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Abstract

The purpose of this paper is to make a contribution towards the integration of Object�Orientation

and logic programming� We introduce the notion of di�erential programs� logic programs an�

notated to make their external interfaces explicit� Similarly to classes in the O�O paradigm�

di�erential programs can be organized in isa hierarchies� The isa�composition of di�erential

programs captures the semantics of several mechanisms such as static and dynamic overriding

inheritance as well as a form of extension inheritance de�ned in term of composition by union of

clauses� The application of the programming discipline we propose is illustrated on a concrete

programming example�

We give a proof�theoretic semantics for isa�hierarchies� we de�ne an inference system which

extends SLD resolution to take into account the inheritance mechanisms encompassed by the isa

operator� Then we introduce a corresponding operator which provides a syntactic counterpart

of the isa�composition� The new operator� denoted by � � transforms any isa hierarchy HP

into an equivalent �	at
 program HP� whose proof theoretic semantics is de�ned in terms of

the standard notion of SLD derivation� Finally we de�ne a �xed point semantics which is � �

compositional and which models correctly the answer substitutions of programs� By virtue of

the aforesaid correspondence between isa�hierarchies and � �composite programs� we obtain a

compositional semantics for isa hierarchies� The semantics of di�erential programs generalizes

previous work on OR�compositional semantics for logic programs� It is obtained by resorting to

the notion of context�sensitive interpretations� an extension of the ��denotations of �� de�ned

as sets of non�ground clauses�
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� Inheritance in logic languages

The power of Horn clause logic as a programming language was pointed out for the

�rst time in ���� and since then it has gained the interest of a still growing research

community� The most appealing features of logic as a programming language rely both

in the elegance of its semantic characterization and in the declarativity of its compu�

tational model� As best summarized by Zaniolo in ����	 the rule based reasoning of

logic	 combined with adequate tools for e
ciently storing and retrieving large amounts

of information could provide a realistic basis for the development of e
cient knowl�

edge base systems� As a matter of fact	 its use in the development of knowledge base

applications has promptly disclosed one major weakness of Horn Clause Logic as a

programming language� In fact	 in spite of its declarativity	 logic programming turns

out not to scale very well when it comes to designing practical applications� Its unit

of abstraction � relations � appears to be too �ne grained to support the development

and the maintenance of large programs�

This need for a more structured approach to software development has motivated

a wide research e�ort in the logic programming community during the last decade�

Inspired by the experience gained in related �elds	 several approaches have been taken

and di�erent solutions have been proposed in the recent literature� One of the currently

most promising directions in this area is based on the idea of integrating into a logical

framework some of the distinguishing notions of the Object�Oriented programming

paradigm abstraction and inheritance�

From a logical point of view	 an object � the O�O unit of abstraction � has a

natural interpretation as a logic theory an object is simply a collection of axioms

which describe what is true about the object itself� Under this assumption	 the design

of a coherent semantic model for a logic language extended to incorporate the notion

of inheritance can be attempted at di�erent levels� At the operational level	 it amounts

to de�ning a new inference system which combines this mechanism with the deductive

process of resolution� At the declarative level	 it rises two interesting issues �rstly	 the

problem of characterizing inheritance in terms of the standard notions of satis�ability

and truth found in classical logic� secondly	 the problem of capturing the compositional

properties inherent in the incremental approach to software development entailed by

inheritance�

Inheritance� Our view of inheritance conforms with the one nowadays widely ac�

cepted in the Object�Oriented community� An intuitive justi�cation for this inter�

pretation has been proposed by Cook in ����� Inheritance is viewed as a mechanism

for di�erential programming	 i�e� a mechanism for constructing new program compo�

nents by specifying how they di�er from the existing ones� Di�erential programming is

achieved by using �lters to modify the external behaviour of existing components� Ac�

cordingly	 a modi�ed version of a component is obtained by de�ning a new component

that performs some special operations and possibly calls the original one� This idea is
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illustrated by the following example�

Example ��� Consider the following de�nitions�

CLASS student

whoAmI � print��aStudent���

whoAreYou � SELF  whoAmI

CLASS cs�student IS A student

whoAmI � print��aCsStudent���

aStudent � NEW student

anotherStudent � NEW cs�student

We have two classes� student and cs�student� and two corresponding instances	 Class

cs�student is a subclass of student and rede�nes one of its superclass� methods	 The

invocation NEW class returns an instance of class whereas the expression object � mes�

sage denotes the request for object to execute the method associated with message	 We

are interested in the answers to the two following message�sents	

�a� aStudent WhoAreYou�

�b� anotherStudent WhoAreYou�

The result of evaluating �a� is straightforward	 The message is sent to aStudent and

the answer is� �a Student�	

Case �b� is more interesting� the result depends on what the self�reference SELF

refers to	 We have two choices and two corresponding answers	 The �rst is to interpret

SELF as the object in which the self�reference occurs� aStudent	 The corresponding

answer� exempli�ed in �gure �� shows that the modi�cation csStudent only partially

a�ects the external behaviour of the the original component students	 In ���� Cook

� �

�

WhoAreYou cs�student student

self self

�aStudent


Figure � Static interpretation of Self

argues �indeed convincingly� that what we actually expect here is that SELF refers to

the composite object obtained by applying the modi�cation to the original component	

This characterization� which constitutes the main motivation to Cook�s approach� is

obtained by the interpretation illustrated in �gure �	
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�
self self

WhoAreYou
cs�student student


aCsStudent


Figure � Dynamic Interpretation of Self

Figure � also provides a justi�cation for inheritance as a mechanism for deriving mod�

i�ed versions of recursive structures�

In an independent study ����	 Reddy adopts a similar approach but distinguishes

di�erent forms of inheritance the interpretation given by �gure � is classi�ed as dy�

namic inheritance � a l�a Smalltalk ���� � as opposed to the static mechanism exhibited

by languages like Simula��� and depicted in �gure �� The approach we take in this

paper follows Reddy�s classi�cation and extends it to account for a notion of extension

�to be contrasted with overriding� inheritance�

Compositionality� The adequacy of a semantic characterization for a language is

typically measured on the account of how e�ective the semantics is for de�ning the

meaning for programs written in the language� However	 in view of a modular ap�

proach to program development	 the semantics of a language should actually aim at

characterizing the meaning of program fragments rather than of stand�alone programs�

This is in fact crucial to be able to de�ne the meaning of a composite program on the

account of the meaning of its components� A semantics with these properties is said to

be homomorphic or compositional� More precisely	 we say that the semantics �or invari�

ant� ����� is compositional with respect to a composition operation � ���compositional for

short� if	 given two program components A and B	 the relation ��A �B�� � ��A�� ���� ��B��

holds for a suitable choice of the homomorphism � which maps the syntactic operator

� onto the corresponding semantic operator �����

Compositionality is also a fundamental property for reasoning about component

equivalence� Denote with �Ob the relation of computational equivalence associated

with the notion of observable Ob� If the semantics ����� is �Ob�correct �i�e� it identi�es

only �Ob�equivalent components� and it is ��compositional	 then it can be used to

justify the replacement of equivalent components in any ��composite context� In fact	

when ����� is �Ob�correct	 for any two components A and B	 ��A�� � ��B�� � A �Ob B� If

the semantics is also ��compositional	 then

��A�� � ��B�� �� �C� � � � � � A � � � � � Cn� �Ob �C� � � � � �B � � � � � Cn�

for any choice of components C�� � � � � Cn� Any semantics satisfying the above implica�

tion is said to be �Ob� ���congruent�
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In the context of a hierarchical composition of program based on inheritance	 a natural

interpretation of compositionality is the following� If P�� � � � � Pn are program compo�

nents and isa is the specialization operator	 then the composition Pn isa � � �P� isa P�
should be read as the right�associative composition Pn isa �� � � �P� isa P�� � � ��� Under

this assumption	 compositionality can then be expressed by imposing the following	

weaker	 condition on the homomorphism � and the semantics �����

��Pn isa � � �P� isa P��� � ��Pn�� ��isa� �� � � ��P��� ��isa� ���P��� ��isa� ��P���� � � ��

This notion of compositionality will provide the basis for our discussion throughout the

paper�

Goals and Outline� The purpose of this paper is to make a contribution towards

the integration of Object�Orientation and logic programming� The approach we follow

is based on the notion of di�erential programs	 logic programs with explicit annotations

qualifying three classes of the exportable predicates� These programs can be organized in

isa hierarchies where each program inherits the de�nitions of the exportable predicates

contained in the program�s ancestors in the hierarchy� The purpose of the annotations is

twofold� On one hand	 the introduction of exportable predicates accounts for standard

forms of encapsulation and hiding� on the other	 it allows di�erent forms of inheritance

to coexist in the language�

In fact	 the isa�composition of di�erential programs captures the semantics of sev�

eral mechanisms such as static and dynamic overriding inheritance as well as a form of

extension inheritance de�ned in term of composition by union of clauses� The evalu�

ation of a goal in a hierarchy of di�erential programs is de�ned proof�theoretically in

terms of an extension of SLD resolution�

We also discuss an equivalent semantics	 based on standard SLD resolution� This

is obtained by de�ning a new composition operator	 denoted by � 	 which provides the

syntactic counterpart of the isa operator� In fact we show that any isa�hierarchy can

be transformed by means of � into a single ��at� program	 whose SLD�semantics is

equivalent to the extended SLD�semantics of the isa�hierarchy�

We then introduce a declarative semantics for di�erential programs following the

approach described in ����� In that paper	 the idea is that a declarative characteri�

zation of the programs� operational behaviour can be obtained by accommodating in

the programs� interpretations more complex syntactic objects� The notion of observ�

able which the semantics of ���� is meant to capture is given by the computed answer

substitutions �cas in the following� of a program� Here	 we generalize the notion of in�

terpretations based on clauses which was adopted in ��� to obtain a �cas�OR��congruent

semantics and we introduce the notion of context�sensitive interpretations to obtain a

�cas�� ��congruent semantics�

By virtue of the aforesaid correspondence between isa hierarchies and � programs	

this semantics is a �cas�correct and isa�compositional declarative semantics for the

proof�procedure de�ned for isa hierarchies of di�erential programs�
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The rest of the paper is organized as follows� In section � we de�ne the notion of dif�

ferential programs and the proof�theoretic semantics for isa hierarchies of di�erential

programs� Then we de�ne the composition operator � and we show the related equiv�

alence result� In section �	 we de�ne the declarative semantics of di�erential programs

and show its compositional and correctness properties� In section � we discuss the

application of the di�erential approach on a concrete example� Finally in section � we

discuss the relation of our approach with the existing literature in the �eld� To enhance

readability some technical lemmas and their proofs are relegated to a �nal appendix�

� Di�erential Logic Programs

A di�erential program is a program P annotated by three sets of exported predicate

symbols

� statically inherited predicates ���predicates��

� dynamically inherited predicates ���predicates��

� extensible predicates ���predicates��

We assume the three sets are mutually disjoint	 and their union is contained in the set

��P � of the predicate symbols occurring in P � The remaining predicates	 ��P � n �� �

� � �� will be henceforth referred to as internal predicates and denoted with ��P ��

We assume that the symbols for internal predicates range over an alphabet � which is

disjoint from the alphabets used for �	 � and � predicates� For any program we also

denote by ��P � the set of the predicates de�ned in P �p is de�ned in P if there exists

a clause in P whose head�s predicate symbol is p� and we de�ne as open the predicates

in the set  �P � � �� n��P ������� The quali�cation open is used here to emphasize

the fact that the de�nition for these predicates can be modi�ed by composing P with

other programs� This is not the case for internal predicates and	 as explained below	

for static predicates which are locally de�ned in P �

Statically and dynamically inherited predicates are evaluated according to an over�

riding semantics� The distinction between the two sets � and � re�ects the distinction

between two di�erent forms of inheritance we would like to coexist� The idea is the

following a program P is to be understood as part of a structured context of the form

C isa P isa D and the evaluation of a goal depends on the annotation of the goal�s

predicate symbols� A ��predicate is evaluated in P using P �s local de�nition or any

de�nition inherited from the context D� The local de�nition	 if there is any	 overrides

the inherited one� Hence	 any occurrence in P of a goal for a static predicate which is

also de�ned in P 	 is bound to the local de�nition independently of the context in which

P occurs� Conversely	 the evaluation of a ��predicate in P uses the local de�nition or

the inherited one	 only if no de�nition for the same predicate name is provided by the

context C� If C does provide a de�nition	 than this de�nition overrides in P the local

or inherited one�

The annotation � models a di�erent composition mechanism de�ned with an exten�

sion semantics the de�nition of a ��predicate in P can be extended �to be contrasted
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with overridden� with the de�nition found in C and!or in D�

The following example illustrates the use of these composition mechanisms�

Example ��� Consider again the two classes of example �	�� de�ned now as di�eren�

tial logic programs and extended with new methods	

CS Student isa Student

whoAmI��aCS Student��� whoAmI��aStudent���

whoAreYou�X���whoAmI�X��

address��CS Dept��� address��univ hall���

adm addr�X���address�X��

course�X���required�X��

required��LogicProg ��� required��	thLevel���

����� ����

The use of di�erent annotations for the exportable predicates of the two programs is

motivated by the behaviour we expect in response to the di�erent queries for the hi�

erarchy CS Student isa Student	 Consider �rst the query ��whoAreYou
X�	 Here�

the expected answer is X � aCS Student and it can be obtained by taking whoAmI

to be a ��predicate	 To see this� note that CS Student inherits the de�nition for

whoAreYou
X� from Student and� being whoAmI a ��predicate� the evaluation of the

call whoAmI
X� uses the de�nition contained in CS Student	 The evaluation of the

goal ��address
X� follows the same pattern as long as address is a � or � predicate	

