
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Origin Tracking in Primitive Recursive Schemes

A. van Deursen

Computer Science/Department of Software Technology

CS-R9401 1994

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301654057?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Origin Tracking in
Primitive Recursive Schemes

Arie van Deursen

CWI

P�O� Box ������ ���� GB Amsterdam� The Netherlands

Email� arie�cwi�nl

Abstract

Algebraic speci�cations of programming languages can be used to generate language�speci�c programming

support tools� Some of these can be obtained in a straightforward way by executing language speci�cations

as term rewriting systems� More advanced tools can be obtained if the term rewritingmachinery is extended

with origin tracking � Origin tracking is a technique which automatically establishes a relation between

subterms of the result value �normal form� and their origins 	 which are subterms of the initial term�

For speci�cations having a syntax�directed nature	 as formalized by the class of so�called primitive
recursive schemes 	 high�quality origins can be established� The de�nition	 properties	 extensions	 and

implementation of these so�called syntax�directed origins are discussed�

AMS Subject Classi�cation �������
�N�
	
�Q��	
�Q
��

CR Subject Classi�cation ������� D����	 D���
	 D����	 F�����

Keywords 	 Phrases� Algebraic speci�cations	 programming language semantics	 programming

environments	 program generation	 origin tracking	 program schemes	 primitive recursion�

Note� Partial support has been received from the European Communities under ESPRIT project ����

�Generation of Interactive Programming Environments II� GIPE II� and from the Netherlands Organization

for Scienti�c Research �NWO�	 project Incremental Program Generators�

�� Introduction

One of the bene�ts of formal de�nitions of programming languages is that programming
support tools can be generated �semi��automatically from them� One way to achieve this
is based on algebraic speci�cations �BHK�	
 Wir	��� The syntax of a language is de�ned
in a signature
 and properties of the language
 such as static or dynamic semantics
 are
described by equations� The syntax can be used to derive parsers
 and equations can
be executed as term rewriting systems �TRSs� �Klo	
�
 giving rise to elementary tools
such as type checkers or evaluators� Combining these tools with syntax�directed editors
and proper user�interface results in programming�environment generation from algebraic
language speci�cations �Kli	���

In order to enhance the level of sophistication of the tool generators
 term rewriting can
be extended with a facility called origin tracking �Ber	

 DKT	��� We will illustrate the
need for origin tracking by means of a small example�

Consider an algebraic speci�cation of a type checker for some programming language�
Assume that the speci�cation can be executed using rewriting
 and that the type check

�

function is called tc� In order to type check a program P
 a term p is constructed rep�
resenting P and the term tc�p� is reduced to its normal form
 which we assume to be a
list �E�� ���� En� of error messages �n � ��� Just carrying out the reduction will only give
this list
 but doing it in combination with origin tracking will give additional information�
For each error Ei the origin tracking mechanism indicates which statement
 expression

identi�er
 or other part of the initial term tc�p� was responsible for the generation of Ei�
In other words
 the origins of each Ei in the initial term tc�p� are identi�ed�

Origin tracking has actually been implemented
 so we can illustrate this by the pro�
gramming environment shown in Figure �� A programmer entered a program �in the large
window�
 and invoked a type check which resulted in a list of four messages �in the small
window�� He asked for more information concerning the error message �multiply�de�ned�
label step� �in the small window� by putting his focus �the small box around step� on
a piece of this message and by subsequently clicking on the �Show Origin� button� This
caused the relevant occurrences of �step� in the original program to be highlighted in
the large window� Note that not all occurrences of step are highlighted but only those
actually related to the error message�

This was an application of origin tracking in the �eld of error handling � algebraically
speci�ed type checkers can automatically be extended to show the error positions� An�
other typical application is program animation
 where a program is executed in such a
way that the programmer can see what is happening in his program� Such animators
can be generated from a speci�cation of the dynamic semantics of the language� An an�
imator generator can use origin information to map structures needed during execution
to constructs occurring in the actual program �see �Tip	�� for an example of animator
generation��

Origin tracking is a general technique� For an arbitrary speci�cation
 it establishes
relations between subterms in a normal form and subterms in the initial term
 where the
latter subterms are called the origins of the former� The details of how to compute these
origins are presented in Section �� It need not be easy to de�ne an origin function that
is generally applicable and always computes the right origins� Even though the origins
from �DKT	�� have been used successfully
 there are many speci�cations for which they
are insu�cient�

The extension of origin tracking we are proposing is based on the observation that many
functions occurring in �rst�order algebraic speci�cations are de�ned using some form of
primitive recursion� Such de�nitions are formalized in the class of so�called Primitive
Recursive Schemes �PRSs� �CF�
�� The extra knowledge concerning the de�nition of
certain functions that is available in a PRS allows us to derive special origins for these
functions� We present our proposal in full detail in Section �� Since pure PRSs are
quite rigid in their requirements
 we also discuss a further generalization to arbitrary
speci�cations with a syntax�directed nature in Section �� We refer to these origins as
syntax�directed origins

The latter name
 syntax�directed
 is not a coincidence� PRSs are proven to be equivalent
to attribute grammars �CF�
�
 which in turn are a formalization of syntax�directed def�
initions� When transposed to the algebraic speci�cation framework
 attribute grammars
de�ne a function by primitive recursion over an abstract�syntax tree�

In summary
 our paper presents a theoretical notion
 origins in primitive recursive

	� Related Work �

Figure �� Example of a generated environment using origin tracking�

schemes
 with a practical goal in mind� high�quality tool generation from formal lan�
guage de�nitions� New in our paper are not only kernel Sections � and �
 but also parts
of Section �� the presentation style of Sections ��
 and ��� is rather di�erent from that
in �DKT	��
 and the problem analysis in Sections ��� and ��� was not given in �DKT	���
The de�nition of PRSs in Section � was taken from �Meu	

 CF�
��

�� Related Work

The study of origins was pioneered by Bertot �Ber	�
 Ber	

 Ber	��� He investigated
applications of origin tracking to source�level debugging given a speci�cation in natural
semantics style �Kah��
 Ber	��� Furthermore
 he considered the relation between origins
for the ��calculus and for TRSs �Ber	
�
 and introduced a formal framework to reason
about origin functions �Ber	��� Bertot focused on orthogonal
 unconditional TRSs
 where
an origin consists of at most one subterm occurrence� Part of his work was implemented
in the Centaur system �BCD��	�� in particular the notion of a subject occurring in the
speci�cation language Typol is akin to syntax�directed directed origins�

Bertot�s ideas were picked up in �DKT	��
 where origins were extended to sets of occur�
rences and de�ned for arbitrary TRSs with conditional rules� Moreover
 an implementation
in the ASF�SDF programming environment generator �Kli	�� was described� An extension
to higher�order term rewriting systems was given in �DD	���

Practical experience with origin tracking is described by Dinesh and Tip �Din	�
 Tip	���
Dinesh presents a speci�cation style for the de�nition of static semantics of programming
languages based on abstract interpretation� He shows how origins can be used to generate

�

type checkers with good error pinpointing facilities� Tip discusses an algebraic speci�cation
of an interpreter for a Pascal�based language
 and explains how origin tracking can be
applied to obtain an animator for this language�

The latter two papers were part of the inspiration to start working on specialized ori�
gins for PRSs� Syntax�directed origins will widen the class of algebraic speci�cations for
which origin tracking can be applied easily and successfully� In particular
 the patterns
used to specify the animation behavior for Tip�s animator become much simpler
 and the
adaptation of the abstract syntax proposed by Dinesh to improve his origins becomes
unnecessary�

On the theoretical side
 origins are related to so�called residuals or descendants �HL	�

Mar	��
 which are used in the search for optimal reduction strategies� Currently
 Field and
Tip are extending residuals to creation�residuation tracking using ideas from incremental
rewriting as described by �Fie	���

The notion of a program scheme �Cou	�� is a general device to understand control
structures� loops
 iterations
 goto�s and so on are translated to functions de�ned recursively
by equations� Primitive Recursive Schemes were introduced by Courcelle and Franchi�
Zannettacci in order to understand attribute grammars �AGs�� They gave a one�to�one
correspondence between PRSs and AGs �CF�
�� As an example of an application of this
mapping
 Van der Meulen has used techniques for incremental computations in to obtain
the e�ect of incremental rewriting �Meu	
��

One of the aims of our origin tracking technique is to get
 in an algebraic framework

error messages with good location information associated with it� In AGs
 error messages
typically correspond to attributes of type string� The error position is identi�ed by printing
the message close to the text position of the grammar node the attribute belongs to� In
the Synthesizer Generator �RT�	� the language describer can give unparsing �pretty print�
rules to indicate where the error message should be printed� If there is no error
 the
message attribute contains the invisible empty string�

To compare this with our approach
 consider an identi�er x of type string in an expres�
sion like � x
 causing a message like integer instead of string expected� In an AG
this message will be associated with the � node
 which gives useful information� In our
approach
 the message can have origins to ��� the position where the type inconsistency
was detected which is the � node as in AGs
 �
� the place where x was declared of type
string
 and ��� the position where x was not used with type string� Typically
 the sig�
nature for error messages will include a � instead of expected� symbol
 and origins
are associated with the two arguments as well as with the top function symbol�

Although not intended for this purpose
 our technique could be used to enhance error
location in AGs
 provided the attribute evaluation mechanism is in some sense based on
term rewriting�

�� Principles of Origin Tracking

We present some basic notions concerning term rewriting and ordinary origin tracking�
The problems with existing origins as well as the di�culties when extending them
 are
discussed�

� Principles of Origin Tracking �

� ��

� u

� v

� ��

� u

�v

� ��

� u

� u � v�

� u � v� � w

v � u v j u v � u � v� � w

Figure
� Relative positions of v with respect to contractum position u

��� Preliminaries
Before de�ning origins
 we borrow some preliminary de�nitions concerning �rst�order term
rewriting from �Klo	

 HL	��� A term t can be reduced to a term t� according to a rewrite
rule r � �� � by identifying a context C�� and subterm s in t such that t � C�s�
 and by
�nding a substitution � such that s � ��� Then t � C���� rewrites to C���� � t� by one
elementary reduction
 written t � t�� We call �� the redex
 and �� the contractum� For
multi�step reductions t� � t� � � � � � tn we also write t� �� tn �n � ���

Subterms are characterized by occurrences �paths�
 which are either equal to � � for
the entire term or to a sequence of integers �n�� � � � � nm� �m � �� representing the access
path to the subterm� E�g�
 occurrence ��

� denotes the second son of the �rst son of the
root
 i�e�
 for term f�g�a� b�� c� it denotes subterm b� The subterm in t at occurrence u is
written t�u� Occurrences are concatenated by the �associative� � operator� If u� v� w are
occurrences and u � v � w
 then v is above u
 written v � u� Also
 if w �� �� then we write
v � u� If neither u � v nor u � v then u and v are disjoint
 written u j v� The set of
all occurrences in a particular term t is denoted by O�t�� Similarly
 Ovar �t� is the set of
occurrences of variables in t
 and Ofun�t� the set of function �or constant� symbols in t�
The number of elements in a set O of occurrences will be written jOj�

When we wish to identify the redex
 rule
 and substitution explicitly
 we will write
t

u��
	�r t

� for the one�step rewrite relation
 indicating that rule r is applied at occurrence u
in term t under substitution ��

��� De�nition of the Origin Function
Let t

u��
	�r t

�
 where r is a rule � � �
 be an elementary reduction step� With each step
we associate a function org�step � O�t�� � P�O�t�� mapping occurrences in t� to sets of
occurrences in t� Let v
 O�t��� We de�ne org�step by distinguishing the following cases�
�see also Figure
��

� �Context�

If v � u or v j u then org�step�v� � fvg�

� �Common Variables�

If v � u �v� �w with v�
 Ovar ��� the occurrence of some variable X in the right�hand
side � of r
 and w
 O�X�� an occurrence in the instantiation of that variable
 then

�

org�step�v� � fu � v�� � w j ��v�� � Xg

�Note that v��
 Ovar ��� is the occurrence of X in the left�hand side � of r��

� For the time being
 we will assume that org�step�v� � � for the remaining case
 i�e�

where v denotes a function symbol in the right�hand side of r �see also Section �����

This function org�step covers elementary reductions� It is generalized to a function org�

for multi�step reductions t� � t� � � � � � tn �n � �� by considering the origin functions
for the individual steps� Let us call
 for the i�th elementary reduction ti�� � ti �� 	 i � n�

the associated origin function org�stepi� Recursively de�ne orgj � O�tj� � P�O�t��� for
� � j � n
 and v
 O�tj��

� j � �� orgj�v� � fvg�

� � � j � n� orgj�v� � fw j w
 orgj���w��� w�
 org�stepj�v�g

Then org� is equal to orgn for multi�step reduction t� �
� tn�

Given a multi�step reduction t� � tn
 with associated function org� and occurrence
u
 O�tn�
 the set O � org��u� is called the origin set of tn�u
 and the elements of O
are called the origins of tn�u� Often it is natural to relax the di�erence between sets and
elements� If no confusion is possible we will
 for example
 use �subterm s has an origin�
to indicate that the origin set of s is non�empty
 and �subterm s has multiple origins� to
state that the origin set of s contains more than one occurrence�

��� Example
As an example
 consider the speci�cation of Figures �
 � and � �inspired by �Meu��

Bro	
��� The language designer has speci�ed a translation of a simple language to assembly
code� Signature describing the syntax of source and target language are given in Figures �
and �� Figure � contains the signature and equations for the actual translation functions�
At the moment
 we can ignore the underlining and bold face fonts used for the symbols
�see Section ��� A reduction of term �tr�expr�const��� � const�����
 which results in the
normal form �push��� � push��� � add � null�
 is shown in Figure ��

The dotted lines in the �gure indicate the origin relations established for this reduction�
In the �rst rewrite step
 equation ��� is applied� Since variables E� and E� occur both in
its left� and right�hand side
 origin relations are established between their instantiations

i�e�
 between the occurrences of �const���� and �const���� respectively� In the remaining
rewrite steps
 in particular those where equation �
� is applied
 only the origins for the
constants ��� and ��� survive
 as indicated by the dotted lines in the �gure�

��	 Properties
Origins are very similar to the better�known residuals or descendants �HL	��
 which are
used to study the survival of redexes during reductions� Let A � t �� t� be a reduction

let v
 O�t� and v�
 O�t��
 and let org�A be the origin function for A� Then we have for
orthogonal �left�linear and non�overlapping� TRSs�

Property � Assume reduction A is performed in an orthogonal TRS
 and let nA be Huet
and L�evy�s residual mapping for reduction A� Then v
 org�A�v

��
 v�
 vnA�

� Principles of Origin Tracking �

Sorts� exp stat ���
Functions� if then else �� exp � stat � stat � stat

const� int � exp

� � exp � exp � exp

���

Figure �� Abstract syntax of simple statements and expressions�

Sorts� assembly command label

Functions� null� � assembly

� � command � assembly � assembly

cjump� label � command

jump� label � command

lab� label � command

push� int � command

add� � command

���
�
�

�� � label

� � label � label � label

Figure �� Part of the abstract syntax for a simple assembly language�

For left�linear TRSs
 we can say something about the size of the origin sets�

Property � Assume reduction A is performed in a left�linear TRS� Then for every v�

O�t�� we have jorg�A�v

��j � ��

For arbitrary TRSs
 we can only say that the sets or smaller than the number of nodes in
the initial term�

Property � For every v�
 O�t�� we have � � jorg�A�v
��j � jO�t�j

Finally
 for arbitrary TRSs
 origins only point to syntactically identical terms�

Property � For every v
 org�A�v
�� we have t�v � t��v��

Note
 however
 that these properties need not hold for the extensions we will be proposing
�see Section �����

��
 Limitations
The origin de�nition just presented establishes the most fundamental origin relations
 and
works for all algebraic speci�cations� Experiments in practical situations show that these
origins can already be quite useful �Din	�
 Tip	���

�

Functions� tr�stat� stat � label � assembly

tr�exp� exp � assembly

���
� � assembly � assembly � assembly

���
Variables� E�� E�� exp N � int

S�� S�� stat Alist� assembly

L� label C� command

Equations�

��� tr�stat� if E then S� else S� �
 L � �
tr�exp�E� � �� condition
cjump�L� �
tr�stat�S�
 ��L� � �� else part
jump���L� �
lab�L� � �� then part
tr�stat�S�

�L� �
lab���L� �
null

�
� tr�expr� const�N� � � push�N� � null

��� tr�expr� E��E� � � tr�expr�E�� � tr�expr�E�� � add � null

��� null � Alist � Alist
��� �C � Alist� � Alist� � C � �Alist � Alist��
���

Figure �� Example speci�cation of a simple translation� Equation ��� de�nes the transla�
tion of an if�statement� Equations �
� and ��� specify the compilation of expressions
 and
��� and ��� de�ne concatenation of assembly programs�

�

const

�

const

�

tr�expr

�

const

tr�expr

�

const

tr�expr

�

add null

�

�

�

push

�

push

add null

�

�

�

�
�

�

Figure �� Part of a reduction performing the translation of an expression� The dotted
lines indicate origin relations�

� Principles of Origin Tracking �

Nevertheless
 for several speci�cations it must be possible to establish more and better
origins� This is illustrated by the simple example we have seen in Figure �� There are no
arrows from nodes �add� or �null� to the initial term� In other words
 these nodes have
an empty origin
 even though there seem to be good candidate occurrences in the initial
term� e�g�
 it seems intuitively plausible to link �add� to ����

This problem shows up clearly in equation ��� as well� Origins are established for all
variables E
 S�
 S�
 and
 L
 but none of the function symbols in the right hand side
 e�g�
�jump�
 �cjump�
 �lab�
 ���
 get an origin� This is undesirable since these are the symbols
that will occur in the resulting normal form�

In general
 the problem is that function symbols introduced in the right�hand side of
a rule have an origin consisting of the empty set of occurrences� This is unattractive

since it provides very little information on why such a function symbol has been created�
This problem is mentioned brie y in �DKT	��
 where it is noticed that di�culties arise in
speci�cations �having the avor of translating terms from one representation to another��
For these speci�cations �more origin relations between both sides of the equations have
to be established��

We will propose an extension which solves this problem� It will establish good origins
for function symbols that are created during rewriting in the context of primitive recursive
schemes

��� Extending Origins
Having noticed the limitations of the existing scheme
 one may wonder why it is so di�cult
to present a suitable extension� Ideally
 origins should meet the following requirements�

�A� One would like the origin sets to be as speci�c as possible� Thus
 rather than having
an origin which
 e�g�
 states that this assembly instruction originated from the set of
all statements in the source program
 one would like to know exactly which statement
was responsible� In other words� Keep the origin sets small�

�B� However
 having the empty set as origin provides little information� Moreover
 some
applications require that multiple origins be established� e�g�
 for error handling
purposes one would like to have origins both to a declaration of an identi�er and its
con icting usage� Thus� Do not make the origin sets too small�

�C� Moreover
 the higher a path points in the initial term
 the smaller the information
content� For instance
 having an origin to the top�node of the initial term will only
point out that the normal form somehow has resulted from the initial term� This
does not provide very much information� Hence� Keep the origins deep�

�D� On the other hand
 origins that point too deep may be misleading as well� If
 again in
an error�handling example
 an expression �plus�E�
 E��� has incompatible argument
types
 the origin for a message indicating this should point to either the plus or both
the top nodes of E� and E�
 but not to a very deep subexpression occurring within
E�� Therefore� Do not make the origins too deep�

A proposal to extend origin tracking should �nd a compromise between these con icting
requirements�

	

�� Primitive Recursive Schemes

A Primitive Recursive Scheme �PRS� is a program scheme formalizing the notion of func�
tions de�ned inductively �using primitive recursion� over some structure� A typical ex�
ample of a PRS is a type checker de�ned inductively over the syntax of a programming
language� De�nitions of PRSs can be found in �CF�

 Meu	
�� We follow �Meu	
��

�i� A PRS is a �ve�tuple hG�!� S� E�� ESi
 with G� S signatures
 ! a set of functions

and E�� ES sets of equations� A PRS corresponds to an algebraic speci�cation h"� Ei
with signature " � G � S � ! and equations E � E� �ES �

�ii� All functions in G are free constructors �i�e�
 there are no equations containing only
functions from G��

�iii� The type of the �rst argument of each
 in ! is a sort from G
 and the types of all
other arguments �the parameters of
� as well as the output type are sorts of S�

�iv� E� consists of the !�de�ning equations � For each constructor p � X� � � � �Xn � X�

in G and each function
 in !
 E� contains exactly one de�ning equation�

�p�x�� � � � � xn�� y�� � � � � ym� � � �����

�v� All equations in E� are strictly decreasing in G� i�e�
 in equation �����
 the only
G�terms allowed in � are x�� ���� xn�

�vi� All equations are left�linear �all variables in the left�hand side of each equation are
distinct��

A typical example of a PRS is the speci�cation shown in Figures �
 � and �� The G�
signature of this PRS consists of the boldface function symbols �introduced in Figure ��

de�ning the grammar of a simple programming language� The !�functions of this PRS are
underlined functions tr�stat and tr�expr �introduced in Figure ��� They are de�ned using
primitive recursion in equations ���
 �
�
 and ���� These equations satisfy the requirements
�iv�
 �v�
 �vi� for !�de�ning equations� The S�signature consists of the functions of Figure �
as well as function � from Figure �
 de�ning result values as well as auxiliary functions�

In summary
 a PRS contains a set ! of functions de�ned inductively over the abstract
syntax trees of G� Context information is passed downward using the parameters of the
!�functions� The e�ect of the !�functions is a mapping of G�terms to S�terms� Equations
over S may be used to de�ne further computations or simpli�cations of resulting terms�

�� Origins in PRSs

�� Introduction
So how can we de�ne origins in PRSs# Let us �rst try to understand what is going on in a
PRS� A large G�term �typically the abstract syntax tree of some program� is processed by
!�functions� di�erent !�functions operate on di�erent G�constructors p
 e�g�
 there will be
one !�function to translate an if�statement
 another one to translate an assignment
 and so
on� To see what is going on
 consider a !�de�ning equation
�p�x�� ���� xn�� y�� ���� ym� � � �
The right�hand side � is a formula to compute a particular value for some grammar node
p� It consists of�

�� Origins in PRSs 		

��� Variables �the xi occurring in �� representing subconstructs of the current node p�

�
� Variables �the yj occurring in �� representing context information�

��� Function symbols initiating computations over subconstructs of the current node
�!�functions in �
 with some xi as �rst argument�

��� Function symbols from S indicating how to �synthesize� the result value from the
ingredients mentioned above
 or how to construct context information to be passed
as parameters to the !�functions occurring in � �

This division is re ected in the origins we de�ne� The Common Variables case �Sec�
tion ��
� is used to take care of ��� and �
�� For case ��� we have a !�function
� operating
on a subconstruct
 and we will give
� an origin to its �rst argument
 that is
 to some xi�
Finally
 for case ��� the new function symbols are created when working on the p�x�� ���� xn�
grammar node in the left�hand side� therefore
 these new function symbols will obtain an
origin to the p node in the left�hand side� These origins caused by !�functions traversing
the abstract syntax tree are the kernel of the PRS�origins� The remaining origins
 con�
cerning equations over S
 simply propagate these �!�origins�
 which is achieved by giving
all new function symbols in the right�hand side of a rewrite rule from ES an origin to the
top�symbol of the left�hand side� A precise de�nition is given in Section ����

�� Example
As an example
 let us study again the reduction of �tr�expr�const��� � const����� ac�
cording to the equations in Figure �� The PRS origins for this reduction are shown in
Figure ��
The relations between the constants ��� and ��� in the normal form and initial term

are established because of Common Variable N when applying equation �
� of Figure ��
The relations between �push� and �const� result from reductions according to !�de�ning

equation �
�� the S�function symbol �push� gets the G�argument �const�N�� of !�function
�tr�expr� as origin� Likewise
 S�function symbols � � �
 � � �
 �add� and �null�
introduced in !�de�ning equation ��� get an origin to the � � � G�argument of !�function
�tr�expr��
Finally
 equations ��� and ��� are used to eliminate the concatenation of assembly code

operator � � �� New functions introduced in these S�equations receive the top�function
symbol of the left�hand side as origin� Since in this case the � � � operators were
introduced by equation ���
 these origins point to the ��� function symbol�

�� De�nition
For a PRS hG�!� S� E�� ESi and term t
 we introduce O��t�
 OG�t�
 and OS�t� as the sets
of occurrences denoting a function symbol from !
 G
 and S respectively� To de�ne origins
for PRSs
 we again consider an elementary reduction t � C���� � C���� � t�� Let u be
the occurrence in C of the redex position� The function prs�org�step � O�t�� � P�O�t��
maps occurrences in t� to sets of occurrences in t� De�ne prs�org�step�v� by taking the
�Common Variables� and �Context� cases of org�step
 together with the following cases

where v is the occurrence of a function �or constant� symbol in ��

� �!�Functions�

If v � u �v� with v�
 O���� the occurrence of a !�function symbol in the right�hand
side � then

	�

�

const

�

const

�

tr�expr

�

push

�

push

add null

�

�

�

�
�

Figure �� Syntax�Directed Origins for a Simple Reduction

prs�org�step�v� � prs�org�step� v � ��� �

In other words
 the origin of a !�function is equal to the origin of its G�argument�

� �Synthesizers�

If v � u � v� with v�
 OS��� the occurrence of a function symbol from S in the
right�hand side �
 and r
 E� is a !�de�ning equation with left�hand side � �

�p�x�� ���� xn�� y�� ���� ym�
 then

prs�org�step�v� � fu � ���g

In other words
 the origin is the G�term p�x�� ���� xn� as it occurs in the left�hand
side�

� �Auxiliary Symbols�

Finally
 if rule r
 ES
 and v � u � v� with v�
 OG��� � OS��� the occurrence of a
function symbol from G or S in the right�hand side
 then

prs�org�step�v� � fug

In other words
 the origin is equal to the top�symbol of the left�hand side�

At �rst sight the de�nition of prs�org�step for the !�Functions case may seem a little
dangerous since prs�org�step appears at both sides of the equality sign� However
 the
�rst argument of a !�function must $ by de�nition of a PRS $ be a G�term
 for which
the prs�org�step function is directly de�ned in the remaining cases� When we know that
rule r actually is a !�de�ning equation
�p�x�� ���� xn�� y�� ���� ym� � � we can even make a
stronger statement� A !�function
� occurring at position v in right�hand side � must $
again by de�nition of a PRS $ have one of the xi�� � i � n� as its �rst argument� The
occurrence of that xi in the left�hand side is ��� i�
 so for this case we can de�ne prs�org�step
alternatively as prs�org�step�v� � fu � ��� i�g�
The function prs�org�step can be extended to a function prs�org� covering multi�step

reduction similar to the extension of org�step to org� �see Section ��
��
Note that a consequence of this de�nition is that a possible implementation should be

able to recognize whether or not a particular function symbol is a !�function symbol�

�� Syntax
Directed Origin Tracking 	�

�	 Properties
In Section ��� we mentioned four desirable characteristics �labeled �A�
 �B�
 �C�
 and �D��
for extensions of origins� To what extend did we manage to meet these requirements#
Concerning the size of the origin sets �requirements �A� and �B��
 origin sets in pure PRSs
always contain exactly one element�

Property 	 Let t� t� be terms
 A � t �� t� a reduction in a PRS
 and let prs�org�A be the
origin function for this reduction� For all v
 O�t�� we have jprs�org�A�v�j � ��

Proof� This follows from the facts that ��� PRSs are left�linear
 �
� none of the various
cases for function symbol origins in PRSs overlap
 and ��� because every individual case
yields exactly one origin�
This means that requirement �A� to keep the origin sets small is met� Requirement

�B�
 however
 is only partly met� Although unpleasant sets containing no origins at all
are excluded �which contrasts with the primary origins
 see Property
�
 situations were
multiple origins are nice �error handling� are treated in an unsatisfactory manner�
PRS origins try achieve the proper depth of �requirements �C� and �D��
 by focusing

on the G�terms� Function symbols need to synthesize new values obtain an origin to the
closest surrounding !�function� The following property states that origins established
during reduction of t according to left�hand side
�p�x�� � � � � xn�� y�� � � � � ym�
 either result
from copying subterms of some yi ��rst case�
 or are the result of introducing a new function
symbol in some right�hand side
 and thus point to a subterm of the G�term which is the
�rst argument of
�

Property
 Let t� t� be terms
 t �� t�
 let A � t �� t� be a reduction in a PRS
 and let
prs�org�A be the origin function for this reduction� Assuming that the top operator of t is
a !�function
 we have� For all v
 O�t��
 let prs�org�A�v� � fug� Then either�

� �j� � u
 with j �

 and t��v � t�u� or

� ��� � u�

Proof� Direct from the de�nition of prs�org�step and the fact that t has a !�function as
its top node

�� Syntax�Directed Origin Tracking

The origins in the previous section were de�ned for the clean PRS case� Here we study the
consequences of relaxing the PRS requirements and of extending the rewrite mechanism�

��� Relaxing the PRS Requirements
Some requirements of the �ve �ii� to �vi� in Section � are non�restrictive
 and others can
be relaxed easily�

�ii� Equaions overG�terms can be useful
 as in �repeat�S�E� � seq�S�while�not�E�� S����
We can handle such equations by relating each function symbol in the right�hand
side to the top of the left�hand side� Hence equations over G�terms are treated as
equations over S�terms �the Auxiliary Symbols case��

�iii� The restriction to recursion over the �rst argument is not essential�

	�

�iv� The �xed left�hand side
�p�x�� ���� xn�� y�� ���� ym� of !�de�ning equations can be
annoying when writing large speci�cations� Deeper patterns at the xi or yj positions
can be allowed without problems �allowing non�trivial matching at these positions��

�v� Right�hand sides of !�de�ning equations are not allowed to contain any function
symbol from G� This can be a problem when writing
 e�g�
 an operational seman�
tics of a while loop
 where the while constructor will appear in the right�hand side
again� For origin tracking purposes
 it is possible to link every new G�term to the
p�x�� ���� xn� node at the left�hand side� Thus
 G�symbols introduced in right�hand
sides of !�de�ning equations can be treated as S�symbols introduced in such right�
hand side �the Synthesizer case��

�vi� Linearity of left�hand sides is not essential� Allowing non�linear patterns causes
origins to contain multiple paths
 which �Section ���
 �B�� can be useful under certain
circumstances�

Relaxing requirements �ii� and �v� can make some origins less precise� For instance
 the
�not�E�� in the right�hand side of the equation mentioned under �ii� will have an origin
to the entire repeat statement�

��� Common Subterms
In addition to the CommonVariables and Context cases
 �DKT	�� introduced a �Common
Subterms� case�
Let t

u��
	�r t

�
 where r is a rule �� �
 be an elementary reduction step� Let v
 O�t���

� �Common Subterms�

If v � u � v� with v�
 Ofun��� the occurrence of a function symbol �or constant� in
the right�hand side � of r
 then

org�step�v� � fu � v�� j ��v�� � ��v�g

Note that common subterms are looked for in the uninstantiated sides � and ��

In the PRS context
 common subterms can be useful in the Auxiliary Symbols case
�which also applies to G�terms if �ii� is relaxed�� Moreover
 if the �xed patterns of left�
hand sides of !�de�ning equations are allowed to contain arbitrary patterns �iv�
 the
common subterms case could be useful to �nd origins S�symbols �or even G�symbols
 if
�v� is relaxed� occurring in the right�hand side�

��� Further Extensions
A detailed account of the use of PRSs is given in �Meu	��� She proposes extensions of
PRSs to deal with conditional equations as well as with associative lists � Syntax�directed
origins can easily be extended to deal with these mechanisms as well�
A particularly interesting topic Van der Meulen discusses is the nested or layered PRS�

A typical example of a layered PRS is a compilation de�ned by a translation to an in�
termediate language
 followed by a translation to the target language� Both translations
will be de�ned as PRSs� Thus
 the S�functions of the �rst PRS act as G�functions of the
second PRS� Syntax�directed origins easily apply to both PRSs�

�� Concluding Remarks 	�

	� Concluding Remarks

We have discussed an extension of the origin function� We gave a precise de�nition for
pure PRSs
 and formulated several properties� Realizing that in practice a speci�cation
hardly ever is a pure PRS
 we extended our de�nition such that it applies to arbitrary
speci�cations with a syntax�directed nature� In comparison with existing origin schemes

syntax�directed origins particularly focus on providing good information for created func�
tion symbols� This allows the technique to be applied to
 e�g�
 automatic generation of
error handlers and source�level debuggers�
We can illustrate the success of syntax�directed origins by considering the type checker

for ISO Pascal described in �Deu	��� For about ��� of the error messages
 the primary
origins are su�cient� These ��� are of the form Not�a�variable�x�
 i�e�
 containing
some piece of the initial program �in this case the identi�er x� as part of the message�
This piece provides the origin information� But the remaining ��� of the messages are
functions like Integer�type instead of string�type expected
 where all symbols are
freshly created �not occurring in the source program�� Primary origins could not give
origins for these
 but sytnax�directed origins can�
On the negative side
 our extension is restricted to the class of PRS�like speci�ca�

tions� However
 this class is very large� Many speci�cations
 particularly of type checkers

evaluators
 compilers
 and so on
 have a syntax�directed �or
 equivalently
 homomorphic

compositional
 or inductive� character�
Another point of criticism might concern the actual de�nition of prs�org� The �Aux�

iliary Symbols� case may result in rather imprecise origins
 since it simply relates all
function symbols at the right to the top�symbol at the left� This strategy is however
 at
least as safe as possible since it does not lose any information� Moreover
 the Auxiliary
Symbols case does not form the heart of the syntax�directed origins� This is covered by
the �Syntax�Directed Functions� and �Synthesizer� case� Hence
 future improvements
of origin tracking can be embodied in the Auxiliary Symbols case without changing the
nature of the syntax�directed origins�
At the moment
 we are implementing syntax�directed origin tracking within the

ASF�SDF programming�environment generator �Kli	��� Primary origins are already im�
plemented �see �DKT	���� This implementation tries to overcome the potential loss of
reduction speed in the term rewriting machine in several ways� Paths are represented by
pointers in directed acyclic graphs �DAGs�
 sets of paths are encoded by bit maps
 and ori�
gins are computed by propagating these sets as annotations during rewriting� Moreover
 as
many computations as possible are performed at �compile time�
 thus reducing the over�
head at reduction time� These measurements are su�cient to make origin tracking feasible
in realistic speci�cations� The extension to syntax�directed origins is currently being im�
plemented� This implementation is eased by the fact that parts of the implementation of
incremental rewriting �Meu	
� can be re�used�
As a preliminary study
 we already �nished an �algebraic� speci�cation of the origins

following the de�nition of Section ���� We were able to conduct some initial experiments
using this executable speci�cation
 and observed that the syntax�directed origins behaved
as expected�

Acknowledgments

I would like to thank T�B� Dinesh
 Jan Heering
 Paul Klint
 and Emma van der Meulen
for their careful reading and willingness to discuss origins and PRSs�

	� References

References

�BCD��	� P� Borras
 D� Cl%ement
 Th� Despeyroux
 J� Incerpi
 B� Lang
 and V� Pas�
cual� Centaur� the system� In Proceedings of the ACM SIGSOFT�SIGPLAN
Software Engineering Symposium on Practical Software Development Environ�
ments
 pages ��&
�
 �	�	� Appeared as SIGPLAN Notices
��
��

�Ber	�� Y� Bertot� Implementation of an interpreter for a parallel language in Centaur�
In N� Jones
 editor
 ESOP ��� � Proceedings of the Third European Symposium
on Programming
 volume ��
 of LNCS
 pages ��&�	� Springer�Verlag
 �		��

�Ber	
� Y� Bertot� Origin functions in lambda�calculus and term rewriting systems� In
J��C� Raoult
 editor
 Proceedings of the ��th Colloquium on Trees in Algebra
and Programming �CAAP ����
 volume ��� of LNCS� Springer�Verlag
 �		
�

�Ber	�� Y� Bertot� A canonical calculus of residuals� In G� Huet and G� Plotkin
 editors

Logical Environments� Cambridge University Press
 �		��

�BHK�	� J�A� Bergstra
 J� Heering
 and P� Klint
 editors� Algebraic Speci�cation� ACM
Press Frontier Series� The ACM Press in co�operation with Addison�Wesley

�	�	�

�Bro	
� M� Broy� Experiences with software speci�cation and veri�cation using LP
 the
Larch Proof Assistant� Technical Report 	�
 DEC Systems Research Center

�		
� Available by ftp from gatekeeper�pa�dec�com� 'pub'DEC'SRC'research�
reports�

�CF�
� B� Courcelle and P� Franchi�Zannettacci� Attribute grammars and recursive
program schemes I and II� Theoretical Computer Science
 ������&�	� and
��&

��
 �	�
�

�Cou	�� B� Courcelle� Recursive applicative program schemes� In J� van Leeuwen
 editor

Handbook of Theoretical Computer Science
 Volume B
 pages ��	&�	
� Elsevier
Science Publishers
 �		��

�DD	�� A� van Deursen and T�B� Dinesh� Origin tracking for higher�order term rewrit�
ing systems� In J� Heering
 K� Meinke
 B� M(oller
 and T� Nipkow
 editors

Proceedings of the International Workshop on Higher�Order Algebra
 Logic and
Term Rewriting HOA��
 Amsterdam
 September �		�� To Appear�

�Deu	�� A� van Deursen� An algebraic speci�cation for the static semantics of Pascal�
In J� van Leeuwen
 editor
 Conference Proceedings Computing Science in the
Netherlands CSN���
 pages ���&���
 �		�� Full speci�cation available by ftp
from ftp�cwi�nl�pub'gipe�

�Din	�� T�B� Dinesh� Type checking revisited� Modular error handling� In Proceedings of
the Workshop on Semantics of Speci�cation Languages
 Utrecht
 �		�� Springer�
Verlag
 LNCS� To Appear�

�DKT	�� A� van Deursen
 P� Klint
 and F� Tip� Origin tracking� Journal of Symbolic
Computation
 ����
�&���
 �		�� Special Issue on Automatic Programming�

�Fie	�� J� Field� A graph reduction approach to incremental rewriting� In C� Kirchner

editor
 Proceedings of the
th International Conference on Rewriting Techniques
and Applications
 volume �	� of LNCS
 pages
�	&
��
 �		��

�HL	�� G� Huet and J��J� L%evy� Computations in orthogonal rewriting systems part I

References 	�

and II� In J��L� Lassez and G� Plotkin
 editors
 Computational Logic� essays in
honour of Alan Robinson
 pages �	�&���� MIT Press
 �		��

�Kah��� G� Kahn� Natural semantics� In F�J� Brandenburg
 G� Vidal�Naquet
 and
M� Wirsing
 editors
 Fourth Annual Symposium on Theoretical Aspects of Com�
puter Science
 volume
�� of LNCS
 pages

&�	� Springer�Verlag
 �	���

�Kli	�� P� Klint� A meta�environment for generating programming environments� ACM
Transactions on Software Engineering and Methodology

�
�����&
��
 �		��

�Klo	
� J�W� Klop� Term rewriting systems� In S� Abramsky
 D� Gabbay
 and
T� Maibaum
 editors
 Handbook of Logic in Computer Science
 Volume �� Back�
ground� Computational Structures
 pages �&���� Oxford University Press
 �		
�

�Mar	�� L� Maranget� Optimal derivations in weak lambda�calculi and in orthogonal
term rewriting systems� In Proceedings of the Eighteenth conference on Princi�
ples of Programming Languages POPL ���
 pages

�&
�	
 �		��

�Meu��� E�A� van der Meulen� Algebraic speci�cation of a compiler for a language with
pointers� Report CS�R����
 Centrum voor Wiskunde en Informatica �CWI�

Amsterdam
 �	���

�Meu	
� E�A� van der Meulen� Deriving incremental implementations from algebraic
speci�cations� In Proceedings of the �nd International Conference on Algebraic
Methodology and Software Technology
 Workshops in Computing
 pages
��&

��� Springer�Verlag
 �		
�

�Meu	�� E� A� van der Meulen� Incremental Rewriting� PhD thesis
 University of Ams�
terdam
 �		�� Available by ftp from ftp�cwi�nl�'pub'gipe as Meu	��ps�Z�

�RT�	� T� Reps and T� Teitelbaum� The Synthesizer Generator Reference Manual �
Third edition� Springer�Verlag
 �	�	�

�Tip	�� F� Tip� Animators for generated programming environments� In P� Fritzson

editor
 Proceedings of the First International Workshop on Automated and Al�
gorithmic Debugging AADEBUG���
 LNCS� Springer�Verlag
 �		�� To appear�

�Wir	�� M� Wirsing� Algebraic speci�cation� In J� van Leeuwen
 editor
 Handbook
of Theoretical Computer Science
 Volume B
 pages ���&��	� Elsevier Science
Publishers
 �		��

