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Abstract

Algebraic specifications of programming languages can be used to generate language-specific programming
support tools. Some of these can be obtained in a straightforward way by executing language specifications
as term rewriting systems. More advanced tools can be obtained if the term rewriting machinery is extended
with ortgin tracking. Origin tracking is a technique which automatically establishes a relation between
subterms of the result value (normal form) and their 071gins, which are subterms of the initial term.
For specifications having a syntax-directed nature, as formalized by the class of so-called primitive
recursive schemes, high-quality origins can be established. The definition, properties, extensions, and
implementation of these so-called syntaz-directed origins are discussed.
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1. INTRODUCTION

One of the benefits of formal definitions of programming languages is that programming
support tools can be generated (semi-)automatically from them. One way to achieve this
is based on algebraic specifications [BHK89, Wir90]. The syntax of a language is defined
in a signature, and properties of the language, such as static or dynamic semantics, are
described by equations. The syntax can be used to derive parsers, and equations can
be executed as term rewriting systems (TRSs) [Klo92], giving rise to elementary tools
such as type checkers or evaluators. Combining these tools with syntax-directed editors
and proper user-interface results in programming-environment generation from algebraic
language specifications [K1i93].

In order to enhance the level of sophistication of the tool generators, term rewriting can
be extended with a facility called origin tracking [Ber92, DKT93]. We will illustrate the
need for origin tracking by means of a small example.

Consider an algebraic specification of a type checker for some programming language.
Assume that the specification can be executed using rewriting, and that the type check



function is called tc. In order to type check a program P, a term p is constructed rep-
resenting P and the term fc(p) is reduced to its normal form, which we assume to be a
list [E4, ..., Ey] of error messages (n > 0). Just carrying out the reduction will only give
this list, but doing it in combination with origin tracking will give additional information:
For each error E; the origin tracking mechanism indicates which statement, expression,
identifier, or other part of the initial term ¢c(p) was responsible for the generation of E;.
In other words, the origins of each E; in the initial term ¢c(p) are identified.

Origin tracking has actually been implemented, so we can illustrate this by the pro-
gramming environment shown in Figure 1. A programmer entered a program (in the large
window), and invoked a type check which resulted in a list of four messages (in the small
window). He asked for more information concerning the error message “multiply-defined-
label step” (in the small window) by putting his focus (the small box around step) on
a piece of this message and by subsequently clicking on the “Show Origin” button. This
caused the relevant occurrences of “step” in the original program to be highlighted in
the large window. Note that not all occurrences of step are highlighted but only those
actually related to the error message.

This was an application of origin tracking in the field of error handling: algebraically
specified type checkers can automatically be extended to show the error positions. An-
other typical application is program animation, where a program is executed in such a
way that the programmer can see what is happening in his program. Such animators
can be generated from a specification of the dynamic semantics of the language. An an-
imator generator can use origin information to map structures needed during execution
to constructs occurring in the actual program (see [Tip93] for an example of animator
generation).

Origin tracking is a general technique. For an arbitrary specification, it establishes
relations between subterms in a normal form and subterms in the initial term, where the
latter subterms are called the origins of the former. The details of how to compute these
origins are presented in Section 3. It need not be easy to define an origin function that
is generally applicable and always computes the right origins. Even though the origins
from [DKT93] have been used successfully, there are many specifications for which they
are insufficient.

The extension of origin tracking we are proposing is based on the observation that many
functions occurring in first-order algebraic specifications are defined using some form of
primitive recursion. Such definitions are formalized in the class of so-called Primitive
Recursive Schemes (PRSs) [CF82]. The extra knowledge concerning the definition of
certain functions that is available in a PRS allows us to derive special origins for these
functions. We present our proposal in full detail in Section 5. Since pure PRSs are
quite rigid in their requirements, we also discuss a further generalization to arbitrary
specifications with a syntax-directed nature in Section 6. We refer to these origins as
syntaz-directed origins

The latter name, syntax-directed, is not a coincidence. PRSs are proven to be equivalent
to attribute grammars [CF82], which in turn are a formalization of syntax-directed def-
initions. When transposed to the algebraic specification framework, attribute grammars
define a function by primitive recursion over an abstract-syntax tree.

