View metadata, citation and similar papers at gore.ac.uk brought to you by fCORE

provided by CWI's Institutional Repository

MADE: A Multimedia Application Development Environment
I. Herman, G.J. Reynolds, J. Davy
Computer Science/Department of Interactive Systems

CS-R9360 1993

https://core.ac.uk/display/301654033?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MADE: A Multimedia Application Development Environment

Ivan Herman, Graham J Reynolds
cwi
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

ivan@cwi.nl, reynolds@cwi.nl

Jacques Davy
Groupe Bull
7, rue Ampére, Massy 91343, France
J.Davy@frmy.bull.fr

Abstract

MADE is the acronym for an ESPRIT Il project aiming at the development of a programming environment
for multimedia applications. The resulting software library is based on C++, and is planned to operate on
UNIX Workstations as well as on PC—based platforms. This reports gives a technical overview of the project,
and describes some possible application scenarios where the MADE environment can be of a great help for
multimedia programming.

AMS Subject Classification (1991): 68N99

CR Subject Classification (1991): H.2.4,H.4.m,H.m,1.3.2,1.4.9,

Keywords & Phrases: Multimedia systems

Note: UNIX is a registered trademark of AT&T, Motif is a registered trademark of OSF, MS-DOS, MS-
WINDOWS, AVI, Windows-NT are registered trademarks of Microsoft Inc., and, finally, MOVIE and Quick-
Time are registered trademarks of Apple Inc.

1. INTRODUCTION

One of the most significant developments in computing technology over the past few years is the
emergence of multimedia. Glossy multimedia applications are shown all over the place and on a
wide range of different platforms. All major workstation hardware vendors feel the need to come to
technical fairs with stunning demonstrations mixing graphics, video, imaging, and sound. Technical
analysts predict that multimedia related hardware development will be one of the booming areas of
electronics in the years to come.

However, most of the available multimedia environments aim at hypermedia authoring, ie, they
offer means to interactively create hypermedia documents. “Document”, as a multimedia term, means
more than our traditional paper—based understanding. It should be perceived as a potentially complex
composition of related media information, thus it is a multimedia document, which can be “read” or
viewed in a non—sequential fashion by following semantic connections (or links) between the various
media components, hence it is hypermedia.

Although the concept of hypermedia document is very powerful indeed, it does not cover all possible
fields of applications of multimedia. The ability of combining, modifying, or even synthectically
creating multimedia data is often necessary for more complex multimedia applications. For example,
the user might want to extract a frame from a video sequence, modify it with standard image processing
tools, combine the image with the output of synthetic graphics, and possibly exchange the original

MADE: A Multimedia Application Development Environment

frame with the modified image. Description of such actions does not fit easily in the model of a
hypermedia document, in spite of the sophisticated interaction tools which are usually provided with
authoring environments. There is, therefore, a need for a programming environment which would
allow for the developments of such applications, too.

The techniques to achieve combination of media are extremely disparate, and they use the results
of various fields of computing technology like, for example, high quality synthetic graphics, image
processing, speech synthesis, etc. Some of the techniques are also highly application dependent. It is
almost impossible to define a closed programming environment which would encompass all needs. The
already traditional answer to this kind of challenge is to use object—oriented techniques: services are
offered in the form of objects, which are then extensible by the programmer to include any necessary
application—dependent tools.

The European Communities’ ESPRIT IIT project MADE (Multimedia Application Development
Environment[16]) has set up the ambitious goal of defining and implementing such a portable object—
oriented development environment for multimedia applications, based on C++[28]. The outcome of
the MADE project should be a programming environment running on various UNIX platforms, as
well as on MS-DOS or Windows—NT environments. This report gives a general overview of MADE.
It describes its major services, and it also gives an overview of some possible “application scenarios”,
ie, major application architectures which may use these services. It is not the purpose of the paper to
give a detailed technical description of the full project; this would go far beyond the scope of such a
report. The interested reader should consult the “official” MADE documents to gain a more detailed
insight (eg, [2, 8, 9, 10, 30, 16]).

The MADE project is still an ongoing activity. Consequently, some problems are still open and
will be solved only later in the project. For this reason this report sometimes raises issues without
presenting complete solutions.

2. GENERAL OVERVIEW

The full MADE environment contains a large number of different objects and related services. Two
important categories of these objects have a major role in the development environment; these are:
toolkits and wutilities. (Note that the object—oriented nature of MADE makes it possible for the end—
user to add new objects to both toolkits and utilities and/or to extend the functional capability of
existing ones.)

The toolkit level is a collection of objects that are considered to be fundamental for multimedia
programming. It includes, obviously, objects to interface different media. Also, it includes objects
which, although not directly involved in handling specific media, play a fundamental role in construct-
ing more complex multimedia applications. Some more details of the toolkit level will be given below

(see §3).

Although it is possible to construct complex applications using the MADE toolkit level only, doing
that may be unnecessarily tedious and error—prone. Consequently, another layer has been defined
on top of the MADE toolkit, called wutilities. The idea here is to define and implement objects
which include complex functionality and which are considered to be essential for most multimedia
applications. Applications programmers may choose to use some of these utility objects; however,
the toolkit level is never completely obscured, and the application layer is free to use toolkit objects
directly as well (see also Figure 1; some of the terms appearing on the Figure will be described in
later sections).

In the early stage of the MADE project a common object model was defined and developed, to
ensure the smooth cooperation among objects within the MADE library and also to provide a clear
approach to some of the technical issues raised by multimedia programming in general. This object
model defines a conceptual layer on the top of the implementation language of MADE (ie, C++),

MADE: A Multimedia Application Development Environment

)

Scripting Languages (Python,Wool,Tcl, ...

Application

User Interface Tools (Egeria,...)

e e e e e = - ,,,,,,,,,,,,,,,,,,,/

Interchange/Communication (MIFF,KEDIT,OLE, ...)

