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Abstract

In this paper we study the space of operator trees that can be used to answer a
join query, with the goal of generating elements form this space at random. We solve
the problem for queries with acyclic query graphs. First, we count the exact number
of trees that can be used to evaluate a given query. Then, we establish a mapping
between the n operator trees for a query and the integers 1 through n —i. e. a ranking—
and describe efficient ranking and unranking procedures. The generation of random,
uniformly distributed operator trees follows from the unraking.
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1 Introduction

1.1 Background

The selection of a join evaluation order is a major task of relational query optimizers
[Ul182, CP85, KRB85]. The problem can be stated as that of finding an operator tree
to evaluate a given query, so that the estimated evaluation cost is minimum. In practice,
the combinatorial nature of the problem prevents finding exact solutions, and both heuristics
and randomized algorithms are considered as viable alternatives.

Two basic questions related to the space of operator trees of interest have remained
open for some time now: What is the exact size of the space? And, how to generate a
random element from the space efficiently? In this paper we answer those questions for the
class of acyclic queries —those whose query graph, defined below, is acyclic. The answer to
the second question has a direct application to randomized query optimization, as selection
of a random item in the search space is a basic primitive for most randomized algorithms
[SG88, Swa89b, Swa89a, IK90, IK91, Kan91, LVZ93, GLPK94].
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Figure 1: Query graph and operator trees.

Acceptable operator trees are subject to restrictions on which relations can be joined
together, and counting them does not reduce, in general, to the enumeration of familiar
classes of trees —e. g. binary trees, trees representing equivalent expressions on an as-
sociative operator, etc. A variety of techniques are used to enumerate graphs and trees
[Knu68, HP73, RH77, VF90]. The scheme we use is similar to that used, for example, in
[GLW82], in the sense that an auxiliary structure serves to guide the counting and ranking
of elements of the space, instead of applying a closed formula.

Previous work has identified restricted classes of queries for which valid operator trees
map one-to-one to permutations or unlabeled binary trees —the first class known as star
queries, and the second as chain queries, see for example [OL90, IK91]— thus solving the
counting and random generation problems for those classes. Since it is easy to generate
valid operator trees non-determinstically, even in the general case, quasi-random selection
of operator trees has been used in some work on randomized query optimization [SG88,
Swag89a]. The term quasi-random refers to the fact that every valid tree has a non-zero
probability of being selected, but some trees have a higher probability than others and,
furthermore, there is no precise characterization of the probability distribution.

Another approach to generate random operator trees is to generate labeled binary trees
uniformly at random, until one of them turns out to be a valid operator tree for the query at
hand. The validity of an operator tree can be checked efficiently, but the small ratio of valid
trees with respect to the total binary trees renders this method impractical [Swa89a, Swa91].

Our work on acyclic queries covers the star and chain queries as particular cases, and
provides polynomial time algorithms both to count the number of operator trees for a given
query, and to generate one of those trees uniformly at random.

Although acyclic queries cover perhaps most of the queries posed in practice, cyclic
queries are frequent enough to deserve attention. We are currently studying the class of
cyclic queries, but the problem is more difficult. Many database problems become signifi-
cantly more complex when cyclic structures are allowed (see for example [BFMY83]), and
the techniques we use for the acyclic case do not seem to extend easily to cyclic queries.

1.2 Query graphs and join trees

Figure 1 shows the graph representation of a query, called a query graph, and two
operator trees to answer the query. In the query graph, nodes correspond to rela-
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Figure 2: All join trees of the query graph.

tions of the database, and (undirected) edges correspond to selection conditions of the
query. The graph shown corresponds to the query {(a,b,c,d) |a € A,b € B,c € C,d €
D, pi(a,b),pa(b,c),ps(b,d)}, where A, B,C, D are database relations and p1, p2,p3 are bi-
nary predicates. In a database system, such a query is usualy evaluated by means of
binary operators, and the two operator trees of Figure 1 can be used to answer this query.
The first operator tree requires only relational joins, while the second requires Cartesian
products. For a description of relational operators and query graphs, see, for example,
[U1182, CP85, KRBS85]. The reason why a Cartesian product is required in the second tree
is that we start by combining the information from relations A, D, but there is no edge
(i. e. predicate) between them in the query graph. Figure 2 shows all 6 operator trees for
this query in which only join is required, called join trees here. A purely graph-theoretical
definition of join trees is given next.