In summary, our paper presents a theoretical notion, origins in primitive recursive
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Figure 1: Example of a generated environment using origin tracking.

schemes, with a practical goal in mind: high-quality tool generation from formal lan-
guage definitions. New in our paper are not only kernel Sections 5 and 6, but also parts
of Section 3: the presentation style of Sections 3.2 and 3.4 is rather different from that
in [DKT93], and the problem analysis in Sections 3.5 and 3.6 was not given in [DKT93].
The definition of PRSs in Section 4 was taken from [Meu92, CF82].

2. RELATED WORK

The study of origins was pioneered by Bertot [Ber90, Ber92, Ber93]. He investigated
applications of origin tracking to source-level debugging given a specification in natural
semantics style [Kah87, Ber90]|. Furthermore, he considered the relation between origins
for the A-calculus and for TRSs [Ber92], and introduced a formal framework to reason
about origin functions [Ber93]. Bertot focused on orthogonal, unconditional TRSs, where
an origin consists of at most one subterm occurrence. Part of his work was implemented
in the CENTAUR system [BCD*89]; in particular the notion of a subject occurring in the
specification language TYPOL is akin to syntax-directed directed origins.

Bertot’s ideas were picked up in [DKT93], where origins were extended to sets of occur-
rences and defined for arbitrary TRSs with conditional rules. Moreover, an implementation
in the ASF+SDF programming environment generator [K1i93] was described. An extension
to higher-order term rewriting systems was given in [DD93].

Practical experience with origin tracking is described by Dinesh and Tip [Din93, Tip93].
Dinesh presents a specification style for the definition of static semantics of programming
languages based on abstract interpretation. He shows how origins can be used to generate



type checkers with good error pinpointing facilities. Tip discusses an algebraic specification
of an interpreter for a Pascal-based language, and explains how origin tracking can be
applied to obtain an animator for this language.

The latter two papers were part of the inspiration to start working on specialized ori-
gins for PRSs. Syntax-directed origins will widen the class of algebraic specifications for
which origin tracking can be applied easily and successfully. In particular, the patterns
used to specify the animation behavior for Tip’s animator become much simpler, and the
adaptation of the abstract syntax proposed by Dinesh to improve his origins becomes
unnecessary.

On the theoretical side, origins are related to so-called residuals or descendants [HLI1,
Mar91], which are used in the search for optimal reduction strategies. Currently, Field and
Tip are extending residuals to creation/residuation tracking using ideas from incremental
rewriting as described by [Fie93].

The notion of a program scheme [Cou90] is a general device to understand control
structures: loops, iterations, goto’s and so on are translated to functions defined recursively
by equations. Primitive Recursive Schemes were introduced by Courcelle and Franchi-
Zannettacci in order to understand attribute grammars (AGs). They gave a one-to-one
correspondence between PRSs and AGs [CF82]. As an example of an application of this
mapping, Van der Meulen has used techniques for incremental computations in to obtain
the effect of incremental rewriting [Meu92].

One of the aims of our origin tracking technique is to get, in an algebraic framework,
error messages with good location information associated with it. In AGs, error messages
typically correspond to attributes of type string. The error position is identified by printing
the message close to the text position of the grammar node the attribute belongs to. In
the Synthesizer Generator [RT89] the language describer can give unparsing (pretty print)
rules to indicate where the error message should be printed. If there is no error, the
message attribute contains the invisible empty string.

To compare this with our approach, consider an identifier x of type string in an expres-
sion like - x, causing a message like integer instead of string expected. In an AG
this message will be associated with the - node, which gives useful information. In our
approach, the message can have origins to (1) the position where the type inconsistency
was detected which is the - node as in AGs, (2) the place where x was declared of type
string, and (3) the position where x was not used with type string. Typically, the sig-
nature for error messages will include a “_ instead of _ expected” symbol, and origins
are associated with the two arguments as well as with the top function symbol.

Although not intended for this purpose, our technique could be used to enhance error
location in AGs, provided the attribute evaluation mechanism is in some sense based on
term rewriting.

3. PRINCIPLES OF ORIGIN TRACKING

We present some basic notions concerning term rewriting and ordinary origin tracking.
The problems with existing origins as well as the difficulties when extending them, are
discussed.