What�s more interesting is the query ��adm addr
X�	 Here� the expected answer is X �

univ hall for we assume that the administrative address of a student is independent of

the department where that student belongs	 This behaviour can be modeled by de�ning

address to be a ��predicate� this guarantees that the evaluation of the call address
X�

uses the de�nition local to Student	

Finally� we can model the fact that a CS Student is expected to take all of the

courses required for a Student by de�ning course and required to be � predicates	

��� isa�hierarchies of Programs

We can make this intuitive picture precise by formally de�ning the rules for evaluating

a goal in a generic isa�hierarchy of di�erential programs� Let HP be the hierarchy

Pn isa Pn�� isa � � � isa P�� It follows from the previous discussion that the evaluation

of a goal in HP is well de�ned if and only if every predicate symbol occurring in the Pis

has a unique identity in terms of membership to the corresponding annotations �is	

�is and �is� The following condition ensures this property�

De�nition ��� �Compatibility� Let h�P ��P ��P i�P and h�Q��Q��Qi�Q be two

di�erential programs	 P and Q are said to be compatible provided that the following
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condition holds�

��P � � ��Q� � ��P � �Q� � ��P ��Q�

���P ��Q� � ���P � � ��Q���

We will henceforth consider only hierarchies of compatible programs	 that is we assume

that in Pn isa Pn�� isa � � � isa P� all component Pis are pairwise compatible� Moreover	

we consider only the evaluation of goals whose predicate symbols are exported by at

least one of the component programs� Hence	 the internal predicates are thought of as

encapsulated within the components and hence their de�nition is not exported by the

hierarchies� The evaluation rules are given below in Natural Deduction style extending

those reported in ���� The notation HP 	� G should be read �G succeeds in HP with

substitution ���

If G is a conjunctive goal	 G � G�� G� then evaluating G in HP amounts to evalu�

ating in HP each of the conjuncts Namely

HP 	� G� HP 	� G��

HP 	�� G�� G�

If G is an atomic goal	 say p�t�	 then the �rst step consists of selecting in the hierarchy

HP a component which contains a clause for p� Formally

Pk�HP 	� p�t�

HP 	� p�t�

The annotation for the predicate p determines the di�erent ways of selecting the com�

ponent Pk the top�most component of HP for � and ��predicates� any one for ��

predicates� Formally

��� p 

S
i��Pi ��Pi� � k � maxfj j p 
 ��Pj�g

��� p 

S
i��Pi� � k 
 fj j p 
 ��Pj�g

The relation Pj �HP 	� G is de�ned similarly	 the main di�erence being that	 together

with the choice of the component Pk	 it encompasses the selection of a matching clause

for the selected atom in the goal� The case for conjunctive goals again splits the

evaluation on each of the conjuncts

Pj �HP 	� G� Pj �HP 	� G��

Pj �HP 	�� G�� G�

The case for atomic goals de�nes the main step

Pk�HP 	� G� �� � mgu�p�t�� p�t�� " p�t���G 
 Pk�

Pj �HP 	�� p�t�

where Pk is chosen according to one of the following conditions

���� p 
 �Pj " k � max fi � j j Pi de�nes pg

���� p 
 �Pj " k � max fi � n j Pi de�nes pg

���� p 
 �Pj " k 
 fi j Pi de�nes pg

���� p 
 ��Pj� " k � j

#



The rules for the empty goal are the following

HP 	� � Pj �HP 	� �

where � denotes the empty goal and 	 the empty substitution��

Remarks� ���� and ���� �and similarly ��� and ���� formalize the overriding semantics

of �� and ��predicates� For ��predicates	 the search for a matching clause for p�t�

stops at Pk	 the top�most component of HP which de�nes p� For ��predicates the

search ignores the components Pn � � �Pj���

The operational semantics of the isa�composition can be now de�ned in terms of the

above rules as follows� Call an isa�proof for G in HP a proof�tree rooted at HP 	� G

whose internal nodes are instances of one of the above inference rules and whose leaf

nodes are labeled by HP 	� � or by Pj �HP 	� �� Then	 the evaluation of G in HP

yields the substitution � i� there exists an isa�proof for HP 	� G� When HP 	� G	 we

say that the restriction of � to the variables of G ��jG� is a computed answer of G in

HP �

Note that the proof of a conjunctive goal always selects the conjunct to be reduced

according to a left�most selection rule� This involves no loss of generality since

�i� the choice of component Pk whence the evaluation of each of the conjuncts is to

start depends only on the predicate symbol of the selected conjunct �and not on

the conjunct�s instance�� Hence	

�ii� the independence from the selection rule which holds for SLD�refutations ensures

that the set of answer substitution computed by an isa�proof is independent of

the choice of the selection rule�

��� Syntactic Program Composition

The operational semantics of isa�hierarchies of di�erential programs can be given equiv�

alently in terms of SLD�resolution by introducing a composition operator	 denoted by

� 	 which maps any isa�hierarchy onto a corresponding di�erential program� The de�ni�

tion of � �composition provides also the link between the operational semantics de�ned

in terms of isa�proofs and the compositional semantics for di�erential programs which

will be introduced in section �� As discussed in the introduction	 we will assume the

composition operator � to be right associative and thus that a hierarchical composition

Pn � Pn�� � � � �� P� be interpreted as Pn � �Pn�� � � � � � P���

Let�s �rst introduce a little notation and terminology� For any �non atomic� goal

G	 Pred�G� stands for the set of predicate symbols of the atoms occurring in G� We

also denote with $B a conjunction of atoms	 with $X a tuple of variables� G
�
�P�R

$B

denotes an SLD derivation in the program P from G to the resolvent $B	 where R is the

selection rule and 
 is the composition of the mgu�s used in the derivation� Instead we

�



write G
�
��P � when G has an SLD refutation with computed answer substitution 
�

The notion of computed answer is standard	 i�e� 
 is the restriction to the variables of

G of the mgu�s computed in the refutation �R is omitted because 
 is independent of

R in the case of refutations�� Finally we assume the reader familiar with the standard

notions of logic programming reported in ��� and �����

The de�nition of � �composition is based on the following notion of renaming�

De�nition ��� �Renaming� Let % and &� & � %� be two sets of predicate symbols	

We denote with '��� a family of injective functions which rename each predicate symbol

in & with a new internal predicate symbol which does not belong to %	 If � 
 '����

then

��p� �

�
p� 
 � n % if p 
 &

p otherwise

Given � 
 '��� and a program P such that ��P � � %	 we will henceforth abuse the

notation and write ��P � to denote the program obtained by applying the renaming

� 
 '��� to all the predicate symbols occurring in P �

De�nition ��	 �Syntactic composition� Let h�P ��P ��P i�P and h�Q��Q��Qi�Q

be two di�erential programs	 The composition P � Q is de�ned provided that the two

programs are compatible in the sense of de�nition �	�	 If P � Q is de�ned� it denotes

the di�erential program

P � Q � h�����i����P � � ��Q���

where �� � and Q� are de�ned respectively as

� 
 '����� � 
 '���
&� � �P n ���P � � ��Q�� & � ��Q � ��P �� � ��Q n ��Q�� � ���P � � ��Q��

%� � ��P �Q� % � ����P �� � ��Q�

Q� � fh�� $B 
 Q j Pred�h� �
 �Q � ��P �g

and the annotation h�����i is computed according to the following de�nitions�

� � ��P � �Q� � ��P � Q�

� � ��P ��Q� � ��P � Q�

� � ��P ��Q� � ��P � Q�

Some explanations are needed at this point� A �rst remark concerns the annotations

�	 � and � for the composition �P � Q�� The subsetting operations as well as the

renamings � and � might modify the set of predicate symbols occurring in P and Q�

Hence	 the new annotation for P � Q is obtained by taking the union of �P 	 �P and

�P respectively with �Q	 �Q and �Q and then intersecting the resulting components

��



with the set ��P �Q�� As a consequence all the new names generated by the renamings

become internal for the composite program�

To explain the renaming � recall that our basic assumption on the isa� and � �

compositions is that they are right associative� Then	 we may safely assume that �P �

Q� is not going to be furtherly composed onto any hierarchy of the form �P � Q�� H�

Now consider a predicate symbol p 
 �P � If p is not de�ned either in P or in Q	 �i�e�

p 
 �P n ���P � � ��Q��� then the clauses of P whose bodies contain p will never be

selected by any successful isa�proof for the hierarchy P isa Q� Correspondingly	 p is

transformed by the renaming operation to an internal predicate which �by de�nition�

is not visible from the context�

As for the renaming �	 it is performed in order to avoid name clashes for static and

internal predicates� Consider �rst the predicates of Q� We rename the occurrences of

a predicate p in Q whenever p 
 �Q � ��P �� There are two reasons for this choice� On

one side	 since p is static in Q	 any predicate call for p in Q should refer to the original

de�nition of p local to Q also in the composition P � Q� On the other side	 the clauses

which de�ne p in Q must be distinguished from the de�nition of p already existing in P

�since we assume an overriding semantics�� The predicates in �Qn��Q� are renamed for

the same reason we rename in P the predicates in �P n���P ����Q��� In fact	 if p 
 �Q

and p is not de�ned in Q	 then no clause containing p can be used for a successfull isa�

proof� Finally the renaming for predicates in ��P � � ��Q� guarantees that is that no

clashes arise between internal predicates of P and Q� If the composition is de�ned	 no

other clash can arise between two predicate names of P and Q� Furthermore	 since the

internal predicate symbols generated via renaming range over �n%	 any new program R

compatible with P and Q	 will be also compatible with P � Q� Hence	 the composition

operators � and isa are de�ned in the exact same cases�

As for the subsetting  on Q	 it is performed in order to remove from Q the clauses

which de�ne predicate symbols in �Q which are also de�ned by P � This provides the

syntactic counterpart of the overriding semantics which we assume for ��predicates in

the isa�composition�

Example ��
 Let P � Q and R be the following di�erential programs�

P �

������
�����

q�a��

r�c��

s�x���q�x��

t�b��

Q �

������
�����

h�x���t�x��

r�a���q�x��

s�x���r�x��

s�a��

R �

������
�����

h�a��

q�x���h�x��

r�b��

s�x���t�x��

where �P � fq� tg� �Q � �R � fh� q� tg� �P � �Q � �R � frg and �P � �Q �

�R � fsg	 We compute the composition P � Q � R in two steps �recall that � is

right�associative�	

Q � R �

������
�����

h�x���t	��x��

r�a���q�x��

s�x���r�x��

s�a��

h���a��

q�x���h���x��

s�x���t���x��

��



The clause r�b� 
 R has been deleted because r 
 �R � ��Q�	 The renamings are

�� 
 'ftg�fh�q�r�s�tg and �� 
 'fh�tg�fh�q�r�s�t�t��g
	 The new annotation for Q� R is given

by � � fh� qg� � � frg and � � fsg	 Composing P on the Q � R yields the new

program

P � �Q� R� �

������
�����

q�a��

r�c��

s�x���q�x��

t�b��

h�x���t	��x��

s�x���r�x��

s�a��

h���a��

q���x���h���x��

s�x���t���x��

where the renaming is �� 
 'fqg�fh�� �q�r�s�t�t��g and the �nal annotation is � � fh� q� tg�

� � frg and � � fsg	

We mentioned earlier in this section that the composition operator � provides an

alternative and equivalent characterization for the isa�composition� This equivalence

follows from the tight correspondence existing between isa�proofs and successful SLD�

derivations� We can in fact establish a one�to�one mapping between the steps of a

successful SLD derivation in any � �composition and the steps of a corresponding isa�

proof for the corresponding isa�hierarchy� The proof of this result is based on the

properties of the renamings employed in the construction of the syntactic composition�

Lemma ��� Let P and Q be two compatible di�erential programs and let P � Q �

��P � � ��Q�� be their composition	 Then� for any two predicate symbols p� and p� in

��P � � ��Q��

p� �� p� � ��p�� �� ��p�� and ��p�� �� ��p��

Proof� We show that p� �� p� � ��p�� �� ��p��	 The other case is symmetric	 We

have four possible cases�

p� 
 &
�� p� 
 &	 This implies that ��p�� �� ��p�� since ��&

�����&� � �	 In

fact� from de�nition �	�� � 
 '��	�
�P ���
�Q� and hence ��&������P �� � �	

Then ��&�� � ��&� � � being ��&�� � ����P ��	

p� 
 &
�� p� �
 &	 Then ��p�� �
 ��P � � ��Q� whereas ��p�� � p� 
 ��P � �

��Q�	 Hence ��p�� �� ��p��	

p� �
 &
�� p� 
 &	 This is symmetric to the previous case since ��p�� � p�

and ��p�� �
 ����P �� � ��Q�	

p� �
 &
�� p� �
 &	 In this case ��p�� � p� and ��p�� � p�	 Hence p� � p�

which contradicts the hypothesis p� �� p�	

Intuitively	 what this lemma shows is that the renaming involved in the � �composition

on two programs is injective� Unfortunately	 as shown by the following counter�example	

this result does not extend to hierarchies consisting of n � � components�

��



Example ��� Consider the following four di�erential programs�

P	 isa P� isa P� isa P�

r��s� r� h� r��q�

where r is a ��predicate� s and q are ��predicates and h is a ��predicate	 In the

construction of the hierarchy P	 � P� � P� � P�� the occurrence of q in P� is renamed

to q�� when forming P�� P�	 Then clause r��q�� is erased when forming P�� P�� P�

and� at the next step� the occurrence of s in P	 can be renamed to q��	

This is in fact a general problem the occurrence of a renamed predicate might get

erased by a subsetting applied at an intermediate step of the construction of the � �

composition	 hence allowing that name to be used for renaming a di�erent predicate

occurring further up in the hierarchy�

To prove the equivalence we will therefore need the following	 more accurate	 charac�

terization of the renamings employed in the construction of the � �composite programs�

Let HP � Pn isa Pn�� isa � � � isa P� and HP� � Pn � Pn�� � � � �� P� be respectively

the isa hierarchy and the corresponding � �program� Let ��� � � � � �n and ��� � � � �n�� be

the renamings applied in the construction of the hierarchy HP� ��j and �j�� are applied

respectively to Pj and Hj � Pj��� � � � � P� when Hj is extended with Pj�� We denote

with �j
HP the �composition of the� renaming�s� applied to Pj in the construction HP��

It is easy to see that

�
j
HP � �j � �j � � � � � �n��

where �� is the identity renaming	 �
n
HP � �n and � denotes functional composition	 i�e�

�f � g��p� � g�f�p���

Associated with any Pj in the isa hierarchy	 we de�ne P
j
HP to be the subset of Pj

containing the clauses which are not erased by the subsetting performed to construct

HP�� P
j
HP can be de�ned formally as follows

P
j
HP � fc 
 Pj j�

j
HP �c� 
 HP�g

For any p 
 ��P j
HP �	 we call �

j
HP �p� the predicate in ��HP�� which corresponds to p�

Pairs of corresponding predicates enjoy the following property given p 
 P
j
HP each

clause of the de�nition of �j
HP �p� in HP� is a renaming of a clause selected for reducing

the corresponding occurrence of p inHP � This property	 proved in the following lemma	

is crucial to show the equivalence between isa and � �hierarchies�

Let G be an atomic goal and let p � Pred�G�� Call select�p� Pj �HP � the set of

clauses which can be selected in HP for reducing G starting from the component Pj 	

and def�q�HP�� the set of clauses which de�ne predicate q in HP��

Lemma �� Let HP � Pn isa Pn�� isa � � � isa P� and let HP� be the corresponding

di�erential program	 Let p 
 ��P j
HP �	 Then� for all k � n�

c 
 Pk " c 
 select�p� Pj �HP ��� c 
 P k
HP " �k

HP �c� 
 def��j
HP �p��HP��

Proof	 See appendix	

��



The equivalence between isa�proofs for an isa�hierarchy and refutations for the cor�

responding � �composite program can be now established in terms of the following

result�

Lemma ��� Let HP be the hierarchy Pn isa Pn�� isa � � � isa P� and HP� � Pn�� � ��P�

the corresponding di�erential program	 Moreover� let G be an atomic goal such that

Pred�G� 
 ��P j
HP �	 Then

Pj �HP 	� G �� �
j
HP �G�

�
��HP� �

where 
jG � �	

Proof� We prove that

Pj �HP 	� G �� �
j
HP �G�

�
�HP��LD �

where LD is the left�to�right depth��rst selection rule	 Then the result follows by the

independence from the selection rule for computed answers	

The proof follows by induction on the height of the isa�proof on one side and the

length of the LD�derivation on the other side	 Assume that there exists a proof of height

m for Pj �HP 	� G	 By lemma �	�� a clause c is selected from Pk in the �rst step of

the isa�proof if and only if c 
 P k
HP and �k

HP �c� is selected by the �rst step of the

LD refutation in HP�	 If c � G���B�� � � � � Bn and �� � mgu�G�G��� then the next

step consists of proving Pk�HP 	�� �B�� � � � � Bn���� with � � ����� in the isa�hierarchy

and of solving the query ��k
HP �B��� � � � � �

k
HP �Bn���� in the di�erential program	 In the

isa�hierarchy� the proof will be split into n sub�proofs of height less or equal to m �	

Correspondingly� the derivation in HP� can be split into n corresponding sub�derivations

since� for all i� Pred�Bi� 
 ��P k
HP � and� by the inductive hypothesis�

Pk�HP 	�� B��� �� �k
HP �B����

��
�HP��LD �

Now the claim follows by repeating the same argument n�times for each of the Bi�s	

Theorem ���� Let HP be an isa�hierarchy and HP� be the corresponding h�����i�

di�erential program	 Then for any goal G such that Pred�G� � �� �� ����

HP 	� G �� G
�
��HP� �

where 
jG � �	

Proof� If G is atomic then� by de�nition of 	� HP 	� G �� Pk�HP 	� G where

Pred�G� 
 ��Pk� and k is determined as follows� if Pred�G� 
 � � � then Pk is

the top�most component of HP which de�nes p� while if Pred�G� 
 � then Pk is any

component of HP which de�nes p	

We can apply lemma �	
 provided that Pred�G� 
 ��P k
HP �	 To see this observe that�

�i� if Pred�G� 
 � � � then Pred�G� 
 ��P k
HP � because no de�nition for any � or

� predicate is removed in the syntactic composition	

��



�ii� if Pred�G� 
 � then �k
HP �p� � p for Pk is the top�most component of HP which

de�nes p	

Now� to complete the proof we have only to show that �k
HP �Pred�G�� � Pred�G�	 This

is obvious for � and � predicates	 When Pred�G� is a � predicate it follows because

Pk is the top�most component of HP which de�nes p	

In the case of conjunctive goals the proof follows immediately by induction	

The proof highlights one important property of the renamings used in the� �composition	

namely that the renamings preserve the predicates exported by the corresponding isa�

composition� Hence	 the h�����i�di�erential programHP� and the corresponding isa�

hierarchy HP prove exactly the same goals G provided that Pred�G� � �� �� ����

Note that this condition is equivalent to assume that Pred�G� does not contain internal

predicates� In fact if p 
 Pred�G� is not internal and p �
 �� � � � ��	 then G fails

both in the hierarchy HP and in the corresponding program HP��

� A ��compositional Semantics for Di�erential Programs

Having established the equivalence between isa hierarchies and � �composite programs	

we move on to study a � �compositional semantics for the class of di�erential programs�

The approach we follow is inspired by the work on the semantics of open logic programs

developed in ��	 �� and ���� Similarly to di�erential programs	 open logic programs are

understood as program components rather than stand�alone programs their composi�

tion is performed taking the union of the components� clauses� The work on the seman�

tics of open logic programs was motivated by the fact that the standard minimal�model

semantics of logic programming is not union�compositional� To see this	 consider the

following classical example� Let M�P � denote the least Herbrand model of P �

Example ��� Let P� � fr�a�g and P� � fp�X���r�X�� r�b�g be two programs	 The

semantics of the union of P� and P� is M�P� � P�� � fp�a�� p�b�� r�a�� r�b�g	 It is

immediate to see that M�P� � P�� cannot be obtained from M�P�� and M�P��� since

M�P�� � fr�a�g and M�P�� � fp�b�� r�b�g	

Needless to say	 the minimal�model semantics is also non�compositional with respect

to any other more complex operator	 like our inheritance mechanisms	 de�ned in terms

of union� The same argument applies also to other semantics	 such as those reported in

����	 which are de�ned on sets of �non ground� atoms� The problem is that considering

a program as part of a collection of programs	 makes its meaning dependent on the

context that program is part of� Given the interpretation of the context	 the semantics

of the program is a function of that interpretation� Functional semantics for logic

program have been largely investigated in the literature the semantics based on the

TP operator of ���� and on the closure operator �TP ( id� of ��#� are examples of such

de�nitions� The semantics for open logic programs of ��	 �� and ��� is in some respects

��



similar to the de�nition based on the semantics �TP ( id� of ��#�	 but it re�nes it in

that 
i� it captures the operational behaviour of programs more precisely �it is proved

cas�correct� and �ii� it provides a syntactic representation of the semantics �TP ( id�	

a kind of normal form representation for that functional semantics�

The idea	 which motivated also the de�nition of the semantics proposed in ����	 is

to use sets of clauses as the semantic objects used to interpret a program� Roughly	 an

 �open program P is a program where the predicates contained in  are considered

being partially de�ned in P � The open semantics O
�P � of an  �open program P 	 is

given by the set of resultants ���� obtained in P starting from the most general form

of the goals for all the predicate symbols in ��P � and ending in resolvents containing

only predicates in  � Formally	

O
�P � � fp� $X�
�� $B j � R s�t� p� $X�
�
�P�R

$B and Pred� $B� �  g

The intuition behind this de�nition is that the meaning of a program is the set of all

the partial answers which can be obtained by derivations ending in �open� resolvents�

A partial answer is represented semantically by including the resultant yielding that

answer in the program�s denotation� Having clauses in the denotation makes the pro�

gram�s meaning dependent on the context� In fact	 under this de�nition	 it is shown in

��� that the semantics O
�P � is union�compositional�

Theorem ��� �Theorem �	�� in ���� Let  � �� � be sets of predicates symbols such

that  �  � � �	 Let P� be an  ��open program� P� be an  ��open program such that

Pred�P� � P�� �  � �  �� and let O
�P � be de�ned as above	 Then

O
�P� � P�� � O
�O
��P�� � O
��P���

Although adequate to model program composition by union	 this semantic charac�

terization is not adequate to capture the type of program composition we are proposing

in this paper� To see this	 consider the following example where we consider the  �s as

the set of all predicate symbols and hence omit them�

Example ��� Let h��������i�P� and h��������i�P� be the following di�erential

programs
P� � fr�a��g P� � f p�X�  r�X��

r�b�� g

where �� � frg� �� � fr� pg and �i � �i � � for i � �� �	 The composition P� � P�

corresponds to the program fr�a�� p�X���r�X�g where the clause r�b� 
 P� has been

overridden by the clause r�a� 
 P�	 Now� if we apply the previous de�nition� we obtain

O
�P� � P�� � fr�b�� p�b�� r�a�� p�a�� p�X���r�X�g�

Note that O
�P� � P�� is a superset of what we expect as the semantics of P� � P��

The problem is that to obtain the semantics of P� � P�	 from O
�P� � P�� we should

��



delete from O
�P��P��	 not only r�b�	 as we expect as a consequence of the overriding

semantics of � 	 but also p�b� which is derived from r�b�� Thus	 when de�ning the

semantics of P�	 we need a mechanism for recording that p�b� has been obtained by

using the de�nition of the ��predicate r	 local to P�	 which could be overridden by the

context� This is achieved by introducing the following notion of context sensitive clause

as element of the semantic domain�

De�nition ��	 A context sensitive clause �cs�clause� is an object of the form

A��fq�� � � � � qng�B�� � � � � Bk ���

where fq�� � � � � qng is the context of the cs�clause� q�� � � � � qn are predicate symbols and

A�B�� � � � � Bk are atoms	

The intuitive meaning of ��� is that the logical implication A � B�� � � � � Bk is true in

any context which does not override the de�nitions of q�� � � � � qn� A standard clause

can be seen as a cs�clause with an empty context� To simplify the notation	 we will

henceforth assume that empty contexts are not written explicitly� Accordingly	 we will

consider a clause as a special case of a cs�clause�

A context sensitive interpretation is de�ned in terms of equivalence classes of cs�

clauses as follows� Say that two cs�clauses c� � H�� s�� $B� and c� � H�� s�� $B� are

equivalent �c� � c�� i�	 s� � s� and	 considering the $Bi�s as multisets	 c� and c� are

equal up to variable renaming�

De�nition ��
 �cs�interpretation� Let C� denote the set of all the ��equivalence

classes of the cs�clauses A��s � $B such that s � �	 A cs�interpretation for a

h�����i�program P is any I � C�	

Remarks� In the following we denote the ��equivalence class of a cs�clause c by c

itself� Abusing the notation	 we will also identify syntactic operators on cs�clauses with

�semantic� operators on C�� The representatives of each equivalence class contained

in C� will be assumed to be renamed apart from the elements in the class� This is

consistent with the de�nition of the semantic operators which are given independently

of choice of the representative of the equivalence class� The previous de�nitions for

programs �such as  �P �� ��P � etc�� are implicitly extended to apply to cs�interpretations

and the notion of di�erential programs is naturally extended to sets of cs�clauses� The

context will be ignored when computing the answers substitutions� Finally	 to simplify

the notation	 we will omit the pre�x h�����i for cs�interpretations when no ambiguity

arises�

The semantics of a di�erential program is de�ned by a �xed point construction

based on the immediate�consequence operator T cs
P for cs�interpretations� T cs

P is de�ned

in terms of an unfolding rule� Recall that for a di�erential program P 	 the open

predicates are the predicates symbols in the set  �P � � ��P n��P ����P ��P � Given

��



any set of predicate symbols )	 we denote by Id� the set of cs�clauses �with empty

context� fp� $X��� p� $X�j p 
 ) and $X distinct variablesg�

De�nition ��� �T cs
P � Let P be a h�����i�program and let I be a cs�interpretation

for P 	 Then we de�ne

T cs
P �I� � unf P�
�P ����I � Id
�P ���

where� given two sets of predicate names ) and �� the cs�unfolding unf P����is de�ned

by

unf P�����I� � f A���s � C � C� � � � �Ck � �$L�� � � � � $Lk�� j

� A��s � B�� � � � � Bk 
 P�

� cli � B�
i��Ci�

$Li 
 I� i � �� � � � � k�

� � mgu��B�� � � � � Bk�� �B
�
�� � � � � B

�
k���

C � fPred�Bi� j Pred�Bi� 
 � and cli �
 Id�g g

The intuition behind the de�nition of T cs
P is the following whenever we unfold an atom