Definition. An unordered binary tree T is called a join tree of query graph G = (V, E)
when it satisfies the following recursive definition:

e The leaves of T' correspond one-to-one with the nodes of G; and

e every subtree of T is a join tree for connected subgraph of G.

Join trees are unordered —i. e. do not distinguish left from right subtree— because not
all join-algorithm distinguish a left and right argument. Ordering a tree of n leaves requires
a binary choice in each of the n — 1 internal nodes, so there are 2! ordered trees for each
unordered tree of n relations. This mapping can be easily used to extend our counting and
random generation of unordered join trees to the ordered variety.

In the sequel, we omit the operator <t when drawing join trees: A tree of the form
(Ty > Ty) is written simply as (77.72). We assume that query graphs are connected and



acyclic, i. e. we deal with acyclic queries.

We use 7 to denote the set of join trees of a query graph G, and TGU(k) C 71¢ to denote
join trees in which a given leaf v is at level £ — with the root of a tree being at level 0.
For example, for the query graph of Figure 1, Figure 2 shows that 74 consists of six trees,
TGD ) consists of only two trees, and TC? SO 6, which happens to be equal to Z¢. An other

way to compose 7 is by adding Tg(l), Tg(Z) and TG?(B).

1.3 Lists

We introduce some notation and properties of lists that are used later in the paper. Square
brackets are used as lists delimiters, as well as the list construction symbol “|” of Prolog
—i. e. [z|L] denotes the list obtained by inserting a new element z at the front of a list L.
An array of values zy, ..., z, in which index ¢ stores value z;, for ¢ = 0, ... n, is represented
as the list [zg,...,zn].

We say that a list L' is the projection of a list L on some property P of elements, if
L' contains all the elements of L satisfying P, while also preserving the relative order of L
—i. e. if z appears before y in L' then x appears before y in L. We say L is a merge of two
lists L1, Ly without common elements, if the length of L is the sum of lengths of L1, Lo,
and both Ly, Ly are projections of L.

The result of merging two lists is not unique, in general. Let L;, Ly be lists of length
l1, 1o, respectively. There is a one-to-one mapping between the result of merging L1, Ly and
the problem of non-negative integer decomposition of /1 in Iy + 1 —that is, a list of Iy + 1
non-negative integers o = [a,...,a,] such that their sum is equal to /;. Operationally,
the mapping is as follows. To obtain a merge L from a decomposition [a,. .., a,], start
with the first «( elements of L1, then use the first element from Ls; now use the next a;
elements of L;, then one from Ly. The last oy, elements of L; follow the last element of Ly
in L. We then say that L is the result of merging L1, Ly using .

-1
Since the decomposition of n in k can be solved in | }:f 1 > ways [NWT78], there
are M(ly,lp) = ( h ;_ b2 ) acceptable results of the merge of lists Ly, L, each identified
2

with a specific decomposition. Observe that M(l1,ls) = M(l1,ls — 1) + M(ly — 1,13). A
table of size N x N can be constructed in O(N?) time so that M(ly,ls) is found by a simple
lookup, for l1,l3 < N. Such table can also be used to rank and unrank decompositions of
l1 in ly +1 —i. e. lists of the form [ay,...,qs,] that determine a specific merge of L, Lo—
in O(N) and O(N log N) time, respectively.

2 Decomposition and construction of trees

2.1 Anchored-list representation

Since our arguments and constructions often rely on paths from the root of the join tree to a
specific leaf, we introduce an achored list representation of trees. Elements of the anchored
list are those subtrees observed while traversing the path from the root to some anchor leaf.



\ v T1 T1
T1 T1 \ v T2
TZ T2 T2 v
w w

TI

Figure 3: Construction by leaf-insertion.

Definition. Let T be a join tree and v be a leaf of T. The list anchored on v of T, call it

L, is constructed as follows:

e If T is a single leaf, namely v, then L = |].

e Otherwhise, let T = (7;.7,) and assume, without loss of generality, that v is a leaf ot T,.
Let L, be the list of T, anchored on v. Then L = [T;|L,].

