
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

MADE: A Multimedia Application Development Environment

I. Herman, G.J. Reynolds, J. Davy

Computer Science/Department of Interactive Systems

CS-R9360 1993

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301654033?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




MADE� A Multimedia Application Development Environment

Ivan Herman� Graham J Reynolds

CWI

Kruislaan ���� ���� SJ Amsterdam� The Netherlands

ivan	cwi
nl� reynolds	cwi
nl

Jacques Davy

Groupe Bull

�� rue Amp�ere� Massy ������ France

J
Davy	frmy
bull
fr

Abstract

MADE is the acronym for an ESPRIT III project aiming at the development of a programming environment

for multimedia applications� The resulting software library is based on C��� and is planned to operate on

UNIX Workstations as well as on PC�based platforms� This reports gives a technical overview of the project�

and describes some possible application scenarios where the MADE environment can be of a great help for

multimedia programming�

AMS Subject Classi�cation ������� ��N��
CR Subject Classi�cation ������� H�	�
�H�
�m�H�m�I���	�I�
���

Keywords � Phrases� Multimedia systems

Note� UNIX is a registered trademark of AT�T� Motif is a registered trademark of OSF� MS�DOS� MS�

WINDOWS�AVI� WindowsNT are registered trademarks of Microsoft Inc�� and� �nally�MOVIE andQuick�

Time are registered trademarks of Apple Inc�

�� Introduction

One of the most signi�cant developments in computing technology over the past few years is the
emergence of multimedia� Glossy multimedia applications are shown all over the place and on a
wide range of di�erent platforms� All major workstation hardware vendors feel the need to come to
technical fairs with stunning demonstrations mixing graphics� video� imaging� and sound� Technical
analysts predict that multimedia related hardware development will be one of the booming areas of
electronics in the years to come�

However� most of the available multimedia environments aim at hypermedia authoring� ie� they
o�er means to interactively create hypermedia documents� �Document�� as a multimedia term� means
more than our traditional paper�based understanding� It should be perceived as a potentially complex
composition of related media information� thus it is a multimedia document� which can be �read� or
viewed in a non�sequential fashion by following semantic connections 	or links
 between the various
media components� hence it is hypermedia�

Although the concept of hypermedia document is very powerful indeed� it does not cover all possible
�elds of applications of multimedia� The ability of combining� modifying� or even synthectically
creating multimedia data is often necessary for more complex multimedia applications� For example�
the user might want to extract a frame from a video sequence� modify it with standard image processing
tools� combine the image with the output of synthetic graphics� and possibly exchange the original



MADE� A Multimedia Application Development Environment

frame with the modi�ed image� Description of such actions does not �t easily in the model of a
hypermedia document� in spite of the sophisticated interaction tools which are usually provided with
authoring environments� There is� therefore� a need for a programming environment which would
allow for the developments of such applications� too�

The techniques to achieve combination of media are extremely disparate� and they use the results
of various �elds of computing technology like� for example� high quality synthetic graphics� image
processing� speech synthesis� etc� Some of the techniques are also highly application dependent� It is
almost impossible to de�ne a closed programming environment which would encompass all needs� The
already traditional answer to this kind of challenge is to use object�oriented techniques� services are
o�ered in the form of objects� which are then extensible by the programmer to include any necessary
application�dependent tools�

The European Communities� ESPRIT III project MADE 	Multimedia Application Development
Environment���
 has set up the ambitious goal of de�ning and implementing such a portable object�
oriented development environment for multimedia applications� based on C������ The outcome of
the MADE project should be a programming environment running on various UNIX platforms� as
well as on MS�DOS or Windows�NT environments� This report gives a general overview of MADE�
It describes its major services� and it also gives an overview of some possible �application scenarios��
ie� major application architectures which may use these services� It is not the purpose of the paper to
give a detailed technical description of the full project� this would go far beyond the scope of such a
report� The interested reader should consult the �o�cial� MADE documents to gain a more detailed
insight 	eg� �� �� �� ��� ��� ���
�

The MADE project is still an ongoing activity� Consequently� some problems are still open and
will be solved only later in the project� For this reason this report sometimes raises issues without
presenting complete solutions�

�� General Overview

The full MADE environment contains a large number of di�erent objects and related services� Two
important categories of these objects have a major role in the development environment� these are�
toolkits and utilities � 	Note that the object�oriented nature of MADE makes it possible for the end�
user to add new objects to both toolkits and utilities and�or to extend the functional capability of
existing ones�


The toolkit level is a collection of objects that are considered to be fundamental for multimedia
programming� It includes� obviously� objects to interface di�erent media� Also� it includes objects
which� although not directly involved in handling speci�c media� play a fundamental role in construct�
ing more complex multimedia applications� Some more details of the toolkit level will be given below
	see x�
�

Although it is possible to construct complex applications using the MADE toolkit level only� doing
that may be unnecessarily tedious and error�prone� Consequently� another layer has been de�ned
on top of the MADE toolkit� called utilities� The idea here is to de�ne and implement objects
which include complex functionality and which are considered to be essential for most multimedia
applications� Applications programmers may choose to use some of these utility objects� however�
the toolkit level is never completely obscured� and the application layer is free to use toolkit objects
directly as well 	see also Figure �� some of the terms appearing on the Figure will be described in
later sections
�

In the early stage of the MADE project a common object model was de�ned and developed� to
ensure the smooth cooperation among objects within the MADE library and also to provide a clear
approach to some of the technical issues raised by multimedia programming in general� This object
model de�nes a conceptual layer on the top of the implementation language of MADE 	ie� C��
�

�



MADE� A Multimedia Application Development Environment

U
se

r 
In

te
rf

ac
e 

T
o

o
ls

 (
E

g
er

ia
,..

.)

Interchange/Communication (MIFF,KEDIT,OLE, ...)

Toolkit

Application

Database

Utilities

S
cr

ip
ti

n
g

 L
an

g
u

ag
es

 (
P

yt
h

o
n

,W
o

o
l,T

cl
, .

..)
Figure �� Toolkits and Utilities

and it describes numerous features of objects within MADE� As far as the application programmer is
concerned� two characteristics of this model are of a great importance� the use of active objects and
the presence of delegation�

In MADE� objects may be active� ie� they may have their own thread of control 	within the shared
address space of the same UNIX� MS�DOS� or Windows�NT process
� This fact is exploited in the
implementation of the MADE toolkit library� and is a major tool used in de�ning synchronization of
di�erent media 	see x����� below
� Application programmers may have to be aware of this fact if they
decide to use the toolkit level objects directly�

The concept of delegation of object methods is the other central feature of theMADE object model�
Using delegation an object may delegate some or all of its behaviour 	i�e�� the messages it serves
 to
any number of other objects� which will then act on its behalf� The notion is not unlike inheritance�
but delegation is dynamic� ie� the target of delegation may be set and re�set at run�time� Delegation
plays a very important role in controlling constraints in MADE 	constraint objects are part of the
toolkit
� and o�ers advanced means to describe temporal behavioural control� A more exact semantics
of delegation is described in� eg� ���� see also �� for a more detailed description of the concept within
the framework of the MADE object model�

�



MADE� A Multimedia Application Development Environment

The object model has been realized in the form of an extension of C��� called mC��� The mC��

compiler generates a set of C�� classes� library and macro calls� this �intermediate� level can also be
accessed by programmers directly� in case they do not intend to use yet another programming language
	see ���
� Details of the object model are� however� hidden to most application programmers and
are only of real interest for toolkit or utility developers� The full technical description of this object
model will be omitted here� the interested reader should refer to �� for a general overview and to ��
for a complete description of the model and of mC���

The object model is not the only means to achieve smooth cooperation among objects� All MADE

objects also include general features that allow them to be used under various circumstances in a
uni�ed way� Some examples of these features� which are necessary to understand what is described in
later sections� are given below�

All objects in the MADE system may be permanent � This means that they may �store� themselves
in a database and can restore their content at a later stage of the application�s lifetime or even during
the execution of some other applications� This feature is present for allMADE objects by default� the
only step the application program has to do is to invoke certain implicitly de�ned member functions�
Furthermore� the MADE toolkit level includes a special object which can interface with various
database systems� Although this interface obviously cannot cover all known database systems� it does
provide an interface to some object�oriented and relational databases� Here again� the general features
required by the database access is included in all MADE objects in a database�independent way� and
the details of the database access is hidden in the general database management object of MADE

	see ���
� interfacing to a new database system means the speci�cation of an appropriate sub�class�

MADE objects� primarily utility objects� are also prepared for distributed access� This not only
means that the MADE library includes speci�c objects for inter�process communication� but also
that MADE objects are prepared to �convert themselves� into a format suitable for communication
and� conversely� can �reconstruct� their internal state based on data coming from a communication
channel� A sophisticated object�oriented communication protocol 	called KEDIT���
 is currently
under development for UNIX platforms� which will allow MADE applications to o�er object�based
services� and will provide means for the transfer of full MADE objects from one MADE application
to another� The features o�ered by the combination of MADE objects and KEDIT are similar to the
kind of object services de�ned by the Object Management Group�� On MS�DOS and Windows�NT
platforms the OLE protocol will be used to provide similar facilities� this is already a de�facto standard
on these environments�

AllMADE objects include a general mechanism known as a �dynamic call interface�� This interface
makes it possible to call a member function of an object by knowing the object�s handle and a string
describing the full signature of the member function� This string can be constructed at run�time�
hence the �dynamic� nature of the call� This feature permits MADE objects to be accessed easily
from scripting languages� and provides a simple way of constructing interfaces to other programming
languages 	eg� C or Fortran
� It also makes the implementation of distribution support 	like KEDIT

fast and easy�

�� Toolkit Objects

The primary goal of the MADE toolkit is the provision of a set of features and facilities basic for
multimedia programming� These include control over di�erent media� and other types of objects�
which have also been identi�ed as playing a fundamental role�

�OMG is an industrial consortium aiming at the de�nition of object services in general� In their CORBA
speci�cation����� OMG gives a speci�cation for object services in a distributed environment� However� CORBA is
still not �nal� nor is there a reliable implementation available yet� If� by the end of the MADE project� OMG produces
a �nal version of their speci�cation� replacing KEDIT with this speci�cation will be considered�

�



MADE� A Multimedia Application Development Environment

��� Media Objects
The MADE toolkit includes media objects� ie� objects whose role is to directly control di�erent media
in a uni�ed and hardware��rmware independent way�

The toolkit includes four main categories of media objects� graphics objects 	for two and three
dimensional graphics
� animation� sound and video objects� The functionality of these objects is
de�ned in a device�independent way� porting the toolkit to a new environment involves changes on
the interface level only� In other words� all of these objects �hide� their respective device�dependencies
behind speci�c� low�level abstract interface objects� thereby cleanly separating their MADE speci�c
behaviour from particular device dependent features� Adaptation of a media object type to a new
environment simply requires the de�nition of a new device�dependent subclass of the appropriate
general interface object�

Some of the categories listed above contain relatively simple objects� Their task is to provide
a mapping from the MADE library structure onto their respective interface object� This is the
case� for example� with video and audio objects� The most critical aspect of the de�nition of these
objects is synchronization� The objects and their device speci�c interfaces must be matched with the
synchronization model of MADE 	see x����� below
 and with the requirements and facilities provided
be the speci�c hardware that is used�

Audio and video objects rely on Microsoft�s Multimedia Environment for MS�WINDOWS� which is
a de�facto standard in this area� On UNIX� portable video and audio services are used� the Video
Extension of the X Windows system for analogue video 	��
 and the AudioFile server for audio 	���
�
For digital video� the UNIX solution is not yet de�ned�

�D and �D graphics require a much higher level of complexity� Indeed� the collections of both the
�D and the �D graphics objects represent two full�blown subsystems per se� which are also usable
stand alone for graphics purposes�

For �D graphics� the MADE toolkit reuses an already existing object�oriented �D graphics system�
called GoPATH��� by adapting it to the requirements of MADE� These �D objects include di�erent
two dimensional shapes� associated clipping areas� composition rules� attributes 	eg� colour� line type�
text font
� etc� The programmer has the possibility� via sub�classing� to de�ne new shapes and
include these into the full �D world� GoPATH is currently based on X��R� for UNIX platforms� and
on MS�WINDOWS under MS�DOS� a Windows�NT version is also operational�

The �D subsystem provided by MADE supports a mapping between general �D objects 	shapes�
surfaces� lighting and view control� etc�
 and existing �D packages� A mapping to SGI�s GL library is
currently being developed� The use of PEX�� or Open�GL� as a replacement for GL� will be considered
in the future� It has to be stressed that it is not the goal of the MADE development to de�ne yet
another three dimensional graphics package� the emphasis is more to provide an object�oriented layer
on top of existing packages� integrated into the MADE environment� On the other hand� due to the
object�oriented nature of the MADE toolkit� it is possible to extend� by sub�classing� the basic �D
functionality 	eg� to add a proprietary ray�tracing module
�

Graphics objects 	both in �D and �D
 do not have a temporal dimension� essentially� they describe
static scenes� This is in contrast with the inherently temporal nature of video and audio objects� To
alleviate this contradiction� MADE includes separate animation objects� which describe� and even
automatically generate� sequences of scenes� The methods and algorithms used in animation may be
extremely complex and� more importantly� dependent on speci�c application areas� Although simpler�
built�in animation techniques based on animation curves are also available�MADE animation objects
also allow for animation scripts� using a scripting language� which is then interpreted by the MADE

animation objects�

Animation objects may be active objects� too� thereby subject to the same synchronization be�

�



MADE� A Multimedia Application Development Environment

Apr

This is a cube

May June

Figure �� A rudimentary example for multiple media in an application�

haviour and control as audio and video objects 	see x�����
�

��� Combination Objects
It is of course possible to build very spectacular programs that only rely on MADE media objects�
using complex and possibly animated �D and �D graphics� running a video on the screen and playing
audio� However� the shortcomings of such an approach are very soon visible if more complicated
application programs have to be devised and implemented on this basis� As the very rudimentary
example on Figure � already shows� interactive behaviour assigned to graphics objects have to be
combined to control video output� visual representations for audio control have to be de�ned and
implemented� �D and �D objects have to be combined in one picture� etc�

The basic media objects become really usable if they can be combined in variety of ways� Combina�
tion of media objects 	and MADE objects in general
 within an application has received a particular
emphasis in the speci�cation of the MADE project in order to enhance the usability of the tools� Five
major areas of combination have been identi�ed� and we shall return to each of them in some detail�
The �ve areas of combination are� imaging� structuring� synchronization� interaction� and constraint
management �

����� Imaging� Some of the media objects produce images on the screen� This is the case for �D
and �D graphics� and for video objects� It is also possible to import and to export digital images in
various formats 	TIFF� GIF� etc�
� A natural consequence of this is the requirement for an application
to combine these images directly� For example� one may want to create a complex picture by using a
snapshot of a video sequence� annotated with a generated 	�D
 text� �ltered through a pattern read
from a TIFF image� etc�

To achieve this functionality� MADE de�nes a special image object � which can be used as a common

�



MADE� A Multimedia Application Development Environment

This is a cube

This is a cube

Figure �� Combination of a �D and a �D object in one image

platform for the combination of pictures� �D and �D objects can produce such images� they can be
generated from various image �le formats� and individual frames of video sequences may be converted
into images� These images may then be visualized on the screen� or can be converted back into video
frames� In the future� complex image processing functions will be de�ned to operate on these images�
combining them� �ltering them� etc� Here again� due to the object oriented design� it will be possible
for the end�user to add their own application dependent image processing functionalities�

����� Structuring� The importance of structuring� ie� of creating aggregates of di�erent objects in
interactive programs� has long been recognized in computer graphics� All graphics packages provide
some form of aggregation� like structures in PHIGS���� the scene database of IRIS Inventor���� or the
so called Go trees in GoPATH��� Although the structures used in these examples are all relatively
simple 	directed acyclic graphs or just trees
� the appearance of hypertext and� lately� of hypermedia
systems makes it clear that more general aggregation facilities are also necessary�

To answer these demands� the MADE toolkit includes a general graph management facility in the
form of graph objects � These objects allow for the speci�cation� management� and the traversal of
general graphs� with no restrictions imposed on their types� Nodes of these graphs may refer to any
MADE object� Graph management is achieved via special MADE objects� consequently� recursive
graphs may also be de�ned via the same mechanism� Individual MADE objects can be referred to
by several graph nodes 	ie� they can be shared
�

Graph objects provide a sound basis for the type of structuring required by graphics as well as for
complex hypermedia navigation systems� They are fully integrated into the full MADE structure�
which has a number of advantages� As an example� graphs provide an automatic defence against
concurrent access of structures by active objects� they can be exported and imported using the very
same mechanism as for all other MADE objects 	ie� complete structures may be stored in databases
�
etc�

����� Synchronization� The issue of synchronization has always been one of the central problems of
multimedia applications� it is therefore necessary for the MADE toolkit to o�er a consistent solution
to this issue�

The fundamental synchronization scheme used in MADE is called reference point synchronization�
For each� so called� synchronizable MADE object a series of media speci�c reference points may be
de�ned 	for example� video frames� audio samples� etc�
� Each reference point contains internal �in�
structions� for synchronization� references to other synchronizable objects that are to be synchronized
with it� etc� Synchronizable objects are active objects� when they reach a reference point� synchro�
nization is performed by exchanging messages with other active objects� waiting for their replies� etc�
The reference point model has been greatly inspired by ��� its details in the MADE environment are
speci�ed in ��� Audio� video� and animation objects are obvious examples of synchronizable MADE

�



MADE� A Multimedia Application Development Environment

objects�� The MADE programmer may create new� application�speci�c synchronizable objects� too�

Based on this synchronization model� the MADE toolkit also includes a higher�level mechanism
for time�based synchronization� This mechanism de�nes di�erent types of schedulers which the appli�
cation may use as building blocks for more complex time�based synchronization scenarios 	see �� for
further details
� These schedulers all assume the existence of a special synchronizable object within
MADE� namely a timer � The approach of building time�based synchronization on the top of a more
general mechanism� instead of considering it as a basic feature� allows the MADE library to be used
in environments which do not necessarily o�er real�time facilities�

����� Interaction Objects� Multimedia applications are very often highly interactive� it is therefore
essential to give very good tools to construct complex interaction scenarios involving MADE objects�

The MADE project does not aim at developing a completely new user interface management
system� Instead� MADE objects may be embedded into an existing user interface environment�
like the Athena Widget set of X Window System� the Motif toolkit� MS�Windows or� in the future�
Windows�NT� Nevertheless� not all user interaction can be adequately managed by these tools� many
complex interaction scenarios will involve MADE objects directly 	eg� for direct manipulation
� The
scheme developed in MADE for achieving these complex interaction scenarios is based on the notion
of sensors and associated interaction objects�

Sensors are best understood in the context of graphics� in this context they de�ne sensitive areas
on the screen� which can be �activated� by external interaction� typically mouse events� Sensors are
associated withMADE objects via interaction objects� In e�ect� they provide a sensitive region which
acts as a focal point for interaction with these objects� For some objects� sensors cannot be attached
to the object itself� but� instead� a visual representation of the object is used� in the form of graphics
object� This might be the case� for some sensors attached to audio objects� The notion of sensor is
general enough to accommodate regions involving higher dimensions including time� It can also be
applied in association with interaction input devices that provide non�geometric input measures� such
as audio input devices� pressure sensitive devices� etc�

Sensors forward events to interaction objects� it is part of the sensor�s initialization procedure to
decide which interaction object it is connected to� The interaction objects react on these events�
following some patterns which describes the behaviour of the interaction object� Several sensors may
be connected to the same interaction object�

In very simple cases� interaction objects perform straightforward and prede�ned tasks 	like� for
example� reshaping a graphics object
� In other cases� much greater complexity may be required�
perhaps providing control over several MADE objects and receiving events from several sensors 	eg�
the video control board depicted in Figure � reacts on the sensors of the graphical objects describing
the four push�buttons� may control the visual appearance of these buttons and� of course� controls
the video object proper� see also Figure �
� To describe such complex interaction behaviour� MADE

introduces a type of interaction object that implements a general �nite state machine 	see ���
� These
objects have a default �nite state machine for a speci�c interaction scenario� however� the user can also
assign a script to an interaction object� which� conceptually� includes a complete scripting interpreter
	see also x�����
� Such a script automatically overrides the default behaviour of the interaction object�
This high degree of openness� with respect to the end�user� is a very valuable feature of the MADE

interaction management�

����� Constraint Management� Provision of a general purpose constraint system within MADE

for all of the potential uses of constraints in a multimedia development environment would justify