Figure 1: Toolkits and Utilities

and it describes numerous features of objects within MADE. As far as the application programmer is
concerned, two characteristics of this model are of a great importance: the use of active objects and
the presence of delegation.

In MADE, objects may be active, ie, they may have their own thread of control (within the shared
address space of the same UNIX, MS-DOS, or Windows—NT process). This fact is exploited in the
implementation of the MADE toolkit library, and is a major tool used in defining synchronization of
different media (see §3.2.3 below). Application programmers may have to be aware of this fact if they
decide to use the toolkit level objects directly.

The concept of delegation of object methods is the other central feature of the MADE object model.
Using delegation an object may delegate some or all of its behaviour (i.e., the messages it serves) to
any number of other objects, which will then act on its behalf. The notion is not unlike inheritance,
but delegation is dynamic, ie, the target of delegation may be set and re-set at run—time. Delegation
plays a very important role in controlling constraints in MADE (constraint objects are part of the
toolkit), and offers advanced means to describe temporal behavioural control. A more exact semantics
of delegation is described in, eg, [20]; see also [1] for a more detailed description of the concept within
the framework of the MADE object model.

MADE: A Multimedia Application Development Environment

The object model has been realized in the form of an extension of C++, called mC++. The mC++
compiler generates a set of C++ classes, library and macro calls; this “intermediate” level can also be
accessed by programmers directly, in case they do not intend to use yet another programming language
(see [17]). Details of the object model are, however, hidden to most application programmers and
are only of real interest for toolkit or utility developers. The full technical description of this object
model will be omitted here; the interested reader should refer to [1] for a general overview and to [2]
for a complete description of the model and of mC++.

The object model is not the only means to achieve smooth cooperation among objects. All MADE
objects also include general features that allow them to be used under various circumstances in a
unified way. Some examples of these features, which are necessary to understand what is described in
later sections, are given below.

All objects in the MADE system may be permanent. This means that they may “store” themselves
in a database and can restore their content at a later stage of the application’s lifetime or even during
the execution of some other applications. This feature is present for all MADE objects by default; the
only step the application program has to do is to invoke certain implicitly defined member functions.
Furthermore, the MADE toolkit level includes a special object which can interface with various
database systems. Although this interface obviously cannot cover all known database systems, it does
provide an interface to some object—oriented and relational databases. Here again, the general features
required by the database access is included in all MADE objects in a database—independent way, and
the details of the database access is hidden in the general database management object of MADE
(see [29]); interfacing to a new database system means the specification of an appropriate sub—class.

MADE objects, primarily utility objects, are also prepared for distributed access. This not only
means that the MADE library includes specific objects for inter—process communication, but also
that MADE objects are prepared to “convert themselves” into a format suitable for communication
and, conversely, can “reconstruct” their internal state based on data coming from a communication
channel. A sophisticated object—oriented communication protocol (called KEDIT[18]) is currently
under development for UNIX platforms, which will allow MADE applications to offer object—based
services, and will provide means for the transfer of full MADE objects from one MADE application
to another. The features offered by the combination of MADE objects and KEDIT are similar to the
kind of object services defined by the Object Management Group'. On MS-DOS and Windows-NT
platforms the OLE protocol will be used to provide similar facilities; this is already a de—facto standard
on these environments.

All MADE objects include a general mechanism known as a “dynamic call interface”. This interface
makes it possible to call a member function of an object by knowing the object’s handle and a string
describing the full signature of the member function. This string can be constructed at run—time,
hence the “dynamic” nature of the call. This feature permits MADE objects to be accessed easily
from scripting languages, and provides a simple way of constructing interfaces to other programming
languages (eg, C or Fortran). It also makes the implementation of distribution support (like KEDIT)
fast and easy.

3. TOOLKIT OBJECTS

The primary goal of the MADE toolkit is the provision of a set of features and facilities basic for
multimedia programming. These include control over different media, and other types of objects,
which have also been identified as playing a fundamental role.

1OMG is an industrial consortium aiming at the definition of object services in general. In their CORBA
specification[24], OMG gives a specification for object services in a distributed environment. However, CORBA is
still not final, nor is there a reliable implementation available yet. If, by the end of the MADE project, OMG produces
a final version of their specification, replacing KEDIT with this specification will be considered.

MADE: A Multimedia Application Development Environment

3.1 Media Objects
The MADE toolkit includes media objects, ie, objects whose role is to directly control different media
in a unified and hardware/firmware independent way.

The toolkit includes four main categories of media objects: graphics objects (for two and three
dimensional graphics), animation, sound and video objects. The functionality of these objects is
defined in a device—independent way; porting the toolkit to a new environment involves changes on
the interface level only. In other words, all of these objects “hide” their respective device-dependencies
behind specific, low—level abstract interface objects, thereby cleanly separating their MADE specific
behaviour from particular device dependent features. Adaptation of a media object type to a new
environment simply requires the definition of a new device—dependent subclass of the appropriate
general interface object.

Some of the categories listed above contain relatively simple objects. Their task is to provide
a mapping from the MADE library structure onto their respective interface object. This is the
case, for example, with video and audio objects. The most critical aspect of the definition of these
objects is synchronization. The objects and their device specific interfaces must be matched with the
synchronization model of MADE (see §3.2.3 below) and with the requirements and facilities provided
be the specific hardware that is used.

Audio and video objects rely on Microsoft’s Multimedia Environment for MS—-WINDOWS, which is
a de—facto standard in this area. On UNIX, portable video and audio services are used: the Video
Extension of the X Windows system for analogue video ([5]) and the AudioFile server for audio ([19]).
For digital video, the UNIX solution is not yet defined.

2D and 3D graphics require a much higher level of complexity. Indeed, the collections of both the
2D and the 3D graphics objects represent two full-blown subsystems per se, which are also usable
stand alone for graphics purposes.

For 2D graphics, the MADE toolkit reuses an already existing object—oriented 2D graphics system,
called GoPATH][7], by adapting it to the requirements of MADE. These 2D objects include different
two dimensional shapes, associated clipping areas, composition rules, attributes (eg, colour, line type,
text font), etc. The programmer has the possibility, via sub—classing, to define new shapes and
include these into the full 2D world. GoPATH is currently based on X11R5 for UNIX platforms, and
on MS-WINDOWS under MS-DOS; a Windows—NT version is also operational.

The 3D subsystem provided by MADE supports a mapping between general 3D objects (shapes,
surfaces, lighting and view control, etc.) and existing 3D packages. A mapping to SGI’s GL library is
currently being developed. The use of PEX][6] or Open-GL, as a replacement for GL, will be considered
in the future. It has to be stressed that it is not the goal of the MADE development to define yet
another three dimensional graphics package; the emphasis is more to provide an object—oriented layer
on top of existing packages, integrated into the MADE environment. On the other hand, due to the
object—oriented nature of the MADE toolkit, it is possible to extend, by sub—classing, the basic 3D
functionality (eg, to add a proprietary ray—tracing module).

Graphics objects (both in 2D and 3D) do not have a temporal dimension; essentially, they describe
static scenes. This is in contrast with the inherently temporal nature of video and audio objects. To
alleviate this contradiction, MADE includes separate animation objects, which describe, and even
automatically generate, sequences of scenes. The methods and algorithms used in animation may be
extremely complex and, more importantly, dependent on specific application areas. Although simpler,
built—in animation techniques based on animation curves are also available, MADE animation objects
also allow for animation scripts, using a scripting language, which is then interpreted by the MADE
animation objects.

Animation objects may be active objects, too, thereby subject to the same synchronization be-

MADE: A Multimedia Application Development Environment

Thisisa cube

< 11 (O P

4335000
o]
o]
1
1
O

/
/ /
’

Figure 2: A rudimentary example for multiple media in an application.

haviour and control as audio and video objects (see §3.2.3).

3.2 Combination Objects

It is of course possible to build very spectacular programs that only rely on MADE media objects,
using complex and possibly animated 2D and 3D graphics, running a video on the screen and playing
audio. However, the shortcomings of such an approach are very soon visible if more complicated
application programs have to be devised and implemented on this basis. As the very rudimentary
example on Figure 2 already shows: interactive behaviour assigned to graphics objects have to be
combined to control video output; visual representations for audio control have to be defined and
implemented; 2D and 3D objects have to be combined in one picture, etc.

The basic media objects become really usable if they can be combined in variety of ways. Combina-
tion of media objects (and MADE objects in general) within an application has received a particular
emphasis in the specification of the MADE project in order to enhance the usability of the tools. Five
major areas of combination have been identified, and we shall return to each of them in some detail.
The five areas of combination are: imaging, structuring, synchronization, interaction, and constraint
management.

3.2.1 Imaging. Some of the media objects produce images on the screen. This is the case for 2D
and 3D graphics, and for video objects. It is also possible to import and to export digital images in
various formats (TIFF, GIF, etc.). A natural consequence of this is the requirement for an application
to combine these images directly. For example, one may want to create a complex picture by using a
snapshot of a video sequence, annotated with a generated (2D) text, filtered through a pattern read
from a TIFF image, etc.

To achieve this functionality, MADE defines a special image object, which can be used as a common

MADE: A Multimedia Application Development Environment

N

_ _ == Thisisacube

Thisisacube -

Figure 3: Combination of a 3D and a 2D object in one image

platform for the combination of pictures. 2D and 3D objects can produce such images, they can be
generated from various image file formats, and individual frames of video sequences may be converted
into images. These images may then be visualized on the screen, or can be converted back into video
frames. In the future, complex image processing functions will be defined to operate on these images,
combining them, filtering them, etc. Here again, due to the object oriented design, it will be possible
for the end—user to add their own application dependent image processing functionalities.

3.2.2 Structuring. The importance of structuring, ie, of creating aggregates of different objects in
interactive programs, has long been recognized in computer graphics. All graphics packages provide
some form of aggregation, like structures in PHIGS[12], the scene database of IRIS Inventor[27], or the
so called Go trees in GoPATH[7]. Although the structures used in these examples are all relatively
simple (directed acyclic graphs or just trees), the appearance of hypertext and, lately, of hypermedia
systems makes it clear that more general aggregation facilities are also necessary.

To answer these demands, the MADE toolkit includes a general graph management facility in the
form of graph objects. These objects allow for the specification, management, and the traversal of
general graphs, with no restrictions imposed on their types. Nodes of these graphs may refer to any
MADE object. Graph management is achieved via special MADE objects; consequently, recursive
graphs may also be defined via the same mechanism. Individual MADE objects can be referred to
by several graph nodes (ie, they can be shared).

Graph objects provide a sound basis for the type of structuring required by graphics as well as for
complex hypermedia navigation systems. They are fully integrated into the full MADE structure,
which has a number of advantages. As an example, graphs provide an automatic defence against
concurrent access of structures by active objects, they can be exported and imported using the very
same mechanism as for all other MADE objects (ie, complete structures may be stored in databases),
etc.

8.2.8 Synchronization. The issue of synchronization has always been one of the central problems of
multimedia applications; it is therefore necessary for the MADE toolkit to offer a consistent solution
to this issue.