Then we say that T'= (L, v).

Observe that if T = (L,v) is an element of Té)(k), then the length of the anchored list L
is k.

2.2 Primitive operations

We now describe procedures that relate a join tree of a query graph G with some join trees
of subgraphs of G. Applied in one direction, these procedures construct a join tree based
on smaller join trees; applied in the other direction, they decompose join trees.

Our first procedure is leaf insertion. The idea is that two join trees are related by the
insertion/removal of a leaf. The operation is stated as the insertion/removal of a one-leaf
tree in the anchored list representation of join trees.

Definition. Let G = (V, E) be a query graph and T be a join tree of G. Assume v € V is
such that G|y _y, is connected, and let (v,w) € E.

o Let T'= ([Tla s akala”aTk-Ha s aT'n]’w)'

o Let T' = ([T, ..., Tou1, Tosts . ., Th], w).

We call (', k) and insertion pair on v. We say that T is decomposed into pair (T, k) on v,
or, equivalently, that T is constructed from pair (T", k) on v.

Example 1 Figure 3 shows a join tree 7' = ([T1,T3],w) and the join trees constructed
from insertion pairs (7”,1), (1", 2), and (1", 3) on v. "

Observation 1 Let G = (V, E) be a query graph with n nodes. Assume v € V is such
that G' = G|y _y,y is connected, and let (v,w) € E, and 1 < k < n. The leaf-insertion
operation defines a one-to-one mapping between elements of Tg(k) and insertion pairs on v
of the form (7", k), where T" is an element of the disjoint union U?;£71T5<Z).

Our second procedure is tree merging. The idea is that a join tree can be obtained
by merging two smaller join trees. The operation is stated as the merge/projection of the
anchored list representation of join trees.
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Figure 4: Construction by tree-merging.

Definition. Let G = (V, E) be a query graph and T be a join tree of G. Assume sets of

edges V1, V, are such that G|y,, G|y, are connected, V1 UV, =V, and Vi NV, = {v}.

o Let T = ([T1,...,Tu],v)-

e Define property P; (respectively P;) to be “every leaf of the subtree is in V; (V3).”

e Let L1, Ly be the projection of L on properties P;, P, respectively. Let o be an integer
composition such that L is the result of merging L1, Ly using a.

o Let T1 = (Ll,w) and T1 = (Lg,w).

We call (T3, Ts, ) a merge triplet. We say T is decomposed into triplet (T1, T3, ) on Vi, Vo,

or, equivalently, that T" is constructed from triplet (T, T5, ) on Vi, Vs.

Example 2 Figure 4 shows join trees Ty = ([T}, T2],v), Ty = ([T3,T2],v) and the join tree
T = ([T}, T}, T?,T2],v) constructed from merge triplet (T3, T3, [1,1,0]). n

Observation 2 Let G = (V, E) be a query graph with n nodes. Assume sets of edges V1, V5
are such that Gi; = G|y,, G2 = G|y, are connected, V1 UV, =V, and Vi NV, = {v}, and
let 1 < k < n. The tree-merging operation defines a one-to-one mapping between elements
of TGv(k) and merge triplets on Vi, V3 of the form (Ty,Ts, a), where Ty € chl(l),Tg € ngk_z),
and « specifies a merge of two lists of size i, kK — i respectively.

2.3 Standard decompositions

Join trees can be decomposed into a sequence of leaf-insertion and tree-merging operations,
but these decompositions are not unique, in general. A key structure for our algorithms
is the standard decomposition graph, which is obtained by selecting an arbitrary order of
operations to construct the join trees of some graph G. Join decompositions are then unique
with respect to the standard order defined.

A standard decomposition graph H of G can be viewed as a generic program (or operator
tree) to build join trees of a given query graph. Unary nodes of H, labeled “+;,” construct



CONVERT-TO-SDG(v)
Let x be the label of v.
Let {wi,...,wy} be the children of v.

fn=20
Label v as “x”.
fn=1
Label v as “+;";
CONVERT-TO-SDG(w1).
Ifn>1

Label v as “x;";

create new nodes [, r, with label x;

delete all edges (v, w1),..., (v, wy,);

create new edges (v, 1), (v,7), (l,w1), (r,w32),...,(r,wy);
CONVERT-TO-SDG(I), CONVERT-TO-SDG(T).

