata� A 	t B

�
� t�traces�A� � t�traces�B�� A 	t� B

�
� t�traces��A� �

t�traces��B�� and A 	t	 B
�
� t�traces	�A� � t�traces	�B�
 The kernels of these preorders

are denoted by 
t� 
t� and 
t	� respectively

A timed sequence over a given alphabet K is a ��nite or in�nite� sequence � overK�R�� in

which the time components are nondecreasing� i
e
� t 	 t� if �k� t� and �k�� t�� are consecutive
elements in �
 A timed sequence pair over K is a pair � � ��� t�� where � is a timed sequence
over K and t � R���f�g� such that t is greater or equal than all time components in �
 We
say that � is �nite if � is a �nite sequence and t �

Clearly� all timed traces of a timed automaton A are timed sequence pairs over ext�A�
 In

particular� all �nite timed traces are �nite timed sequence pairs

Suppose � and �� are timed sequence pairs such that � is �nite
 Let

� � ��k�� t���k�� t�� � � ��kn� tn�� t��
�� � ��k��� t

�
���k

�
�� t

�
�� � � � � t���

Then we de�ne � � �� to be the timed sequence pair

��k�� t���k�� t�� � � ��kn� tn��k��� t t����k
�
�� t t��� � � � � t t���

If � and �� are timed sequence pairs then � is a pre�x of ��� notation � 	 ��� if either � � ���
or � is �nite and there exists a timed sequence pair ��� such that �� � � � ���



�� Timed Action Transducers
In this section we introduce the notion of a timed action transducer� de�ne what are the
timed traces of a timed action transducer� and show how timed action transducers de�ne
operations on timed automata



���� De�nition A timed action transducer T is an action transducer with acts�T � � R�

and� for all colors c� acts�T� c� � R�
 The sets of visible actions are de�ned by vis�T �
�
�

ext�T �� R� and� for all c� vis�T� c�
�
� ext�T� c�� R�


We assume that T satis�es �ve axioms


T� If s� a��
�

s and ��i� � R�� then a � R�


T� If s� d��
�

s and i � active�T� s��� then ��i� � R�
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T� If s� d��
�

s then active�T� s�� � active�T� s�


T� If s� d��
�

s�� and s�� d���
�� s� then s� d�d

���
���� s


�Here addition on triggers is de�ned by pointwise extension� we identify the noaction symbol
� and the real	number �
�
Axiom T� says that non	time	passage steps do not change any of the local times
 Axiom

T� says that time	passage steps must cause an increase in the local times for all of the active
holes� note that we permit di�erent amounts of time to pass for the transducer and the
components
 Axiom T� states that time	passage steps do not change the set of active holes

Axiom T� allows repeated time	passage steps to be combined into one step

In order to state the last axiom� we �rst need the de�nition of a �transducer trajectory�


The notion of a transducer trajectory is analogous to that of a trajectory� and describes
restrictions on the state changes that can occur during time	passage
 A transducer trajectory

for a step s� d��
�

s of T consists of�

�
 a function w � ��� d�� states�T � with w��� � s� and w�d� � s� and

�
 for each hole i� a continuous� monotonic function tt i � ��� d�� ��� ��i�� with tt i��� � �
and tt i�d� � ��i�� such that

w�t� t��t��
�i�tti�t

���tti�t�
w�t�� for all t� t� � ��� d� with t  t��

A transducer trajectory assigns� to each time t in interval ��� d�� a state w�t�
 As before�
this assignment allows time	passage steps to span between any pair of states in the range of
w
 The functions tt i can be viewed as time tables that translate a global increase in time
to a local increase in time
 Note that for each inactive hole i� the time table function tt i is
constant �� and for each active hole i� tt i is strictly monotonic by axiom T�

Now we can state the �nal axiom for a timed transducer


T� Each step s� d��
�

s has a transducer trajectory


Axiom T� says that any time	passage step can be ��lled in� with states for each intervening
time� in a �consistent� way

Note that� for each timed automaton A� trans�A� is a timed action transducer� and con	

versely� for each timed action transducer T � aut�T � is a timed automaton

The de�nition of � 	respecting in Section �
� applies to timed action transducers� since they

are a special case of action transducers
 In this case� however� axiom T� combines with
Condition � of the � 	respecting de�nition to yield the following�

Lemma ��� If T is a � �respecting timed transducer� and s is a state of T in which an action
d � R� is enabled� then there are only �nitely many holes active in state s�
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���� Timed traces Let � � s�a���s�a���s� � � � be an execution fragment of timed trans	
ducer T 
 For each index j� let tj be given by

t� � ��

tj�� � if aj�� � R
� then tj  aj�� else tj �

Then we de�ne ltime���
�
� supj�tj�
 The notions of Zeno and admissible execution fragments

are de�ned for timed transducers as for timed automata
 The timed trace of �� is de�ned to
be the pair

t�trace���
�
� ���a�� t���a�� t�� � � ��d�vis�T �� R

���� ltime�����

Thus� t�trace��� records the visible events of � paired with their times of occurrence� as well
as the limit time of the sequence
 Also� for each index j and each hole i� we de�ne the local
time of occurrence tj�i by�

t��i � ��

tj���i � if �j���i� � R
� then tj�i  �j���i� else tj�i�

For each hole i� we let hltime�i� ��
�
� supj�tj�i�� this is the largest local time for hole i


The timed trace for hole i of � is de�ned to be the pair

t�trace��� i�
�
� ������i�� t��i�����i�� t��i� � � ��d�vis�T� color�T� i��� R

���� hltime�i� ����


���� Zeno�respecting property The following de�nition is needed for the substitutivity re	
sults
 A timed action transducer T is Zeno�respecting if for each admissible execution