3. Principles of Origin Tracking 5

v<u ’U|U V=Uu-v - w

Figure 2: Relative positions of v with respect to contractum position u

3.1 Preliminaries

Before defining origins, we borrow some preliminary definitions concerning first-order term
rewriting from [Klo92, HLI91]. A term ¢ can be reduced to a term t' according to a rewrite
rule » : @ — (3 by identifying a context C[] and subterm s in ¢ such that t = C[s], and by
finding a substitution o such that s = a?. Then t = C[a?] rewrites to C[3°] = t' by one
elementary reduction, written t — t'. We call a’ the redez, and 3° the contractum. For
multi-step reductions to — t; — - - — ¢, we also write tg —* ¢, (n > 0).

Subterms are characterized by occurrences (paths), which are either equal to [ ] for
the entire term or to a sequence of integers [ni,...,ny,] (m > 1) representing the access
path to the subterm. E.g., occurrence [1, 2] denotes the second son of the first son of the
root, i.e., for term f(g(a,b),c) it denotes subterm b. The subterm in ¢ at occurrence u is
written £/u. Occurrences are concatenated by the (associative) - operator. If u,v,w are
occurrences and u = v - w, then v is above u, written v < u. Also, if w # [] then we write
v < u. If neither v < v nor u < v then u and v are disjoint, written u | v. The set of
all occurrences in a particular term ¢ is denoted by O(t). Similarly, O, (t) is the set of
occurrences of variables in ¢, and Ofy,,(t) the set of function (or constant) symbols in ¢.
The number of elements in a set O of occurrences will be written |O|.

When we wish to identify the redex, rule, and substitution explicitly, we will write
t =25, t' for the one-step rewrite relation, indicating that rule r is applied at occurrence u
in term ¢ under substitution o.

3.2 Definition of the Origin Function

Let ¢t -5, t', where 7 is a rule @ — 8, be an elementary reduction step. With each step
we associate a function org-step : O(t') — P(O(t)) mapping occurrences in t’ to sets of
occurrences in t. Let v € O(t'). We define org-step by distinguishing the following cases:
(see also Figure 2):

e (Context)
If v < wor v | u then org-step(v) = {v};

¢ (Common Variables)

If v = u-v'-w with v’ € 0,4, (8) the occurrence of some variable X in the right-hand
side 8 of r, and w € O(X7) an occurrence in the instantiation of that variable, then



org-step(v) = {u-v" -w | a/v" = X}
(Note that v" € Oyqr(a) is the occurrence of X in the left-hand side a of 7).

e For the time being, we will assume that org-step(v) = 0 for the remaining case, i.e.,
where v denotes a function symbol in the right-hand side of » (see also Section 3.6).

This function org-step covers elementary reductions. It is generalized to a function org*
for multi-step reductions tg — ¢; — --- — £, (n > 0) by considering the origin functions
for the individual steps. Let us call, for the i-th elementary reduction ¢;_1 — ¢; (0 < 7 < n),
the associated origin function org-step;. Recursively define org? : O(t;) — P(O(to)) for
0<j<n,andv € O(t;):

o j =0: org?(v) = {v}.

e 1<j<n org?’(v) = {w|w e org’ 1(w'), w' € org-step;(v)}

Then org* is equal to org™ for multi-step reduction ty —* ¢,.

Given a multi-step reduction ty — t,, with associated function org* and occurrence
u € O(t,), the set O = org*(u) is called the origin set of t,/u, and the elements of O
are called the origins of t,,/u. Often it is natural to relax the difference between sets and
elements. If no confusion is possible we will, for example, use “subterm s has an origin”
to indicate that the origin set of s is non-empty, and “subterm s has multiple origins” to
state that the origin set of s contains more than one occurrence.

3.3 Ezxample

As an example, consider the specification of Figures 3, 4 and 5 (inspired by [Meu88,
Bro92]). The language designer has specified a translation of a simple language to assembly
code. Signature describing the syntax of source and target language are given in Figures 3
and 4. Figure 5 contains the signature and equations for the actual translation functions.
At the moment, we can ignore the underlining and bold face fonts used for the symbols
(see Section 4). A reduction of term “tr-expr(const(4) + const(3))”, which results in the
normal form “push(4) @ push(3) @ add @ null”, is shown in Figure 6.

The dotted lines in the figure indicate the origin relations established for this reduction.
In the first rewrite step, equation [3] is applied. Since variables F; and E, occur both in
its left- and right-hand side, origin relations are established between their instantiations,
i.e., between the occurrences of “const(4)” and “const(3)” respectively. In the remaining
rewrite steps, in particular those where equation [2] is applied, only the origins for the
constants “3” and “4” survive, as indicated by the dotted lines in the figure.