The fundamental synchronization scheme used in MADE is called reference point synchronization.
For each, so called, synchronizable MADE object a series of media specific reference points may be
defined (for example, video frames, audio samples, etc.). Each reference point contains internal “in-
structions” for synchronization, references to other synchronizable objects that are to be synchronized
with 1t, etc. Synchronizable objects are active objects; when they reach a reference point, synchro-
nization is performed by exchanging messages with other active objects, waiting for their replies, etc.
The reference point model has been greatly inspired by [3]; its details in the MADE environment are
specified in [8]. Audio, video, and animation objects are obvious examples of synchronizable MADE

MADE: A Multimedia Application Development Environment

objects?. The MADE programmer may create new, application—specific synchronizable objects, too.

Based on this synchronization model, the MADE toolkit also includes a higher—level mechanism
for time—based synchronization. This mechanism defines different types of schedulers which the appli-
cation may use as building blocks for more complex time—based synchronization scenarios (see [8] for
further details). These schedulers all assume the existence of a special synchronizable object within
MADE, namely a timer. The approach of building time—based synchronization on the top of a more
general mechanism, instead of considering it as a basic feature, allows the MADE library to be used
in environments which do not necessarily offer real-time facilities.

3.2.4 Interaction Objects. Multimedia applications are very often highly interactive; it is therefore
essential to give very good tools to construct complex interaction scenarios involving MADE objects.

The MADE project does not aim at developing a completely new user interface management
system. Instead, MADE objects may be embedded into an existing user interface environment,
like the Athena Widget set of X Window System, the Motif toolkit, MS-Windows or, in the future,
Windows—NT. Nevertheless, not all user interaction can be adequately managed by these tools; many
complex interaction scenarios will involve MADE objects directly (eg, for direct manipulation). The
scheme developed in MADE for achieving these complex interaction scenarios is based on the notion
of sensors and associated interaction objects.

Sensors are best understood in the context of graphics: in this context they define sensitive areas
on the screen, which can be “activated” by external interaction, typically mouse events. Sensors are
associated with MADE objects via interaction objects. In effect, they provide a sensitive region which
acts as a focal point for interaction with these objects. For some objects, sensors cannot be attached
to the object itself, but, instead, a visual representation of the object is used, in the form of graphics
object. This might be the case, for some sensors attached to audio objects. The notion of sensor is
general enough to accommodate regions involving higher dimensions including time. It can also be
applied in association with interaction input devices that provide non—geometric input measures, such
as audio input devices, pressure sensitive devices, etc.

Sensors forward events to interaction objects; it is part of the sensor’s initialization procedure to
decide which interaction object it is connected to. The interaction objects react on these events,
following some patterns which describes the behaviour of the interaction object. Several sensors may
be connected to the same interaction object.

In very simple cases, interaction objects perform straightforward and predefined tasks (like, for
example, reshaping a graphics object). In other cases, much greater complexity may be required,
perhaps providing control over several MADE objects and receiving events from several sensors (eg,
the video control board depicted in Figure 2 reacts on the sensors of the graphical objects describing
the four push—buttons, may control the visual appearance of these buttons and, of course, controls
the video object proper; see also Figure 4). To describe such complex interaction behaviour, MADE
introduces a type of interaction object that implements a general finite state machine (see [11]). These
objects have a default finite state machine for a specific interaction scenario; however, the user can also
assign a script to an interaction object, which, conceptually, includes a complete scripting interpreter
(see also §4.1.2). Such a script automatically overrides the default behaviour of the interaction object.
This high degree of openness, with respect to the end—user, is a very valuable feature of the MADE
interaction management.

3.2.5 Constraint Management. Provision of a general purpose constraint system within MADE
for all of the potential uses of constraints in a multimedia development environment would justify

2To be very precise, certain animation objects, which describe random animation, cannot be properly synchronized,
but these objects represent a small minority vis-a-vis animation objects in general.

MADE: A Multimedia Application Development Environment

~ <
7 Interaction Object
—.//T_'7
- s
PRt
- PR s
PP i
- P2 7
-7 - s /
-7 - - ,
-7 - /
- - Y /
- . y
- - 7/

Sensors

“=> Events
-—-=> Messages (control)

Figure 4: Use of Interaction Objects. Sensors forward events to objects, which controls the geometric
appearance of buttons and the real video object.

a development project in its own right. Fortunately, there are various restricted types of constraint
satisfier that, while not being as capable in some aspects, still provide useful functionality for dealing
with certain categories of constraint.

The approach followed in the specification of constraints within MADE (see also [30]), is to con-
sider those applications of constraint systems that are of direct relevance to the multimedia part of
MADE. In effect, this restricts the scope of the constraint satisfier to the topics of geometric layout,
user interface control, animation, and media synchronisation. For example, the MADE presentation
facilities include a composition editor/player which may make use of constraints when defining the
hypermedia document structure and presentation characteristics. What this classification means is
that any predefined constraints that are defined as part of the toolkit can be organised into “constraint
families” (to avoid the use of the term “class”) which are relevant for specific multimedia aspects.

For the time being at least, only one—way constraints are proposed for MADE. While multi-way
constraints provide greater expressive power to the constraint user, they also require more complex
constraint satisfaction algorithms and may involve more effort on the part of the programmer to set
up specific constraint objects. This decision need not be considered final, and can be reviewed after
experience with the proposed constraint objects has been gained.

4. UTILITIES

As said before, utilities offer a higher level of functionality which make the implementation of more
complex multimedia applications easier and faster. In fact, the functionality of some of the utilities
is so complex that, by “wrapping” them into a simple program, they can be used as a separate

MADE: A Multimedia Application Development Environment

application programs in their own right.

The major categories of utilities are as follows:

1. application program interface utilities: visual metaphors, scripting, user interface builders; user
monitoring;

2. monomedia editors: 2D and 3D graphics editors, animation, video, and audio editors;

3. composition utilities: framework for hyperdocument management, synchronization editors, in-
teraction and graph object editors;

4. mascellaneous: class browsers, generic on—line help facilities, object monitoring.

