
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Transforming acyclic programs

A. Bossi S. Etalle

Computer Science/Department of Software Technology

CS-R9369 1993

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301654049?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Transforming Acyclic Programs

Annalisa Bossi�� Sandro Etalle����

� Dipartimento di Matematica Pura ed Applicata� Universit�a di Padova�

Via Belzoni �� ����� Padova� Italy�

�
CWI� P�O� Box 	
��	� ��	� GB Amsterdam� The Netherlands�

email� bossi�zenone�math�unipd�it� etalle�cwi�nl

Abstract

An Unfold�Fold transformation system is a source�to�source rewriting methodology devised to improve the

e�ciency of a program� Any such transformation should preserve the main properties of the initial program�

among them� termination� To this end� in the �eld of logic programming� the class of acyclic programs plays

an important role� as it is closely related to the one of terminating programs� The two classes coincide when

negation is not allowed in the bodies of the clauses�

In this paper it is proven that the Unfold�Fold transformation system de�ned by Tamaki and Sato preserves

the acyclicity of the initial program� As corollaries� it follows that when the transformation is applied to an

acyclic program� then �nite failure set for de�nite programs is preserved	 in the case of normal programs� all

major declarative and operational semantics are preserved as well� These results cannot be extended to the

class of left terminating programs without modifying the de�nition of the transformation�

AMS Subject Classi�cation �������
�Q��
�T���

CR Subject Classi�cation ������� D���
� F����� F����� I����� I�����

Keywords and Phrases� Program�s Transformation� Logic Programming� Termination� Terminating pro�

grams� Acyclic programs�

Note� this work has been partially supported by �Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo�

of CNR under grant n� ����
�
��

�� Introduction

��� Motivation
In this paper we focus on the unfold�fold transformation systems proposed by Tamaki and
Sato �TS����
As the large literature shows �TS��� KK��� Sek	
� Sek	�� Sek	�� AD	��� a lot of research

has been devoted to proving the correctness of the system wrt the various semantics proposed
for logic programs� However the question of the consequences of the transformation on the
universal� termination of the program has not yet been tackled�
Recall that a program is called terminating if all its SLDNF derivations starting in a ground

goal are �nite� In this paper we follow the approach to termination of Apt and Bezem �AB	���
They investigate the class of acyclic programs introduced by Cavedon �Cav	��� and prove
that it is closely related to the one of terminating programs� In fact we have that every acyclic

�

program is terminating �AB	�� and that every de�nite� terminating program is acyclic �Bez	���
however� when negation is allowed in the bodies of the clauses� then there exist terminating
programs which are not acyclic �AB	���
In this paper we prove that when the initial program is acyclic� then the resulting program

is acyclic as well�
This has some obvious consequences on the preservation of termination and some semantic

repercussions� In fact since acyclic programs are terminating� their Finite Failure Set coincides
with the complement of their Success Set� it follows that in this case the transformation
preserves the Finite Failure Set for de�nite programs�� A similar reasoning applies to all the
major formalisms for programs with negation� namely Fitting�s model� � and � valued ground
logical consequence of the completion� and� in the non��oundering cases� the operational
semantics based on the SLDNF�resolution� when the program is acyclic they all coincide and
thus they are preserved by the transformation�

��� Structure of the Paper
Sections � and � contain the preliminaries on terminating and acyclic programs and on the
Tamaki�Sato�s unfold�fold transformation system� In section � we prove that the transforma�
tion preserves the acyclicity of the initial program� we also discuss the case in which the initial
program is left terminating� In section � we give a brief summary of the semantic properties
of acyclic programs and we show that they are preserved through the transformation�

��� Preliminaries
We assume that the reader is familiar with the basic concepts of logic programming� through�
out the paper we use the standard terminology of �Llo��� and �Apt	
�� We consider normal
programs� that is �nite collections of normal rules� A� L�� � � � � Lm� where A is an atom and
L�� � � � � Lm are literals� We say that a clause is de�nite if the body contains only positive
literals atoms�� a de�nite program is then a program consisting only of de�nite clauses�
Symbols with a � on top denote tuples of objects� for instance �x denotes a tuple of variables
x�� � � � � xn� and �x � �y stands for x� � y� � � � � � xn � yn� We also adopt the usual logic
programming notation that uses ��� instead of �� hence a conjunction of literals L�� � � ��Ln

will be denoted by L�� � � � � Ln or by eL� We denote by V arE� the set of all the variables in
an expression E�

�� Termination

��� Terminating and Acyclic programs
The following notion is crucial�

De�nition ��� A program is called terminating i� all its SLDNF�derivations starting from
a ground goal are �nite� �

Hence terminating programs are the ones whose SLDNF�trees starting in a ground goal are
�nite� We now present the approach to the issue of termination followed by Apt and Bezem
�AB	���

� Termination �

Acyclic Programs Acyclic programs� form a natural subclass of the locally strati�ed ones�
and have been studied by Apt and Bezem �AB	�� and by Cavedon �Cav	��� To give their
de�nition� �rst we need the following notion�

De�nition ��� Let P be a program� a level mapping for P is a function j j � BP �N of
ground literals to natural numbers� such that� for each A � BP jAj � j�Aj� �

De�nition ��� Let j j be a level mapping�

� A clause is acyclic wrt j j i� for every ground instance A� L�� � � � � Lk of it� and for
each i� jAj � jLij�

� A program P is acyclic wrt j j i� all its clauses are� P is called acyclic if it is acyclic
wrt some level mapping� �

Following Bezem �Bez	�� level mappings can be generalized and hence applied to nonground
atoms�

De�nition ��� Let j j be a level mapping�

� A literal L is called bounded wrt j j if j j is bounded on the set �L� of ground instances
of L�

� A goal is called bounded wrt j j i� all its literals are� �

Example ��� �AP	�� Consider the program member�

P � f memberX� �Y jXs�� �memberX�Xs��
memberX� �X jXs��� g

We adopt the standard list notation and de�ne the function j jl� called listsize which assigns
natural numbers to ground terms as follows�
jtjl � � if t is not of the form �x�jxs� this takes also care of the case t � � ���
j�x�jxs�jl � � � jxsjl�

We can now de�ne the level mapping j j for the member program� jmembert� s�j � jsjl� It
is easy to see that program member is acyclic wrt j j and that if l is a list by this we mean
l � �x�� � � � � xn�� where the xi�s need not be ground�� then membert� l� is a bounded atom�

�

We can now relate acyclic and terminating programs�

Theorem ��	
AB��� If P is acyclic and G is a bounded goal then all SLDNF derivations
of P � fGg are �nite� �

In �AB	�� is stated that the converse of Theorem ��� holds in the case that no SLDNF�
derivation starting in a ground goal contains a goal with a nonground negative literal in it�
and that since that condition is quite constraining� that the result itself is too weak to be
formalized� However it is signi�cant at least for the case that we restrict our attention to
de�nite programs� in fact in �Bez	�� we have the following�

�

Theorem ��
Bez��� Let P be a de�nite program� then P is terminating i� P is acyclic�
�

From the procedural point of view� acyclic programs enjoy the following important prop�
erty� the two most prominent approaches� namely the SLDNF resolution� see Lloyd �Llo����
and the SLS resolution from Przymusinski �Prz�	�� coincide when applied to acyclic programs�
For the semantic properties of acyclic programs we refer to section ��

�� Unfold�Fold Transformations

We now give the de�nition of unfold�fold transformation sequence that was �rst given by
Tamaki and Sato �TS��� for de�nite programs and then used by Seki �Sek	
� Sek	�� for
normal programs� Here we present it as it is in �Sek	��� All de�nitions are given modulo
reordering of the bodies of the clauses� and standardization apart is always assumed�

De�nition ��� �initial program� We call a normal program P� an initial program if the
following two conditions are satis�ed�

�I�� P� is divided into two disjoint sets P� � Pnew � Pold�

�I�� All the predicates which are de�ned in Pnew occur neither in Pold nor in the bodies of
the clauses in Pnew � �

The predicates de�ned in Pnew are called new predicates� while those de�ned in Pold are
the old predicates� Clauses in Pnew will also be referred to as de�ning clauses�

Example ��� �Sek	�� Let P� be the following program

P� � DB � f c� � pathX� �X �� � nodeX��
c� � pathX� �X jXs�� � arcX� Y �� pathY�Xs��

c� � goodlist����
c� � goodlist�X jXs�� ��badX�� goodlistXs��

c� � goodpathX�Xs� � pathX�Xs�� goodlistXs�� g

where predicates node� arc and bad are de�ned in DB by a set of unit clauses� Predicate
goodpathX�Xs� can be employed for �nding a path Xs starting from the node X which
doesn�t contain �bad� nodes� Let Pold � fc�� � � � � c�g �DB and Pnew � fc�g� thus goodpath
is the only new predicate� �

Unfolding an atom in the body of a clause consists in applying a resolution step to the
considered atom in all possible ways� This operation is basic to all the transformation systems�

De�nition ��� �unfold� Let cl � A�H� �K� be a clause of a normal program P � where H
is an atom� Let fH�� �B�� � � � � Hn� �Bng be the set of clauses of P whose heads unify with
H � by mgu�s f��� � � � � �ng�

� Unfolding an atom H in cl consists of substituting cl with fcl��� � � � � cl
�
ng� where� for

each i�
cl�i � A� �Bi� �K��i�

�� Unfold�Fold Transformations �

unfold P� cl� H�
def
� Pnfclg � fcl��� � � � � cl

�
ng� �

Example ��� �part �� By unfolding the atom pathX�Xs� in the body of c�� we obtain
c� � goodpathX� �X �� � nodeX�� goodlist�X���
c� � goodpathX� �X jXs�� � arcX� Y �� pathY�Xs�� goodlist�X jXs���

Both clauses can be further further unfolded� and the resulting clauses are
c	 � goodpathX� �X �� � nodeX���badX��
c
 � goodpathX� �X jXs�� � arcX� Y �� pathY�Xs���badX�� goodlistXs��

Let P� � fc�� � � � � c�� c	� c
g �DB� �

Folding is the inverse of unfolding when one single unfolding is possible� It consists in
substituting a literal L for an equivalent conjunction of literals fK in the body of a clause c�
This operation is used in all the transformation systems in order to pack back unfolded clauses
and to detect implicit recursive de�nitions� In the literature we �nd di�erent de�nitions for
this operation� This is due to the fact that it is not generally safe even for declarative
semantics and its application must be restricted by some conditions which depend on the
semantics we choose� Such conditions can be either a constraint on how to sequentialize
the operations while transforming the program �TS��� KK���� or they can be expressed only
in terms of properties of the program� independently from its transformation history�BC	��
Mah����
The transformation sequence and the folding operation are de�ned in terms of each other�

De�nition ��� �transformation sequence� A transformation sequence is a sequence of
programs P�� � � � � Pn� n 	
� such that each program Pi���

 i � n� is obtained from Pi by
unfolding or folding a clause of Pi� �

De�nition ��� �folding� Let P�� � � � � Pi� i 	
� be a transformation sequence� c � A� �K
�
� �J �

a clause in Pi and d � D� �K� a clause in Pnew � Let X be the set of all the variables occurring
in the clause d� If there exists a substitution � whose domain is the set X � such that the
following conditions hold�

�F�� �K� � �K
�
�

�F�� � renames with fresh variables the variables in �K not in D�

�F�� d is the only clause in Pnew whose head is uni�able with D� �

�F�� one of the following two conditions holds

�� the predicate in A is an old predicate�

�� c is the result of applying unfolding at least once to a clause in Pnew �

then folding D� in c in Pi consists of substituting c� for c in Pi� where

headc��
def
� A

bodyc��
def
� D�� �J�

foldPi� D�� c�
def
� Pinfcg�� fc

�g� �

�

Example ��� �part �� We can now fold the body of c
� using c� as folding clause� the
resulting program is P� � DB � fc�� � � � � c�� c��g� where c�� is the following clause�

c�� � goodpathX� �X jXs��� arcX� Y ���badX�� goodpathY�Xs��
Notice that because this operation the de�nition of goodpath is now recursive� �

The transformation enjoys the following important properties�

Theorem ��	 Let P�� � � � � Pn be a transformation sequence�

� If P� is a de�nite program then

� �TS��� The least Herbrand models of the initial and �nal programs coincide�

� �KK��� The computed answers substitution semantics of the initial and �nal pro�
grams coincide�

� If P� is a normal program� then

� �Sek	
� The Stable models of the initial and �nal programs coincide�

� �Sek	�� The Well�Founded models of the initial and �nal programs coincide�

� �Sek�	� Under a further mild assumption on the initial program� if the initial
program is strati�ed then the �nal program is strati�ed and their Perfect models
coincide�

� �AD	�� The semantic kernel of the initial and �nal program coincide� this im�
plies also that the Stable model semantics� the preferred extension semantics� the
stationary semantics and the stable theory semantics of the initial and the �nal
programs coincide� �

However� the transformation does not preserve the Finite Failure set of the initial de�nite�
program� More precisely we have that the Finite Failure set of the �nal program is contained
in the one of the initial program� but� in general� not vice�versa�

Modi�ed Folding In order to make the paper more self�contained� we have to mention that
the problem of the correctness of the operation wrt the Finite Failure Set was pointed out
by Seki� who modi�ed the applicability conditions of the folding operation as follows�

De�nition �� �modi�ed folding�
Sek��� The modi�ed folding operation is de�ned ex�
actly as in De�nition ���� with the exception of condition �F��� which is replaced by the
following

�F��� one of the following two conditions holds

�� the predicate in A is an old predicate�

�� all the atoms in �K
�
are the result of some previous unfold operation� �

This De�nition �rst appeared in �Sek�	�� It is easy to see that when F�� holds� then
F� holds as well� hence that the modi�ed folding operation enjoys all the properties that
were proven for the folding operation� Seki proved that modi�ed folding preserves the Finite
Failure set of a de�nite program �Sek�	� Sek	��� later on Sato� on a work that extends
this de�nition to full �rst order programs �Sat	
�� proved the correctness of the system wrt
Kunen�s semantics�

� Transforming Acyclic Programs �

�� Transforming Acyclic Programs

We now show that if the initial program of a transformation sequence is acyclic then the
resulting program is acyclic as well�

Notation� Let P�� � � � � Pn be the transformation sequence we are considering� Since P� is
acyclic� then it is acyclic wrt some level mapping� say jj jj� moreover� there in no loss of
generality in assuming that jj jj does not take value zero on any atom� Let nf be the number
of foldings that are going to be performed in the sequence which we assume greater than
zero�� and let maxargs be the maximum number of literals that a body of a clause of P�
contains� augmented by one� We also suppose that maxargs� �� as it is not possible to
perform any unfold or fold operations on a program consisting solely of unit clauses�
We now de�ne a new level mapping j j for P��

De�nition ��� The level mapping j j is de�ned as follows� Let A be a ground atom�

� If A is an old atom then we let jAj � nf �maxargsjjAjj�

� If A is an new atom then we distinguish two subcases�

a� If A uni�es with the head of only one clause of Pnew � N � B�� � � � � Bn� suppose
that A � N�� since B�� � � � � Bn are old atoms� we have that j j is already de�ned
on their ground instances� so we set jAj � jN�j � supf

Pn
i�� jBi��j j Dom�� �

V arB��� � � � � Bn��g � ��

b� This case is of no relevance for the proof� as� because of condition �F��� we are
interested in computing the level mapping of atoms that unify with the head of
only one clause of Pnew � but we do have to extend j j in a consistent way�� If A
uni�es with the head of a non�unit� set of clauses

fN��B���� � � � � B��n�� � � � Nj �Bj��� � � � � Bj�nj�g � Pnew � suppose that A �
Ni�i� we de�ne

jAj � supf
Pni�

j�� jBi�j�i�j j i � ��� � � � � j�� Dom�� � V arBi���i� � � � � Bi�ni��i�g���
�

j j is obviously a level mapping� as it is de�ned and �nite on each ground atom�
In order to prove that each of the program in the transformation sequence is acyclic wrt

j j we need the following simple but technical lemma�

Lemma ��� For nonzero integers nf� n� n�� � � � � nk� if � � k �maxargs then

� if n � supfn�� � � � � nkg� then nf �maxargsn � nf �
Pk

j�� nf �maxargsnj

Proof�
nf �

Pk
j�� nf �maxargsnj
 nf � nf � k �maxargssupfnjg

Since k �maxargs

 nf�nf �maxargs���maxargssupfnjg � nf�nf �maxargssupfnjg��nf �maxargssupfnjg

Since maxargs�
 and n � supfnjg�

 nf �maxargsn � nf nf �maxargssupfnjg � nf �maxargsn � nf � �maxargssupfnjg��

Since all integers are nonzero and maxargs � �� � maxargssupfnjg �
� This proves the
Lemma� �

�

Lemma ��� For each Pi in the transformation sequence the level mapping j j satis�es the
following�

a� for each ground instance of a de�ning clause H �B�� � � � � Bk��
jH j � jB�j� � � �� jBkj�

b� for any other clause H �B�� � � � � Bk� in GroundPi��
jH j � jB�j� � � �� jBkj� nfi�

Where for each j� nfj is the number of folding operations that will be performed in the
sequence from Pj to Pn�

Proof� The proof proceeds by induction on the index i�

Base Case� P��

Let c � H� B�� � � � � Bk� be a clause of GroundP��� If k �
 then the result holds trivially�
So we assume k �
� We have to distinguish two cases�
If H is a new predicate� then c is an instance of a de�ning clause� and condition a� is then

trivially satis�ed by the de�nition of j j�
If H is an old predicate� then� since jjH jj � supfjjBj jjg and since � � k �maxargs� the

result follows from Lemma ����

Induction Step� Pi���

For those clauses that Pi and Pi�� have in common� the result follows from the inductive
hypothesis and the fact that nfi��
 nfi� Hence we can focus on those clauses that were
introduced or modi�ed in the last transformation step from Pi to Pi���� We distinguish
upon the operation that has been used for going from Pi to Pi��

Unfolding

Let
d � H �B�� L�� � � � � Lh� be the unfolded clause� and
c � B�B�� � � � � Bk� be one of the unfolding ones�

Let also � � mguB�B��� then the resulting clause is
H��B��� � � � � Bk�� L��� � � � � Lh��

Since nfi�� � nfi� in order to prove the thesis� we have to prove that� for each �

jH��j � jB���j� � � �� jBk��j� jL���j� � � �� jLh��j� nfi� ����

We have to distinguish two cases�
First we suppose that d is a de�ning clause� Then B is an old predicate and clause c satis�es

condition b�� hence
jB��j � jB���j� � � �� jBk��j� nfi�

On the other hand� clause d satis�es condition a�� hence
jH��j � jB���j� jL���j� � � �� jLh��j�

Since B��� � B�� this proves �����
Since we consider the case in which d is not a de�ning clause� Hence d satis�es condition

b�� and we have that

� Transforming Acyclic Programs �

jH��j � jB���j� jL���j� � � �� jLh��j� nfi�
Since clause c must satisfy either a� or b�� we have that also
jB��j � jB���j� � � �� jBk��j�

Since B��� � B�� this proves again �����

Folding

Suppose that�
c � H �B�

�� � � � � B
�
k� L�� � � � � Lh� is the folded clause of Pi�

d � N �B�� � � � � Bk is the folding clause of Pnew �
Hence B�

�� � � � � B
�
k� � B�� � � � � Bk�� � and H�N�� L�� � � � � Lh� is the clause we add to Pi���

By F�� c is not a de�ning clause� hence its ground instances have to satisfy condition b��
that is� for each �� jH�j � jB�

��j� � � �� jB�
k�j� jL��j � � �� jLh�j� nfi� Since B�

�� � � � � B
�
k� �

B�� � � � � Bk�� � this implies that� for each ��
jH�j � jB���j� � � �� jBk��j� jL��j � � �� jLh�j�� nfi�

where � is a renaming on the variables in W � V arB�� � � � � Bk�nV arN�� Let Z � W� �
by the assumptions in F�� V arH�L�� � � � � Lh� � Z � �� Hence we can split � into two
independent orthogonal substitutions� � � �jZ�j �Z � where �jZ is � restricted to Z� and �j �Z is
� restricted to the complement of Z� And we have that� for each ��
jH�j �Zj � jB���j �Z�jZ j� � � �� jBk��j �Z�jZj� jL��j �Zj� � � �� jLh�j �Z j � nfi�

Since this holds for any choice of �jZ� for each �

jH�j �Zj � supf
Pk

i�� jBi��j �Z	j j Dom	� � Zg� jL��j �Z j� � � �� jLh�j �Zj� nfi�
Now by F� d is the only clause whose head uni�es with N� � it follows that� by the de�nition
of j j� jN��j �Zj � supf

Pk
i�� jBi�	jg� �� hence we have that� for each ��

jH�j �Zj � jN��j �Zj� jL��j �Zj� � � �� jLh�j �Z j� nfi ��
Now the variables of Z do not occur in any atom of this clause we have that� for each �

jH�j � jN��j� jL��j� � � �� jLh�j� nfi �
Since this is a folding step� nfi�� � nfi and hence we have that b� is satis�ed in Pi��� �

This implies immediately the desired conclusion

Corollary ��� Let P�� � � � � Pn be a transformation sequence� then

a� if P� is acyclic then Pn is�

In the case that P� is a de�nite program� this can be restated as follows

b� if P� is de�nite and terminating� then Pn is�

Proof� It follows at once from Lemma ��� �

Transforming left�terminating programs One would like Corollary ���b to hold also in the
case of left terminating programs� which are those programs whose LDNF SLDNF with
leftmost selection rule� derivations starting in a ground goal are �nite� Left terminating pro�
grams form an important superclass of the terminating programs and� as pointed out by Apt
and Pedreschi �AP	��� there are natural left terminating programs that are not terminating�
However� left�termination is not preserved by the transformation system� This is simply due
to the fact that the de�nition of transformation sequence is given modulo reordering of the
bodies of the clauses� and the operation of reordering itself does not preserve left�termination�

	

Example ��� Let P� � Pold � Pnew � be the following program�

Pold � fc� � p � qX�� hX��
qs
���
hsX�� � hX�� g

Pnew � fc� � dX� � hX�� qX�� g

It is easy to verify that the program is left�terminating� However� if we fold qX�� hX� in
the body of c�� then the resulting program will be

P� � f c� � p � dX��
c� � dX� � hX�� qX��

qs
���
hsX�� � hX�� g

Now the goal � p originates an in�nite LDNF�derivation� Hence left termination is not
preserved� �

This shows that in general left termination is not preserved along the transformation se�
quence� and that this applies also when we adopt Seki�s more restrictive� modi�ed folding
operation�
It can be argued that� since the reason why left�termination is not preserved is because the

transformation system is de�ned modulo reordering� then what we have to do is to restate
the de�nition of unfolding and folding so that the order of the literals in the bodies of the
clauses is taken into account� That is indeed a possible approach� however a fold operation so
de�ned would be far more restrictive than the present one� in fact we would have to require
that the literals that are going to be folded are all found next to each other in the exact same
sequence as in the body of the folding clause� This is often not the case� in particular when
the folded clause is the result of some previous unfold operation� notice that this is what
happens in Example ����
However� we can relax the requirement of the acyclicity of the initial program� by exploiting

the result in a modular way� For this� we have to use the concept of acceptable programs�
introduced by Apt and Pedreschi in �AP	��� Informally� acceptable are to left terminating
programs what acyclic are to terminating ones� in fact in �AP	�� is proven that� in cases of
non��oundering programs� the classes of acceptable and of left terminating programs coincide�
It is easy to prove that if the initial program is acceptable wrt the level mapping j j and the
model M and if the transformation is performed within a subset of P which is acyclic wrt
j j� then the resulting program is acceptable hence left�terminating� as well�

�� Semantic Consequences

	�� Preliminaries� three�valued model semantics
In this section we refer to a �xed but unspeci�ed language L that we assume contains all the
functions symbols and the predicate symbols of the programs that we consider� We also refer
to the usual Clark�s completion de�nition� CompP �� �Cla��� which consists of the completed
de�nition of each predicate together with CET� Clark�s Equality Theory� which is needed
in order to interpret ��� correctly� When working with ��valued logic� the same de�nition

�� Semantic Consequences 		

applies� with the only di�erence that the connective � � used in the completed de�nitions of
the predicates� is replaced with � � Lucasiewicz�s operator of �having the same truth value��
In this context� we have that a three valued
or partial� interpretation� is a mapping from the
ground atoms of L into the set ftrue� false� unde�nedg�
We can now give the de�nition of Fitting�s operator �Fit����

De�nition ��� Let P be a normal program� I a three valued interpretation� A a ground
atom� �P I� is the three valued interpretation de�ned as follows�

� A is true in �P I�� i� there exists a clause c � A� eL� in GroundP � such that eL is
true in I �

� A is false in �P I�� i� for all clauses c � A� eL� in GroundP �� eL is false in I � �

We adopt the standard notation� ���
P is the interpretation that maps every ground atom into

the value unde�ned� �����
P � �P �

��
P �� ���

P � �����
��
P � when
 is a limit ordinal� �P is

a monotonic operator� it follows that its Kleene�s sequence is monotonically increasing and
it converges to the least �xpoint of �P � Hence there always exists an ordinal
 such that
lfp�P � � ���

P � Since �P is monotone but not continuous�
 could be greater than ��
�P characterizes the three valued semantics of CompP �� in fact Fitting� in �Fit��� shows

that the three�valued models of P are exactly the �xpoints of �P � it follows that any program
has a least three�valued Herbrand model� This model is usually referred to as Fitting�s model�

	�� Semantics of Acyclic Programs
From the point of view of declarative semantics� acyclic programs enjoy various relevant
properties� Before stating them� we need to introduce some domain closure axioms� often
referred to as �weak domain closure axioms��

De�nition ��� DCAL is the axiom ��y� x � f��y����� � ����yr x � fr�yr��� where f�� � � � � fr
are all the function symbols in the language L and �yi are tuples of variables of the appropriate
arity� �

Now we summarize some of the semantic properties of acyclic programs� For the de�nition
and the properties of the Well�Founded model semantics we refer to �GRS����

Theorem ��� Let P be an acyclic program� and let M � ���
P � Then M is total� that is� no

atom is unde�ned in it� moreover

i� M is the unique �xpoint of �P � hence it is the unique three�valued and also two�valued�
Herbrand model of CompP � and coincides with Fitting�s model of P �

ii� M coincides with the Well�Founded model of P �

iii� M coincides with the set of ground atomic logical consequences of CompP �� DCAL

in � and � valued logic�

iv� for all ground atoms A such that no SLDNF�derivation of P � f� Ag �ounders�

	� References

A is true in M i� there exists a SLDNF�refutation for P � f� Ag�
A is false in M i� P � f�Ag has a �nitely failed SLDNF tree�

Proof� The fact that M is total and statement i� are proven in �AP	��� where the more
general case of acceptable programs is considered� ii� is a consequence if i� and the fact that
the Well�Founded model is also a three�valued model of CompP � �GRS���� iii� and iv� are
consequences of Theorem ��� in �AB	��� �

	�� Semantics of transformed programs
An immediate consequence of Theorem ��� is the following�

Lemma ��� Let P�� � � � � Pn be a transformation sequence� suppose that P� is acyclic� then
���
P�

� ���
Pn

�

Proof� By Theorem ���� for each i� the Well�Founded model of Pi coincides with ���
Pi

and by
Proposition ��� in �Sek	��� the Well�Founded models of P� and Pn coincide� �

Because of Theorem ���� Corollary ��� has also some semantic consequences� the most
relevant of which are�

Corollary ��� Let P�� � � � � Pn be a transformation sequence� suppose that P� is acyclic� then

a� the Fitting�s models of P� and of Pn coincide�

b� the set of ground logical consequences of CompP��� DCAL and of CompPn�� DCAL

coincide�

c� for all ground atomsA such that no SLDNF�derivation of P� � f� Ag and of Pn � f�Ag
�ounders�

� there exists a SLDNF�refutation for P� � f� Ag i� there exists one for Pn � f� Ag�

� all SLDNF trees for P� � f�Ag are �nitely failed i� all SLDNF trees for Pn � f� Ag
are�

in particular we have that

d� If P� is de�nite� then its Finite Failure Set coincides with the one of Pn� �

This shows that if the initial program is acyclic� then the transformation enjoys most of the
properties that were proven for Seki�s more restrictive modi�ed folding� In some situations
this can be useful for relaxing the applicability of the folding operation�

Acknowledgements The authors express their gratitude to Prof� K� R� Apt and to Maurizio
Gabbrielli for their useful suggestions�

References
�AB	�� K� R� Apt and M� Bezem� Acyclic programs� New Generation Computing� �	������

���� �		��

References 	�

�AD	�� C� Aravidan and P� M� Dung� On the correctness of Unfold�Fold transformation
of normal and extended loginc programs� Technical report� Division of Computer
Science� Asian Institute of Technology� Bangkok� Thailand� April �		��

�AP	�� K� R� Apt and D� Pedreschi� Reasoning about termination of pure Prolog programs�
Information and Computation� �
�����
	 ���� �		��

�Apt	
� K� R� Apt� Introduction to Logic Programming� In J� van Leeuwen� editor� Handbook
of Theoretical Computer Science� volume B� Formal Models and Semantics� Elsevier�
Amsterdam and The MIT Press� Cambridge� �		
�

�BC	�� A� Bossi and N� Cocco� Basic Transformation Operations which preserve Computed
Answer Substitutions of Logic Programs� Journal of Logic Programming� ����� ���
�		��

�Bez	�� M� Bezem� Strong termination of logic programs� Journal of Logic Programming�
�����	 	�� �		��

�Cav	�� L� Cavedon� Acyclic programs and the completeness of SLDNF�resolution� Journal
of Theoretical Computer Science� ����� 	�� �		��

�Cla��� K� L� Clark� Negation as failure rule� In H� Gallaire and G� Minker� editors� Logic
and Data Bases� pages �	� ���� Plenum Press� �	���

�Fit��� M� Fitting� A Kripke�Kleene semantics for Logic Programs� Journal of Logic Pro�
gramming� ��� �	���

�GRS��� A� Van Gelder� K� Ross� and J� S� Schlipf� Unfounded sets and the Well�Founded
Semantics for General Logic Programs� In Proc� Seventh ACM symposium on Prin�
ciples of Database System� pages ��� ��
� �	���

�KK��� T� Kawamura and T� Kanamori� Preservation of Stronger Equivalence in Un�
fold�Fold Logic Programming Transformation� In Proc� Int�l Conf� on Fifth Gen�
eration Computer Systems� pages ��� ���� Institute for New Generation Computer
Technology� Tokyo� �	���

�Llo��� J� W� Lloyd� Foundations of Logic Programming� Springer�Verlag� Berlin� �	���
Second edition�

�Mah��� M�J� Maher� Correctness of a logic program transformation system� IBM Research
Report RC���	�� T�J� Watson Research Center� �	���

�Prz�	� T� Przymusinski� Every logic program has a natural strati�cation and an iterated
least �xed point model� In Proceedings of the Eighth Symposium on Principles of
Database Systems� pages �� ��� ACM SIGACT�SIGMOD� �	�	�

�Sat	
� T� Sato� An equivalence preserving �rst order unfold�fold transformation system� In
Second Int� Conference on Algebraic and Logic Programming� Nancy� France� Octo�
ber ���
Lecture Notes in Computer Science� Vol� ����� pages ��� ���� Springer�
Verlag� �		
�

�Sek�	� H� Seki� Unfold�fold transformation of strati�ed programs� In G� Levi and
M� Martelli� editors� �th International Conference on Logic Programming� pages
��� ���� The MIT Press� �	�	�

	� References

�Sek	
� H� Seki� A comparative study of the Well�Founded and Stable model semantics�
Transformation�s viewpoint� In D� Pedreschi W� Marek� A� Nerode and V�S� Sub�
rahmanian� editors� Workshop on Logic Programming and Non�Monotonic Logic�
Austin� Texas� October ��� pages ��� ���� �		
�

�Sek	�� H� Seki� Unfold�fold transformation of strati�ed programs� Journal of Theoretical
Computer Science� ����
� ��	� �		��

�Sek	�� H� Seki� Unfold�fold transformation of general logic programs for the Well�Founded
semantics� Journal of Logic Programming� ���� ��� �		��

�TS��� H� Tamaki and T� Sato� Unfold�Fold Transformations of Logic Programs� In Sten�
!Ake T"arnlund� editor� Proc� Second Int�l Conf� on Logic Programming� pages ���
��	� �	���

