Cost distribution of search spaces in query optimization

C.A. Galindo Legaria, J. Pellenkoft, M.L. Kersten
Computer Science/Department of Algorithmics and Architecture

CS-R9432 1994



https://core.ac.uk/display/301654104?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Cost Distributions of Search Spaces in Query Optimization*

César Galindo-Legariaf Arjan Pellenkoft Martin Kersten

CWI
P. O. Box 94079, 1090 GB Amsterdam, The Netherlands

{cesar,arjan,mk }@Qcwi.nl

Abstract

Query optimization algorithms explore a large space of query execution plans look-
ing for an optimal solution. The predominant algorithms move around the search space
in either a deterministic or probabilistic way. The performance of probabilistic opti-
mization algorithms is strongly influenced by the cost distribution over the search space,
the connectivity of the space and the overhead cost.

The transformation free (TF) Query Optimization strategy proposed in this paper
is insensitive to the search space connectivity. We show that under weak conditions
and the assumption of an accurate cost model the performance and accuracy of the TF
strategy in comparable with probabilistic strategies.
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algorithms and problems.

Keywords and Phrases: Randomized query optimization, transformation-based op-
timization, transformation-free optimization, random generation of query evaluation
plans, counting of query evaluation plans.

1 Introduction

Query optimization is a combinatorial search problem, because for a given query one must
find the ’best’ Query Execution Plan (QEP) out of many semantically equivalent alterna-
tives. For an optimizer the “best” QEP would be the one with the lowest cost, found so
far.

For a given query the number of alternative QEPs to consider depends, among other
things, on the number of relations and the number of available join algorithms. The number
of alternatives grows fast as the number of relations in a query increases.

Due to the large number of alternatives, it becomes impossible to use an exhaustive
search strategy when queries are no longer of trivial size. Instead non-exhaustive strategies
are often used, which are either deterministic or probabilistic. They aim for a “good” but
not necessarily optimal solution. This paper focuses on the probabilistic search strategies.

*This work has been supported in part by ESPRIT-III project 7091, “ Pythagoras”.
tC. Galindo-Legaria was supported by an ERCIM fellowship.



Several probabilistic search strategies have been proposed, like : Simulated Anneal-
ing (SA), Iterative Improvement (II) and others [IW87, IK90, IK91, SG88, LVZ93, OL90,
INSS92, GD87]. These search strategies are probabilistic in the sense that they start at a
randomly selected QEP and/or the generation of the next QEP involves some probability.
To generate the next QEP transformation rules are used. These rules are based on prop-
erties of the underlying algebra, such commutativity and associativity. The QEPs that can
be generated using a single transformation are called the neighbors of the current QEP.

The performance of these transformation based optimization algorithms depends on
the cost distribution over the search space and its topology [IK90]. Since the set of used
transformation rules defines which QEPs are neighbors, a topology is imposed on the search
space.

The probabilistic strategy we propose does not move around in the search space following
transformations, but randomly chooses a QEP out of all alternatives. This means that the
QEP chosen does not depend on the previous QEP. The probability of a QEP being chosen
is equal for all QEPs. In this way the transformation free (TF) algorithm is not sensitive
to the topology of the search space, also See [GLPK94Db].

The simple overall architecture of the TF algorithm makes it possible to focus on the
cost estimation of a QEP and the random generation of QEPs. In Section 5 the essentials
of the algorithm are explained. Also see [GLPK94a].

The results of the experiments presented in this paper provide a quantitative basis for
comparison of probabilistic models. We also give a comparison of the performance of I, SA
and TF.

In Section 2 we give the definitions we use and describe three optimization algorithms.
Section 3 describes details of the experiments, and Section 4 the experiments showing the
cost distributions over small search spaces. The counting and random generation of valid
trees for acyclic query graphs is described in Section 5 and in Section 6 random sampling
techniques are validated. In Section 7 the direct comparison between the tree optimization
algorithms is given and our conclusions are given in Section 8.

2 Probabilistic search algorithms

2.1 Definitions

Query graph. We represent a query by means of a query graph. Nodes of such graph are
labeled by relation names, and edges are labeled by predicates. An edge labeled p exists
between the nodes of two relations, say R;, R;, if p references attributes of R;, R;. The
result of a query graph G = (V| E) is defined as a Cartesian product followed by relational
selection: op a...np, (R1 X +++ X Rpy,), where {p1,...,p,} are the labels of an edges

Query evaluation plans. (QEPs) are used to evaluate queries, instead of the straight
forward definition of product followed by selection given above. A QEP is an operator
tree whose inner nodes are labeled by a join operator and whose leaves are labeled by
relations. The result of a QEP is computed bottom-up in the usual way. QEPs often
include annotations on the join-algorithm to use —e. g. nested loops, hash, merge, etc.—
when several are available.
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Figure 1: A query graph and one of its valid QEPs.

Note that not every binary tree on the relations of the query is an appropriate QEP,
because some may require the use of Cartesian products. Those that do not require products
are called valid [OL90]. The topology of valid plans is given by association trees.

Association tree. Given a connected query graph GG, an unordered binary tree T is called
an association tree of G, when it satisfies the following recursive definition : The leaves of
T correspond one-to-one with the nodes of G, and every subtree of T' is an association tree
of a connected subgraph of G.

Topology of QEPs. Based on the topology of the QEPs two types can be distinguished;
linear QEPs and bushy QEPs. A linear QEP has at least one base relation as input and a
bushy QEP can also have intermediate results as input. Note that a bushy tree can also be
linear.

The two representations of queries — QEPs and graphs — emphasize different aspects of
the query. A query graph presents a collection of relations and the predicates that connects
them, but it does not impose an evaluation order. A QEP specifies unambiguously the
inputs to each operator, and how it can be evaluated. See Figure 1 for a query graph
example and one of its valid (linear) QEPs.

Search space. The set of all QEPs from which the optimizer can choose a plan is called
the search space. In transformation based optimization algorithms the search space is
mostly referred to as a graph G = (V,E) with nodes V and edges E. The nodes represent
QEPs and the edges represent transformations between QEPs.

A search space can be seen as a “landscape” if we associate the cost of a plan to
its “hight”. [IK91] divided these landscapes into three categories; cliff, bumpy or smooth
and analysed the performance of Simulated Annealing and Iterative Improvement in these
landscapes.

The size of the search space can be limited by imposing rules on the type or shape of
the QEPs. For instance, by only considering valid QEPs. Such a smaller search space can
be beneficial to the optimization process.



A common way of reducing the search space is by considering only the valid QEPs. This
search space reduction is based on the assumption that QEPs which incorporate a Cartesian
Product are not likely to result in a low cost plan [SACT79].

Sometimes the search space is reduced even further by only considering linear QEPs, but
studies presented by [IK91] suggest that the space of bushy QEPs has a higher percentage of
good plans. In our experiments we therefor consider the search space of valid bushy QPEs.

Tree transformations. Our implementation of the traditional transformation-based al-
gorithms uses the tree transformations of [IK90, IK91] for bushy trees, except for algorithm
selection, because we only use hash-join.! Only those transformations that lead to a valid
QEP can actually be used on a given tree. The transformation rules are:

Commutativity: AxB«— Bx<A

Associativity: (A B)xC — A (B C)
Left join exchange: (A B)<xC «— (AxC)xB
Right join exchange: A<t (B C) < B (A C)

Lemma 1. Consider the search space of bushy QEPs with n join operators and the
transformation rules above. Then, every QEP has 2 xn — 1 neighbors.

Proof sketch. For a given QEP with n join operators we can apply n times the com-
mutativity rule which results into n valid trees. To apply the three other rules we need
an internal node which has a parent, so every join operator except the root. In total
n — 1 potential transformations are possible for each of the three rules. But given a node
and its parent only one of the rules will result in a valid plan. Therefor, the number of
valid-neighbors for this set of rules is 2 xn — 1.

2.2 Counting valid QEPs — the easy cases

For a given query graph the number of valid QEPs is, in general, not easy to compute,
because the topology of the query graph has to be taken into account. For some query
graphs the number of valid plans can be computed easily, because they have a “regular”
structure. Fortunately the upper and lower bound of number of valid plans for a query
graph on n relations is given by query graphs for which the number of valid plans can be
computed easily. The lower bound is set by a string graph and the upper bound is set by
a completely connected graph.

In the following description of query graph topologies, n denotes the number of relations
participating in the query. The formulas give the number of valid unordered trees — trees
which do not distinguish the left and right input.

If left and right are distinguished, the total number of valid ordered trees can be com-
puted by multiplying the number of valid unordered trees by 2"~!. If there are several
possibilities for each join operator -i.e. hash-join, nested-loop or merge-scan-, then the total
number of valid trees increases even further.

Suppose we have a query graph in which n relations participate, and there are m imple-
mentations for a join available. If for this query graphs there are T valid (un)ordered trees,
then the total number of valid trees is : T * m™~ L.

'We did experiments with nested-loop as well, and the results are similar to those of hash-join.



Figure 2: A string query
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Figure 3: A completely connected query on 4 nodes

String Query. The query graph for a string query of n relations, has two nodes with
degree 1 and n-2 nodes with degree 2, see Figure 2. The number of unordered valid QEPs

is:
(2n —2)!

nl(n —1)!

Completely connected Query. The query graph for a completely connected query of
n relations, has n nodes of degree n-1. See Figure 3 for a completely connected graph on 4
nodes. The number of unordered valid QEPs is:

(2n —2)!
(n —1)!

The bounds for acyclic query graphs are given by the number of possible alternatives of
the string query and the star query.

Star Query. The query graph of a star query of n relations, has n-1 nodes with degree 1
and one center node with degree n-1. See Figure 4 for a star on 5 relations. The number of
unordered valid QEPs is:

(n—1)!

2.3 Optimization algorithms

Iterative Improvement (IT) performs a large number of local optimizations. A local lo-
cal optimization starts at a random QEP, accepting only moves which improve the solution.
When a local minima has been reached the process is repeated until a stopping condition is
met. The output returned is the local minima with the lowest cost.
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Figure 4: A star query

[NSS86] shows that as time approaches infinity, the probability that II visits the global
minimum approaches 1. However, given a finite amount of time, the performance of II
depends on the characteristics of the cost function over the search space and its connectivity.
The stopping condition can both depend on the quality of the output and the effort invested.
Figure 5 shows the pseudo-code of the II algorithm.

PROCEDURE II(){
minS = infinite;
WHILE not (stopping_condition) DO {
S = random state;
WHILE not (local_minima(S)) DO {
S’ = random state in neighbors(S);
if cost(S’) < cost(S) THEN S = S’;}
IF cost(S)<cost(minS) then minS = S;}
return(min$S) ;}

Figure 5: Iterative Improvement

In our experiments we compared the quality of algorithms after exploring a fixed number
of plans. For the II algorithm this fixed number of plans was used as stopping condition.

To obtain a random starting point for a local optimization we used our algorithm that
generates plans at random in a uniform way, (See section 5.2).

Instead of exhaustively searching all neighbors of a plan to detect whether or not it is a
local minimum we used the definition of a r-local minimum [Kan91]. This method classifies
a plan as local minimum if none of the r randomly selected (with repetition) neighbors has
a lower cost. With r being equal to the number of neighbors of the plan. Note that since
the plans are selected at random, and repetitions are therefor possible, a r-local minimum
is not guaranteed to test all neighbors.

Simulated Annealing (SA) starts at a random QEP and randomly generates moves to
next QEPs. If the next QEP is an improvement the move is accepted, if the move leads to
a QEP with higher cost it is accepted with a certain probability. As time progresses this
probability decreases until it is zero, which ends the optimization sequence. The output is



the QEP with the lowest cost. It can be shown that the algorithm converges to the global
minimum as temperature approaches zero.

Again, given finite amount of time to reduce the temperature, the performance of SA
depends on the characteristics of the cost function over the search space and its connectivity,
which make it sensitive to the starting point. Figure 6 shows the pseudo-code of the SA
algorithm. For more detailed descriptions of the SA and II algorithms see [IW87, IK90,
SG88, NSS86.

PROCEDURE SA(){

S = S0;
T = TO;
minS = S;

WHILE not(frozen) DO {
WHILE not(equilibrium) DO {
S’ = random state in neighbors(S);
deltaC = cost(C’) - cost(S);
IF (deltaC <=0) THEN S = S’;
IF (deltaC > 0) THEN S = S’ with probability e”(-deltaC/T);
IF cost(S)<cost(minS) THEN minS = S;}
T = reduce(T);}
return(minS)}

Figure 6: Simulated Annealing

Like in II the Simulated Annealing algorithm starts at a random state. In our imple-
mentation we used our algorithm that generates plans at random in a uniform way, see
Section 5.2. For SA specific parameters we used the parameters given by [Kan91].

parameter value

initial temperature Ty || 2% cost of initial plan

frozen T < 1 and cost unchanged for 4 stages
equilibrium 16 = J visited states in current stage
temperature reduction || Tj,eq = To1q * 0.95

As extra stopping condition, (the frozen condition), we added the number of plans
explored. The equilibrium condition means that the inner loop finishes if n plans have been
explored, with n = 16 x Number of joins in the tree

Transformation Free (TF) generates random QEPs, with replacement, and keeps track
of the one with the lowest cost. The algorithm terminates after it has visited n QEPs or
when the cost of the best QEP found so far is low enough. Like II and SA, if TF is
given infinite time it will find the global minimum. Unlike SA and II, if time is finite TFs
performance only depends on the cost distribution over the search space and not on its
connectivity. Figure 7 shows the pseudo-code of the TF algorithm.

In our experiments we used the number of plans explored as stopping condition.



PROCEDURE TF(){
minS = infinite;
WHILE not(stop_condition) DO {
S = random state;
IF cost(S)<cost(minS) THEN minS = S}
return(minS)}

Figure 7: Transformation Free

2.4 SA and IT (motivation)

The probabilistic search algorithms SA, II, and their variations rely heavily on transfor-
mation rules to generate candidate execution plans. The performance of these algorithms
depends, in addition to the cost distribution in the search space, on the set of transforma-
tions being used. In particular, a complete set of transformations —i. e. one that is sufficient
to transform a starting plan into any other plan in the space— does not guarantee good
behavior, and it is sometimes necessary to add redundant transformations to improve the
performance of algorithms [IK90].

Several sets of transformation rules have been studied, but the extent to which they
allow rigorous analysis and prediction of the behavior of transformation-based algorithms
is somewhat limited —rather, they serve to provide qualitative insight [IK91]. A question
that motivates the present work is the following:

if we are allowed to explore only a limited, fized number of plans, then what is more
likely to produce good plans, the application of transformations or a random selection from
the complete space?

For TF to work we need to know the cost distribution and we must be able to generate
QEPs at random in a uniform way. In section 4.1 we show the results of our exploration of
the cost distribution over the search space.

Similar experiments were done by [IK91], but they only tested star queries. They showed
that, if the variance of the catalog increases (the size difference of the relations increases) the
distribution shifts to the left and the range of scaled cost increases. This can be interpreted
as that a substantial part of the search space consists of “good” QEPs. In our experiments
we extended the range of queries to acyclic query graph.

In Section 5 we discuss several ways to generate plans at random and show how unifor-
mity can be guaranteed.

3 Experimental setup

This chapter discusses the conditions in which the experiments were performed. It describes
the cost model, schema, catalogs, queries and our measure for good plans.

3.1 Cost model

For all our experiments we used the cost function provided by the Analytical Performance
Evaluator which models DBS3 [ACV91]. The initial set of experiments were conducted
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using nested-loop joins. Since this is a conservative implementation of a join operator we

Figure 8: Relations and their attributes

changed it to hash-join. The observations in the sequel also hold for nested-loop.

For the cost function of the hash-join we assumed that the hash-join algorithm sorts its

inputs such that it builds the hash tables on the smallest relation [Gra93].

The cost function used for the hash-join was adopted from [Kan91], and is given below:

With {R} and {S} denoting the sizes of the two inputs and hash, move, comp and F
constants. It is assumed that {R} < {S} so the cost of building the hash table depend

({R} + {S}) * hash + {R} x move + {S} * comp * F

on the size of the smallest relation.

3.2 Schema, catalogs and queries

Schema The database schema considered is the Portfolio Club Experimental Model
(PEM) [ACV91]. It was designed to provide a realistic experimental base for complex query
definition, evaluation and benchmarking in the EDS project. The PEM schema contains

several relations join-able through foreign keys, See Figure 8 for the database schema.

Catalogs

The experiments were done for three different catalogs. They differed in the
size of their relations, the sizes are given in Figure 9. The catalogs have been chosen such

that we have a catalog with low, middle and high variance in their relation sizes.




catl cat2 cat3
1 ms 22 22 22
2 ph | 5015 107407 25032
3 dv 728 744 6686
4mx | 5015 107407 505
5mn | 1000 1000 1000
6 ip | 22249 69632 22249
7 in 505 5000 505
8 sh | 1100 1100 10000
9mv | 1100 1100 10000
10 pf | 1000 49965 5001
11 nv | 1100 1100 10000
12 iz 500 500 500

Figure 9: sizes of the relations

Queries. The experiments have been performed for queries of 4 up to 12 relations on the
three catalogs. For the queries of 4 to 8 relations it is possible to enumerate all valid QEPs,
which made it possible to compute the exact cost distribution. For the queries of 8 to 12
relations the cost distribution have been computed using sampling.

The cost distribution for the query of 8 relations was completely known, so we could
compare this with the cost distribution obtained by sampling to validate the sampling
techniques, (See Section 6).

The queries of 8 to 12 relations were also used in comparing the performance of the
three optimization algorithms. Figure 10 shows the query graphs for the used queries. The
topology of the query graphs is neither a star nor a string, so the uniform random generation
of plans had to be closely examined.