Different MADE utilities may and do rely on one another, too. For example, the visual metaphors,
to be presented below (see §4.1.1), are reused by monomedia editors (see §4.2), or, to take another
example, the user interface of some of the editors may be developed with the help of MADE user
interface builders and scripting languages usable from within MADE.

Utilities, together with MADE toolkit objects, offer a set of building blocks which can be used in
various ways to create different types of MADE application program architectures. Some of the most
common scenarios will be described in §5 below; however, to make these scenarios understandable,
some of the most important MADE utilities are presented below in somewhat more details.

4.1 Application Program Interface Utilities

Application program interface utilities give a set of tools that help an application programmer to
prototype or to develop a final MADE application. Although the facilities provided by some of these
utilities are fairly standard these days, it is nevertheless necessary to provide them in the context of
the MADE environment, too. Note that not all tools are presented in this report, only some of the
most important ones.

4.1.1 Visual Metaphors. The visual representation and control of media objects is not always
obvious. Indeed, to control certain attributes of media objects, relatively complex visual tools, with
associated interaction, have to be developed. These tools may then be used on different levels: in
program development, in authoring, or in the final playback of authored documents. These visual
metaphors play an essential role in defining complex interactions operating on the objects; indeed, it
is sometimes much easier to attach a sensor to these metaphor objects, rather than to try to define a
sensor on the object proper (see §3.2.4).

There are numerous examples for such visual metaphors. Just to give some examples:
e Video control board for stopping, playing, rewinding, providing fast forward and backward
motion, etc.
e Audio panel containing volume control, channel control, etc.
e Control boards for the manipulation of graphics object attributes (colour, lighting, shading

attributes, etc.)

All these objects, collectively called wvisual metaphor objects, are part of the MADE utility library.
Other utilities (primarily the editors, see §4.2), reuse these objects, thereby providing a common look—
and—feel among MADE utilities. MADE applications may of course choose to ignore these objects
and to implement similar user interface facilities by themselves.

10

MADE: A Multimedia Application Development Environment

4.1.2 Connection to Scripting Languages. Several MADE objects make use of scripting languages;
animation and interaction objects have been mentioned in the preceding sections, and there are others,
too. It is also perfectly feasible to create full-blown applications, either in a prototype or even in a
final form, where the “user—level” program is in fact a script.

MADE does not introduce it own scripting language. Instead, all objects that make potential use of
scripting access the interpreter functionality via an abstract general scripting interface. This general
scripting interface is then specialized to access specific languages and their interpreters. This lets
the final choice over which scripting language is used be made by the MADE application developer
or even the end—user. Furthermore, several scripting languages can coexist within the same MADE
application (see [10]).

In order to be usable for MADE, a scripting language should have an embeddable interpreter. Ie,
it should be possible to link the interpreter to C/C++ and C/C++ functions should be accessible
from the language somehow. Conversely, functions of the scripting language should be accessible from
C/C++. Note that the availability of the dynamic call interface of MADE objects plays an essential
role in interfacing such interpreters: it is not necessary to create a special “stub” for each MADE
object in the scripting language; indeed, MADE objects can be created, and their methods invoked,
based only on their signature.

There are several general embedded interpreters available. Currently, the MADE toolkit includes
an interface to Wool, a Lisp dialect implemented by Bull ([23]), and to Python, a language developed at
CWTI ([31]). In the future, interfacing to Tcl ([25]) or other emerging languages will also be considered.

4.1.3 User Interface Builder. The MADE utility workpackage also includes the definition and im-
plementation of a user interface builder utility for UNIX platforms. This utility is based on an existing
Bull product called EGERIA[4] which is to be adapted for the MADE environment in the course of
the project. This utility is considered as a completely separate part of the MADE environment; it is
aimed at the fast specification of the user—interface part of a MADE application and is based on the
Motif toolkit.

On MS-WINDOWS environments, Visual C++[22} will be used as a user interface builder. For the
integration of MADE objects and utilities, subclasses of the “Microsoft Foundation Classes” will be
developed and accessible directly from Visual C++. This has already been validated with the 2D
editors of GoPATH]7].

User interface builders may also be available for the scripting languages usable with MADE. In
fact, EGERIA is based on Wool, and can therefore be used as a user interface generator for Wool—
based applications; a similar development (being carried out independently of the MADE project)
for Python may be used in later stages of the project.

4.2 Monomedia Editors

The role of monomedia editors is relatively straightforward: they offer means for the creation, mod-
ification, and also for the display of media objects. There is nothing particularly unusual or new in
these utilities, except that they all abide to the architectural demands for MADE editors, as described
above. Note that these editors make use of the visual metaphors described in §4.1.1 to give a unified
outlook.

MADE editor objects may be used in various application settings. This includes being activated
alongside with other MADE objects, eg, other editors. In this case, editor objects may be active
objects, and the mechanism provided by the MADE object model will ensure that data managed
by several editors will not be corrupted by concurrent access. Editors may also be wrapped up into
separate application programs to run as stand—alone processes. In this case, editors may operate
on MADE objects residing in a database or they can manage objects received via a communication

11

MADE: A Multimedia Application Development Environment

channel using, eg, the KEDIT protocol (see §2).

The 2D graphics editor is based on an existing program, called godraw (related to GoPATH, men-
tioned earlier). The facilities supported by this editor are relatively straightforward, and are in line
with other 2D graphics editors, available for different platforms.

The 3D graphics editor emphasizes two aspects of 3D editing: editing of scenes by composing 3D
objects in space, and simple 3D solid modelling to create 3D bodies. It includes dialogues to control
attributes like texture, colour, reflectance, opacity, etc.

The audio editor offers facilities to “cut” and “paste” audio tracks, apply (possibly user—specified)
filters on the sound tracks, and modify their characteristics. A MIDI editor will also be available.

The wvideo editor offers similar facilities that of the audio editor: “cut” and “paste” of video se-
quences, modification of its characteristics (if the underlying hardware permits it), retrieve and frames
as images, etc.