� � s�a���s�a���s� � � �
of T � the following condition holds� for each hole i� either hltime�i� �� � �� or there is an
index j such that i �� active�T� sk� for all k � j

Thus� if a Zeno	respecting timed transducer advances time to in�nity then� for each hole�

either the local time also advances to in�nity� or the hole becomes permanently inactive from
some point on



���
 Combining timed transducers and timed automata An automaton assignment 	 for a
timed action transducer T is called timed if it maps each color to a timed automaton


Lemma ��� Suppose T is a timed action transducer and 	 is a timed automaton assignment
for T � Then T �	� is a timed automaton�

Proof We prove that T �	� satis�es axioms S� and S�
 Let Z
�
� 
i�	�color�T� i��


For axiom S�� assume �s�� z�� d�T ��� �s
��� z��� and �s��� z��� d��T ��� �s� z�
 We must prove

�s�� z�� d�d�� T ��� �s� z�
 By the assumption and the de�nition of composition� there exist
triggers � and �� such that

�
 s� d��
� T

s��
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�
 �i � �if ��i� � � then z��i� � z���i� else z��i�
��i��Z�i� z

���i��

�
 s�� d���
�� T

s

�
 �i � �if ���i� � � then z���i� � z�i� else z���i�
���i�� Z�i� z�i��

Now it is routine to check that

�
 s� d�d
���

����T s

�
 active�T� s�� � active�T� s���

�
 i � active�T� s�� implies z��i�
��i�����i�� Z�i� z�i�

�
 i �� active�T� s�� implies z��i� � z�i�

Together this implies the validity of axiom S�


For axiom S�� assume �s�� z�� d�T ��� �s� z�
 We must prove that there exists a transducer

trajectory for �s�� z�� d� �s� z�
 By the assumption and the de�nition of composition� there
exists a trigger � such that

�
 s� d��
� T

s

�
 �i � �if ��i� � � then z��i� � z�i� else z��i�
��i��Z�i� z�i��

Choose a transducer trajectory w� tt i �i � holes�T �� for s� d��
�

s
 Next� choose for each

i � active�T� s�� a trajectory wi for z
��i�

��i��Z�i� z�i�
 For i �� active�T� s��� let wi be the
function with domain ��� �� given by wi��� � z��i�
 Let w� be the function with domain
��� d� given by w��t� �

� �w�t�� zt�� where zt � 
i�wi�tt i�t��
 We claim that w� is a transducer
trajectory for �s�� z�� d� �s� z�
 For this� �rst observe that w���� � �s�� z���

w���� � �w���� z�� � �s�� 
i�wi�tt i���� � �s
�� 
i�wi���� � �s� 
i�z

��i�� � �s�� z��

By similar reasoning w��d� � �s� z�
 Now assume t� t� � ��� d� with t  t�
 It is routine to
check

�
 w�t� t��t��
�i�tti�t

���tti�t�
w�t��

�
 i �� active�T� s�� implies zt�i� � zt��i�

�
 i � active�T� s�� implies zt�i�
tti�t���tti�t�� zt��i�

Together this implies w��t� t��t� T ��� w
��t��
 This completes the proof that w� is a transducer

trajectory� and thereby the proof of the lemma


The next lemma is analogous to Lemma �
� in the untimed case� and plays an important
role in the substitutivity result for timed action transducers in the next section
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Lemma ��� Suppose T is a Zeno�respecting timed transducer� 	 is a timed automaton as�
signment for T � and � � �s�� z��a��s�� z��a��s�� z�� � � � is a non�Zeno execution of T �	� with
trigger sequence ���� � � �� Let Z�i� � 	�color�T� i�� for each hole i�
Then � � s�a���s�a���s� � � � is a non�Zeno execution of T � t�trace��� � t�trace���� and

for each hole i� t�trace��� i� � t�traces�Z �i���

Proof By Lemma �
�� we know that � is an execution of T 
 Because � is non	Zeno � is
non	Zeno as well� and t�trace��� � t�trace���
 Fix a hole i
 De�ne �� to be the sequence
obtained by taking the sequence z��i����i�z��i����i�z��i� � � � and removing all subsequences
�j�i�zj�i� with �j�i� � �
 Then� by de�nition of T �	�� �

� is an execution of Z�i�
 Because T
is Zeno	respecting� �� is non	Zeno
 Let

t��i � ��

tj���i � if �j���i� � R
� then tj�i  �j���i� else tj�i�

Then

t�trace���� � ������i�� t��i�����i�� t��i� � � ��d�vis�Z �i��� R
���� sup

j

tj�i�

� t�trace��� i��

which implies t�trace��� i� � t�traces�Z �i��



�
 Substitutivity
We are now ready to state and prove our substitutivity results for timed transducers
 Our
results require the hypothesis that the transducers are Zeno	respecting
 Without this hy	
pothesis� it might happen that an admissible execution of a composition includes a Zeno
execution of some argument
 Since timed trace inclusion does not imply inclusion of the sets
of Zeno traces� this means that 	t need not be substitutive for such transducers


Theorem ��� The relations 	t� and 	t on timed automata are substitutive for all Zeno� and
� �respecting timed action transducers�

Proof Similar to the proof of Theorem �
�
 Let T be a Zeno	 and � 	respecting timed action
transducer
 We show that 	t is substitutive for T 
 The proof that 	t� is substitutive for T is
similar

Suppose 	� 	 � are timed automaton assignments for T such that� for all c� 	�c� 	t 	 ��c�� and

suppose that � � t�traces�T �	��
 We have to prove that � � t�traces�T �	���
 For this� de�ne
Z