3.4 Properties

Origins are very similar to the better-known residuals or descendants [HL91], which are
used to study the survival of redexes during reductions. Let A : t —* ¢ be a reduction,
let v € O(t) and v' € O(t'), and let org¥ be the origin function for A. Then we have for
orthogonal (left-linear and non-overlapping) TRSs:

Property 1 Assume reduction A is performed in an orthogonal TRS, and let \ A be Huet
and Lévy’s residual mapping for reduction A. Then v € org’(v') & v/ € v\ A.
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Sorts: EXP STAT ...

Functions: if _then _else _ fi: EXP X STAT X STAT — STAT
const: INT — EXP
- EXP X EXP — EXP

Figure 3: Abstract syntax of simple statements and expressions.

Sorts: ASSEMBLY COMMAND LABEL

Functions: null: — ASSEMBLY
_@ _: COMMAND X ASSEMBLY — ASSEMBLY
cjump: LABEL — COMMAND
jump: LABEL — COMMAND
lab: LABEL — COMMAND
push: INT — COMMAND
add: — COMMAND
0,1,2,3: — LABEL
_ " _: LABEL X LABEL — LABEL

Figure 4: Part of the abstract syntax for a simple assembly language.

For left-linear TRSs, we can say something about the size of the origin sets.

Property 2 Assume reduction A is performed in a left-linear TRS. Then for every v’ €
O(t') we have |orghy(v')] < 1.

For arbitrary TRSs, we can only say that the sets or smaller than the number of nodes in
the initial term.

Property 3 For every v' € O(t') we have 0 < |org%(v')] < |O(1)]
Finally, for arbitrary TRSs, origins only point to syntactically identical terms:
Property 4 For every v € org*(v') we have t/v =1t'/v'.

Note, however, that these properties need not hold for the extensions we will be proposing
(see Section 5.4).

3.5 Limatations

The origin definition just presented establishes the most fundamental origin relations, and
works for all algebraic specifications. Experiments in practical situations show that these
origins can already be quite useful [Din93, Tip93].



Functions: tr-stat: STAT X LABEL — ASSEMBLY
tr-exp: EXP — ASSEMBLY
_ -t ASSEMBLY X ASSEMBLY — ASSEMBLY
Variables: F,, E;: EXP N: INT
S1,5%: STAT Alist: ASSEMBLY
L: LABEL C: COMMAND
Equations:
[1] tr-stat( if £ then S; else S, fi, L ) =
tr-exp(E) ; %% condition
cjump(L) Q@
tr-stat(S2, 1" L) ; %% else part
jump(3°L) @
lab(L) @ %% then part
tr-stat(S1, 2°L) ;
lab(3"L) @
null
[2] tr-expr( const(N) ) = push(N) @ null
(3] tr-expr( E1+FE; ) = tr-expr(Eq) ; tr-expr(E;) ; add @ null
[4] null ; Alist = Alist
(5] (C @ Alist) ; Alist’ = C @ (Alist ; Alist’)

Figure 5: Example specification of a simple translation. Equation [1] defines the transla-
tion of an if-statement. Equations [2] and [3] specify the compilation of expressions, and
[4] and [5] define concatenation of assembly programs.

tr-expr /\ @
| - @ N\
A PO N\ —* pwsh @
/\ — tr-expr tr-expr add null | /\

const const-=e--....... | | 4 push %
| | ------------ const const | /\
4\ 3\._ |‘i _'3 add null
-4 3
""" : .

Figure 6: Part of a reduction performing the translation of an expression. The dotted
lines indicate origin relations.
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Nevertheless, for several specifications it must be possible to establish more and better
origins. This is illustrated by the simple example we have seen in Figure 6. There are no
arrows from nodes “add” or “null” to the initial term. In other words, these nodes have
an empty origin, even though there seem to be good candidate occurrences in the initial
term; e.g., it seems intuitively plausible to link “add” to “+”.

This problem shows up clearly in equation [1] as well. Origins are established for all
variables E, 51, S2, and, L, but none of the function symbols in the right hand side, e.g.
“Jump”, “cjump”, “lab”, ..., get an origin. This is undesirable since these are the symbols

that will occur in the resulting normal form.