3.3 Cost metrics

The purpose of the first experiments are to investigate the distribution of cost over the
search space, and especially the ratio of good QEPs. Like [Swa89b] we classify queries as
good, acceptable and bad according the following criteria:

good cost(p) < 2 % cost(cheapestQep)
acceptable | 2 * cost(cheapestQep) < cost(p) < 10 * (cheapestQep)
bad 10 * cost(cheapestQep) < cost(Qep)

The number of plans explored was used for comparison of the optimization algorithms.
The advantage of this metric over using time is that the results are less implementation and
system dependent. The cost estimation of a plan is assumed to be a major cost factor in an
optimization algorithm, so the number of plans for which the cost are computed is a good
measure for how much effort an algorithm has put into finding a good plan.

10



4 : ph - sh - nv - dv 5 : ph - sh - nv - dv
|

ms
6 :in - ph - sh - nv - dv 7 : ip - in - ph - sh - nv - dv
I |
ms ms
mv
|
8 : mx - ip - in - ph - sh - nv - dv 9 :mx - ip - in - ph - sh - nv - dv
I I
ms ms
mv mn mv mn
I/ |/
10 : mx - ip - in - ph - sh - nv -dv 11 : mx - ip - in - ph - sh - nv - dv
| | I
ms pf ms
mv mn
[/

12 : mx - ip - in - ph - sh - nv - dv
| |
pf ms

Figure 10: Queries used in the experiments

4 Cost distribution of small spaces

This section describes our experiments to explore the complete search space of small queries.
It describes the algorithm to generate all plans and shows the results obtained.

Exhaustive generation of QEPs. Remember we consider connected queries with
acyclic query graphs. Removing an edge form such a graph disconnects it, leaving two
connected graphs. This makes it possible to enumerate the set of all valid QEPs efficiently,
by recursively splitting a query graph G as follows.

If the graph has one node, then the only QEP is the relation that labels such node;
otherwise remove an edge, say labeled p, to disconnect the graph, then find QEPs Q1, Q-
for the two connected graphs that remain, and finally return (Q B Q2) as a QEP for G.

When at each recursion level all possible splittings of the graph are considered, all valid
QEPs are generated. Using the backtracking facility of Prolog, the algorithm takes only a
few lines of code.

11
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Figure 11: Histograms and probability of finding a good plan in a random sample.

4.1 Results of experiments

Figure 11 shows the cost distribution of valid QEPs for queries having 4 to 8 relations for
the three different catalogs. For all spaces explored exhaustively the number of good plans
is sufficiently large that a run of several tens of randomly selected plans will hit a good one
with high probability.

One can observe that as the number of relations increases the number of good plans
decreases. This coincides with observations made by [Swa89a).

The queries of 6 and 7 relation have fewer good plans than query 8 under catalog 1, so
the shape of the query seems also to have an impact on the cost. Also the type of catalog
has an effect on the cost distribution, catalog 3 (with many big relations) has relatively few
good plans compared to catalog 1 and 2.

Using standard statistical techniques the number of random plans needed to hit a good
one, with a certain probability, can be computed.

Lemma 2. Given the ratio of good plans, Pyooq, and the required probability of hitting a
good plan ,P,cq, the number of plans n that must be explored is :

_ log(1 — Prey)
log(1 — Pyood)

12
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Figure 12: Histograms and probability of finding a good plan in a random sample.

Proof sketch. Given that the ratio of good plans is Py, the chance of selecting a
wrong plan is 1 — Py,,q. The chance of selecting a sequence of n wrong plans is therefor
(1 - Pgood)n-

Since the probability of selecting a good plan has to be P4, the probability of selecting
a wrong plan must be 1 — Prq.

Given the two expressions that tell the probability of selecting a wrong plan we can write

the following equation : 1 — P.eg = (1 — Pyooq)”. Rewriting this equation leads to the
log(1—Preq)

eXPression: n = o, i—p _ ay°

Figure 12 shows the probability of hitting a good plan with 95% probability for several
ratios of good plans at increasing sample size.

5 Random generation of QEPs

For small spaces we know the cost distributions, but we are also interested in the cost
distributions over bigger spaces. To obtain the cost distributions for bigger spaces we use
sampling, which implies the random generation of plans.

We can easily generalize the cost distribution of a sample if the generation of QEPs is
done with a uniform distribution. The ratio of good, acceptable and bad plans of the sample
then approaches the ratios of the whole space. For sampling search spaces we considered
two kinds of sampling techniques, guasi-random and uniform-random.

5.1 Quasi random generation of QEPs

The following two procedures generate quasi-random QEPs. They are easy to implement,
but they either do not guarantee uniformity, or take a very long time.

13



first choice second choice plan probability of generation
(b,c) - (a1 b) < (ecxad) 1/3
(a,b) (c,d) (e (d< (b)) 1/6
(b,c) (a< (b (e d))) 1/6
(c,d) (a,b) (d< (a< (b)) 1/6
(b,c) (d< (e (a b)) 1/6

Figure 13: Generation of quasi random QEPs by edge selection.

Random-edge selection. This procedure is similar to the technique used in Section 4 to
generate plans exhaustively. Here, instead of considering all possible graph splittings,
we split the graphs by randomly selecting an edge at each step, which results in a
random plan.

Random-walk. This procedure is based on transformation rules to move from one valid
plan to another. If we start at some plan in the space and successfully apply trans-
formation rules at random, we get a sample from the space being explored.

Random walks in graphs have been widely studied —see, for example, [Rag90]. In
particular, if all nodes in a graph have equal degree, as is the case here [Kan91], then we
are equally likely to be at any node of the graph after n steps, for a sufficiently large n,
regardless of the starting point. In practice, however, the length of the walk seems too large
to be used to generate a single uniformly-distributed plan efficiently. Instead, we consider
all plans visited in a random walk as a random sample of the space.