�
� 
i�	�color�T� i�� and Z � �

� 
i�	��color�T� i��
 Then Z�i� 	t Z��i� for each hole i

Since � � t�traces�T �	��� T �	� has a non	Zeno execution

� � �s�� z��a��s�� z��a��s�� z�� � � �

with t�trace��� � �
 Let � � ���� � � � be a trigger sequence for �� and let

� � s�a���s�a���s� � � �
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By Lemma �
�� � is a non	Zeno execution of T � t�trace��� � �� and for each hole i�

�i
�
� t�trace��� i� � t�traces�Z �i���

Since Z�i� 	t Z��i�� we obtain �i � t�traces�Z ��i��� for all i
 Therefore� Z��i� has� for each i�
a non	Zeno execution �i with t�trace��i� � �i
 Let �� be the sequence obtained from � by
removing all clearing steps
 Then �� is a non	Zeno execution of T and t�trace��� � � �
 As
in the untimed case� our job is to �paste� together �� and the �i to obtain an execution of
T �	��
 We construct an automaton A that describes several allowable ways to do this pasting
and that generates executions of T �	�� with the required properties
 The set of states of A
consists of all valuations of the following state variables in their domains�

� a variable frag ranging over the set of execution fragments of T 
 This variable denotes
the part of �� that still has to be dealt with
 The initial value of frag is ��


� for each hole i� a variable frag i ranging over execution fragments of Z��i�
 This variable
denotes the part of �i�s that still has to be pasted together with �the remainder of� ��

The initial value of frag i is �i


� a variable exec ranging over �nite executions of T �	��
 The limit of the values of exec
will be the execution of T �	�� in which we are interested
 The initial value of exec is
the trivial execution consisting of the state composed from the �rst states of �� and the
�rst states of the �i


� a variable delay ranging over R��

� a vector w� tti�i � holes�T �� of variables ranging over transducer trajectories of T 


� for each hole i� a variable wi ranging over trajectories of Z
��i�


Automaton A has actions CLEARING� TIME and BASIC � which correspond to the three
di�erent types of actions of T �	��� clearing steps� time	passage steps� and the remaining
�basic� steps
 The transitions of A are de�ned using precondition�e�ect style in Figure �

The intuition is that� while building an execution of T �	��� automatonA peels o� initial steps
of �� and the �i
 If the remainder of �� starts with a non	time	passage step a� and� for each
hole i that participates in this step� the remainder of �i starts with the action required for
hole i� then a BASIC step is taken by A
 If� for some hole i� the remainder of �i starts with
a � step then A can do a corresponding CLEARING action� provided that i participates in
the next step of ��
 The most complicated part of the de�nition of A is the description of
the TIME step
 Here the intuition is that if the remainder of �� starts with a time passage
step and� for each hole i that participates in this step� the remainder of �i also starts with a
time passage step� automaton A nondeterministically chooses trajectories corresponding to
all these steps� and then determines the maximal progress it can make along these trajectories
without passing beyond the limit time of any of them
 More speci�cally� suppose that the

remainder of �� begins with a step s� d��
�

s with transducer trajectory w� tti�i � holes�T ��


Suppose further that for all holes i that are active is s�� the remainder of �i begins with
s�i

di� si
 Then the maximal global increase in time is d
 For each active hole i the maximal
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BASIC

Precondition

� frag begins with s� a
��

�
s

� a �� R�

� for all holes i that participate in the �rst step of frag�
frag

i
begins with an ��i� step

E�ect

remove the �rst step from frag�
for each hole i that participates in the �rst step of frag do

remove the �rst step from frag
i
�

append to exec an a followed by the state of T ���� composed
from the �rst states of frag and all the frag

i

CLEARING

Precondition

� frag contains at least one step
� hole i� participates in the �rst step of frag
� fragi� begins with a � step

E�ect

remove the �rst step from fragi� �
append to exec a � followed by the state of T ���� composed

from the �rst states of frag and all the fragi

TIME

Precondition

� frag begins with s� d
��

�
s

� for all holes i that are active is s�� fragi begins with s�i
di� si

E�ect

w� tti�i � holes�T �� �� any transducer trajectory for s� d
��
�

s�

for each hole i that is active in s� do

wi �� any trajectory for s�i
di� si�

delay �� min�fdg � ftt��
i

�di� j i is active in s� and di � ��i�g��
if delay � d then remove �rst step from frag

else replace �rst step s� d��
�

s of frag by s�� d
�

��
��

s�

where s�� � w�delay�� d� � d� delay and �� � � � �i�tti�delay��
for each hole i that is active in s� do

if tt i�delay� � di then remove �rst step from fragi

else replace �rst step s�i
di� si of fragi by s��i

d
�

i� si�
where s��

i
� wi�tti�delay�� and d�

i
� di � tt i�delay��

append to exec the real	value of delay followed by the state of T ���� composed
from the �rst states of frag and all the fragi

Figure �� Algorithm for pasting together �� and the �i
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local increase of time is the minimum of di and ��i�
 In order to translate this to a global
increase in time� observe that the inverse mapping of tt i is de�ned� since this function is both
continuous and strictly monotonic
 Therefore the requirement that the local increase in time
for hole i is at most min�di� ��i�� is equivalent to the requirement that the global increase in
time is at most min�tt��i �di�� d�

We leave it to the reader to check that the de�nition of A is type correct� in the sense

that each variable is only assigned values in its domain
 Note that in the e�ect part of the
TIME action the argument of the min operator is always a nonempty� �nite set of positive
real numbers� by Lemma �
�� the number of holes that participate in a time passage step of
T is �nite

Pick an arbitrary maximal execution � � u�b�u�b�u� � � � of A
 Since the three actions of

A only append values to variable exec� we can de�ne �� as the limit of the values of exec
along �
 By construction� �� is an execution of T �	��
 We claim that �� is non	Zeno and
t�trace���� � �

In order to see this� we �rst establish that A satis�es the following invariant properties


Here we write u�v for the value of state variable v of A in state u


�
 For all reachable states u of A� t�trace�u�exec� � t�trace�u�frag� � �


�
 For all reachable states u of A and for all holes i� t�trace�u�frag i� � t�trace�u�frag � i�


Proof By simple inductive arguments


Using Invariants � and �� we next prove three claims


Claim �
 Suppose that u is a reachable state of A and u�frag is not a single state execution
fragment
 Then u has an outgoing step


Proof Let s� a��
�

s be the �rst step of u�frag 
 If� for some hole i that participates in this

�rst step� u�frag i begins with a � 	step� then a CLEARING action is enabled in u
 So suppose
that for all holes i that participate in the �rst step u�fragi does not begin with a � 	step
 We
consider two cases


�
 Suppose a �� R�
 It follows by Invariant � that� for each hole i that participates in the
�rst step of u�frag � frag i starts with an ��i� step
 But this means that a BASIC action
is enabled�

�
 Suppose a � R�
 If hole i participates in the �rst step� then it follows by axiom T� that
��i� � R�
 Since u�frag i does not begin with a � 	step� Invariant � implies that it begins
with a time passage step
 Because this is the case for each hole i that participates in
the �rst step� a time passage action is enabled in state u


Claim �
 Execution � has no in�nite su�x that consists of CLEARING steps only

Proof Analogous to the corresponding proof in the untimed case


Claim �
 If � contains an in�nite su�x that consists of CLEARING and TIME steps only�
then ltime���� ��
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Proof The proof is by contradiction
 Suppose � has an in�nite su�x with CLEARING and
TIME steps only� but ltime���� is �nite

Suppose u� TIME� u is a step of A� d is the label of the �rst step of u��frag and� for each i

that participates in the �rst step of u��frag� di is the label of the �rst step of u��frag i
 Then
we say that u� TIME� u is full if u�delay � d� and i�full for hole i if u�tt i�u�delay� � di
 By
de�nition� each TIME step is either full or i	full for at least one hole i

If � contains in�nitely many full TIME steps then ltime���� � �� because �� is non	

Zeno
 So we may assume that � contains only �nitely many full TIME steps
 This means
that � has an in�nite su�x �� that consists of CLEARING and non	full TIME steps only

By Claim �� �� contains in�nitely many non	full TIME steps
 If in A there is a non	full
TIME step from u� to u� s� is the �rst state of u��frag and s is the �rst state of u�frag � then
active�T� s�� � active�T� s� by axiom T�
 Also� if in A there is a CLEARING step from u�

to u� then the �rst state of u��frag equals the �rst state of u�frag
 Therefore� there is a �xed
collection of holes that participate in the non	full TIME steps of ��
 By Lemma �
� we know�
moreover� that this collection is �nite
 So� the execution fragment �� contains in�nitely many
i	full TIME steps for some hole i
 This means that �i is in�nite� then since it is non	Zeno
�i is admissible


For u� TIME� u a step of A� u�tt i�u�delay� gives the amount of time that has passed for hole
i during that step
 Because �i is admissible� the sum of the time	passage actions for hole i
along � increases without bound�

lim
k
	

X
fjj��j�k� bj�TIMEg

uj �tt i�uj �delay� ���

But this contradicts the fact that �� contains no full TIME steps� if ul is the �rst state of �
�

and ul�frag begins with a step s
� d��

�
s� then for all k � l�

X
fjjl�j�k� bj�TIMEg

uj �tt i�uj �delay�  ��i��

We return to the proof that �� is non	Zeno and t�trace���� � �
 Again we consider cases


�
 Suppose � is �nite� with �nal state un
 Then� by Claim �� un�frag consists of a single
state execution fragment
 In combination with Invariant �� this gives t�trace�un �exec� �
�
 But �� is de�ned as the limit of un�exec� so �� � un�exec
 Hence �

� is �nite �and
hence non	Zeno� and t�trace���� � �


�
 Suppose � is in�nite and contains in�nitely many BASIC actions
 Since frag is initially
��� and each BASIC step removes a step from ��� it follows that �� is in�nite
 But since
�� is non	Zeno� it is in fact admissible
 Because there are in�nitely manyBASIC steps in
�� it follows by construction ofA that the limit as j �� of ltime�uj �exec� is�� and that
hence �� is admissible �and hence non	Zeno�
 By Invariant �� t�trace�uj �exec� is a pre�x
of � for each j
 Since the limit �� of the executions uj is admissible� t�trace���� � �


�
 Suppose � is in�nite and contains only �nitely many BASIC actions
 Then � has
an in�nite su�x with CLEARING and TIME actions only
 Combination of this fact
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with Claim � gives that �� is admissible �and hence non	Zeno�
 Now we use the same
argument as in the previous case
 By Invariant �� t�trace�uj �exec� is a pre�x of � for
each j
 Since the limit �� of the executions uj is admissible� t�trace���� � �


The fact that �� is non	Zeno and t�trace���� � � implies � � t�traces�T �	���� as required


�� A Timed Process Algebra

In this section� we give examples of operations that can be expressed as timed action trans	
ducers
 Together� these operations form a language that we will call Lt
 Paraphrasing Alur
and Henzinger ���� we can summarize the main idea behind Lt as�

real	time process algebra � untimed process algebra  timers


After the de�nition of the operators of Lt in Section 
�� we will discuss the expressivity of
the language in Section 
�


��� Operators
����� The patient construction An important collection of timed transducers can be ob	
tained from untimed transducers
 In this subsection we present a simple but important
construction� inspired by Nicollin and Sifakis ����� that transforms an untimed action trans	
ducer into a timed one� by simply inserting arbitrary time	passage steps
 Suppose T is an
�untimed� action transducer with R� � acts�T � �  and R� � acts�T� c� � � for all c
 Then
patient�T � is the timed action transducer T � that has exactly the same components as T �
except�

� acts�T �� � acts�T �� R��
� for all c� acts�T �� c� � acts�T� c�� R��
� steps�T �� � steps�T � �

fs d��
�

s j s � states�T �� d � R
�� � � 
i�if i � active�T� s� then d else �g�

It is straightforward to check that patient�T � is indeed a timed action transducer
 However�
patient�T � need not be Zeno	respecting
 For example� consider a transducer T that activates
and deactivates the same hole i in�nitely many times in one execution
 The transducer
patient�T � can intersperse the activations of i time	passage steps� in such a way that all the
time	passage occurs when i is inactive
 This problematic behavior is not possible with the
transducers of Section �� since these activate and deactivate each hole at most once during
an execution
 In general� patient�T � need also not be � 	respecting even if T is � 	respecting

For instance� the variant of the external choice operation � with an in�nite index set is � 	
respecting� but its patient timed version is not
 The problem with in�nitary external choice is
that in the initial state in�nitely many holes are active
 Since in a timed transducer all active
holes participate in time	passage steps� this means that the patient version of the transducer
does not satisfy the third condition in the de�nition of � 	respecting� which requires that in
each step only �nitely many holes participate
 The following simple lemma characterizes the
situations in which the patient operation preserves the property of being � 	respecting� and
returns a timed action transducer that is Zeno	respecting
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Lemma ��� Suppose T is an action transducer� Then

�� patient�T � is Zeno�respecting i� T can activate and deactivate each hole at most �nitely
many times in each execution�

�� patient�T � is � �respecting i� T is � �respecting and in each state of T only �nitely many
holes are active�

The characterization in the �rst part of Lemma 
� looks a little less than satisfying because
it is expressed in terms of executions rather than the basic transducer de�nition
 However�
this seems unavoidable

All the patient timed versions of the operators in the language Lu are Zeno	 and � 	

respecting� by Lemma 
�
 Thus� by Theorem �
�� the timed trace preorders 	t� and 	t

are substitutive for the patient variants of all these operations
 The timed transducers ob	
tained by the patient construction turn out to be quite useful� so in the subsequent sections
we will adopt the convention that T means patient�T � for any of the transducers of Lu


����� Clocks Timed transducers that are obtained via the patient construction do not im	
pose time constraints on their arguments
 One way to impose such constraints is by using
explicit clock variables� as advocated in ��� ��
 In this subsection� we show how clock vari	
ables can be expressed using timed action transducers
 The unary timed action transducer
CLOCKx models the e�ect of adding a clock variable x to a system

We consider a set X of clock variables� ranged over by x� y� � � �
 The set of clock constraints

� is de�ned inductively by �here t ranges over R����

� ��� xt j x�t j � � �� j ���

Note that constraints such as true� �� x��� and x���� � can be de�ned as abbreviations

A time assignment � assigns a nonnegative real value ��x� to each clock variable x
 A time
assignment � satis�es a clock constraint �� denoted by � j� �� i� � evaluates to true using
the values given by �
 We say that � is a tautology i� for all time assignments �� � j� �
 We
say that � is satis�able i� there exists a time assignment � such that � j� �
 We denote by
��t�x� the formula obtained from � by replacing all occurrences of x by t

The state set of transducer CLOCKx is R

��� with � as the initial state
 There is a single hole
called �
 Time proceeds at the same rate for the transducer and its argument
 The argument
automaton can reset the value of the clock variable x at any moment by performing an action
containing the label reset�x�
 In addition� the argument automaton can use clock constraints
as labels to test the value of the clock variable
 In order to de�ne the step relation formally
it is convenient to de�ne some auxiliary functions
 Let x be a clock variable� t � R�� and a a
set of labels
 Then a�t�x� is the label set obtained from a by replacing each clock constraint �
in a by ��t�x�
 We say a�t�x� is satis�able if all time constraints contained in it are satis�able

We also de�ne

V�x� t� a� �
� if reset�x� � a then � else t�

Now the steps of CLOCKx can be de�ned by�
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t d��f���d�g t d if d � ��

t b��f���a�g V�x� t� a� if a �� R� and b � a�t�x� satis�able�

As an example� let a� b� c be given by a
�
� fsw o� � x���� ���g� b �

� fsw o� � ������ ���g and
c

�
� fsw o� � ����� ���g Then CLOCKx has a step

�� b��f���a�g ���

but not a step

� c��f���a�g ��

because in the second case the clock constraint x���� ��� is violated
 CLOCKx is trivially
Zeno	 and � 	respecting
 Thus relations 	t� and 	t are substitutive for this transducer

Our de�nition of clocks directly follows the one proposed in ��� ��
 In fact� it is possible

to encode each ��nite state� clock�constrained system in the sense of ��� within our language�
by Theorem �
� we can encode the underlying �nite automaton �with the clock constraints
viewed as part of the transition labels�� and if we then apply a CLOCK operator for each of
the clock variables that is used� the resulting expression will generate the same timed traces
as the clock constrained system that it encodes
 We suppose that� for some applications� it
will be useful to have a more general notion of clock
 One can� for instance� extend the set of
clock constraints with formulas like x y�� or allow for assignments of the form x��y  ��
or introduce labels that ask the clock to emit its current time
 The important point here is
that explicit clocks constitute an important and useful construct in real	time process algebra

Our speci�c choice of clock operations is just an example� subject to modi�cation


����� Bounds None of the timed transducers introduced so far constrain the passage of time�
in particular� all transducers we have de�ned are willing to advance time by any amount d

However� in order to express that a certain event is guaranteed to occur before or at a given
time� for instance in the speci�cation of a timeout� we need an operator which �under certain
conditions� can block time
 In this subsection we give an example of such an operator