A separate animation editor is also provided, which allows for the interactive creation and editing
of animation curves, and animation scripts.

Note that, under MS-WINDOWS, Microsoft’s Multimedia Environment already contains some mul-
timedia editors; to avoid duplication, these editors will be reused as much as possible.

4.8 Composition Utilities

Composition editing and playback is the mechanism within MADE for developing and viewing mul-
timedia/hypermedia documents, both from the point of view of an author of such documents and
also from the point of view of the final user(s) of a MADE application based on the document con-
cept. The composition editing and playback utility is one of the main integrating components of the
MADE application environment. It is through the definition of an abstract document structure that
a hypermedia document is created and it is the presentation of this hyperdocument which the end
user may interact with. During both the authoring and playback modes of operation the composition
utility makes direct use of the other MADE utilities for viewing or editing particular media objects,
for presenting help information, for navigating the hyperdocument structure, and perhaps also for
monitoring the user’s actions. The composition utility drives the operation of these other utilities
based on a composition graph (ie, the internal representation of the hyperdocument).

An essential aspect of the composition facilities is the ability to define and manipulate an abstract
document structure® The abstract document structure is a representation of logical components which
describes not only the specific types of media involved in the presentation, but also the semantic
connections between media, the synchronisation constraints associated with the presentation of the
logical components, geometric and other presentation attributes for each component, and specific
interaction entities to be used in reading the multimedia document.

The authoring and presentation of a hyperdocument is not only determined by the media and the
composition utilities. There may be a number of alternative styles (or metaphors) for presenting a
particular hyperdocument that are dependent not on the specific document itself but on the application
domain in which the MADE application exists.

A specific goal of the composition utilities of MADE as a whole is to separate the presentation
metaphor used for authoring and viewing a MADE hyperdocument from the underlying composition
graph. The aim is to accommodate different styles of authoring and different forms of visually struc-
turing the hypermedia information. Within the MADE project, a prototype authoring application
will be developed, with a specific application area and presentation metaphor. However, this applica-
tion should be considered merely as a test of the MADE concepts; it is perfectly possible for another

3This abstract document structure is also referred to in this specification as a composition graph.

12

MADE: A Multimedia Application Development Environment

application to choose a radically different presentation scheme and implement it on the “top” of the
MADE composition utilities.

Another important aspect of the composition editing and playback facility is making provision for
use of an interchange format that represents the abstract document structure in a more persistent
form. An interchange format enables the reuse of existing compositions, either fully or in part, and
enables the exchange of documents among MADE applications. This aspect is not straightforward,
however, and there are a number of decisions to be made on which specific format should be adopted.
The main contenders at the moment appear to be HyTime[13] and MHEG[14]. A third choice would
be to develop a MADE specific format (temporarily denoted as MIFF), perhaps based partly on either
of the above or some other less well known format. Other possibilities include the Microsoft’s AVI
format ([21]) and the MOVIE format defines as part of Apple’s QuickTime environment ([32]). At the
time of writing, the choice of the appropriate format is still to be made.

The composition utilities include some sub—modules with well specified tasks. These include:

An interaction editor, used to create or modify interaction objects (see §3.2.4). This involves
defining sensors associated with MADE objects (or with their associated visual metaphor), specifying
the objects the interaction object has to control, and editing the corresponding script. The definition
and/or the modification of sensors may involve, eg, graphics editing, which means that the interaction
editor may also start up a 2D graphics editor internally. In this setting, interaction objects provide a
possible internal representation for hyperlinks.

The role of the synchronization editor is to interactively define the synchronization patterns among
several synchronizable MADE objects. This may involve the specification of reference points, setting
references of other object the synchronizable object has to synchronize with, defining the details of
this synchronization, etc. Time objects are also managed by this editor; the user may indeed prefer
to use the notions of time, scheduler, and time—constraints for the purpose of synchronization, rather
than the concept of reference points. (As described in §3.2.3, both mechanisms are available within

the MADE toolkit.)

The choice of the interchange format will greatly influence whether, in the synchronization editor,
the emphasis will be placed on reference point on time—based synchronization. HyTime, for example,
expresses all synchronizations using an abstract notion of time; quite naturally, if the HyTime format,
or a subset of it, is chosen, this will determine the final shape of the synchronization editor, too.

The graph or layout editor gives a visual interface for the direct manipulation and visualization of
the composition graph (ie, the hyperdocument structure).

Finally, the composition editor is the most complex composition utility, which combines and controls
all other composition utilities as well as the monomedia editors, and MADE toolkit objects. It is this
module which lies at the heart of all composition utilities, which is responsible for providing all the
general functionalities described above.

5. APPLICATION ARCHITECTURES

The notion of multimedia application is a very broad concept and application programmers may make
use of a package like MADE in different ways. Also, the concept of a user of MADE (or of similar
packages) has become a somewhat fuzzy notion; there are, in fact, different types of users (toolkit
or utility developers, C++, script programmers, hypermedia document authors, etc) which are all,
in some way or other, “users” of the MADE environment. Without claiming to be exhaustive, this
section will give some, very typical examples of application program architectures.

Note that the full MADE ESPRIT project includes the development of some pilot applications, too.
It is not the purpose of this paper to give a thorough description of the whole ESPRIT project, hence
these applications are not described here. Suffice it to say, however, that the application program

13

MADE: A Multimedia Application Development Environment

-)

Application

User Interface Tools (Egeria,...)
Scripting Languages (Python,Wool,Tcl, .

e e e e e = - ,,,,,,,,,,,,,,,,,,,/

Interchange/Communication (MIFF,KEDIT,OLE, ...)

Figure 5: Traditional Programming with MADE

architectures, as presented below, are all represented in these various pilot applications.