To see why the random-edge method does not produce equi-probable QEPs, consider
the query graph {(a,b), (b,c),(c,d)}. If we select (b,c) as the first edge to split the graph,
then the plan is already completely specified —remember that left and right children are
not distinguished. If, instead, the first edge selected is either (a,b) or (c,d) we must make
a second choice. If choices are made uniformly from the available options, the table in
Figure 13 shows the probability of generating each plan. In principle, it seems that the
procedure can be modified to use weighted instead of uniform selection at each step, so that
the resulting QEPs are all equi-probable. But computation of the appropriate weights is
difficult, and we have not found a way to do it efficiently, yet.

5.2 Uniformly distributed random QEPs

We want to be able to generate valid plans for a given query graph, such that all plans have
equal probability of being generated. For small queries a simple, and in-efficient, brute-
force/filter method is feasible, but for bigger queries a more elaborate method has to be
used.

In-efficient generation. A straight forward method is to generate binary trees at ran-
dom, like proposed in [RH77] and permute the relations to the leaves. Since this method
generates all valid and invalid plans we need to check if the resulting plan is either valid or
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Number of relations ‘ All plans ‘ Valid plans ‘ Fraction

5 40320 576 0.014

10 6.4x1015 1.3x10'! 2.1x107°
15 3.0x10%° 7.6x1021 2.5x108
20 5.2x10%4 1.5x10%* | 2.8x10~!!

Figure 14: Fraction of valid plans

invalid. If it is an invalid plan it must be discarded, and an other plan must be generated
until a valid plan is detected.

The efficiency of this method depends on both the fraction of valid plans over the total
number of plans and on how fast the type (valid or unvalid) of a plan can be detected. Using
the definition of association trees in Section 2 we can come up with an efficient recursive
algorithm which labels a tree as valid or invalid.

The fraction of valid plans over the total number of plans decreases fast as the number
of relations, n, participating in the query increases. For example, if we compare the total
number of valid and invalid plans to the maximum number of valid plans for acyclic queries
we can compute the fraction for the best case.

The total number of valid and invalid plans is given by the formula of the completely

connected query graph : ((25:12))!!, and the maximum number of valid plans for acyclic query
graphs is given by the formula of the star query : (n—1)!. Dividing these results in : g;—i%'z,

In Table 14 the fraction of valid plans is computed for several n. From the formula and the
table we can see that we have to generate many plans before we will generate a valid one.
This method is therefore only feasible for very small queries.

Efficient generation. FEfficient generation of uniformly distributed plans is not only
needed for speeding up the sampling, but it is also essential for the Transformation Free
optimization algorithm. The efficient generation of valid plans (association trees) described
in the following paragraphs is based on counting the number of association trees for a given
acyclic query graph, also See [GLPK94a| for details on algorithms.

For computing the number of association trees we consider the level numbers of the
relations in a plan, and especially the number of plans in which a relation v is at some level
k. This set of trees is denoted as Tg(k). The set of all trees for the graph is denoted 7g.

With each node a level-sequence is associated. The level-sequence, ag, a1, -.., a,, denotes
the number of plans in which the node is at a certain level, with a; denoting the number of
trees in which the node is at level i.

For example, if a node has the sequence 0,2,2,1 this means that there are 0 trees in
which the node is at level 0, 2 trees in which the node is at level 1, 2 trees in which the node
is at level 2 and one tree in which the node is as level 3, and there are no trees in which the
node is at a deeper level.

Some elementary observations are the following:
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e [f the graph has only one node, then there is exactly one association tree, and v is at
level 0; that is, |7g| = ‘Tg;(")‘ =1, forn=1.

e If the graph has more than one node, then there is no association tree in which v is
at level 0; that is, ‘Tg(o)‘ =0, for n > 1.

e There is no association tree in which v is at level greater than or equal to n; that is,
‘Tg(l) =0, for i > n.

e Since v appears at some unique level in any association tree of G, the total number

of association trees is .
1Te| =" ‘TGW
i

The previous observations provide base cases for the computation of |Té’(i) |, and establish

their relation with |7¢g|.

To compute the number of association trees for a given query graph we use two recurrence
equations. The first one eztends a subgraph by adding one more node, and the second one
takes the wunion of two subgraphs whose intersection is a single node. The lemmas and
proofs given will be followed by an example.

For convenience, we sometimes represent trees using lists anchored on a leaf w, which
contain the subtrees found when traversing the tree from the root to w. For example,
the lists anchored on w of the trees in Figure 15 are (T1,T5), (v,T1,Ts), (T1,v,T3), and
(Th, Ty, v), respectively.

Intuition for extending a subgraph. Assume a query graph G is given and also the
set of valid trees 7¢ for this graph. If GG is extended by a node v which shares an edge with
node w, already in the graph, we can construct the set of trees, 7gezt, for the extended
graph G®!, based on the set of trees 7 as follows.

In every tree ¢ € 7g one leave is labeled w. From this tree we can construct several
valid trees for the extended query graph Gz, by “grafting” the new relation v somewhere
in the path from the root to leave w. If we write this path as a list anchored on w,
ie. (T1,Ty,...,T,) the valid plans for the extended graph constructed from this list are:
(Th, Ty, ..., Ty, v), (T1, T3, ...;v, Tyy) ... (0,11, Ts,...,T,). the level at which v ends up is then
level(w) + 1, level(w), ... , 1, respectively

From this example we can see that the trees in which v ends up at level [ are constructed
from trees in which w was at level [ —1,1,1 4 1, ... which leads to the formula of lemma 1.