For any clock variable x� the unary timed action transducer BOUNDb

x ensures that the
value of x does not advance beyond a given upper bound in R�� �f�g� initially b
 The state
set of this transducer is R�� � �R�� � f�g�� with ��� b� as the initial state
 The �rst state
component gives the current value of x� and the second component gives a bound on the
value of x
� There is a single hole called �
 The value of x can be reset at any moment by
an action with label reset�x�� similarly the bound can be modi�ed via an action with label
x�	u� for u � R�� � f�g
 For x a clock variable� u � R�� � f�g and a a �nite set of labels�

B�x� u� a� �
� if fu� j x�	u� � ag �  then u else minfu� j x�	u� � ag�

Now the steps of BOUNDb
x can be de�ned by�

�For simplicity
 we do not consider strict bounds� Such bounds can be imposed by parameterizing the
transducer with an additional boolean that tells whether the time bound is strict or not� Alternatively
 one
can follow a suggestion of Abadi and Lamport ���
 and introduce
 as additional elements of the time domain

the set of all �innitesimally shifted� real numbers r

�
 where t � r
� i� t � r
 for any reals t and r�
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�t� u� d��f���d�g �t d� u� if �  d 	 u� t�

�t� u� a��f���a�g �V�x� t� a��B�x� u� a�� if a �� R��

Thus there is� for instance� a step

��� ���
	�
� ���� ����

but not a step

��� ���
��
� ����� ����

because that would violate the time bound
 Clearly� BOUNDb
x is Zeno	 and � 	respecting


Thus relations 	t� and 	t are substitutive for this transducer

In the literature several other proposals can be found on how to constrain the passage of

time� ��� uses a B!uchi style acceptance criterion for this purpose� ���� advocates the use of
program invariants� ��� proposes the related notion of delay predicates� and ���� uses so	called
important events
 It is not clear to us how these approaches can be transferred to a process
algebraic setting� where automata are built up step by step and not given a priori
 Our
approach to use BOUND operators can be viewed as a special case of the invariant approach
of ����� with a �xed invariant stating that the values of the clock variables never exceed the
values of the corresponding bound variables


����
 Timers In applications� we will mostly want to use the clock and bound transducers
in combination
 Furthermore� we typically want to hide the assignment labels outside the
scope of these transducers� where they are no longer needed
 Finally� it is convenient to do
a �garbage collection� and remove vacuous constraints like �� that are generated by clock
transducers
 For these reasons� we de�ne the following derived operation TIMER

u
x� for any

clock variable x and initial bound u � R�� � f�g�

TIMER
u
x�A�

�
� �CLOCKx�BOUND

u
x�A���n�T � Lx��

where T is the set of all tautologies and Lx is the set of all assignments to x


Example
 We de�ne a timed version of the automatic switch	o� mechanism we described in
Section �
 The system allows a lamp to be switched on at any time� then between � and ��
time units after the last time the lamp has been switched on� it will be switched o�


SWITCH � �
�

TIMER
	
x �fsw on� reset�x�� x�	��g � �fsw on� reset�x�g � fsw o� � x���� ���� x�	�g�����

Example
 To illustrate the use of multiple� nested clocks we specify the process of having
breakfast
 Breakfast should be both started and �nished after � am and before � am
 The
whole breakfast should take at least � minutes� and� since fresh bread is only available at
�
� am� the end of the breakfast should be situated after � am


BREAKFAST
�
�

TIMER
	 ��
x �TIMER

	
y �fstart � x��� x�	�� reset�y�g � f�nish� x�� � y� �

� � x�	�g � STOP���



�� A Timed Process Algebra ��

����� Changing speed Thus far� in all timed action transducers that we have considered�
time advances with the same rate for the transducer and all the �active� holes
 However� the
framework of timed action transducers allows us to de�ne� quite easily� operators that change
the speed of processes

For all l� u � R� with l 	 r� we de�ne a unary timed transducer RATEl�u�
 The transducer

has a single state s� which is also the initial state
 Both the transducer and its argument
have the same set of actions� and in fact the transducer allows the argument to perform any
non time	passage action a at any time
 However� the rate at which the local time changes
relative to the global time lies in the interval �l� u�


s a��f���a�g s if a �� R
��

s d��f���d��g s if
d�

d
� �l� u��

It is routine to verify that RATEl�u� is a timed transducer
 RATE transducers can be used
both to speed up clocks and to make them drift
 For r � �� RATEr�r� speeds its argument
up by a factor r
 For "� �� RATE�������� introduces a tolerance of " on all timing of its
argument
 We think that RATE transducers can be useful in the process algebraic description
of protocols that involve drifting clocks� such as the audio control protocol analyzed in ���

An interesting property of the RATE transducers is that in general they do not preserve

Wang�s ���� axiom of time determinism
 This axiom� which is valid for all timed process
algebras that we have encountered in the literature� states that the resulting state after a
time step is uniquely determined by the amount of time that has passed�

s
d� s� � s

d� s�� � s� � s���

��� Expressivity of Lt

We de�ne Lt as the language consisting of ��� the timed transducers obtained by applying
the patient operation to the untimed operations of the language Lu� ��� the CLOCK� BOUND�
TIMER and RATE operators

The operations from Lt are su�ciently expressive to de�ne # as derived operators # all

the constructs that we have encountered in the literature on timed process algebras� except
those that involve binding mechanisms �like the integration construct of ���� and those that
are not compatible with timed trace inclusion �like the  from CCS�
 In this section� we give
some of these derived operators
 Also� we show how one can encode within Lt the �nite state
fragment of the timed�bounded automata model of ����


����� Wait constructs Using a single timer� we can program the process WAIT d of Timed
CSP ���� ���� which waits time d and then terminates successfully


WAIT d
�
� TIMER

d
x�x�d��

More generally� we can specify a process that terminates successfully after waiting some
nondeterministically chosen time from the closed interval �l� u�


WAIT �l� u�
�
� TIMER

u
x�x�l��
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����� Urgency Using a timer� we can force any action a to be performed immediately� we
de�ne the urgent action a by

a
�
� TIMER

�
x�a��

where x is a clock variable to which a does not refer
 With urgent actions it becomes trivial
to de�ne the urgent pre�xing operators of TCCS ��� and ATP ����� a�A

�
� a � A
 Urgent

actions are also useful for de�ning the timeout construct of Timed CSP
 For a given delay d
this operator is de�ned� as in ����� by

A
d
� B

�
� �A � �WAIT d � abort � B��nfabortg�

where abort is a fresh label� not in the label set of A and B
 If� at time d� A has not
performed any visible action� an interrupt occurs and automaton B is started
 Note the use
of the auxiliary label abort to force the choice between A and B at time d


Example
 We consider a simple resource	granting system described in ����
 The system
consists of two components� a watch and a manager
 The watch ticks at an approximately	
predictable rate� and the manager counts ticks in order to decide when to grant a resource

The watch is modeled as an automatonWATCH that does tick actions� such that the times
between successive tick actions� and the time of the �rst tick action are in the interval �c�� c���

WATCH
�
� �WAIT �c�� c�� � tick�

��

Automaton MANAGER models the manager� it waits a particular number k � � of tick
actions before it does a grant action� counting from the beginning or from the last preceding
grant 
 We assume that a grant action occurs within l time units after it has been enabled�
for some l  c�


MANAGER
�
� �MANAGERk�

�

MANAGERi
�
� tick �MANAGERi�� for �  i 	 k

MANAGER�
�
� WAIT ��� l� � grant

The full system can now be described as the parallel composition of automataWATCH and
MANAGER� with the tick action hidden�

SYSTEM
�
� �WATCHkMANAGER�nftickg�

Essentially� the result about the resource	granting system proved in ���� is that

SYSTEM 	t �WAIT �k � c� � l� k � c�  l� � grant���

Example
 Another example� taken from ���� is a watch that is perfect� except for some
�uctuations of the ticks�

WATCH � �
� WAIT �� � ��WAIT ���� �� ��  �� � tick � STOP� �WAIT ����
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����� Execution delay The execution delay operator of ATP ���� ��� is given by�

dAed�B� �
� �TIMER

d
x��A � �abort � B�� k C��nfabort� cancelg�

where

C
�
� �cancel � fabort � x�dg� � x�	� � STOP�

dAed�B� behaves as A until time d� at time d� A is interrupted and B is started
 However�
if A performs an action with the label cancel� then the interrupt is cancelled and A can
continue to run forever
 The process C takes care that once A has done a cancel� it can no
longer be interrupted by B
 Also C removes deadline d after a cancel or abort action
 We
assume that A and B do not have abort in their label set� nor any label referring to timer x

The labels cancel and abort are hidden so that they cannot synchronize with any action of
the environment
 A minor di�erence between our execution delay operator and the one from
ATP is that ours allows machine A to perform visible actions at time d


����
 MMT�automata It is possible to encode within Lt each �nite state timed�bounded
automaton in the sense of ����
 We will refer to time	bounded automata as MMT�automata�
derived from the names of the authors of ����
 The MMT	automata model is an extension
with real	time of the I�O automata model of ����
 It has been used extensively in ���� ��� for
veri�cation purposes

An MMT�automaton B consists of��

� an �untimed� automaton A�
� a partitioning of acts�A� into three sets of input� output and internal actions� respec	
tively� it is required that input actions are enabled in each state� i
e
� for each state s�

and for each input action a there exists a state s such that s� a�A s�

� a partition fC�� � � � � Cng of the locally controlled �output and internal� actions into
equivalence classes�

� for each class Ci� a lower time bound bl�Ci� � R�� and an upper time bound bu�Ci� �
R
� � f�g� such that bl�Ci� 	 bu�Ci�


Intuitively� in a real	time execution of B we just take steps from A� but the times at which
these steps may occur are constrained by the bound maps bl and bu
 Suppose that during
execution a class Ci becomes enabled at time t
 Then bl and bu specify that if Ci stays
enabled� an action from Ci must be executed in the time interval �t  bl�Ci�� t bu�Ci��
 If
Ci becomes disabled� then the timing constraints on Ci are removed

Without loss of generality� we may assume that A has only a single start state� if there

are n � � start states then the encoding of A can be de�ned as the disjoint union of the
encodings of n copies of A in which the set of start states is restricted to a singleton
 In our
encoding of A� we assume for each class Ci a corresponding clock variable xi


�Here we follow the denition from ����
 which is slightly more restrictive than the original denition of
���� because it does not allow for strict bounds� This restriction is not crucial
 but only convenient�
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As an intermediate step� we de�ne an auxiliary automaton A�� which is identical to A

except that the labels of the transitions have been enriched with extra information� the set
of labels of A� consists of the input and output actions of A� together with the set of clock
constraints and assignments that refer to x�� � � � � xn
 For each step s� a� s of A� automaton
A� contains a corresponding step

s�
b�f	g�S� s�

where b is empty if a is an internal action and equal to fag otherwise� � is a clock constraint
that is equal to true if a is an input action and equal to xj � bl�Cj� if a is a locally controlled
action that belongs to class Cj � and S is a label set consisting of�

� a label reset�xj� if a is a locally controlled action in Cj�

� labels reset�xj� and xj �	bu�Cj� for those classes Cj that are not enabled in s
� but are

enabled in s�

� a label xj �	� for those classes Cj that are enabled in s
� but not in s


Under the assumption that A �and hence A�� is �nite there exists� by Theorem �
�� an Lu	
expression expr�A�� denoting A� up to tree equivalence
 Using this auxiliary expression� we
de�ne the Lu	expression expr�B� by

expr�B�
�
� TIMER

u�
x�
�� � �TIMER

un
xn
��expr�A���� � � ���

where ui equals bu�Ci� if Ci is enabled in the start state� and � otherwise
 Without proof�
we claim that expr �B� generates exactly the same timed behaviors as the MMT	automaton
B according to the de�nition of ����


��� Counterexamples
Although the converse of Theorem �
� does not hold� our result appears to be quite sharp�
for many examples of timed transducers that are not Zeno	 and � 	respecting� the timed trace
preorders are indeed not substitutive

The timed trace preorders 	t� and 	t are for instance not substitutive for the operation of

in�nitary external choice
 It is easy to see that WAIT � 
t� WAIT � � WAIT �� both processes
wait time � and then terminate successfully
 However� for in�nite I �

�i�I �WAIT �� �	t� �i�I �WAIT � �WAIT ��

because� unlike the �rst process� the second process will never manage to do a successful
termination action at time � since it has to do an in�nite number of � actions at time �

Another example is the choice operator  that plays a dominant role in many real	time

process calculi �TCCS ���� the timed extension of CCS proposed in ����� ATP ����� and ACP�
����
 This operator is just the patient version of the choice operator from CCS� which has
three states s� s�� s�� with s start state� and steps �for i � f�� �g� and all actions a and b of
the �rst and second argument� respectively��

s a��f�i�a�g si si
a��f�i�a�g si
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Relation 	t� is not substitutive for the patient version of  because� for instance�

WAIT �  WAIT �� �	t� �WAIT � � WAIT ��  WAIT ���

The �rst process terminates at time ��� whereas the second process terminates at time �

The loss of substitutivity may be viewed as a problem for a process algebra with CCS

choice based on trace equivalence �it is not a problem if certain other equivalence are used�
such as observational congruence �����
 Via Lemma 
� we have identi�ed a general class of
operations for which trace equivalence is a congruence and with patient versions for which
timed trace equivalence is a congruence
 Even though we advocate in this paper the use of
timed trace equivalence� we think it will be quite interesting to extend Van Glabbeek�s ���
lattice of process equivalences with a real	time dimension� and to study the impact of the
patient construction on congruence properties for other equivalences as well


��
 Remarks
Some untimed operators display undesired behavior when transformed into timed operators
via the patient construction
 We give an example
 In a timed process algebra� one typically
wants to have the identity

WAIT � �WAIT � � WAIT ��

In order for this equation to be valid it is essential that in the action transducer for the
untimed sequential composition operator ���� the second argument is not active in the initial
state
 In ����� a sequential composition operator is described for which this is not the case�

s�
a��f���a�g s� if

p �� a

s�
b��f���p�����b�g s�

s�
b��f���b�g s�

For the patient version of this operator we obtain the undesired identity

WAIT � �WAIT � � WAIT ��

A very interesting issue that we can only touch upon in this paper� is the impact of patient
construction on the validity of algebraic laws
 All the laws that we have checked and that
are valid for Lu up to trace equivalence� remain valid for Lt up to timed trace equivalence

However� in general it is not the case that the patient construction preserves validity of
algebraic laws
 For instance� the law

A � B � A � �A � B� � B

holds �in a semantics based on 
�� for the variant of the iteration operator in which only a
single copy is made of the second argument� but does not hold after patient has been applied
�in a semantics based on 
t��
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�� Discussion

The main result of this paper is the characterization in terms of action transducers of a very
general class of operations that preserve inclusion of timed traces
 For the untimed case�
several substitutivity results for classes of operations have been reported in the literature
�see� for instance� ���� �� ����
 We believe our result to be the �rst one of this kind for the
timed case
 The combined complexity of multiple start states� in�nitely many arguments�
copying� activation and deactivation of arguments� internal actions� and di�erent rates makes
the proof of our result rather involved
 It looks like that we have now reached a point at which
any obvious generalization of the class of operations violates the substitutivity property

An obvious question left open in this paper is to �nd a sound and complete axiomatization

of timed trace inclusion for the language Lt or a fragment of it
 Results of ��� can be adapted
to show that� even if we exclude the RATE operator and only allow for rational numbers
in clock constraints and bounds� deciding timed trace inclusion for Lt is $� hard
 Hence
there does not exist a �nite equational axiomatization of timed trace inclusion for the full
language Lt
 However� it may be possible to �nd interesting partial results� axioms that
allow the elimination of certain operators in favor of others� or complete axiomatizations of
subcalculi
 For this it might be necessary to add to the language auxiliary operators such as
the integration construct of timed ACP ���

Before it can become practically useful� the language Lt will have to be extended with a

more powerful mechanism for recursion� and with the possibility to parametrize processes
and actions with data
 Such extensions are standard� however� and one could simply follow
the approaches taken in process algebras such as Extended LOTOS ���� or �CRL ����

We do not believe that one single approach� assertional or process algebraic� can solve all

problems regarding the speci�cation and veri�cation of timed systems
 A solution has to
be sought rather in a smooth combination of various formalisms
 Use of process algebraic
notation often allows one to give compact� intuitive speci�cations of timed systems
 Thus far�
however� process algebraic techniques cannot claimmuch success when it comes to veri�cation
of timed systems
 Here assertional methods appear to perform much better �see� for instance�
���� ��� ���
 Because the notion of explicit timers �ts rather well with assertional proof
techniques for real	time �see ��� ���� we hope that it will be not too di�cult to use these
techniques� and in particular the simulation proof methods of ���� ���� in the setting of our
language Lt
 Together with a limited repertoire of algebraic laws� this may then form the
basis of a methodology in which the bene�ts of algebraic and assertional methods can be
combined
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