Bi in a cs�clause we add Pred�Bi� to the context of that cs�clause if and only if Pred�Bi�

is a ��predicate and the cs�clause used to unfold Bi is not in Id
�P �� The ��predicate

Pred�Bi� is recorded in the context of the cs�clause produced by the unfolding step

so that the context of that cs�clause can be used to model semantically the overriding

semantics of the � composition� This argument does not apply to the case when a

��predicate is unfolded using a clause in Id
�P � because in the de�nition of T
cs
P �I� the

clauses in Id
�P � are added to I only to �delay� the evaluation of open predicates�

Proposition ��� �Continuity� T cs
P is continuous on the complete lattice �C����	

The continuity of T cs
P follows directly from the continuity of the corresponding op�

erator introduced in ��	 ��� Note	 to this regard	 that when all the clauses in the

cs�interpretations have empty contexts	 T cs
P coincides with the operator used in the

de�nition of the open semantics of ��	 ��� Now	 since T cs
P is continuous on the complete

lattice �C����	 the least �xed point of T
cs
P can be computed as T cs

P � ��

The semantics of any di�erential program P will be de�ned as an abstraction of

T cs
P � �� There are two levels at which T cs

P � � can �and in fact should� be abstracted

upon� Firstly consider the internal predicates of P � Since the predicates ��P � are

considered internal to the program	 any cs�clause de�ning them should not be part of

the semantics of P � Excluding these de�nitions corresponds to ensure that internal

predicates are not exported	 sematically speaking�

Secondly	 assume that T cs
P � � contains two cs�clauses c and c� which di�er only in

that set of constraints �the context� sc of c is a subset of the context sc� of c
�� Let	 for

instance	 sc� be the empty set and sc � fqg� Now c and c� bear the exact same meaning

as far as the semantics of P is concerned� The di�erence is that c will get erased from

the semantics of any composition Q� P where Q which rede�nes q	 whereas c� will be
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part of it� Hence	 when computing the sematics of P we can safely drop c as long as

we retain c�� This intuitive picture giusti�es the following de�nition of the abstraction

� over cs�interpretations�

De�nition �� Let I be a set of �equivalence classes of� cs�clauses	 The abstraction

��I� is de�ned as follows�

��I� � fH��s� $B 
 I j � �H ���s�� $B� 
 I such that s� � s� H�� $B � H ��� $B�g�

For any two cs�interpretations I and J 	 we then then de�ne I �� J i� ��I� � ��J�� Fi�

nally	 given a set ) of predicate symbols we denote withD�)� the set of cs�clauses whose

head�s predicate symbol belongs to )� Formally D�)� � fH��s � $B j Pred�H� 
 )g�

De�nition ��� �Fixpoint semantics� Let P be a h�����i�program	 The �xpoint

semantics ��P �� of P is de�ned as follows�

��P �� � h�P ����P ����P ��i���T
cs
P � �� n D���P ���

The semantics ��P �� of P is again considered a di�erential program� As such	 according to

the de�nition of di�erential programs	 the annotation of ��P �� is obtained by intersecting

the original annotation h�����i of P with the set ����P ��� of predicate symbols of

��P ��� Notice �nally that from de�nition ���	 it follows that if H��s � $B 
 ��P �� then

Pred� $B� �  �P � and this makes ��P �� a function of the open predicates of P �

Example ���� The semantics of the programs of example �	� are the following

��P �� �

�
s�a�� q�a��

r�c�� t�b��

��Q�� �

���
��

s�x��� r�x�� h�x��� t�x��

s�a���frg� q�x�� s�a��

r�a��� q�x��

��R�� �

�
q�a�� r�b��

h�a�� s�x��� t�x��

The intuitive meaning of the cs�clause s�a���frg�q�x�� is that the implication s�a��

q�x� holds true as long as the context in which Q occurs does not override the de�nition

for r local to Q� If Q occurs in the context P � Q where P �s de�nition of r is the

unit clause r�c�� 	 then the new de�nition of r in P overrides clause r�a���q�x� thus

invalidating the constrained implication s�a���frg�q�x��

��



��� Correctness

We now prove the adequacy of our semantics with respect to the operational semantics

de�ned in terms of isa�proofs� This is accomplished in two steps we �rst show	 in

theorem ����	 that ����� is �cas��correct	 i�e� it models correctly the answer�substitution

semantics of our programs� then	 in theorem ����	 we use the equivalence between

isa�hierarchies and � �composite programs to extend the correctness result to isa�

hierarchies

The �rst result follows by considering the relation between the semantics ����� and the

s�semantics de�ned in ����� The s�semantics of a program P is de�ned as the least �xed

point of a continuous operator T s
P de�ned on sets of �equivalence classes of� atoms�

Similarly to T cs
P 	 T

s
P is de�ned in terms of a corresponding unfolding operator	 unf

s
P 	 as

follows T s
P �I� � unf sP �I�� The di�erence is that	 while T

cs
P is a function of sets of �non

ground� clauses	 the domain of T s
P �and unf

s
P � is the power�set of an extended Herbrand

base whose elements are non ground atoms� As a matter of fact	 it is easy to show that

unfP���� is a generalization of unf sP � In fact	 the de�nition of unf
s
P can be obtained

from that of unfP���� by choosing ) � � � � and by restricting the domain to sets of

atoms� More formally for any I � C�	 let Ijs denote the set Ijs � fA j A��s � 
 Ig�

We can show that

unf sP �Ijs� � �unfP�����I��js

The strong completeness theorem for s�semantics states that any computed answer for

the goal G in P can be obtained by �evaluating� G in the s�semantics of P �

Theorem ���� ���� Let P program and let G � A�� � � � � Ak be a goal 	 Then

G
�
��P � �� � Hi 
 T s

P � �� i � �� � � � � k�

�� � mgu��A�� � � � � Ak��H�� � � � �Hk��

�jG � 


The corresponding result for our semantics ����� for di�erential programs can now be

stated as follows

Theorem ���� �correctness� Let P be a h�����i�program and let G � A�� � � � � Ak

be a goal with Pred�G� � �� �� ���	 Then

G
�
��P � �� � Hi��si � 
 ��P ��� i � �� � � � � k�

�� � mgu��A�� � � � � Ak��H�� � � � �Hk��

�jG � 


Proof� From the relation between unf sP and unfP����� it follows that� given any cs�

interpretation I� T s
P �Ijs� � �T cs

P �I��js	 Then� by a straightforward inductive argument�

we have that H��s � 
 T cs
P � n i� H 
 T s

P � n for any n	 Therefore� by de�nition of

� and by de�nition of ������ if Pred�H� 
 � �� ��� H��s � 
 ��P �� i� H 
 T s
P � �	 In

other words� ��P �� contains an isomorphic copy of the s�semantics for the open predicates

of P 	 Since by hypothesis Pred�G� � �� �� ��� the thesis holds by theorem �	��	

��



To prove the adequacy of our semantics with respect to the operational semantics

de�ned in terms of isa�proofs	 we can now use the correspondence between computations

in isa hierarchies and computations in � programs	 as stated by theorem �����

Theorem ���� Let HP be an isa�hierarchy� HP� be the corresponding h�����i�program

and G � A�� � � � � Ak be a goal with Pred�G� � �� �� ���	 Then�

HP 	� G �� � Hi��si � 
 ��HP���� i � �� � � � � k�

�� � mgu��A�� � � � � Ak��H�� � � � �Hk���

where �jG � 
jG	

Proof� Immediate from theorems �	�� and �	��	

As a corollary	 we can prove that semantic equality between � �hierarchies implies same�

ness of answer substitutions on isa�hierarchies� Call �cas the observational equivalence	

based on answer substitutions	 for isa�hierarchies

HP �cas HP � �� HP 	� G i� HP � 	�� G

where 
jG � 
�jG�

Corollary ���	 Let HP and HP � be isa�hierarchies and let HP� and HP �
� be the cor�

responding h�����i�programs	 Then�

��HP��� � ��HP
�
��� � HP �cas HP �

Proof� Immediate from theorem �	��	

��� Compositionality

We now show the � �compositionality of the semantics ������ We �rst introduce a semantic

operation � on cs�interpretations which corresponds to the syntactic � �composition of

di�erential programs� As for � 	 the operator � is considered to be right�associative�

De�nition ���
 Let h�P ��P ��P i�P and h�Q��Q��Qi�Q be compatible di�erential

programs and let ��P �� and ��Q�� the respective semantics	 We de�ne the semantic com�

position ��P �� � ��Q�� as ����P ��l � ��Q��r�� where

��P ��l � fA��s � $B 
 ��P �� j Pred� $B� � �P � ����Q��r�g

��Q��r � fA��s � $B 
 ��Q�� j s � ��P � � �� P red� $B� � �Q � �

Pred�A� �
 ��P � � ��Q ��Q� g

The de�nition of ��P �� � ��Q�� is given along the same guidelines of the corresponding

de�nition for the syntactic � �composition� The intuition is the following� First recall

that all the cs�clauses in ��P �� and ��Q�� are the result of the unfolding process on P and

��



Q� Now	 take a cs�clause c in ��P �� whose body contains an atom b such that Pred�b�

belongs to �P � From the de�nition of the �xpoint semantics	 it follows that Pred�b� is

not de�ned by P � Then	 if ��Q��r does not contain any de�nition for Pred�b�	 c can be

deleted from ��P �� � ��Q��� As for the syntactic composition	 the deletion is safe in this

case being � 	 and hence �	 assumed to be right�associative�

The same argument motivates the corresponding condition on ��Q��r� The remaining

condition on ��Q��r provide the semantic counterpart of the overriding that occurs at

the syntactic level between P and Q� Recall the two programs of example ���� We

said that to compute the semantics of P � Q in a compositional way	 we should have

deleted from the semantics of Q	 not only the de�nition of the ��predicate r	 but

also everything derived in Q using r�s de�nition� The two conditions given above on

��Q��r model precisely this mechanism� Note also that ��P ��l � ��Q��r can be considered a

h�����i�program	 where the annotation h�����i is obtained according to the usual

restrictions for di�erential programs� Namely	 � � ��P � �Q� � ����P �� � ��Q��� and

similarly for � and �� A �nal note concerns the fact that the de�nition of ��P �� � ��Q��

depends also on a piece of syntactic information ���P �� and hence	 strictly speaking	 �

is not a purely semantic operator� However	 it is easy to see that this could have been

avoided by embedding this information into the semantics ������

The proof of the � �compositionality of ����� relies on tight relation existing be�

tween the syntactic � �composition of programs and the semantic ��composition of

cs�interpretations� Due to the correspondence between the conditions which de�ne the

sets ��P ��l	 ��Q��r and ��P �	 ��Q�� we can show that taking the semantics of ��P ��l� ��Q��r is

equivalent to taking the semantics of ��P ����Q��� Then the result follows by observing

that ��P �� � ��Q��� ����P ��l � ��Q��r�� and correspondingly	 ��P � Q�� � ����P � � ��Q�����

We �rst need the two following lemmas whose proofs are reported in the appendix�

Lemma ���� Let ��P � and ��Q�� be de�ned according to de�nition �	�	 Then

����P � � ��Q���� � ������P ��� � ����Q������

Lemma ���� Let h�P ��P ��P i�P �h�Q��Q��Qi�Q be di�erential programs� P �Q be

the di�erential program h�����i����P � � ��Q��� where Q�� �� � is de�ned according

to de�nition �	�	 Moreover let ��Q��r be de�ned according to de�nition �	��	 Then

�	 ����P ��� � ��P �� n R where R � fH��s � $B 
 C� j Pred� $B� � �P �� ��Q�g

�	 ����Q���� � ��Q��r

Theorem ��� �compositionality� Let h�P ��P ��P i�P and h�Q��Q��Qi�Q be dif�

ferential programs	 Then

��P � Q�� � ��P �� � ��Q��

Proof� We �rst show that

������P ��� � ����Q������ � ����P ��l � ����Q������ ���

��



To prove this� we proceed as follows	 From lemma �	��	� we have that

����P ��� � ��P �� n R where R � fH��s � $B j Pred� $B� � �P �� ��Q�g�

Now� since by de�nition �	��� ��P ��l � fA��s � $B 
 ��P �� jPred� $B� � �P � ����Q��r�g�

we have that�

��P ��l � ����P ��� n fH��s � $B j �p 
 Pred� $B� � �P s	 t	 p 
 ��Q� n ����Q��r�g ���

Let assume now that c � H��s � $B 
 ����P ��� n ��P ��l	 Then there exists p 
 Pred� $B� �

�P with p 
 ��Q� n ����Q��r�	 It is easy to verify that� since ��p� � p 
 ����Q����

p �
  ���P � � ��Q���	 Then by de�nition of ������ c �
 ������P ��� � ����Q������ and� since

p �
 ������P ��� � ����Q����� �  ���P � � ��Q���� c cannot be used to derive new clauses in

������P ��� � ����Q������	 Hence the claim follows from ���	

Now we can reason as follows�

��P �� � ��Q��
def
� ����P ��l � ��Q��r��

by lemma �	��	� � ����P ��l � ����Q������

by ��� � ������P ��� � ����Q������

by lemma �	� � ����P � � ��Q����

by de�nition � ��P � Q��

The following example illustrates the compositional construction of the semantics�

Example ���� Let�s consider programs Q and R introduced in example �	� and their

respective semantics �example �	���	 From de�nition �	��� ��Q�� � ��R�� � ����Q��l � ��R��r��

where ��Q��l � ��R��r is given by the cs�interpretation���
��

s�x���r�x�� s�a��

s�a���frg�q�x� q�a��

r�a���q�x��

Note that� according to de�nition �	��� clause h�a� 
 ��R�� does not appear in ��R��r

because the predicate h 
 �R is de�ned in Q	 Clause s�x���t�x� 
 ��R�� does not appear

in ��R��r because t 
 �R is not de�ned in R	 Also r�b� 
 ��R�� is deleted since r 
 �R

and r is de�ned in Q	 Correspondly� ��Q� R�� is the cs�interpretation��
s�x���r�x�� s�a��

r�a�� q�a��

Note that� since q is static and de�ned in Q� R� in the semantics of Q� R there are

no cs�clause with q in the body	 Moreover observe that the cs�clause s�a�  frg� has

been deleted due to the abstraction operator �� �	 It�s easy to verify that the equality

��Q� R�� � ��Q�� � ��R�� holds	

��



Equivalence induced by ������ We conclude this section studying the notion of obser�

vational equivalence induced by the isa�composition of programs and its relation with

the equivalence induced by the semantics ������

We say that two di�erential programs P and Q are observationally equivalent with

respect to the isa composition �and we write P �cas
isa Q� if and only if P and Q can be

interchanged in any isa�hierarchy without a�ecting the observational behaviour of that

hierarchy� Since we are assuming that isa is right associative	 the equivalence �cas
isa can

be de�ned as follows

De�nition ���� Let R and Q be two h�����i�di�erential programs	 Then�

R �cas
isa Q �� �Pn isa�� � � isa R isa � � �P��� �

cas �Pn isa�� � � isa Q isa � � �P���

for any choice of di�erential programs P�� � � � � Pn	

As for the semantics �����	 we have shown that it is cas�correct and � �compositional�

Now we can conclude that it is also isa�compositional	 that is that for any two

h�����i�di�erential R and Q	 ��R�� � ��Q�� implies that R �cas
isa Q� Take R and Q such

that ��R�� � ��Q�� and let P�� � � � � Pn be arbitrary di�erential programs� Then

��R�� � ��Q�� �� ��Pn�� � � � � ��R�� � � � � ��P��� � ��Pn�� � � � � ��Q�� � � � � ��P���

�by theorem ���#� �� ��Pn � � � �R� � � �P��� � ��Pn � � � �Q� � � �P���

�by theorem ����� �� Pn isa � � �R isa � � �P� �
cas Pn isa � � �Q isa � � �P�

�by de�nition� �� R �cas
isa Q

� Applications

In this section we illustrate on a concrete example the application of the programming

discipline we have discussed in the paper� The purpose of the following discussion is not

to make a point in favour of inheritance as a programming methodology the bene�ts

of this approach to program development have long been recognized and fruitfully

experienced in several applications�

Instead	 what we wish to emphasize here is that not only the notions of specialization

and re�nement are amenable to be embedded into logic programming	 but also that they

can be exploited more naturally and e�ectively than in other programming paradigms�

In particular	 the use of extensible predicates introduces a type of specialization that

has no counterpart in the traditional Object�Oriented frameworks� In fact	 if re�ning

a function	 or a method in general	 may only be achieved by �partially� overriding its

de�nition	 a natural and meaningful way to specialize a predicate is by extending the

set of clauses which de�ne it� The following example illustrates these issues more fully�

An Editor Project� We show how the project of EMAX	 an Emacs�like editor	 would

be approached using the di�erential logic programming approach�

��



We make the assumption that the system supports the basic functionalities needed

in the design of a display editor bu�er management	 cursor moves	 � � � etc� Assuming

Prolog as the underlying logic language at our disposal	 we start by de�ning a generic

interface module EDITOR providing the necessary machinery to make these primitives

available as Prolog built�in predicates�

EDITOR

open�File� Buff� �� ����� �� Associate a memory buffer with File

save�Buff�File� �� ����� �� Save the contents of buffer on File

move�Buff� �up�� �� ����� �� Cursor moves

��������������������

EMAX is de�ned as specialization of EDITOR and it is conceived as a set of event�handlers

for events coming from the associated editing window� Typing a character or clicking a

mouse button on the editing window are typical examples of window events� The display

manager collects the window events and serves them one at the time	 by forwarding a

corresponding query to EMAX� For the purpose of this example we will concentrate only

on keystroke events and the associated handler ks	event�Buff� L�� EMAX distinguishes

two classes of keystroke events depending on the list of characters L associated with each

query ks	event�Buff� L�� The list L may either be initiated by a control character to

request an editing function like search	 cursor move	 save � � � etc	 or consist of a single

character to be echoed on the editing window� We will assume that some characters	

typically parentheses	 have a special treatment besides echoing them	 EMAX checks also

whether they are balanced or not� As for the control requests we will consider only those

initiated by the pattern C�x�� Finally EMAX de�nes a special handler for unexpected

events such as system crashes� We will assume that unexpected events raise exceptions

that are forwarded to EMAX as goals of the form exception�Buffer� cause��

EMAX is	a EDITOR

����� Normal Events

ks	event�Buff� 
�C�x��X�� �� � cx	action�Buff� X��

ks	event�Buff� 
C�� �� echo�C� Buff��

match�Buff� C��

����� Handlers

cx	action�Buff� �C�c�� �� get	Filename�Buff� File��

exit�Buff� File��

cx	action�Buff� �k�� �� kill�Buff��

exit�Buff� File� �� query	user��save changes ��� Ans��

Ans � �yes��

save�Buff� File�� �� inherited

quit�

�
C�x is the standard emacs abbreviation for the sequence of keystrokes �hold CTRL and type x�
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exit�Buff� File� �� quit�

����� Brace checks

match�Buff� ���� �� find	matching����� Buff� Pos�� �

highlight�Pos� Buff��

match�	� ���� �� � warning��mismatched brace���

match�	� C��

����� Special Handlers

exception�Buff� crash� �� save�Buff� �Buff��� �� inherited

quit�

The behaviour of the handler cx	action for C�x events should be obvious from the

de�nition� match�� checks that a closed brace matches a corresponding open brace if

so it highlights the matching brace	 otherwise it issues a warning message� The crash

handler saves the current contents of Buff on the auto�save �le �Buff� associated with

Buff�

Let�s now consider the signatures of the predicates de�ned in EDITOR and EMAX�

ks	event�� is typically an extensible predicate further specializations of EMAX might

be instructed to provide special treatment for control sequences other than those sup�

ported by EMAX� Similar considerations apply to the balance checks de�ned by match��

and to exception�� which are thus assumed to be extensible�

A di�erent way that EMAX may be specialized is by associating di�erent responses

to the C�x class of events� As a matter of fact	 we may still want to use or extend the

cx	actions de�ned by EMAX but	 at the same time	 we might very well want to modify

part of their behaviour� With this idea in mind	 we de�ne cx	action as extensible and

exit�� to be a dynamic ��� predicate� open�� and move�� are typical examples of

inherited predicates for EMAX and	 for the purpose of this example will be assumed to

be static ��� predicates� As for save��	 we de�ne it as static with the following idea

for any further specialization to be able to use a new saving routine upon exiting or

upon a system crash we impose that it provides also new de�nitions for exit�� and

exception��� The following specialization of EMAX motivates this choice�

RCS�EMAX is	a EMAX

���� Redefine the exit routine�

exit�Buff� File� �� get	version	num�File�Vn��

save�Buff� File�Vn��

quit�

���� Save only changes since last version

save�Buff� File�N� �� diff�Buff� File�N� DL��

N� is N���

save	changes�DL� File�N���

RCS�EMAX integrates the editing facilities supported by EMAX with revision control func�
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tionalities supported by RCS�� Upon exiting from an editing session RCS�EMAX saves

in a new revision of the �le only the changes which have been made since the last

time that �le was edited� Hence	 an exit request for RCS�EMAX is served	 as expected	

by the handler cx	action�� de�ned in EMAX� cx	action��	 in turn	 activates the exit

procedure and the associated save routing de�ned for RCS�EMAX�

On the contrary	 RCS�EMAX delegates the treatment of exceptions to EMAX an ex�

ception forwarded to RCS�EMAX activates the de�nition of exception�� in EMAX and

this	 in turn	 a standard save on the auto�save �le associated with the bu�er being

edited� Hence	 there�s is no attempt to save a �possibly inconsistent� new revision

upon a system crash�

As another	 independent	 specialization consider the following module implementing a

LaTEXmode for EMAX� LaTeX�EMAX extends the balance checks to characters like � as

well as the class of control patterns associated with the keystroke events supported by

EMAX

LaTeX�EMAX is	a EMAX

���� New class of events

ks	event�Buff� 
�C�c��X�� �� cc	action�Buff� X��

���� Treatment of LaTeX environments

cc	action�Buff� �C�f�� �� get	open	env�Buff� E��

put�Buff� nl��

put�Buff� ��end�E����

���� New balance checks

match�Buff� ���� �� find	prev����� Buff� Pos��

highlight�Pos� Buff��

match�	� ���� �� � error��mismatched ����

Note that LaTeX�EMAX can be used either to specialize EMAX or as a futher specialization

of RCS�EMAX with the obvious consequences on the treatment of multiple revisions�

� Related Work

The work on modular extensions of logic programming was originally inspired by the

proposal of R� O�Keefe in ��#�� His idea was to give a formal account of one of the

fundamental principles of the software engineering view of programming programs

should be developed incrementally by de�ning several units together with their inter�

faces and then by composing those units� This led him to propose a modular approach

to programming based on the notion of program composition� He formalized this idea

�RCS is the Revision Control System developed by W� F� Tichy �see ���	
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by interpreting logic programs as elements of an algebra and by modeling their com�

position in term of the operators of the algebra� The distinguishing property of this

approach is that it extends logic programming with modular constructs without any

need to extend the language of Horn clauses� In fact	 module�composition is inherently

a meta�linguistic mechanism� This idea gave way to the development of several pro�

posals of modular systems based on the idea of program composition� The approach

discussed by Bossi et al� in ��	 �� together with the compositional frameworks of Man�

carella and Pedreschi ������	 Gaifman and Shapiro ������	 and of Brogi et al� ��� can in

fact be seen as di�erent formulations of this idea�

The novelty of the proposal presented in this paper is in the type of composition

mechanisms we have considered as well as in the domain chosen for the semantic char�

acterization� The isa�composition of di�erential programs provides a uniform semantics

for the existing composition mechanisms and extends them with an explicit treatment

of overriding inheritance which was missing in the aforementioned proposals� The use

of internal predicates provides also a formal account of information hiding richer than

those proposed by Gaifman and Shapiro in ����� Finally	 our approach represents the

�rst attempt to capture	 in a compositional fashion	 a computational semantics of in�

heritance systems stated in terms of computed�answer�substitutions�

A di�erent approach to the de�nition of a modular extension of logic programming

was instead motivated by the idea of instrumenting logic programming with linguistic

mechanisms for abstraction richer than those o�ered by Horn clauses� The idea was to

provide a richer support for programming�in�the�small and then to tailor those mech�

anisms to attack the problems of programming�in�the�large� This approach originated

with the work of D� Miller	 in ����� His idea was to allow implications to occur in the

bodies of clauses and to use the deduction theorem to de�ne a proof procedure for the

extended language� Simply	 he de�ned an implication goal D � G to be provable in a

program P if G is provable in the extended program P � fDg� The idea of modularity

derives then by observing that	 if D is a conjunction of clauses	 we can interpret the

goal D � G as a scoping construct which requires that the clauses in D be loaded

before evaluating G and then unloaded after G succeeds or fails� Implication goals

as structuring tools were then used by a number of other authors in the attempt to

capture more powerful scoping and modular constructs than those introduced by Miller

�see for instance ���� and ������

Although di�erent in their motivations	 the two approaches are actually strictly related�

In fact	 the composition mechanisms are conceptually the same� the di�erence is that

they act as meta�linguistic operators in the former and a linguistic operators on the

latter �see ��� for a fuller discussion on this issue��

In ���� Monteiro and Porto proposed Contextual Logic Programming �CxLP� as a

modular logic programming language based on a new type of implication goal	 called

extension goal and denoted by D � G� Operationally	 D � G is provable in the

program P if �the goal� G can be proved in �the set of clauses� D � A	 where A is a
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�nite set of atoms for predicates not de�ned in D and which can be proved in P � Thus

the operator � provides a context extension	 i�e� a kind of lexical scoping which has

essentially the same semantic connotation as static inheritance �while the implication

goal D � G is similar to dynamic inheritance�� In a more recent paper ������ CxLP has

been extended by introducing also a restricted form of dynamic scoping�

The major di�erence with our approach is that in the CxLP language the composi�

tion of di�erent components occurs dynamically as the result of evaluating a query� In

e�ect	 CxLP�s context extension	 by providing a mechanism for dynamically specifying