Figure 5: Algorithm to obtain a standard decomposition graph.

a join tree by inserting a leaf x on its argument; binary nodes of H, labeled “X,,” construct
a join tree by merging two trees whose only common leaf is z.

Definition. A standard decomposition graph H of a query graph G = (V, E) is obtained

by modifying G as follows:

e Pick a node, say v € V, as root. Direct the edges in E from the root v outwards to
obtain G’. If there is a directed edge from u to w we say u is the parent of w. If there is
a directed edge (of length zero or more) from u to w we say u is an ancestor of w. Child
and descendant are the inverses of parent and ancestor, respectively.

e Transform G’ using algorithm CONVERT-TO-SDG(r), shown in Figure 5, where r is the
root chosen earlier. The result of this transformation is H.

The labels of descendants of a node v in H, denoted desc(v), is the set of node labels {w;}

of G that appear in the descendants of v in the form “x,,,,” “4,,,” or “w;.”

Example 3 Figure 6 shows a query graph and a standard decomposition graph obtained

from it. In this case node e was selected as root. The labels of descendants of the node v

labeled “+” in H is desc(v) = {a,b}. The labels of descendants of “+.” is {a,b,c,d,e}. m

When an insertion level k is selected at each node labeled “4.,” and a merge specification
« is selected at each node labeled “x,,” a standard decomposition graph become a complete
“program” to construct a join tree. The annotations in a graph H necessary to construct
T are called the standard decomposition of T in H.

Let r be the root of a standard decomposition graph H of G, and let T be a join
tree of G. The standard decomposition of T in H is obtained by applying the procedure
DECOMPOSE(T,r), defined in Figure 7.
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Figure 6: Query graph and standard decomposition graph.

DECOMPOSE(T, v)

Let {w1,...,wy} be the children of v in H.

fn=1
Let +, be the label of v.
decompose T into an insertion pair, say (T, k), on z.
annotate v as insert-at k;
DECOMPOSE(T, wy).

fn>1
Let V1, V5 be the labels of desc(w;),desc(ws), respectively.
decompose T into a merge triplet, say (71,75, «), on V1, V3.
annotate v as merge-using «;
DECOMPOSE(T}, w1 ), DECOMPOSE(Ty, ws).

Figure 7: Algorithm to obtain the standard decomposition of a tree in H.
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Figure 8: Obtaining the standard decomposition of a join tree.



Example 4 Figure 8 shows the process of obtaining a standard decomposition of a join
tree 7', using the standard decomposition graph of figure 6. First, the insert-at annotation
of the root “+.” is 2, because the join tree is the result of inserting e at level 2 in a smaller
tree. This is shown as a label “+.5” in the first row of the figure. Then, the merge-using
annotation of the node “x.” is [1,0], because the anchored list on ¢ of the join tree is
[(a.b),d], which results from the merge of lists [(a.b)], [d] using [1,0]. This is shown as a
label “x.[10)” in the second row of the figure. The remaining annotations are obtained
similarly. ]

3 Counting join trees

Our counting scheme is based on the tree decompositions described in section 2. We first
derive recurrence equations relating the number of join trees of a query graph G with the
number of trees of subgraphs of G. Then we apply these equations in the context of a
standard decomposition graph.

3.1 Recurrence equations

Observation 3 The following equations serve as base cases for the computation of the
number of join trees of a graph G = (V, E), namely |7g|. Let n = |V]| and v € V.
e If the graph has only one node, then it has only one join tree 7', and v is at level 0 in
T. That is,
|7¢| = ‘Tgm)‘ =1, forn=1.

e If the graph has more than one node, then it has no association tree in which v is at
level 0. That is,
‘Tg(o)‘ =0, forn > 1.

e There is no association tree in which v is at level greater than or equal to n. That is,

‘Té(i)

=0, fori > n.
e Since v appears at some unique level in any association tree of GG, the total number of

association trees is .
V(T
1Ta| =" ‘TG( )

i

Now, the next two lemmas determine the number of join trees that can be constructed
using our primitive operations of section 2.2.