5.1 “Traditional” Programming

The MADE toolkit objects, plus some of the utility objects, form a powerful, albeit “traditional”
programming environment for C++ programmers. This means that applications may be developed
in C++ or C, and then linked to a set of run-time MADE libraries.

Figure 5 (which is identical to Figure 1) gives a faithful picture of a traditional program using
MADE. The application program (which is usually a single UNIX, MS-DOS, or Windows-NT task)
uses different toolkit objects either directly or indirectly, via some utility objects. A more elaborate
application would also make use of an external database, accessed via the MADE database object
facilities.

The application program may interchange data with other applications via, eg, the MIFF exchange
format. Alternatively, the application program may offer services, in the form of a sophisticated
multimedia server, using either the KEDIT protocol or OLE. Other applications may then either
directly manipulate MADE objects via this protocol or full MADE objects may be transferred back
and forth, and manipulated upon, by different modules.

14

MADE: A Multimedia Application Development Environment

Presentation interface

composition utilities

Synchro-
Layout nisation Composition Interaction
editor editor editor editor

Database
Object

< KEDIT Protocol/OLE >

monomedia editors

Audio Video 2D 3D Animation
Graphics Graphics

Figure 6: Composition Utilities in a MADE Application

Composition Graph

—_ e, e e e e e =

Various objects, such as the interaction and animation objects, may use scripting languages, which
may be revisable by the end—user. In fact, the skeleton of the application program may also be written
in a scripting language instead of C or C++; the script would then manipulate MADE objects (written
in mC++) via the appropriate MADE-script interpreter interface.

Another possibility is to use C++ and, eg, Motif to create the user—interface; this is when a graphics
user interface application builder, like EGERIA, or Visual C+4, may play an important role.

5.2 Hyperdocument Editing and Playback

Figure 6 illustrates a possibility for hypermedia document manipulation using the full-blown compo-
sition utilities described in §4.3. The programming environment offered by MADE in this setting is
hypermedia document authoring; quite naturally, the user community for such an environment differs
radically from the community of “traditional” programmers. (Very often, to make the distinction,
members of this community are referred to as “authors”, as opposed to “users”.)

In this authoring environment, the composition utilities are conceptually separate from the media
editors. The composition utilities act as the coordinating components of the complete architecture.
Effectively, there is an inter—editor message facility that is used to both control the operation of the
media editors and to provide information to the composition utilities representing actions performed by

15

MADE: A Multimedia Application Development Environment

the user through dialogues with the media editors. In this setting the media editors may be considered
as separate applications or, in other terms, as separate service providers. These applications may be
realized following the scheme described in the previous section.

This organisation implies that media objects or references to objects are passed between the com-
position utility and the media editors in order to “render” them. Similarly, edited media objects may
need to be passed back to the composition editor and placed into the multimedia database.

Note that a simpler version of the architecture, including a simpler version for each of the media
editors, may be defined to be used for “playback” only.

5.8 Other Application Schemes

The application architectures presented in the preceding two sections represent, in a way, the two
extremes of a large palette. Intermediate architectures, making use of only part of the full MADE
functionality are also possible and feasible. It is possible to create, for example, a HyTime-like engine
based on the MADE toolkit and some of the utilities only (although these utilities may be distributed
services rather then linked to the HyTime engine)*; interactive modelling applications, or scientific
visualization applications, are also possible, which may use the services of media editors, just as a full
hypermedia authoring tool does, but with a fundamentally different user—interface.

The application architecture shown on Figure 7 illustrates another possibility for an authoring envi-
ronment. As said earlier, media editors, realized as MADE applications, may be used as independent
servers, provided that the external communication protocol is understood by the “wrapper” around
the MADE editor objects. In such a case, an “external” (ie, not closely MADE dependent) hyper-
document authoring tool may be used instead of the MADE composition utilities. The example used
in Figure 7 is HyperPATH, formerly known as Multicard ([26]), a hypermedia editing tool developed
by Bull. (The M2000 protocol referred to in the figure is the internal communication protocol defined
for HyperPATH.)

6. STANDARDIZATION

In a somewhat unexpected way, activities in the MADE project have become very much relevant
recently for an ongoing standardization process within ISO. Indeed, after several years of preparations,
the ISO committee ISO/TEC JTC 1/SC 24 (the committee which developed graphics standards in the
past) has decided to engage into a project for the standardization of a presentation environment for
multimedia programming. The scope and purposes of this new project, called PREMO[15] are indeed
very close to the project specifications of MADE: an object—oriented presentation environment for
multimedia objects, including graphics, video, audio, etc., which incorporates specific means for the
synchronization, interaction, and combination of such media.

Fortunately for the MADE project (and, hopefully, for the PREMO project, too), contacts between
MADE project members and the relevant ISO committee could be set up very quickly, due to some
earlier ISO activities of several participants of the MADE project. Concepts developed within the
MADE project have been included into the PREMO activities, and, conversely, some of the issues
that have arisen at the PREMO meetings have provided valuable input in the design work of MADE.
It can be expected that this fruitful interaction will help to shape the outcome of the MADE project
in the future, too.

4In fact, creation of an engine for a specialized set of HyTime documents is part of the full ESPRIT project.

16

MADE: A Multimedia Application Development Environment

HyperPATH interface

HyperPATH

< M2000 Protocol >

monomedia editors

Audio Video 2b 3D Animation
Graphics Graphics

Figure 7: Usage of an External Composition Tool: HyperPATH

ACKNOWLEDGEMENTS

Obviously, MADE is a large—scale teamwork project, involving experts from a number of industrial
and academic institutions®. Although only some of the partners are involved in the specification details
of the MADE framework (others being responsible for the pilot applications), the team of experts
is still rather voluminous. Instead of trying to list everybody and thereby incurring the danger of
forgetting, and therefore offending, somebody, we prefer to omit such a long list. We would just like
to express our gratitude to the full MADE team altogether.