Lemma 1. Let G = (V,E) be an acyclic query graph. Let v be a node in V such that
G' = Gly_{v} is connected, and let (v,w) € E. Then

‘Té’(k)‘z Z ‘%uj(i)

i>k—1

Proof sketch. There is a one-to-one mapping between trees in 7g and pairs of the
form (7', k), where T' = (T3,...,T;) is the list anchored on w of a tree in 7¢/, and
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Figure 15: Adding a new leaf to a tree.
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Figure 16: Extending query graphs by one node

1 <k <i+ 1. To obtain the tree T' € Tg corresponding to such a pair, insert a new
leaf v in position k of the anchored list of 7'. Figure 15 shows an example of 7', and
the trees obtained from pairs (77, 1), (T",2), (T",3). The equation follows from the fact
that the tree obtained from a pair (77, k) is in Té’(k), and the length of the list of 7" is
at least k — 1. [

Example of extending a subgraph. A base case is a query graph G = (V1, E;) with
Vi = {a}, E1 = {}. There is only one plan possible and «a is at level 0 in this plan (see
definition). Extending Q1 with node b results in query graph Go = (Va, Ey) with V3 = {a, b}
and Fy = {(a,b)}. Still there is only one plan possible and b can only be at level 1 in this
plan. Extending G9 with node ¢ results in query graph Gs = (V3, E3) with V3 = {a, b, c}
and E3 = {(a,b), (b,c)}. Now there are two valid plans, in one plan c is at level 1 and in
the other plan c is at level 2. In figure 16 this process is depicted for up to six nodes and
for each relevant node the level-sequence is shown.

Intuition for the union of two subgraphs Assume that a query graph G is the result
of the union of two disjunct query graphs; G; and G3. These two subgraphs have exactly

17



one node v in common. The union of two trees ¢; and ¢s (a valid plan of G; and a valid
plan of G2) results in a valid plan for G. The merging of the two trees is done as follows.

The two paths from the root to the leave v are the anchored lists; I; = (T}, Ty, -+, T})
for ¢, and Iy = (T2,T2,---,T2) for t5. If the two paths are merged such that the order
two list are maintained the resulting tree is valid for Q). Since the paths have length n and
m node v will be at level n + m in the resulting tree, so in the sequence-list of node v, in
the resulting query graph, slot a,,+, will be increased by the number of possible mixings of
these two trees. This slot will also be increased by other combinations of trees whose path
lengths add up to m + n. So given the two level-sequences of node v for the two subgraphs
we can compute the level-sequence for node v for the resulting query graph.

Lemma 2. Let G = (V,E) be an acyclic query graph. Let V1, V, be sets of nodes such that
V=ViUVy, ViNVy ={v}, and the graphs G1 = G|y, and Gy = G|y, are connected. Then

)

Proof sketch. There is a one-to-one mapping between trees in TG( ) and triplets of
the form (71, Ty, c), where T1 = (T¢,...,T}) is the list anchored on v of a tree in Tv( )

Ty = (T}, ..., T¥™%) is the list anchored on v of a tree in TG( D, ;and ¢ = (aq,. .., ozk_z-+1)

. ‘Té’gk’i)

-3 e

is a composition of i in k — i+ 1 [NW78]. To obtain the tree T € 7 o(k) corresponding
to such a triplet, merge the lists for 77 and 75 as specified by ¢ —each o indicates how

many subtrees of the list of 77 go between subtrees 7' and TJ in the merged list. For
example, Figure 17 shows how to find the T of a trlplet (1, 12), (1},T%), (1,1,0)).

The equation results from the fact that there are ; compositionsof i ink—i+1. m

Example of the union of two subgraphs Figure 18 shows how the above lemmas are
used to compute the number of association trees for a graph Qg = (V, E) of five nodes;
V = {a,b,c,d,e} and E = {(a,b),(b,c),(c,d),(c,e)}. The graph is neither a star nor a
chain. Each column of the table shows the data for a subgraph of GG, and it is computed
based on the values of previous columns. The bottom row shows the total number of trees
for the subgraph.

For example, since Qg|{apcde} extends Qg qpcqy by one node, lemma 1 is used to compute
the entries of the last column. The new node e is connected to old node ¢, so we need to
know the number of trees in Qg|{abcd} in which c appears at various levels. This information
is available in the second-to-last column, whose values were in turn computed using lemma
2 on the result of earlier columns.

The following theorems follow from the application of lemmas 1 and 2. The first theorem
refers to the time required to compute a matrix similar to that of Figure 18.

Theorem 1. The number of association trees for a given acyclic query graph G on n
relations can be computed in polynomial time.?

2A loose upper bound on theorems 1 and 2, and the corollary of theorem 2 is O(n?).
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Figure 17: Merging two trees that share a leaf.
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759 =3 [ 1787 =5

751 =3

Tal=1 | |Tel=1 | [Ta|=2 | [Te|=1 | [Te|=1 | [Tg|=5 | |[Ta|=18

In each column, G is the subgraph of Qg specified in the top row.

Figure 18: Counting the number of association trees.
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The second theorem is based on a natural numbering, or ranking of all trees of a given
graph, extracted from the matrix used in the computation of the number of trees. For
example, from the last column of the matrix in Figure 18, we assign the numbers 1 through
5 to the trees of Qg in which e appears at level 1; numbers 6 through 10 to those in which
e is at level 2; 11 through 15 to those in which e is at 3; and finally 16 through 18 to
those trees in which e is at level 4. Our unranking procedure is based on those presented
in [RHT77, Li86].

Theorem 2. Association trees of a given acyclic query graph G on n relations can be
unranked in polynomial time.

Since trees are numbered, and we can reconstruct efficiently any of them given its
number, the next corollary follows.

Corollary of theorem 2. Assuming a source of random numbers is available, association
trees of a given acyclic query graph G on n relations can be generated at random with uniform
distribution in polynomial time.

5.3 Unranking

When counting the number of valid trees for a query graph an arbitrary node in the query
graph is considered to be the root. For this root the level-sequence is computed based on
the level-sequences of its children using the two lemmas of the previous Section. The sum
of the sequence levels of the root of the query graph gives the total number of valid trees
for the graph, N. Using a “reversed” counting procedure we can map every number form
1 to IV to a unique tree. Like counting the number of trees, the unranking is also split into
two sections; a node has exactly one child (counterpart of extending a query graph by one
node) and a node has more than one child (counterpart of merging to subgraphs). In the
sequel we give a short description of how the unranking could be performed for the two
cases.

One child Given a node 7, the root, with level-sequence a7, a}, a5, ..., a;, and a number K
being the number to compute the corresponding tree for. K <= N, with N the total number
of valid plans. Node r has exactly one child, node ¢, with level-sequence af{, a5, a5, ..., a;,.
We can find the slot j for which holds: af +... +aj_; < K <= af + ... + a}, and we can
also compute the of fset within that slot, K — a7 +... +a}_;.

Since slot j corresponds to a tree in which node r is at level 7 we know where to insert
node r in the tree that will be computed for the child of r. If node 7 must be inserted at
level j the child of r must be at level j —1,5,7 +1---. This means that all trees in which
child c is at level 1,---,j — 2 can not be used to create a tree in which node r ends up at
the right level.

To unrank the correct tree for ¢ we have to discard the trees that are not useful. The
rank of the tree for ¢ is computed by adding the offset within slot j to the sum of the
level-sequence of ¢, which provide the non-useful trees, N. = > (af + --- + af_,) + of fset.
Now c is considered to be the root and this process is repeated until the graphs are reduced
to base cases.
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More children Assume again that there is a root node r with its level-sequence, a7, - - -, aj,
and we have to compute the tree that has rank K. But now node r has more than one
child.

During the computation of the level-sequence of node r an order was set for the children
of node 7, say ¢y, co, - - - ¢,. The level-sequence was computed by first computing a temporary
level-sequence by merging c¢; and cy. Then the temporary level-sequence is merged with c3
to obtain a new temporary level-sequence. This is continued unit there are no more children
left.

Unranking a node with more than one child is then solved as repeatedly solving the

unranking of a node with two children. The level-sequence of the first child is a$!,- - -, all,
and the level-sequence of the second child is a$2, -, a2.

Again we start by determining in which slot K falls, say slot j. A tree which has node
7 at level j can be the result of many combinations of two trees, in which r is at level j;
and jo respectively if j; + jo = j. One such combination of two trees can be merged in
several ways which are all valid. So these two trees produce aﬁ * ajg * mizings(j1,j2) trees
in which node r is at level j. The offset within slot j determines which ji, jo are used and
their mizing.

Given the two ways of unranking a tree the whole unranking can be solved by recursively

unranking nodes. Note that the order in which the level-sequences are computes must also
be used to unrank the trees.

6 Sampling spaces

We now compare samples obtained from a known space by our quasi-random and uniformly-
random procedures. We use the accumulated cost distribution as the basis of our analysis.
This distribution can be seen as a function on cost ¢, which gives the percentage of plans
having a cost less or equal to c¢. Formally, in a space S the accumulated cost distribution is

<
[{plp €S costlp) <l .

0= g

0.

6.1 Accuracy of sampling methods

As samples become larger, they are expected to approximate the real cost distribution
function of the space. For spaces of up to eight relations, we obtained the exact accumulated
cost distribution in Section 4, which allows us to compute the accuracy of the samples taken.
Therefore, we compute the correlation coefficient of the function Fg(c) with Fgi(c), where
S is the complete search space and S’ is a random sample obtained by one of our methods.
Figure 19 shows the correlation coefficients found for a query of eight relations, for increasing
sample sizes.

The random-edge sampling method does not approach the exact cost distribution, be-
cause it favors certain plans. Since we do not know the quality of the plans that are favored,
the effect of using this method in an optimization strategy is not clear.

The random-walk and uniformly-random method give a more accurate sample and im-
proved their approximation as the sample size increased, but the uniformly-random method
converges faster to the known cost distribution.
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Figure 19: Correlation of approximations to cost distribution using random sampling.

With the uniformly-random method we also sampled spaces that could not be explored
exhaustively. These big spaces still showed some “good” plans but the percentage of “good”
plans decreased. This is in line with the observations of [Swa89a] for the spaces of linear
execution plans and with our results of Section 4. The decreasing number of good plans
implies an increase in the number of plans considered by a transformation-free optimiza-
tion strategy. But also other optimization strategies need to explore more plans as the
search space increases. In the next Section we present a direct comparison of optimization
algorithms.

7 Comparison of optimization algorithms

The two aspects which are important in comparing the performance of optimization algo-
rithms are, the quality of the output and the time it takes to compute it. Instead of ‘time*
we use the number of QEPs explored, because the processing time depends too much on
the implementation and would make it harder to compare algorithms.

In an actual comparison of algorithms more weight could be given to either of these
aspects. For example, when comparing algorithms for ad hoc queries the total time (opti-
mization time + execution time of the query) would be a good measure.

We now compare the performance of an optimization method that relies completely
on uniform random generation of candidates with two transformation-based optimization
algorithms, Simulated-annealing and Iterative-improvement. Detailed descriptions of these
algorithms can be found in [IK90, SG88]. Our implementation of SA and II is based on
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Figure 20: Average and standard deviation of cost of solutions found.

the pseudo-code presented in [IK90]. We also set the parameters of the algorithms to the
values suggested in that paper.

The behaviour of an optimization strategy can be represented by a function mapping
the number n of plans explored, to the estimated cost of the best plan found so-far. For a
given algorithm A, we call this cost the solution after n, and denote it by S2. Formally,
using U4 as the set of the first n plans visited by A, the solution after n is:

SA = min{cost(p) | p € U2}.

n

Since the algorithms are probabilistic, U;L4 is a random subset of size n from the search
space, and therefore S;? is a random variable. Based on this, we measure the success of
these algorithms using the mean and standard deviation of the solution. As n increases,
the mean of S{} should approach the minimum cost in the search space; while at the same
time the standard deviation of S/ approaches zero. The second condition ensures that the
algorithm, though probabilistic, behaves in a stable way. Although the number of plans
explored does not account for all the resources required by an algorithm, we follow [LVZ93|
in using it as an approximation of an implementation-independent measure for optimization
cost.

7.1 Results

In our experiments, we measured the values of S2 for various queries and catalogs, for
algorithms II, SA, and TF. In each run, we let each algorithm explore 10,000 plans. The
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Figure 21: Average query on twelve relations

number of repetitions for each experiment was 20, each leading to a different observation
of the random variables SA. At the end of the experiments, costs were scaled to the best
found; for example, a cost of 2 corresponds to a plan that is twice as expensive as that
found by any method.