Lemma 1. Let G = (V,E) be a query graph with n nodes. Assume v € V is such that
Gly_{v} is connected, and let (v,w) € E, and 1 <k <n. Then

‘T(g(k)‘z Z ‘721;(1')

i>k—1

Proof. The lemma follows from observation 1 in section 2.2.

10



COUNT-JT(v)
Let {wi,...,w,} be the children of v.

fn=20
annotate v with count-array [1].
fn=1
COUNT-JT(w1);
let [zo,...,Zn,] be the count-array of wi;
annotate v with count-array [0, 21, ..., Zn, 41,
where ZE = Z?:lk_l Z;, for k = 1, e,y + 1.
Ifn=2
COUNT-JT(w1), COUNT-JT(ws);
let [zo,...,Zn,] be the count-array of wy;
let [yo, - --,Yn,| be the count-array of wy;
annotate v with count-array [zo, .- -, Zn, +ns),
where z;, = >0 T Yr—i I; Jfork=1,...,n1 +no.®

%To simplify the description, we assume that y; =0 for 7 & {0,...,n2}.
Figure 9: Algorithm to count the number of join trees.

Lemma 2. Let G = (V,E) be a query graph with n nodes. Assume sets of edges Vi, V3
are such that G|y, G|y, are connected, Vi UVa =V, and Vi NVy = {v}, and let 1 < k < n.

Then
‘ k
7

Proof. The lemma follows from observation 2 in section 2.2.

-

) ‘Té’gk—i)

3.2 Counting standard decompositions

The standard decomposition graph defined in section 2.3 is used as an auxiliary structure
in the computation of the number of join trees of a query graph. Viewing the standard
decomposition graph again as a program (or operator tree), a bottom-up traversal is used
to determine how many join trees can be constructed by a given operation, based on the
number of trees that its children can construct. At each node we use either lemma 1 or
2 directly to determine the number of trees that can be constructed, and the result is
incorporated in the graph as a count-array annotation of the node.

For a node u labeled ®, (with ® € {4, x}), the count-array annotation has the form
[Z0, ..., Zn]. The interpretation is that node u can construct z; different trees in which leaf
v is at level 7. To determine the total number of join trees for a query, just sum all entries
of the count-array annotation in the root of the standard decomposition graph.

Let r be the root of a standard decomposition graph H. To find the count-array anno-
tations of H apply the procedure COUNT-JT(r), defined in Figure 9.

11
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Figure 10: Standard decomposition graph with count-array annotations.

Example 5 Figure 10 shows the count-array annotations on the decomposition graph of
Figure 6. The total number of different join trees for this query is 18. [

Theorem 1. The number of join trees of a given acyclic query graph G with n nodes can
be computed in O(n3) time.

Proof. A standard decomposition graph H of G can be constructed in linear time using
algorithm CONVERT-TO-SDG in figure 5. The number of nodes of H is linear on n. The
count-array annotations in H are obtained using algorithm COUNT-JT in figure 9 in O(n3)
time, since the computation required per node is quadratic at worst. Finally, the number
of join trees of G is the sum of the O(n) values in the count-array of the root of H.

4 Ranking and unranking

Ranking is the process of mapping a set of n elements to the integers 1 through n. In our
case the elements are trees and the set of trees is 7g. A ranking function computes for a
given tree, T, its rank, r, using the standard decomposition graph H of query G .

Unranking is the inverse of ranking. It determines which element of a set corresponds
to a given number. The result of unranking &, using the standard decomposition graph H
of query G, is a tree T which has rank k.

4.1 Mapping trees to integers

Our mapping between the N join trees of a query graph and the integers 1 through N is
based on the recursive application of the following idea. Assume we want to rank an element
z € S, and S is partitioned into sets Sy, ..., Sp. If z € Sk, for some £ < m, and we can find
a local rank of z in S, then we can set the rank of  in S to be local-rank(z, Sy,) + % & |S;|-
Conversely, to unrank some number y under our scheme, first find the set S; from which
the element must be retrieved, where £ = min; y < >7_|S;|. Then find the local rank
y =y — Y18, and finally unrank-local(y’, Sy)-

12



RANK(T)
Let v be the root of the standard decomposition graph.
DECOMPOSE(T, v).
LOCAL-RANK(v).
Let (r, k) be the local-rank of v.
Let [z0,-..,2n] be the count-array of v.
Return r + Ef;ol ;.

UNRANK(7)
Let v be the root of the standard decomposition graph.
Let (20, ..., 2s] be the count-array of v.

Let £ be min; r < 37 2.

Let 7 be r — Y F ! 2.

LOCAL-UNRANK(v, 7', k).

The resulting annotations insert-at and merge-using define the tree whose rank is 7.

Figure 11: Ranking and unranking algorithms.

In the case of join trees of a query of n relations, the set 7g is partitioned into sets
75(0)7 et ,Té)(n_l), for any given leaf v. For example, for the annotated standard decompo-
sition graph of figure 10, the numbers 1 through 5 are assigned to join trees in which leaf e
is at level 1; numbers 6 through 10 are assigned to those in which e is at level 2; numbers
11 through 15 are assigned to those in which e is at level 3; and finally 16 through 18 are
assigned to those in which e is at level 4.

Figure 11 shows algorithms to rank and unrank trees, based on a new annotation local-
rank in the standard decomposition graph, as well as procedures LOCAL-RANK and LOCAL-
UNRANK described below.

The procedure LOCAL-RANK operates on a standard decomposition graph H of a query
graph G, with annotations insert-at and merge-using that define a tree T. In addition, H
must also have annotations count-array. The procedure creates annotations local-rank on
the nodes of the graph. The interpretation of a local-rank annotation of the form (r, k) in
the root ®, of H is that T has local rank r in the set Tg(k).

For the same graph H of G, but without insert-at and merge-using annotations, the
procedure LOCAL-RANK finds (the insert-at and merge-using annotations that define) a tree
(k)

with rank 7 in 75", given 7, k as input.

4.2 Local ranking

For the local ranking of a tree, we again use the standard decomposition graph and the
primitive tree construction operations of section 2.2. The summands used to compute
‘T (g(k)‘ in lemmas 1 and 2 correspond to well-defined subsets of 7, g(k). The partition defined
by those subsets is appropriate for our needs.

13



Observation 4 Let G = (V, E) be a query graph with n nodes. Assume v € V is such

that G' = G|y_yy} is connected, and let (v,w) € E, and 1 < k < n. The set Té)(k) can
o . v(k),k—1 v(k),k v(k),n—2 v(k),i . v(k)

be partitioned into sets 7, T R e , where T € 7T ifT €7,", the

insertion pair on v of T is (T", k), and T' € Tgf(i). The size of each partition is

‘Té(k),i

— ‘T('l;;(i)

Observation 5 Let G = (V, E) be a query graph with n nodes. Assume sets of edges
Vi, Vy are such that G1 = G|y, G2 = G|y, are connected, Vi UVy =V, and Vi NV, = {v},

and let 1 < k < n. The set T(g(k) can be partitioned into sets Tg(k)’O,Té(k)’l, et ,Tg(k)’k,

where T € ’Tg(k)’i ifT e Té)(k), the merge triplet on Vi, V5 of T is (T1, Ty, @), and T} € Té)fi).
The size of each partition is
|k
i

Just as the annotations count-array provide the necessary set partition information in
the RANK and UNRANK procedures of Figure 11, we use a new annotation summands to
store information about the partitions introduced in observations 4 and 5.

‘Té;(k),z‘

= |75

. ‘Té’gk*i)

The summands annotation is an array o = [og,...,0n], whose elements in turn are
arrays of the form oy = [0%0,.--,0km]- If o is the summands annotation of a node whose
count-array annotation is [z, ..., Zm], then it holds that zx = Y ;v o4, for £ =0,...,n.

Let r be the root of a standard decomposition graph H. To find the summands anno-
tations of H apply the procedure SUMMANDS(7), defined in Figure 12.

Algorithms LOCAL-RANK and LOCAL-UNRANK are shown in Figures 13 and 14, respec-
tively. They implement recursively the idea of ranking in terms of set partitions, whose
one-level version is the basis of RANK and UNRANK. The necessary information is stored in
the count-array and summands annotations.