In general, the problem is that function symbols introduced in the right-hand side of
a rule have an origin consisting of the empty set of occurrences. This is unattractive,
since it provides very little information on why such a function symbol has been created.
This problem is mentioned briefly in [DKT93], where it is noticed that difficulties arise in
specifications “having the flavor of translating terms from one representation to another”.

For these specifications “more origin relations between both sides of the equations have
to be established”.

We will propose an extension which solves this problem. It will establish good origins
for function symbols that are created during rewriting in the context of primitive recursive
schemes

3.6 Fzxtending Origins
Having noticed the limitations of the existing scheme, one may wonder why it is so difficult
to present a suitable extension. Ideally, origins should meet the following requirements:

(A) One would like the origin sets to be as specific as possible. Thus, rather than having
an origin which, e.g., states that this assembly instruction originated from the set of
all statements in the source program, one would like to know exactly which statement
was responsible. In other words: Keep the origin sets small.

(B) However, having the empty set as origin provides little information. Moreover, some
applications require that multiple origins be established; e.g., for error handling
purposes one would like to have origins both to a declaration of an identifier and its
conflicting usage. Thus: Do not make the origin sets too small.

(C) Moreover, the higher a path points in the initial term, the smaller the information
content. For instance, having an origin to the top-node of the initial term will only
point out that the normal form somehow has resulted from the initial term. This
does not provide very much information. Hence: Keep the origins deep.

(D) On the other hand, origins that point too deep may be misleading as well. If, again in
an error-handling example, an expression “plus(E7, F2)” has incompatible argument
types, the origin for a message indicating this should point to either the plus or both
the top nodes of E; and FE,, but not to a very deep subexpression occurring within
FE;,. Therefore: Do not make the origins too deep.

A proposal to extend origin tracking should find a compromise between these conflicting
requirements.
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4. PRIMITIVE RECURSIVE SCHEMES
A Primitive Recursive Scheme (PRS) is a program scheme formalizing the notion of func-
tions defined inductively (using primitive recursion) over some structure. A typical ex-

ample of a PRS is a type checker defined inductively over the syntax of a programming
language. Definitions of PRSs can be found in [CF82, Meu92]. We follow [Meu92|:

(i) A PRS is a five-tuple (G, ®, 9, Eg, Eg), with G, S signatures, ® a set of functions,
and Eg, Eg sets of equations. A PRS corresponds to an algebraic specification (%, E)
with signature ¥ = G U S U ® and equations £ = Eg U Eg;

(ii) All functions in G are free constructors (i.e., there are no equations containing only
functions from G);

(iii) The type of the first argument of each ¢ in @ is a sort from G, and the types of all
other arguments (the parameters of ¢) as well as the output type are sorts of S;

(iv) Eg consists of the ®-defining equations: For each constructor p: X; x ---X,, — X
in G and each function ¢ in ®, Eg contains exactly one defining equation:

(;Zs(p(ml""7mn)7y17"'7y‘m):T (41)

(v) All equations in Fg are strictly decreasing in G: i.e., in equation (4.1), the only
G-terms allowed in 7 are 21, ..., Z,;

(vi) All equations are left-linear (all variables in the left-hand side of each equation are
distinct).

A typical example of a PRS is the specification shown in Figures 3, 4 and 5. The G-
signature of this PRS consists of the boldface function symbols (introduced in Figure 3),
defining the grammar of a simple programming language. The ®-functions of this PRS are
underlined functions tr-stat and tr-expr (introduced in Figure 5). They are defined using

primitive recursion in equations [1], [2], and [3]. These equations satisfy the requirements
(iv), (v), (vi) for ®-defining equations. The S-signature consists of the functions of Figure 4
as well as function _; _ from Figure 5, defining result values as well as auxiliary functions.

In summary, a PRS contains a set ® of functions defined inductively over the abstract
syntax trees of G. Context information is passed downward using the parameters of the
®-functions. The effect of the ®-functions is a mapping of G-terms to S-terms. Equations
over .S may be used to define further computations or simplifications of resulting terms.

5. OrIGINS IN PRSs

5.1 Introduction

So how can we define origins in PRSs? Let us first try to understand what is going on in a
PRS. A large G-term (typically the abstract syntax tree of some program) is processed by
®-functions; different ®-functions operate on different G-constructors p, e.g., there will be
one ®-function to translate an if-statement, another one to translate an assignment, and so
on. To see what is going on, consider a ®-defining equation ¢(p(21, ..., Zn), Y1, .-, Ym) = T.
The right-hand side 7 is a formula to compute a particular value for some grammar node
p. It consists of:
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(1) Variables (the #; occurring in 7) representing subconstructs of the current node p.
(2) Variables (the y; occurring in 7) representing context information;

3) Function symbols initiating computations over subconstructs of the current node
y g P
(®-functions in 7, with some z; as first argument)

(4) Function symbols from S indicating how to “synthesize” the result value from the
ingredients mentioned above, or how to construct context information to be passed
as parameters to the ®-functions occurring in 7.

This division is reflected in the origins we define. The Common Variables case (Sec-
tion 3.2) is used to take care of (1) and (2). For case (3) we have a ®-function ¢’ operating
on a subconstruct, and we will give ¢' an origin to its first argument, that is, to some ;.
Finally, for case (4) the new function symbols are created when working on the p(z4, ..., ;)
grammar node in the left-hand side; therefore, these new function symbols will obtain an
origin to the p node in the left-hand side. These origins caused by ®-functions traversing
the abstract syntax tree are the kernel of the PRS-origins. The remaining origins, con-
cerning equations over .5, simply propagate these “®-origins”, which is achieved by giving
all new function symbols in the right-hand side of a rewrite rule from Fg an origin to the
top-symbol of the left-hand side. A precise definition is given in Section 5.3.

5.2 FExample
As an example, let us study again the reduction of “tr-expr(const(4) + const(3))” ac-
cording to the equations in Figure 5. The PRS origins for this reduction are shown in
Figure 7.

The relations between the constants “3” and “4” in the normal form and initial term
are established because of Common Variable N when applying equation [2] of Figure 5.

The relations between “push” and “const” result from reductions according to ®-defining
equation [2]: the S-function symbol “push” gets the G-argument “const(N)” of ®-function
“tr-expr” as origin. Likewise, S-function symbols “_ ; 7, “. @ 7, “add” and “null”
introduced in ®-defining equation [3] get an origin to the “_+ 7 G-argument of ®-function
“tr-expr”.

Finally, equations [4] and [5] are used to eliminate the concatenation of assembly code

operator “_; 7. New functions introduced in these S-equations receive the top-function

symbol of the left-hand side as origin. Since in this case the “_ ; _” operators were

introduced by equation [3], these origins point to the “4+” function symbol.

5.3 Definition

For a PRS (G, &, S, Fs, Es) and term t, we introduce Og(t), Og(t), and Og(t) as the sets
of occurrences denoting a function symbol from ®, G, and 5 respectively. To define origins
for PRSs, we again consider an elementary reduction t = C[a’] — C[B°] = t'. Let u be
the occurrence in C of the redex position. The function prs-org-step : O(t') — P(O(t))
maps occurrences in t’' to sets of occurrences in ¢. Define prs-org-step(v) by taking the
“Common Variables” and “Context” cases of org-step, together with the following cases,
where v is the occurrence of a function (or constant) symbol in 3:

¢ (®-Functions)

If v = u-v' with v’ € Og(8) the occurrence of a ®-function symbol in the right-hand
side @ then
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tr-expr _#___‘f-f"‘ "'@ h
‘ "“““ /\ ;
+ % push @
const const - 4 push @
4V\ 3\\ ‘."r.y//// __,.-"'('///3 add null

- = e - —

Figure 7: Syntax-Directed Origins for a Simple Reduction

prs-org-step(v) = prs-org-step( v - [1])
In other words, the origin of a ®-function is equal to the origin of its G-argument.

¢ (Synthesizers)

If v =u-v with v/ € Og(8) the occurrence of a function symbol from S in the
right-hand side A, and r € Eg is a ®-defining equation with left-hand side a =

d(p(1y -y n), Y1, -, Ym), then
prs-org-step(v) = {u - [1]}

In other words, the origin is the G-term p(z1,...,#,) as it occurs in the left-hand
side.

e (Auxiliary Symbols)

Finally, if rule r € Eg, and v = u - v’ with v' € Og(8) U Os(8) the occurrence of a
function symbol from G or §S in the right-hand side, then

prs-org-step(v) = {u}
In other words, the origin is equal to the top-symbol of the left-hand side.