To analyze the results we computed the average and standard deviation of the solutions
SI 554 and STF, for 1 < nm < 10,000. The result of this analysis, for a query of 12
relations, is shown in Figure 20. To get a more readable graph, Figure 20 is limited to 4,000
plans. The graph is typical of the results we obtained on all queries and catalogs examined.

The average of the solutions found after 10,000 plans by each algorithm were avg(SfO‘?OOO)
= 1.045, avg(S{{gg0) = 1.000, and avg(S{se9) = 1.055. The standard deviations were
std(STiho0) = 0.055, std(ST{ 509) = 0.000, std(STife0) = 0.015.

On the average, SA is not able to find a good plan within 4000 plans; it finds these only
after exploring 2000 more plans (not visible in the graph). On the average, TF finds good
plans faster than IT —e. g. TF finds plans with a scaled cost of 2 after exploring about 300
plans while IT needs about a 1000. When IT and TF keep exploring more plans IT will find
slightly better plans than TF. The maximum difference occurs after exploring 1800 plans
but is very small (1.01 v.s. 1.08).

The other graph shows that TF not only finds good plans fast, on average, but that
the quality of the plans found in different runs are also close together. After 600 plans the
standard deviation of TF is already 0.04 while that of II is only about 3.90. This leads to
consider the time of convergence, defined as the number of plans required to reach a given
maximum standard deviation. Setting the threshold to 0.1, SA converges after exploring
8985 plans, finding a solution of average cost 1.11 at that point; II converges after 1559
plans, finding a solution of cost 1.05; and TF converges after 575 plans, finding a solution
of cost 1.12.
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8 Conclusions

Why use transformations? In abstract terms, a set of transformation rules imposes
a topology on the search space, but it is difficult to determine how a specific topology
affects the performance of search algorithms. For the problem of join-order selection, the
thorough studies of loannidis and Kang provide an empirical basis to understand the search
space [IK90, IK91, Kan91]. Close analysis reveals that our results are not only consistent
with their studies, but in fact complement them. They observe that “...starting at a random
state, many downhill moves are needed [by II] to reach a local minimum” [Kan91, p. 65]. In
the spaces we considered, II had to explore well over a 100 plans to reach a local minimum,
on average —yet we point out that the expected length of a sequence of random plans that
finds one in the best 1% is 100.

Toannidis and Kang conclude that SA finds very good solutions but takes a long time,
compared with II. Their two-phase optimization algorithm uses II to find several local min-
ima that are then used as starting points for SA. A similar multi-phased approach is taken
in the toured simulated annealing of Lanzelotte, Valduriez, and Zait [LVZ93], where start-
ing points of SA are obtained using a greedy deterministic algorithm. In this context, our
result is that transformation-based optimizers find very good solutions, but take a long time,
compared with our transformation-free algorithm.

We are currently investigating multi-phase, hybrid algorithms for fast-convergence/high-
quality, based on our results. Nevertheless, a pure transformation-free algorithm has some
specific advantages that should not be casually ignored. In our view, a key property of
transformation-free optimization is that it has no “knobs to tune.” For other algorithms,
the setting of parameters for optimum performance is not obvious; results on the sensi-
tivity of the algorithm to these settings are not available; and both optimum setting and
sensitivity may depend on the specific cost model and database. Also, in parallel systems,
transformation-free optimization can easily take advantage of available processors, achiev-
ing nearly optimal speedup —simply replicate the original algorithm in various processors,
and add a final phase to determine the best solution found. Transformation-based “walks,”
on the other hand, are inherently sequential.

Contributions. The prime novelty of this paper is its transformation-free query opti-
mization scheme, which provides a cheap and effective alternative to transformation-based
algorithms. The mechanism relies on both an accurate estimation of query evaluation cost
and an efficient mechanism to generate query plans uniformly distributed over the search
space. This leads to a strategy where a random sequence of valid plans is generated and
analyzed on their perceived cost. The best plan within the run is selected for execution.

Exhaustive exploration or sampling of the search space of a class of queries provides a
precise measure of the run length required to hit a good plan. Our results then provide a
natural baseline against which the added value of applying transformations and heuristics
can be quantified.

To realize our proposed optimization scheme, we solve the problem of efficiently gener-
ating uniformly-distributed random plans, for queries with acyclic graphs. In the process,
we also count the exact number of existing plans. Generation of a uniformly-distributed
random plan is a basic primitive that other randomized algorithms can now use —due to
the complexity of previously known methods, only quasi-random selection had been used
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for non-star graphs.

Related work. Transformation-based optimization is a general and powerful techniques
with applications beyond join-order selection; see, for example, [FMV94]. More related to
our present work, research on randomized optimization of join queries has been performed by
Swami and Gupta [SG88, Swa89b, Swa89a, S192], Ioannidis and Kang [IK90, IK91, Kan91],
and Lanzelotte, Valduriez, and Zait [LVZ93]. In contrast to our work, their approach is
based mostly on tree transformations. In terms of search space, Swami and Gupta, and
Ioannidis and Kang study very large queries (up to 100 relations); Swami and Gupta,
and Lanzelotte, Valduriez, and Zait allow cyclic query graphs; but Swami and Gupta only
explore linear QEPs. Finally, the cost model of Lanzelotte, Valduriez, and Zait is that of a
parallel database.

Future research. Our agenda for future research includes, first, the extension of our
experiments to larger queries. Then, to remove our current restriction on the query graph
topology, we need an efficient procedure to generate uniformly-distributed plans on cyclic
graphs.

We are currently studying hybrid, multi-phase algorithms based on a “mix” of ran-
domized choices, transformations, and heuristics. Depending on the ratio of optimization
cost over query evaluation cost, and on the number of times the optimized query will be
executed, some applications do need such a “mix,” despite the likely necessary tuning.

Finally, we are also interested in the accuracy of the estimation of query evaluation
cost —e. g. cost model calibration and size estimation of intermediate results— and how it
affects the quality of the optimization output.
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