We do not describe in detail the procedures RANK-DECOMPOSITION and UNRANK-
DECOMPOSITION, but they are relatively straightforward. The issue is briefly mentioned
at the end of section 1.3.

The procedure RANK-TRIPLET(a, b, ¢; A, B, C) computes the rank r of a triplet (a, b, c)
from the set {(z,y,2) |1 <z < A1 <y < B,1 <2z < C}, and its inverse is UNRANK-
TRIPLET(r; A, B, C). These are also straightforward.

Example 6 Figure 15 shows the results of the local ranking for the tree T of example 4.
The graph contains the annotations of the standard decomposition of T" shown in figure 8,
the count-array annotations of figure 10, and the summands annotations computed by
SUMMANDS. Procedure LOCAL-RANK is used to compute annotations local-rank. The anno-
tations of a node “®,” of the decomposition graph are shown in the figure in the format

(ka l) Ouwp [l'(), .- axn] Ok = [UkOa s aakm]a

where p is the insert-at annotation if © = +, or else the merge-using annotation if ® = X;
[Z0, ..., Tn] is the count-array annotation; o = [0y, ..., o07] is the summands annotation, but
only oy, is shown. Finally, (k,[) is the local rank computed at the node; that is, the subtree

computed at the given node has rank k in set Tg,(l).
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SUMMANDS(v)
Let {wy,...,w,} be the children of v.

fn=0
there is no summands annotation in v.
Ifn=1
SUMMANDS(w1);
let [xo, ..., Zn,] be the count-array of wy;
annotate v with summands [09,01,...,0n,+1],
where O = [O'k(), Okly--- 7Ukn1]1 for k = 1, cee,M1 + 1,

and ovs — 4 T if0<kand k—1<1;
ki 0 otherwise.

Ifn=2
SUMMANDS(w1), SUMMANDS(ws);
let [zo,...,ZTn,] be the count-array of w;
let [yo, - - -, Yny] be the count-array of ws;
annotate v with summands [0g,01,...,0n,+ns),
where o = [0ko, k1, -+ 0kny), TOr K =1,...,n1 + no,
o — 4 TV ( ' ) £0< ki <ny
0 otherwise.

Figure 12: Algorithm to compute set partition information.
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LOCAL-RANK(v)
Let {w1,...,wn} be the children of v.

Ifn=20
annotate v with local-rank (1,0).
fn=1

LOCAL-RANK(w1);

let (1, k1) be the local-rank of wy;

let £ be the insert-at of v;

let [09,...,0n] be the summands of v;

annotate v with local-rank (r, k), where r = r; + Zf;al Oki-
Ifn=2

LOCAL-RANK(w1), LOCAL-RANK(w3);

let (r1, k1) be the local-rank of w;

let (rq, ko) be the local-rank of w;

let [z, ..., Zn,] be the count-array of ws;

let [Yo, - - - Yn,] be the count-array of wy;

let k£ be k1 + ko;

let o be the merge-using of v;

k
let ¢ be RANK-TRIPLET (71,79, RANK-DECOMPOSITION(Q); Zk,, Yk, ( ; ).

annotate v with local-rank (r, k), where r = ¢ + Ef;al Oki-

Figure 13: Algorithm for local ranking.
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LOCAL-UNRANK(v, 7, k)
Let {w1,...,wy,} be the children of v.
Ifn=20
arguments are consistent if r =1, k = 0;
there is no additional annotation on v.
Ifn=1
let [zo, ..., 2] be the count-array of v;
let [o0,-..,0n] be the summands of v;
arguments are consistent if £ < mn, r < zg;
let k1 be min; r < ZLO Okis
let 7, be r — ML
annotate v with insert-at k;
LOCAL-UNRANK (w1, 71, k1)-

fn=2
let [zo, ..., 2] be the count-array of v;
let o0, -..,0n] be the summands of v;
let [zg,...,Zn,] be the count-array of w;
let [yo, - - - ,Yn,] be the count-array of wy;

arguments are consistent if £ < n, r < zg;
let k1 be min; 7 < Y7, o
let k9 be k — kq;
k1—1.
k
let (r1,72,a) be UNRANK-TRIPLET(q; 1y, Ytp, | . |)-
1
let & be UNRANK-DECOMPOSITION(a);
annotate v with merge-using «;
LOCAL-UNRANK(w1, 71, k1), LOCAL-UNRANK(ws, 72, k3).