At first sight the definition of prs-org-step for the ®-Functions case may seem a little
dangerous since prs-org-step appears at both sides of the equality sign. However, the
first argument of a ®-function must — by definition of a PRS — be a G-term, for which
the prs-org-step function is directly defined in the remaining cases. When we know that
rule r actually is a ®-defining equation ¢(p(z1, ..., 24), y1, ..., Yym) = T We can even make a
stronger statement: A ®-function ¢’ occurring at position v in right-hand side 7 must —
again by definition of a PRS — have one of the z;(1 < ¢ < n) as its first argument. The
occurrence of that #; in the left-hand side is [1, ¢], so for this case we can define prs-org-step
alternatively as prs-org-step(v) = {u - [1,14]}.

The function prs-org-step can be extended to a function prs-org* covering multi-step
reduction similar to the extension of org-step to org* (see Section 3.2).

Note that a consequence of this definition is that a possible implementation should be
able to recognize whether or not a particular function symbol is a ®-function symbol.
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5.4 Properties

In Section 3.4 we mentioned four desirable characteristics (labeled (A), (B), (C), and (D))
for extensions of origins. To what extend did we manage to meet these requirements?
Concerning the size of the origin sets (requirements (A) and (B)), origin sets in pure PRSs
always contain exactly one element:

Property 5 Let t,t' be terms, A:t —*t' a reduction in a PRS, and let prs-org’, be the
origin function for this reduction. For all v € O(t') we have |prs-orghy(v)| = 1.

Proof: This follows from the facts that (1) PRSs are left-linear, (2) none of the various
cases for function symbol origins in PRSs overlap, and (3) because every individual case
yields exactly one origin.

This means that requirement (A) to keep the origin sets small is met. Requirement
(B), however, is only partly met. Although unpleasant sets containing no origins at all
are excluded (which contrasts with the primary origins, see Property 2), situations were
multiple origins are nice (error handling) are treated in an unsatisfactory manner.

PRS origins try achieve the proper depth of (requirements (C) and (D)), by focusing
on the G-terms. Function symbols need to synthesize new values obtain an origin to the
closest surrounding ®-function. The following property states that origins established
during reduction of ¢ according to left-hand side ¢(p(21,...,24),y1,- .., Ym), €ither result
from copying subterms of some y; (first case), or are the result of introducing a new function
symbol in some right-hand side, and thus point to a subterm of the G-term which is the
first argument of ¢.

Property 6 Let t,t' be terms, t £ t', let A : t —* t' be a reduction in a PRS, and let
prs-orgy be the origin function for this reduction. Assuming that the top operator of t is
a ®-function, we have: For all v € O(t'), let prs-orgy(v) = {u}. Then either:

o [j] < u, withj > 2 and t'/v=1t/u; or
o [1] < u.

Proof: Direct from the definition of prs-org-step and the fact that ¢ has a ®-function as
its top node

6. SYNTAX-DIRECTED ORIGIN TRACKING
The origins in the previous section were defined for the clean PRS case. Here we study the
consequences of relaxing the PRS requirements and of extending the rewrite mechanism.

6.1 Relazing the PRS Requirements
Some requirements of the five (ii) to (vi) in Section 4 are non-restrictive, and others can
be relaxed easily:

(ii) Equaions over G-terms can be useful, asin “repeat(.S, E') = seq(.5, while(not(E), 5))”.
We can handle such equations by relating each function symbol in the right-hand
side to the top of the left-hand side. Hence equations over G-terms are treated as
equations over S-terms (the Auxiliary Symbols case).

(iii) The restriction to recursion over the first argument is not essential.
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(iv) The fixed left-hand side ¢(p(@1,...,%n), Y1, .-, Ym) of ®-defining equations can be
annoying when writing large specifications. Deeper patterns at the z; or y; positions
can be allowed without problems (allowing non-trivial matching at these positions).

(v) Right-hand sides of ®-defining equations are not allowed to contain any function
symbol from G. This can be a problem when writing, e.g., an operational seman-
tics of a while loop, where the while constructor will appear in the right-hand side
again. For origin tracking purposes, it is possible to link every new G-term to the
p(21, ..., 2,) node at the left-hand side. Thus, G-symbols introduced in right-hand
sides of ®-defining equations can be treated as S-symbols introduced in such right-
hand side (the Synthesizer case).

(vi) Linearity of left-hand sides is not essential. Allowing non-linear patterns causes
origins to contain multiple paths, which (Section 3.6, (B)) can be useful under certain
circumstances.