�and modifying� a unit�s hierarchical links with its ancestors	 captures a notion which

is known as delegation ����� Therefore	 the compositional semantics of CxLP �and ex�

tensions thereof� introduced in ���� is based on a functional notion of denotation which

associate to each unit u of the system a functional Iu whose domain is a set of functions

on Herbrand intepretations�

In our case	 the denotation of a unit is a set of cs�clauses obtained by a least �x�

point construction� An advantage of this characterization is that the standard abstract

interpretation techniques used for logic programs �see ���� for a survey� can be applied

to derive �compositional� methods for the analysis of di�erential programs� Moreover	

di�erently from our case	 the semantics ���� is intended to capture the model�theoretic

meaning of a system an hence does not capture the notion of computed answer substi�

tution�

In a related paper ���� Monteiro and Porto take a more direct approach to the

study of inheritance systems� The notion of inheritance they consider in �the bulk

of� that paper is essentially the same we have assumed here� The semantic problem

is instead approached from a completely di�erent perspective� Their view is strictly

transformational� The methodology to capture the meaning of an inheritance system

is to transform it into a logic program to then show the equivalence between the re�

spective operational semantics� A declarative interpretation is then derived indirectly

on the account of the well�known equivalence between the operational and declarative

semantics in logic programming� A re�ned result is described in ���� where they in�

troduce a direct declarative characterization for a composite language which combines

the static and dynamic interpretations of inheritance as well as the overriding and ex�

tension modes between inherited de�nition we have considered in this paper� There

is a fundamental di�erence from the approach we have presented here the semantic

construction of ���� applies to complete hierarchies and it is given under the assump�

tion that the components of the hierarchy are known in advance� As such	 the issue of

compositionality is not taken into account�

Compositionality is instead one of the key issues in our approach each di�erential

program is looked at as an independent fragment to be arbitrarily composed onto any

hierarchy� Then the compositional properties of our semantics ensure that the meaning

of the resulting hierarchy can be determined from the meaning of the components�

In ���	 Brogi et al� study a compositional semantics for a logic language equipped

with mechanisms for message passing and inheritance� Their approach is rather di�er�

��



ent than the one presented here	 in at least two respects� The �rst is that our semantics

is �cas��correct whereas the semantics of ��� captures a less re�ned notion of operational

behaviour stated in terms on the notion of �ground� success set� The second is that the

de�nition of inheritance assumed in that paper is based only on the idea of extension

rather than overriding between inherited de�nitions� This assumption is crucial in the

de�nition of semantic framework presented in ����

A compositional semantics of inheritance is also given in �#�	 but di�erent semantic

objects �the least Herbrand model and the immediate�consequence operator respec�

tively� are required to coexist there	 in order to capture the meaning of static and

dynamic inheritance� In contrast to that case	 the choice of context�sensitive interpre�

tations	 allows us to have a uniform treatment of the two mechanisms�

A modular extension to logic programming was also proposed by Sannella and

Wallen in ����	 based on the theory of modularity developed by the StandardML module

system� Abstraction and the ability to de�ne structured components are also at the

basis of that approach but cross�references between predicate de�nitions in di�erent

modules are achieved only through the explicit use of quali�ed names� Thus	 there is

no support for the implicit interaction between di�erent components which is entailed

by the composition mechanisms we have considered in this paper�

��
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A Appendix

In this appendix we prove lemmata ��#	 ���� and ����� In doing so	 we will also state

and prove a number of technical results�

Proof of Lemma ���

We start with lemma ��# whose proof needs the following

Lemma A�� For P and Q di�erential programs� let c be a clause of P and P � Q �

��P � � ��Q�� �de�nition �	��	 Then for all q 
 ��Q�� if q 
 �Q � ��Q�� then�

�a� def���q�� ��P �� � �

�b� ��c� �
 def���q�� P � Q�

Dually� if p 
 ��P �� p 
 �P � ��P � and c is a clause of Q� then

�c� def���p�� ��Q��� � �

�d� ��c� �
 def���p�� P � Q�

Proof� We prove points �a� and �b�� the proof of �c� and �d� is similar	

�a�� Assume� by contradiction that def���q�� ��P �� �� �	 Then� there exists p� 
 ��P �

such that ��p�� � ��q�	 From lemma �	 this implies that p� � q	 Hence� being

q 
 �Q � ��Q�� by compatibility� either p� 
 �P or p� 
 ��P �	 Since p� 
 ��P �� in

neither case p� 
 &
� whereas in both cases q 
 &	 But then ��p�� � p� whereas ��q� �� q

and hence ��p�� �� ��q�� a contradiction	

�b�� Let c � H��Body and p � Pred�H�	 Then p 
 ��P � and� by de�nition of ��

��p� � p	 Hence ��c� 
 def���q�� P � Q� only if p � ��q�	 But it is easy to show that

assuming p � ��q� leads to a contradiction	 In fact either q �� ��q� or q � ��q�	 In

the �rst case ��q� �
 ��P � and then ��q� �� p	 In the second case� p � q and then� by

compatibility and de�nition of � we have q �� ��q� and hence p �� ��q�	

Lemma �� Let HP � Pn isa Pn�� isa � � � isa P� and let HP� be the corresponding

di�erential program� Let p 
 ��P j
HP � for j � n� Then	 for all k � n	

c 
 Pk " c 
 select�p� Pj �HP ��� c 
 P k
HP " �k

HP �c� 
 def��j
HP �p��HP��

Proof� The proof is by induction on the structure of the isa hierarchy� The base

case	 when HP is composed of the single program P�	 is trivial since �
�
P�
is the identity

renaming and there is no subsetting�

Let�s then assume that the claim holds for any hierarchy H � Pn�� isa � � � isa P�

and consider the hierarchy HP � Pn isa H� The corresponding di�erential program

is HP� � Pn � H� � �n�Pn� � �n���H
�
� �� We proceed distinguishing the cases when p

is respectively a �	 �	 � or internal predicate�

��



��predicates Let p 
 �Pj be a predicate of ��P
j
HP �	 j � n� First consider the case

when j � n� From the de�nition of the proof predicate 		 it follows that

select�p� Pj �HP � � select�p� Pj �H�� ���

Correspondingly	 we can show that in the di�erential program

def��j
HP �p��HP�� � �n���def��

j
H�p��H���� ���

In fact	 by de�nition	 def��j
HP �p��HP�� � def��j

HP �p�� �n�Pn���def��
j
HP �p�� �n���H

�
� ���

By lemma A����a� def��j
HP �p�� �n�Pn�� � � being �j

HP �p� � �n����
j
H�p��� Further�

more	 def��j
HP �p�� �n���H

�
� �� � �n���def��

j
H�p��H

�
� �� � �n���def��

j
H�p��H��� be�

cause the subsetting doesn�t erase the de�nition of any ��predicate�

We now notice that for k � n the claim reduces to false �� false� In fact	

c 
 Pn implies by ��� that c �
 select�p� Pj �HP �� Correspondingly	 in the di�erential

program	 �n
HP � �n and P n

HP � Pn� By lemma A����b�	 c 
 Pn implies that �n�c� �


def��n����
j
H�p���HP��� Hence	 we may assume that k � n� Notice that for any clause

c de�ning a ��predicate	 c 
 P k
HP if and only if c 
 P k

H � We use q as a shorthand for

�
j
H�p� and proceed with the following argument

c 
 Pk " c 
 select�p� Pj �HP �
���
�� c 
 Pk " c 
 select�p� Pj �H�

�by the inductive hyp� �� c 
 P k
H " �k

H�c� 
 def�q�H��

��n�� is injective on ��H��� �� c 
 P k
H " �n����

k
H�c�� 
 �n���def�q�H���

�by ���� �� c 
 P k
H " �n����

k
H�c�� 
 def��n���q��HP��

�since c de�nes a ��predicate� �� c 
 P k
HP " �n����

k
H�c�� 
 def��n���q��HP��

�since �k
HP � �k

H � �n���� �� c 
 P k
HP " �k

HP �c� 
 def��n���q��HP��

Now consider the case when j � n� We distinguish two subcases� First assume that

p 
 ��Pn�� If k � n then we can show that the claim reduces again to false �� false�

The left side reduces to false	 for k � n	 because select�p� Pn�HP � � def�p� Pn�� As for

the right side	 for k � n	 �k
HP �c� � �n����

k
H�c�� and	 by lemma A����d�	 �n����

k
H�c�� �


def��n�p��HP���

Let�s then assume k � n� Since P n
HP � Pn	 obviously c 
 Pn �� c 
 P n

HP and we

can proceed as follows

c 
 select�p� Pn�HP � �� c 
 def�p� Pn�

�� �n�c� 
 �n�def�p� Pn��

�� �n�c� 
 def��n�p��HP��

The last step follows from lemma A����c�	 being def��n�p��HP�� � def��n�p�� �n�Pn���

def��n�p�� �n���H
�
� ���

Finally consider the case when p �
 ��Pn�� Assume that p 
 ��Pi� for some compo�

nent Pi of HP and let Pl the top�most among these components� Then for all m such

��



that n � m � l� p �
 ��Pm� and the de�nition of the proof predicate 	 implies that

select�p� Pn�HP � � select�p� Pl�HP � Correspondingly	 in the di�erential program we

can show that

def��l
HP �p��HP�� � def��n�p��HP�� ���

In fact	 let Hl � Pl � � � � � P�	 since p is a ��predicate in ��Pl� p � �l�p� � �l
Hl
�p��

Since p is not de�ned in Pl��	 by de�nition	 p � �l���p� � �l��
l
Hl
�p�� and �l��

l
Hl
�p�� �

�l
Hl��

�p�� By iterating this argument n l times we obtain p � �l
HP �p�� Similarly	 we

can show that p � �n
HP �p�

def
� �n�p� thus proving ����

Now we can reason as in the case j � n since l � n and p 
 ��P l
HP �	 being

p 
 ��Pl� � �Pl�

Assume �nally that for all i	 p �
 ��Pi�� Then obviously select�p� Pn�HP � � ��

Correspondingly	 def��n�p��HP�� � �� In fact	 def��n�p�� �n�Pn�� � � being �n injec�

tive on ��Pn�	 and def��n�p�� �n���H
�
� �� � � being p �
 ��H�� and �n�p� �� �n���p� by

lemma ����

��predicates When p 
 �Pj 	 from the de�nition of the proof predicate 		 we have

select�p� Pj �HP � �

�
select�p� Pj �H� if p �
 ��Pn�

def�p� Pn� otherwise

Note that	 when p �
 ��Pn� the above equality is well de�ned only if j � n� However	

for j � n it is immediate to see that p �
 ��Pn� implies that select�p� Pn�HP � �

select�p� Pn���HP �� Hence	 restricting to the case j � n does not cause any loss of

generality�

Consider then the case p �
 ��Pn�� Since p is a ��predicate all the renamings used

to construct HP� are identities on p� We can thus establish the following equality

def�p�HP�� � �n���def�p�H��� ���

In fact	 by de�nition def�p�HP�� � def�p� �n�Pn��� def�p� �n���H
�
� ��� Since p 
 �HP� 	

if p 
 ��Pn�	 then by compatibility we have that p 
 �Pn � Hence def�p� �n�Pn�� � �

being p �
 ��Pn�� Thus	 to complete the proof we have to show that def�p� �n���H
�
� �� �

�n���def�p�H���� To see this observe that p 
 �HP� implies also that p � �n���p� and

then def�p� �n���H
�
� �� � �n���def�p�H

�
� �� � �n���def�p�H��� where the last equality

holds being p �
 ��Pn� and hence there is no subsetting for the clauses de�ning p in H��

For k � n the claim reduces to false �� false� That the left side is equivalent

to false for k � n follows by observing that c 
 Pn and p �
 ��Pn� implies that

Pred�head�c�� �� p and hence c �
 select�p� Pj �HP �� As for the right side	 �
n
HP � �n

and Pred�head��n�c��� �� p� Hence	 �n�c� �
 def�p�HP��� We can thus restrict to the

case k � n and proceed similarly to the corresponding case of ��predicates� In fact	

c 
 Pk " c 
 select�p� Pj �HP � �� c 
 Pk " c 
 select�p� Pj �H�

��



�by the inductive hyp� �� c 
 P k
H " �k

H�c� 
 def��j
H�p��H��

�being �j
H�p� � p� �� c 
 P k

H " �k
H�c� 
 def�p�H��

��n�� is injective on ��H��� �� c 
 P k
H " �n����

k
H�c�� 
 �n���def�p�H���

�by ���� �� c 
 P k
H " �n����

k
H�c�� 
 def�p�HP��

�since p �
 ��Pn�� �� c 
 P k
HP " �n����

k
H�c�� 
 def�p�HP��

�being �j
HP �p� � p� �� c 
 P k

HP " �k
HP �c� 
 def��j

HP �p��HP��

Consider the case when p 
 ��Pn�� If k � n then we can show that the claim reduces

again to false �� false� In fact c 
 select�p� Pj �HP � and p 
 ��Pn� implies	 by the

de�nition of 		 that c �
 Pk� Correspondingly	 c �
 P k
HP due to the subsetting� We can

then restrict to the case k � n� Being c 
 P n
HP �� c 
 Pn	 we proceed as follows

c 
 select�p� Pj �HP � �� c 
 def�p� Pn�

�by injectivity of �n
def
� �n

HP � �� �n�c� 
 �n�def�p� Pn��

�since �n�p� � �
j
HP �p� � p� �� �n�c� 
 def��j

HP �p�� �n�Pn��

�� �n
HP �c� 
 def��j

HP �p��HP���

The last step follows being def�p�HP�� � def�p� �n�Pn�� since def�p� �n���H
�
� �� � ��

��predicates� When p 
 �Pj 	 from the de�nition of the proof predicate 		 we have

select�p� Pj �HP � �
�
i�n

def�p� Pi�

Since p is a ��predicate all the renamings used to construct HP� are identities on p�

Furthermore	 for all k if c is a clause de�ning a ��predicate then c 
 Pk �� c 
 P k
HP �

Hence	 for the di�erential program HP�	

def�p�HP�� �
�
i�n

def�p� �i
HP �P

i
HP �� �

�
i�n

�i
HP �def�p� Pi��

Finally

c 
 select�p� Pj �HP � �� c 
 def�p� Pk�

�� �k
HP �c� 
 �k

HP �def�p� Pk��

�� �k
HP �c� 
 def�p�HP��

Internal predicates� The proof is similar to the case of ��predicates�

Proof of Lemma ����

Lemma ���� can be proved by using the same arguments used to prove the composition�

ality of the open�semantics in ���� Following the guidelines of ��� we then �rst introduce

an unfolding semantics which we will prove equivalent to the �xed point semantics ������

��



De�nition A�� Let  be a set of predicates	 By C
 we denote the set of all the

�equivalence classes of� cs�clauses A��s� $B such that Pred� $B� �  	

De�nition A�� �Unfolding semantics� Let P be a h�����i�program	 Then we

de�ne the collection of h�����i�programs

P� � P

Pn�� � unf Pn�
�P ����P � Id
�P ���

The unfolding semantics U�P � of the program P is de�ned as

U�P � � ��
�

n��������

Pn � C

�P �� n D���P ���

where D���P �� is de�ned as in de�nition �	
	

In order to prove the equivalence of U�P � and ��P �� we need two lemmata �A��

and A�� below�� The �rst one states a weak form of associativity for the cs�unfolding

operator� The second shows the equivalence between the intermediate steps in the

construction of the �xpoint and of the unfolding semantics�

By mgu�E� we denote the set of idempotent most general uni�er of E� It is well

known that the idempotent mgu is unique up to renaming� Then	 in the following	 we

will use also the notation mgu�E� � 
 to mean that 
 is an �unique up to renaming�

mgu of E�

Lemma A�	 ��� Let E�� E� be sets of equations with mgu�E�� � 
 and mgu�E�
� � �	

Then mgu�E� �E�� � 
�	

Lemma A�
 Let P be a h�����i�program� ) be a set of predicate symbols and let

Q�W be sets of cs�clauses which contain Id�	 Then�

unfP�����unfQ�����W �� �� unfunfP�����Q������W �

Proof� To simplify the notation� in the following we will use unfP as a shorthand for

unfP���� with the understanding that the subscripts )�� will be the same for any P 	

Accordingly� we will prove that

unfP �unfQ�W �� �� unfunfP �Q��W �

By de�nition �	� c 
 unfunfP �Q��W � i� the following conditions hold

�	 � H��s�A�� � � � � An 
 P �

for i � �� � � � � n� � A�
i��si�Bi��� � � � � Bi�mi


 Q�

for j � �� � � � �mi� � B�
i�j��s

�
i�j�

$Ci�j 
W

�	 � 
 � mgu�fAi � A�
igi�������n��

� � � mgu�fBi��
 � B�
i��� � � � � Bi�mi


 � B�
i�mi

gi�������n��

�#



�	 c � H
���sc�� $C���� � � � � $Cn�mn���

where

sc � s � �
�
i

si� � �
�
i�j

s�i�j� � SA � SB

and

SA �
S
i�������n SAi

SAi
� fPred�A�

i� j Pred�A
�
i� 
 � and A�

i��si�Bi��� � � � � Bi�mi
�
 Id�g

SB �
S
i�������n SBi

SBi
� fPred�B�

i�j� j Pred�B
�
i�j� 
 � and B�

i�j��s
�
i�j�

$Ci�j �
 Id�� j � �� � � � �mig

On the other side� c� 
 unfP �unfQ�W �� i�

��	 � H��s�A�� � � � � An 
 P �

for i � �� � � � � n� � A�
i��si�Bi��� � � � � Bi�mi


 Q�

for j � �� � � � �mi�� B�
i�j��s

�
i�j�

$Ci�j 
W �

��	 � � � mgu�fBi�� � B�
i��� � � � � Bi�mi

� B�
i�mi

gi�������n��

� � � mgu�fAi � A�
i�gi�������n��

��	 c� � H���sc��� $C���� � � � � $Cn�mn����

where

sc� � s � �
�
i

si� � �
�
i�j

s�i�j� � S
�
A � SB

SB is de�ned as above whereas S �A is de�ned below�

S �A �
S
i�������n S

�
Ai

S �Ai
� fPred�A�

i� j Pred�A
�
i� 
 � and A�

i��si � SBi
�
S
j s

�
i�j�

$Ci��� � � � � $Ci�mi
�
 Id�g

Note that in ��	 we can use a unique � instead of n �i � mgu�Bi�� � B�
i��� � � � � Bi�mi

�

B�
i�mi

� for i � �� � � � � n because the clauses of W are renamed apart	

What we can show by now is that the head and the body of c and c� are equal

up to renaming	 In fact� by lemma A	�� 
� � mgu�fAi � A�
igi�������n � fBi�� �

B�
i��� � � � � Bi�mi

gi�������n�� and� since the clauses of W are rename apart� 
� � �� up to

renaming	 Furthermore� � $C���� � � � � $Cn�mn�� � � $C���� � � � � $Cn�mn�
� because the clauses

of W are renamed apart and hence we can choose them so that the $Ci�j have no variable

in the domain of 
 �whereby $Ci�j
 � $Ci�j�	 For the same reason� H� � H�� and hence

the claim	

The problem is that� in general sc� �� sc being S
�
A �� SA	 However� we can show that

there exists a cs�clause c�� 
 unfunfP �Q��W � � unfP �unfQ�W ��� which has the same

head and body as c� �and c�� and whose set of constraints sc�� is contained or equal to

sc � sc�	 This� by the de�nition of the abstraction �� ensures that ��unfunfP �Q��W �� �

��unfP �unfQ�W ���	 We proceed as follows	 Being S �A �� SA� there must exist k such

��



that S �Ak
�� SAk

� i	e	 such that either Pred�Ak� �
 S �Ak
and Pred�Ak� 
 SAk

� or�

dually� Pred�Ak� 
 S
�
Ak

and Pred�Ak� �
 SAk
	 For any such k� let

cl� � A�
k��sk�Bk��� � � � � Bk�mk


 Q and

cl� � A�
k��sk � SBi

�
S
j s

�
k�j�

$Ck��� � � � � $Ck�mk

 unfQ�W ��

be the clauses used to unfold Ak in H��s�A�� � � � Ak to produce respectively c and c�	

Now consider the two cases separately	

�	 Pred�Ak� �
 S �Ak
and Pred�Ak� 
 SAk

	 From Pred�Ak� �
 S �Ak
� it follows that

cl� 
 Id� and hence cl� � A�
k��A

�
k	 Now� since both Q and W contain Id�� we

can use A�
k��A

�
k 
 Id� to unfold twice Ak in H��s�A�� � � � � An 
 P 	 But then

unfunfP �Q��W � contains a cs�clause which has the same head and body as c� and

whose �sub�set of constraints SAk
does not contain Pred�Ak�	

�	 Pred�Ak� 
 S �Ak
and Pred�Ak� �
 SAk

	 Now� from Pred�Ak� �
 SAk
it follows

that cl� 
 Id�� i	e	 cl� � A�
k��A

�
k	 But then� since W contains Id�� we can

again choose A�
k��A

�
k to unfold Ak in cl� and use the resulting clause �which is a

clause in unfQ�W ��� to unfold H��s�A�� � � � � An 
 P 	 From the latter unfolding

step we obtain a clause in unfP �unfQ�W �� which has the same head and body as

c� and which does not contain Pred�Ak� in its �sub�set of constraints S �Ak
	

The existence of c�� 
 unfunfP �Q��W � � unfP �unfQ�W ��� with the expected properties

follows now immediately being the choice of Pred�Ak� arbitrary	

Lemma A�� Let P be a h�����i�program� let Pn be as in de�nition A	�	 Then

T cs
P � n �� Pn � C


�P ��

Proof� In the following� given a set of cs�clauses W � we use the notation

unf�P �W � � unfP�
�P ����W � and� for n � ��

unfnP �W � � unfP�
�P ����unf
n��
P �W ���

Similarly to what we have done before� to simplify the notation� we will abbreviate

unfPi�
�P ��� in unfPi �the subscripts  �P ��� will be the same for any Pi�	 Before

proving the thesis we need three properties of the unfolding	 First note that� by a

straightforward induction on n� it can be proved that� for n � ��

unfP �unf
n��
P �W �� � unfn��P �unfP �W �� ���

Assume now that W contains Id
�P �	 Then for n � � the following equivalence holds

unfPn���W � �� unfP �unf
n
P�Id��P �

�W �� ���

��



The proof is by induction on n	

For �n � �� we have

unfP��W � � �by de�nition A	��

unfunfP �P�Id��P ���W � �� �by lemma A	��

unfP �unfP�Id��P ��W ��

For �n � �� assume that unfPn�W � �� unfP �unf
n��
P�Id��P �

�W ��	 Then

unfPn���W � � �by de�nition A	��

unfunfPn�P�Id��P ���W � �� �by lemma A	��

unfPn�unfP�Id��P ��W �� �� �by the inductive hypothesis�

unfP �unf
n��
P�Id��P �

�unfP�Id��P ��W ��� � �by de�nition of unfnP and ��� �

unfP �unf
n
P�Id��P �

�W ��

We can apply the inductive hypothesis in the previous step� because ifW contains Id
�P �
then so does unfP�Id��P ��W �	 This concludes the proof of ���	

Now notice that� by de�nition of � and by de�nition �	�

T cs
P � n � unfP �Id
�P � � T cs

P � n �� ���

Finally we show that for n � �

unfnP�Id��P ��Id
�P �� � Id
�P � � �T
cs
P � n�� ���

Also in this case the proof is by induction on n	 For �n � �� we have the following

equivalences

unfP�Id��P ��Id
�P �� � �by de�nition of unfolding�

unfP �Id
�P �� � unfId��P ��Id
�P �� � �by de�nition of Id
�P ��

unfP �Id
�P �� � Id
�P � � �by ��� �

�T cs
P � �� � Id
�P �

For �n � �� assume unfnP�Id��P ��Id
�P �� � Id
�P � � T cs
P � n	

unfn��P�Id��P �
�Id
�P �� � �by de�nition of unfn���

unfP�Id��P ��unf
n
P�Id��P �

�Id
�P ��� � �by inductive hypothesis�

unfP�Id��P ��Id
�P � � T
cs
P � n� � �by de�nition of unfolding�

unfP �Id
�P � � T cs
P � n� � unfId��P ��Id
�P � � T cs

P � n� � �by de�nition of Id
�P ��

unfP �Id
�P � � T cs
P � n� � unfId��P ��T

cs
P � n� � Id
�P � � �by ����

T cs
P � n( � � Id
�P � � unfId��P ��T

cs
P � n� � �by the following remark�

T cs
P � n( � � Id
�P �

The last equality holds because� by de�nition of Id
�P � and of the unfolding rule�

unfId��P ��T
cs
P � n� � T cs

P � n and since T cs
P is monotonic� T cs

P � n � T cs
P � n( �	 This

completes the proof of ���	

��



We can now prove the thesis of the lemma	 Note that� from de�nition A	�� we have

that�

Pn � C

�P � � unfPn�Id
�P �� � T cs

Pn
��� ���

Then� for n � � we have obviously P� � C

�P � � T cs

P � � �recall that P� � P �	

For n � � we have the following equivalences

T cs
P � n � �by ��

unfP �Id
�P � � T
cs
P � n �� � �by ��

unfP �unf
n��
P�Id��P �

�Id
�P ��� �� �by ��

unfPn�Id
�P �� � �by ��

Pn � C

�P �

and this completes the proof	

We can now state the following

Theorem A�� Let P be a h�����i�program	 Then ��P �� � U�P �	

Proof Immediate from lemma A���

We are now ready to prove lemma �����

Lemma ���� Let ��P � and ��Q�� be de�ned according to de�nition ���� Then

����P � � ��Q���� � ������P ��� � ����Q������

Proof sketch� Following the guidelines of ���	 this result is proved by �rst introducing

an operational semantics which is ��� compositional and ��� equal to the unfolding

semantics	 and then using previous theorem A��� The proofs of ��� and ��� use exactly

the same arguments used to prove theorem ���� �previously shown as theorem ���� and

theorem ���� in in ��� respectively� Therefore here we point out the modi�cation needed

to adapt those proofs to our case� The reader is referred to ��� for fuller details�

Firstly	 note that the meaning of the set  for an  �open program P in ��	 �� �and as

discussed in section �� is exactly the same as that one of the set  �P � of open predicates

for a h�����i�program P � Then we can obtain an �open� operational semantics for

di�erential programs by using the unfolding rule as follows� Le us consider resolvents

of the form s�B�� � � � � Bn	 and given a selection rule R	 let us de�ne a derivation step
�

�
cs
P�R in the h�����i�program P as

s�A�� � � � � Ai� � � � An

�

�
cs
P�R �s � s��A�� � � � � B�� � � � � Bm� � � � An�


if and only if �Ai��s
�
�B�� � � � � Bm�
 
 unf cs

Id�Open�P ����P � where Id � fAi��Aig and

Ai is the atom selected by R in A�� � � � � An�

��



The open operational semantics O�P � is obtained by repeating the construction of

de�nition ��� in ��� �shown in in section ��� Formally we can de�ne

O��P � � fp� $X�
��s� $B j � R s�t� p� $X�
�

�
cs
P�R s� $B�Pred� $B� �  �P �g

O�P � � O��P � n D���P ��

where	 by abusing notation	
�

�
cs
P�R denotes also a sequence of derivation steps�

Now we can repeat exactly the same proof of theorem ���� of ��� �previously shown

as theorem ���� to show the OR�compositionality of O��P �� Namely we have that if �i�

 �P �Q� �  �P � �  �Q� and �ii� ��P � � ��Q� �  �P � �  �Q�	 then

O��P �Q� � O��O��P � � O��Q�� ���

By de�nition the bodies of the cs�clauses in O��P � do not contain internal predicates�

Moreover	 clearly if W is a set of cs�clauses which do not contain internal predicates in

the bodies we have

O� �W n D���W ��� � O��W � n D���W ��

since the clauses de�ning internal predicates cannot be used in rewrite any atom in

�the bodies of cluses in� W � Therefore from � we have

O�P �Q� � O�O�P � � O�Q�� ���

Now observe that	 by de�nition ���	 for the program ��P � � ��Q�� we have

 ���P � � ��Q��� �  ���P �� �  ���Q��� and

����P �� � ����Q��� �  ���P �� �  ���Q����

Therefore	 from � we have

O ���P � � ��Q��� � O �O���P �� � O���Q���� � ���

Let us denote by U ��P � the unfolding semantics obtained from de�nition A�� by not

performing any deletion of clauses	 i�e�

U ��P � �
�

n��������

Pn � C

�P ��

The equality O��P � � U ��P � can be shown again by using exactly the same proof of

theorem ���� in ���� Therefore we have

U�P � � ��O��P �� n D���P �� � ��O�P �� ���

The last equality holds because	 for any set of cs�clauses A and for any set of predicates

)	 by de�nition ��# and by de�nition of D�)� �the set of clauses whose head predicate

��



is in )� we have ��A�nD�)� � ��AnD�)��� Moreover observe that	 again by de�nition

of �	 for any A�B sets of cs�clauses

��A �B� � ����A� � ��B�� ���

holds� Therefore	 from �	 � and � we have

U ���P � � ��Q��� � U �U���P �� � U���Q���� ���

and then the thesis follows from theorem A���

Proof of lemma ����

Again	 we need the following intermediate result�

Lemma A� Let h�P ��P ��P i�P and h�Q��Q��Qi�Q be di�erential programs and

let P � Q be the di�erential program h�����i����P � � ��Q��� as de�ned in de�nition

�	�	 Then �n � ��

�	 T cs
	�P � � n � T cs

P � n n R where R � fH��s � $B 
 C� j Pred� $B� � �P �� ��Q�g

�	 T cs
��Q�� � n � ��T cs

Q � n n S� where S � fH��s � $B 
 C� j s � ��P � �� � or

Pred�H� 
 �Q � ��P � or Pred� $B� � �Q �� �g

Proof� We prove �	 and �	 separately	

Proof of �� The proof is by induction on n	 The base case� for n�� is immediate

since T cs
	�P � � � � � � T cs

P � � nR�

Consider then the inductive case	 By de�nition of ��  ���P �� �  �P �n��P n��Q��	

By this equality it follows that if p 
 �P �  ���P �� then p is de�ned in Q	 Hence

p� $X���p� $X� �
 R and therefore Id
�	�P �� � Id
�P � nR	 Moreover note that �P � �	�P �

and that� for q 
 �P � q� $X���q� $X� 
 Id
�P � i� q� $X���q� $X� 
 Id
�	�P ��	 By these

observations and by de�nition �	 we have

unf 	�P ��
�	�P ������P �
�I � Id
�	�P ��� � unf 	�P ��
�P ���P

�I � �Id
�P � n R��� ���

Now� by de�nition �	�� for any c 
 P � if ��c� �� c then the body of c contains a predicate

p 
 �P which is not de�ned in P �Q	 Then� by an obvious inductive argument� it can

be shown that for any n no clause in T cs
P � n de�nes p	 Similarly� by de�nition of R�

no clause in �Id
�P � n R� de�nes p	 Thus we have�

unf 	�P ��
�P ���P
��T cs

P � n � Id
�P �� n R� � unf P�
�P ���P
��T cs

P � n � Id
�P �� n R�����

Then� to prove point �	 we proceed as follows	

T cs
	�P � � n � by de�nition of T cs and by ���

unf 	�P ��
�P ���P
�T cs

	�P � � n � � �Id
�P � n R�� � by inductive hypothesis

unf 	�P ��
�P ���P
��T cs

P � n � � Id
�P �� n R� � by ���

unf P�
�P ���P
��T cs

P � n � � Id
�P �� n R� � by de�nition of unf and R

unf P�
�P ���P
�T cs

P � n � � Id
�P �� nR � by de�nition of T cs

T cs
P � n nR�

��



Proof of �� The proof is again by induction on n	 As for �	� the base case is immediate

since T cs
��Q�� � � � � � ��T cs

Q � � n S�	 Consider then the inductive case	 Observe that

since dynamic predicate symbols are not renamed by �� ���Q�� � �Q� � �Q � ��Q��	

Therefore for % � ��Q��� %��Q � % ����Q��	 For the same reason� for % � ��Q���

%� �Q���Q � %� �Q
������Q��	 Hence� from the de�nition of unfolding� if c� 
 Q�

we have that�

unf fc�g�
�Q���Q
�I� � unf fc�g�
���Q�������Q��

�I�� ���

Now we prove the two inclusions separately	�
T cs
��Q�� � n � ��T cs

Q � n n S�
	
	

Assume that

cl � ��A��s � $L�� � � � � $Lk�
 
 T cs
��Q�� � n�

Note that� being � injective� for any clause c�� c� 
 Q� i� ��c�� 
 ��Q��	 Then by

de�nition of T cs
��Q��� it follows that there exist

c� � A��B�� � � � � Bk 
 Q��

ci � ��B�
i��si �

$Li� 
 T cs
��Q�� � n � � Id
���Q���� i � �� � � � � k

and cl 
 unf f��c��g�
���Q�������Q��
fc�� � � � � ckg�

Then� being ci � ��c�i� for i � �� � � � � k� cl 
 unf f��c��g�
���Q�������Q��
f��c���� � � � � ��c

�
k�g

and this together with ��� implies that cl 
 ��unf fc�g�
�Q���Q
fc��� � � � � c

�
kg�	 Furthermore�

since ��Id
���Q���� � Id
���Q��� and by the inductive hypothesis� T cs
��Q�� � n  � �

��T cs
Q � n � n S�� it follows that for i � �� � � � � k� c�i 
 �T

cs
Q � n � n S� � Id
���Q���	

Hence� by monotonicity of unf �

cl 
 ��unf fc�g�
�Q���Q
�T cs

Q � n � � Id
���Q����� � ��T cs
Q � n��

To conclude the proof that cl 
 ��T cs
Q � n nS� we only need to show that cl �
 ��S�	 We

do this by considering the three cases in the de�nition of the set S	

�i� For any i � �� � � � � k� c�i 
 �T cs
Q � n  � n S� � Id
���Q���� then si � ��P � � �	

Moreover if c�i 
 T cs
Q � n  � n S then Pred�B�

i� �
 �Q � ��P �	 Therefore by

de�nition of the unfolding rule� s � ��P � � �	

�ii� Since c� 
 Q�� by de�nition �	� Pred�A� �
 �Q � ��P �	

�iii� By de�nition of S� if c�i 
 �T
cs
Q � n�nS� then Pred�$Li���Q � �	 By de�nition of

��Q���  ���Q�����Q � � and hence� if c�i 
 Id
���Q��� then Pred�$Li���Q � �	

By these equalities it follows that Pred�$L�� � � � � $Lk� ��Q � �	

�
T cs
��Q�� � n � ��T cs

Q � n n S�
	
	

Assume that

��cl� � ���A��s � $L�� � � � � $Lk�
� 
 ��T cs
Q � n n S��

��



By de�nition of T cs
Q � n� there exist

c � A��B�� � � � � Bk 
 Q�

ci � B�
i��si �

$Li 
 T cs
Q � n � � Id
�Q�� i � �� � � � � k

such that cl 
 unf fcg�
�Q���Q
fc�� � � � � ckg	 Let us assume without loss of generality that

there exists r � k such that c�� � � � � cr 
 T cs
Q � n � n Id
�Q� and cr��� � � � � ck 
 Id
�Q�	

Since cl �
 S� by the same arguments used above� it can be shown that

�i� Pred�A� �
 �Q � ��P ��

�ii� For i � �� � � � � r� Pred�Bi� �
 �Q � ��P � and si � ��P � � ��

�iii� For i � �� � � � � k� Pred�$Li� ��Q � �	

Now� for i � �� � � � � r� from �ii� it follows that ci �
 S and hence� by the inductive

hypothesis� ��ci� 
 T cs
��Q�� � n  �	 For j � r ( �� � � � � k� we can show that ��cj� 


Id
���Q���	 Recall that cj 
 Id
�Q� and observe that� by de�nition of ��Q��� if p 


��Q��� �Q� and ��p� �
  ���Q��� then p 
 �Q	 But then� since by �iii�� Pred�Bj� �

Pred�$Lj� �
 �Q� it follows that ��cj� 
 Id
���Q���	 Now� from �i�� we have that ��c� 


��Q��	 Then� being cl 
 unf fcg�
�Q���Q
fc�� � � � � ckg� by ��� and injectivity of �� ��cl� 


unf f��c�g�
���Q�������Q��
f��c��� � � � � ��ck�g	 Hence� we can conclude being

��cl� 
 unf f��c�g�
���Q�������Q��
f��c��� � � � � ��ck�g � T cs

��Q���T
cs
��Q�� � n ��

� T cs
��Q�� � n

Lemma ���� Let h�P ��P ��P i�P 	h�Q��Q��Qi�Q be di�erential programs	 P � Q

be the di�erential program h�����i����P � � ��Q��� where Q�	 �	 � is de�ned according

to de�nition ���� Moreover let R and S be de�ned as in lemma A�# and ��Q��r be de�ned

according to de�nition ����� Then

�� ����P ��� � ��P �� n R where R � fH��s � $B 
 C� j Pred� $B� � �P �� ��Q�g

�� ����Q���� � ��Q��r

Proof� Again we prove �� and �� separately�

Proof of �	 Observe that if the predicate symbol p is de�ned in P 	 then p is not

renamed by � and hence

��P � � ��P � � ����P �� � ����P ��� ���

Given a set ) of predicate symbols recall that

D�)� � fH��s � $B 
 C� j Pred�H� 
 )g�

��



Moreover observe that	 by de�nition of � �de�nition ��#�	 given a set of cs�clauses

A and for R de�ned as before we have

��A� n R � ��A n R� ���

We have the following equalities

����P ��� � by de�nition of ��� � ���

��T cs
	�P � � �� n D�����P ��� � by de�nition of � �

���n��T
cs
	�P � � n� n D�����P ��� � by lemma A�#

� ��n���T
cs
P � n nR�� n D�����P ��� � by de�nition of � � and by ���

��T cs
P � � nR� n D���P �� � by � and by set theory

���T cs
P � �� n D���P ��� nR � by de�nition of �����

��P �� nR

and the thesis holds�

Proof od �	 Note that a predicate symbol p is de�ned in Q� i� p is de�ned in Q and

p �
 �Q � ��P �� Then by de�nition of � we have

��p� 
 ����Q��� � ��p� 
 ����Q��� i� p 
 ��Q�� � p 
 ��Q� � ��Q � ��P ��

and	 for D de�ned as before	

D�����Q���� � � �D���Q�� � D��Q � ��P ��� � ���

Let S be de�ned as in lemma A�#	 i�e� S � fH��s � $B 
 C� j s � ��P � �� � or

Pred�H� 
 �Q � ��P � or Pred� $B� � �Q �� �g� We �rst show that	 given a set of

cs�clauses A	 for such an S we have

��A n S� � ��A� n S ���

The equality is clear for the clauses which are in S because either the second or the third

condition in the de�nition of the set S holds� Then we will consider S as de�ned only

by the �rst condition �i�e� s� ��P � �� ��� By de�nition ��#	 cl � H  s� $B 
 ��A n S�

i� cl 
 A	 s � ��P � � � and � � cl� � H  s�� $B 
 A n S with s� � s �we consider the

same H   $B instead than an ��equivalent one for the sake of simplicity�� Note that	

since s� � ��P � � �	 cl� 
 A n S i� cl� 
 A� Therefore cl 
 ��A n S� i� cl 
 ��A� n S and

the thesis holds� We have then the equalities

��



����Q���� � by de�nition of �����

��T cs
��Q�� � �� n D�����Q

���� � by de�nition of � �

and by lemma A�#

�
�
��T cs

Q � � n S�
	
n D�����Q���� � by ���

�
�
��T cs

Q � � n S�
	
n ��D���Q�� � D��Q � ��P ��� � by ��� and by def� of ��

����T cs
Q � ��� n ��S�

	
n ��D���Q�� � D��Q � ��P ��� � by de�nition of ��

����T cs
Q � ��� n ��S�

	
n ��D���Q�� � D��Q � ��P ��� � by set theory and def� of �

�
�
��T cs

Q � �� n D���Q��
	
n � �S � D��Q � ��P ��� � by de�nition of �����

� ���Q�� n �S � D��Q � ��P ��� � by de�nition of S	 D and r

����Q��r� � by the following observation

��Q��r

By de�nition of ��Q��r	 if p 
 Pred���Q��r� then p �
 ��Q� � ���P � � �Q� � ��Q � ��Q��

and hence	 by de�nition of �	 ��p� � p holds� Thus ����Q��r� � ��Q��r and this completes

the proof�

�#