Figure 14: Algorithm for local unranking.

(1,2) +e2[0,5,5,5,3] 02=[0,0,2, 3]

(17 2) XC:[I 0] [07 0,2, 3] 02:[07 2, 0]

(1,1)+¢,1[0,1,1] 01=[0,1] (1,1)+¢,1[0,1] o1=[1]
(1,1)+5,1[0,1] o1=[1] (1,0) d [1]
(1,0) a [1]

Figure 15: Local ranking of (the standard decomposition of) a join tree.
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At node x. the merge-using annotation is [1,0]. For the purposes of this example we
assume that RANK-DECOMPOSITION([1,0]) = 1 and RANK-TRIPLET(1,1,1;1,1,2) = 1.

Now, applying RANK on the graph resulting from LOCAL-RANK, we determine that the
rank of T is 6. [

4.3 Efficiency of ranking and unranking

Once the count-array and summands annotations of a graph are available, ranking and
unranking of join trees is based on traversing arrays, for the most part. Actually, the
“bottleneck” of the process is the ranking and unranking of integer decompositions, since
each decomposition may have as many as O(n) elements. The relatively simple algorithms
we use now take O(n) time to rank and O(nlogn) time to unrank.

Theorem 2. Let G be a query graph on n relations. After a preprocessing step of O(n3)
time, association trees of G can be ranked in O(n?) time and unranked in O(n?logn) time.

Proof. By theorem 1, the standard decomposition graph H of G and its count-array
annotations can be computed in O(n?) time. To compute the summands annotation we
use algorithm SUMMANDS, which takes also O(n3) time, because it requires O(n?) per
node. This completes the preprocessing step of O(n3) time. To rank a tree, the most
expensive procedure is that of LOCAL-RANK. In the worst case, the time taken per node
is O(n) due to the ranking of integer decompositions. The total ranking time, then, is
bounded by O(n?). To unrank a tree, the most expensive procedure is that of LOCAL-
UNRANK. In the worst case, the time taken per node is O(nlogn) due to the unranking
of integer decompositions. The total unranking time, then, is bounded by O(n?logn)

5 Generating random join trees

Uniformly distributed random generation of join trees follows from our results on counting
and unranking. To generate random join trees for a given query graph G, first count the
number of join trees in the space as described in section 3; say there are IV join trees. Now,
simply generate a random number r between 1 and N, and unrank the join tree of r as
described in section 4. This can be done efficiently.

Theorem 3. Let G be a query graph on n relations. Assuming a source of random bits,
join trees for G can be generated at random with uniform distribution in time O(n?logn)
per tree, after a preprocessing step of O(n3) time.

Proof. To generate random join trees follow the procedure outlined above. Time bounds
follow from theorem 2.

6 Discussion

In this paper we have described procedures to count the number of join trees that can be
used to evaluate a given query, and to generate them uniformly at random. The difficulty

18



of those problems results from the fact that there is no one-to-one mapping between join
trees and a simple combinatorial structure.

Our concept of a standard decomposition graph provides a supporting structure for
counting and random generation, because it defines a canonical construction for each tree.
In addition, computing an array of values that characterizes the number of canonical con-
structions can be computed bottom up in an efficient way.

We gave priority to clarity over efficiency when describing our algorithms, and the reader
must be aware that there are obvious optimizations. None of those optimizations, however,
seems to improve the time bounds stated in our theorems.

The integers required by our algorithms can become quite large, as is the case with
other graph counting/generation problems [vL90],section 10.1.5. This eventually limits the
applicability of our current results. Nevertheless, the algorithms can be used to a good
extent on practical database queries (e. g. certainly for queries of 20 relations).

Acknowledgements. We are grateful to Zandra-Navarro-Villicafia for her suggestions
and comments on preliminary drafts of this paper.
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