REFERENCES
1. F.Arbab, I. Herman, and G.J. Reynolds. An object model for multimedia programming. Computer
Graphics Forum (Eurographics’93 Conference Issue), 12(3), September 1993.

2. F. Arbab, P.J.W. ten Hagen, M. Haindl, F.C. Heeman, I. Herman, G.J. Reynolds, and A. Siebes.
Specification of the MADE object model. Technical Report T/OM S1, Version 0.5, Esprit Project
6307 (MADE), March 1993.

3. G. Blakowski, J. Hiibel, and U. Langrehr. Tools for specifying and executing synchronized multi-
media presentations. In R. G. Herrtwich, editor, Second International Workshop on Network and

5Namely: Groupe Bull (France), CWI (The Netherlands), INESC (Portugal), INRIA (France), FhG-TAO (Germany),
BaE (UK), NR (Norway), ESI (France), Iselqui (Italy).

17

MADE: A Multimedia Application Development Environment

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

18

Operating System Support for Digital Audio and Video, number 614 in Lecture Notes in Computer
Science, pages 271-282, Heidelberg, 1992. Springer Verlag.

V. Bouthors. Fgeria Reference Manual. Bull SA, Paris, version 2.1 edition, August 1992.

D. Carver. X video extension protocol, version 2. Technical report, DEC Technical Report, MIT
X11 Contributions, 1991.

W. Clifford, J.I. McConnell, and J. Saltz. The development of PEX. In D.A. Duce and P. Jancene,
editors, Furographics’88 Conference Proceedings, Amsterdam, 1988. North—Holland.

J. Davy. Go: A graphical and interactive C+4++ toolkit for application data presentation and
editing. In Proceedings of the 5" Annual Technical X Conference on the X Window System,
January 1991.

N. Guimardes and N. Correia. Specification of the MADE time objects. Technical Report
T/TO S0, Esprit Project 6307 (MADE), June 1993.

M. Haindl, I. Herman, and G.J. Reynolds. Presentation scheme — preliminary specification.

Technical Report T/PRS S0, Version 0.1, Esprit Project 6307 (MADE), July 1993.

I. Herman, F.C. Heeman, and F. Leygues. Interfacing scripting languages. Technical Report
Version 1.3, Esprit Project 6307 (MADE), June 1993.

I. Herman, F.C. Heeman, and G.J. Reynolds. Interaction objects — functional specification.

Technical Report T/TAO S1, Version 0.2, Esprit Project 6307 (MADE), June 1993.

T.L.J. Howard, W.T. Hewitt, R.J. Hubbold, and K.M. Wyrwas. A Practical Introduction to
PHIGS and PHIGS PLUS. Addison—-Wesley, Workingham — Reading, 1991.

Internation Standard Organization. Information Technology — Hypermedia/Time-based Struc-
turing Language (HyTime), ISO/IEC 10744:1992(F), 1992.

International Standard Organization. Coded Representation of Multimedia and Hypermedia In-

formation Objects (MHEG), ISO/TEC JTC 1/SC 29 N354 edition, February 1993.

International Standard Organization. Presentation FEnvironment for Multi-Media Objects

(PREMO); Initial Draft ISO/IEC JTC 1 SC 24 WG 6 OME 35, June 1993.
J. Davy (ed.), Paris. MADE 1, ESPRIT III Project 6307, Technical Annex, March 1992.

O. Jojic and J. Davy. C++ API implementation. Technical Report T/OM-C++/P.0, Esprit
Project 6307 (MADE), July 1993.

P. Kaplan and A. Baird-Smith. The KEDIT protocol. Technical Report U/UIE-KEDIT/S.0,
Esprit Project 6307 (MADE), July 1993.

T.M. Levergood, A.C. Payne, J. Gettys, W. Treese, and L.C.S Steward. AudioFile: A network—
transparent system for distributed audio applications. Technical Report CLR 93/8, Digital Equip-
ment Corporation, Cambridge Research Laboratory, Cambridge, MA, June 1993.

H. Lieberman. Using prototypical objects to implement shared behavior in object oriented sys-
tems. In Proceedings of the First ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 214-223, Portland, September 1986. ACM Press.

Microsoft Inc. AVI — Microsoft Technical Note, November 1992.

Microsoft Inc. Users’ Guides, Microsoft Visual C++, Development System for Windows, Version
1.0, 1993.

C. Nahaboo. Koala Project, Wool2 Reference Manual, V2.8 Beta3. Groupe Bull, Paris, November
1992.

Object Management Group. The Common Object Request Broker: Architecture and Specification;
OMG Document Number 91.12.1, Revision 1.1, 1991.

25.

26.

27.

28.

29.

30.

31.

32

MADE: A Multimedia Application Development Environment

J.K. Ousterhout. An Introduction to Tcl and Tk. University of California, Berkeley, October
1992.

A. Rizk and L. Sauter. Multicard: An open hypermedia system. In Furopean Conference on
Hypertext ECHT’92, Cambridge, 1992. Cambridge University Press.

P.S. Strauss and R. Carey. An object-oriented 3D graphics toolkit. Computer Graphics (SIG-
GRAPH’92), 26(2):341-349, July 1992.

B. Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, Massachusetts,
second edition, 1991.

F. van Dijk and A. Siebes. Specification of the database object. Technical Report T/DBO S1,
Version 0.1, Esprit Project 6307 (MADE), June 1993.

J.E.A. van Hintum and G.J. Reynolds. Constraint objects. Technical Report T/COO S0, Version
0.1, Esprit Project 6307 (MADE), June 1993.

G. van Rossum. Python Reference Manual. Centrum voor Wiskunde en Informatica, Amsterdam,
July 1993.

P. Wayner. Inside QuickTime. BYTE, pages 189-197, December 1991.

19