Relaxing requirements (ii) and (v) can make some origins less precise. For instance, the
“not(E)” in the right-hand side of the equation mentioned under (ii) will have an origin
to the entire repeat statement.

6.2 Common Subterms
In addition to the Common Variables and Context cases, [DKT93] introduced a “Common
Subterms” case.

Let t =3, ¢/, where 7 is a rule @ — S, be an elementary reduction step. Let v € o(t'):

¢ (Common Subterms)

If v = u- v with v’ € O, (B) the occurrence of a function symbol (or constant) in

the right-hand side 3 of r, then

org-step(v) = {u-v" | a/v" = B/v'}
Note that common subterms are looked for in the uninstantiated sides o and 3.

In the PRS context, common subterms can be useful in the Auxiliary Symbols case
(which also applies to G-terms if (ii) is relaxed). Moreover, if the fixed patterns of left-
hand sides of ®-defining equations are allowed to contain arbitrary patterns (iv), the
common subterms case could be useful to find origins S-symbols (or even G-symbols, if
(v) is relaxed) occurring in the right-hand side.

6.3 Further Extensions

A detailed account of the use of PRSs is given in [Meu94]. She proposes extensions of
PRSs to deal with conditional equations as well as with associative lists. Syntax-directed
origins can easily be extended to deal with these mechanisms as well.

A particularly interesting topic Van der Meulen discusses is the nested or layered PRS.
A typical example of a layered PRS is a compilation defined by a translation to an in-
termediate language, followed by a translation to the target language. Both translations
will be defined as PRSs. Thus, the S-functions of the first PRS act as G-functions of the
second PRS. Syntax-directed origins easily apply to both PRSs.
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7. CONCLUDING REMARKS

We have discussed an extension of the origin function. We gave a precise definition for
pure PRSs, and formulated several properties. Realizing that in practice a specification
hardly ever is a pure PRS, we extended our definition such that it applies to arbitrary
specifications with a syntax-directed nature. In comparison with existing origin schemes,
syntax-directed origins particularly focus on providing good information for created func-
tion symbols. This allows the technique to be applied to, e.g., automatic generation of
error handlers and source-level debuggers.

We can illustrate the success of syntax-directed origins by considering the type checker
for ISO Pascal described in [Deu91]. For about 40% of the error messages, the primary
origins are sufficient. These 40% are of the form Not-a-variable(x), i.e., containing
some piece of the initial program (in this case the identifier x) as part of the message.
This piece provides the origin information. But the remaining 60% of the messages are
functions like Integer-type instead of string-type expected, where all symbols are
freshly created (not occurring in the source program). Primary origins could not give
origins for these, but sytnax-directed origins can.

On the negative side, our extension is restricted to the class of PRS-like specifica-
tions. However, this class is very large. Many specifications, particularly of type checkers,
evaluators, compilers, and so on, have a syntax-directed (or, equivalently, homomorphic,
compositional, or inductive) character.

Another point of criticism might concern the actual definition of prs-org. The “Aux-
iliary Symbols” case may result in rather imprecise origins, since it simply relates all
function symbols at the right to the top-symbol at the left. This strategy is however, at
least as safe as possible since it does not lose any information. Moreover, the Auxiliary
Symbols case does not form the heart of the syntax-directed origins. This is covered by
the “Syntax-Directed Functions” and “Synthesizer” case. Hence, future improvements
of origin tracking can be embodied in the Auxiliary Symbols case without changing the
nature of the syntax-directed origins.

At the moment, we are implementing syntax-directed origin tracking within the
ASF+SDF programming-environment generator [K1i93]. Primary origins are already im-
plemented (see [DKT93]). This implementation tries to overcome the potential loss of
reduction speed in the term rewriting machine in several ways. Paths are represented by
pointers in directed acyclic graphs (DAGs), sets of paths are encoded by bit maps, and ori-
gins are computed by propagating these sets as annotations during rewriting. Moreover, as
many computations as possible are performed at “compile time”, thus reducing the over-
head at reduction time. These measurements are sufficient to make origin tracking feasible
in realistic specifications. The extension to syntax-directed origins is currently being im-
plemented. This implementation is eased by the fact that parts of the implementation of
incremental rewriting [Meu92] can be re-used.

As a preliminary study, we already finished an (algebraic) specification of the origins
following the definition of Section 5.3. We were able to conduct some initial experiments
using this executable specification, and observed that the syntax-directed origins behaved
as expected.
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