�To be very precise� certain animation objects� which describe random animation� cannot be properly synchronized�
but these objects represent a small minority vis	
a	vis animation objects in general�

�



MADE� A Multimedia Application Development Environment

Sensors

Events

Messages (control)

Interaction Object

Figure �� Use of Interaction Objects� Sensors forward events to objects� which controls the geometric
appearance of buttons and the real video object�

a development project in its own right� Fortunately� there are various restricted types of constraint
satis�er that� while not being as capable in some aspects� still provide useful functionality for dealing
with certain categories of constraint�

The approach followed in the speci�cation of constraints within MADE 	see also ���
� is to con�
sider those applications of constraint systems that are of direct relevance to the multimedia part of
MADE� In e�ect� this restricts the scope of the constraint satis�er to the topics of geometric layout�
user interface control� animation� and media synchronisation� For example� the MADE presentation
facilities include a composition editor�player which may make use of constraints when de�ning the
hypermedia document structure and presentation characteristics� What this classi�cation means is
that any prede�ned constraints that are de�ned as part of the toolkit can be organised into �constraint
families� 	to avoid the use of the term �class�
 which are relevant for speci�c multimedia aspects�

For the time being at least� only one�way constraints are proposed for MADE� While multi�way
constraints provide greater expressive power to the constraint user� they also require more complex
constraint satisfaction algorithms and may involve more e�ort on the part of the programmer to set
up speci�c constraint objects� This decision need not be considered �nal� and can be reviewed after
experience with the proposed constraint objects has been gained�

�� Utilities

As said before� utilities o�er a higher level of functionality which make the implementation of more
complex multimedia applications easier and faster� In fact� the functionality of some of the utilities
is so complex that� by �wrapping� them into a simple program� they can be used as a separate

�



MADE� A Multimedia Application Development Environment

application programs in their own right�

The major categories of utilities are as follows�

�� application program interface utilities� visual metaphors� scripting� user interface builders� user
monitoring�

�� monomedia editors� �D and �D graphics editors� animation� video� and audio editors�

�� composition utilities � framework for hyperdocument management� synchronization editors� in�
teraction and graph object editors�

�� miscellaneous� class browsers� generic on�line help facilities� object monitoring�

Di�erent MADE utilities may and do rely on one another� too� For example� the visual metaphors�
to be presented below 	see x�����
� are reused by monomedia editors 	see x���
� or� to take another
example� the user interface of some of the editors may be developed with the help of MADE user
interface builders and scripting languages usable from within MADE�

Utilities� together with MADE toolkit objects� o�er a set of building blocks which can be used in
various ways to create di�erent types of MADE application program architectures� Some of the most
common scenarios will be described in x� below� however� to make these scenarios understandable�
some of the most important MADE utilities are presented below in somewhat more details�

��� Application Program Interface Utilities
Application program interface utilities give a set of tools that help an application programmer to
prototype or to develop a �nal MADE application� Although the facilities provided by some of these
utilities are fairly standard these days� it is nevertheless necessary to provide them in the context of
the MADE environment� too� Note that not all tools are presented in this report� only some of the
most important ones�

����� Visual Metaphors� The visual representation and control of media objects is not always
obvious� Indeed� to control certain attributes of media objects� relatively complex visual tools� with
associated interaction� have to be developed� These tools may then be used on di�erent levels� in
program development� in authoring� or in the �nal playback of authored documents� These visual
metaphors play an essential role in de�ning complex interactions operating on the objects� indeed� it
is sometimes much easier to attach a sensor to these metaphor objects� rather than to try to de�ne a
sensor on the object proper 	see x�����
�

There are numerous examples for such visual metaphors� Just to give some examples�

� Video control board for stopping� playing� rewinding� providing fast forward and backward
motion� etc�

� Audio panel containing volume control� channel control� etc�

� Control boards for the manipulation of graphics object attributes 	colour� lighting� shading
attributes� etc�


All these objects� collectively called visual metaphor objects� are part of the MADE utility library�
Other utilities 	primarily the editors� see x���
� reuse these objects� thereby providing a common look�
and�feel among MADE utilities� MADE applications may of course choose to ignore these objects
and to implement similar user interface facilities by themselves�

��



MADE� A Multimedia Application Development Environment

����� Connection to Scripting Languages� Several MADE objects make use of scripting languages�
animation and interaction objects have been mentioned in the preceding sections� and there are others�
too� It is also perfectly feasible to create full�blown applications� either in a prototype or even in a
�nal form� where the �user�level� program is in fact a script�

MADE does not introduce it own scripting language� Instead� all objects that make potential use of
scripting access the interpreter functionality via an abstract general scripting interface� This general
scripting interface is then specialized to access speci�c languages and their interpreters� This lets
the �nal choice over which scripting language is used be made by the MADE application developer
or even the end�user� Furthermore� several scripting languages can coexist within the same MADE

application 	see ���
�

In order to be usable for MADE� a scripting language should have an embeddable interpreter� Ie�
it should be possible to link the interpreter to C�C�� and C�C�� functions should be accessible
from the language somehow� Conversely� functions of the scripting language should be accessible from
C�C��� Note that the availability of the dynamic call interface of MADE objects plays an essential
role in interfacing such interpreters� it is not necessary to create a special �stub� for each MADE

object in the scripting language� indeed� MADE objects can be created� and their methods invoked�
based only on their signature�

There are several general embedded interpreters available� Currently� the MADE toolkit includes
an interface to Wool� a Lisp dialect implemented by Bull 	���
� and to Python� a language developed at
CWI 	���
� In the future� interfacing to Tcl 	���
 or other emerging languages will also be considered�

����� User Interface Builder� The MADE utility workpackage also includes the de�nition and im�
plementation of a user interface builder utility for UNIX platforms� This utility is based on an existing
Bull product called EGERIA�� which is to be adapted for the MADE environment in the course of
the project� This utility is considered as a completely separate part of the MADE environment� it is
aimed at the fast speci�cation of the user�interface part of a MADE application and is based on the
Motif toolkit�

On MS�WINDOWS environments� Visual C����� will be used as a user interface builder� For the
integration of MADE objects and utilities� subclasses of the �Microsoft Foundation Classes� will be
developed and accessible directly from Visual C��� This has already been validated with the �D
editors of GoPATH���

User interface builders may also be available for the scripting languages usable with MADE� In
fact� EGERIA is based on Wool� and can therefore be used as a user interface generator for Wool�
based applications� a similar development 	being carried out independently of the MADE project

for Python may be used in later stages of the project�

��� Monomedia Editors
The role of monomedia editors is relatively straightforward� they o�er means for the creation� mod�
i�cation� and also for the display of media objects� There is nothing particularly unusual or new in
these utilities� except that they all abide to the architectural demands forMADE editors� as described
above� Note that these editors make use of the visual metaphors described in x����� to give a uni�ed
outlook�

MADE editor objects may be used in various application settings� This includes being activated
alongside with other MADE objects� eg� other editors� In this case� editor objects may be active
objects� and the mechanism provided by the MADE object model will ensure that data managed
by several editors will not be corrupted by concurrent access� Editors may also be wrapped up into
separate application programs to run as stand�alone processes� In this case� editors may operate
on MADE objects residing in a database or they can manage objects received via a communication

��



MADE� A Multimedia Application Development Environment

channel using� eg� the KEDIT protocol 	see x�
�

The �D graphics editor is based on an existing program� called godraw 	related to GoPATH� men�
tioned earlier
� The facilities supported by this editor are relatively straightforward� and are in line
with other �D graphics editors� available for di�erent platforms�

The �D graphics editor emphasizes two aspects of �D editing� editing of scenes by composing �D
objects in space� and simple �D solid modelling to create �D bodies� It includes dialogues to control
attributes like texture� colour� re�ectance� opacity� etc�

The audio editor o�ers facilities to �cut� and �paste� audio tracks� apply 	possibly user�speci�ed

�lters on the sound tracks� and modify their characteristics� A MIDI editor will also be available�

The video editor o�ers similar facilities that of the audio editor� �cut� and �paste� of video se�
quences� modi�cation of its characteristics 	if the underlying hardware permits it
� retrieve and frames
as images� etc�

A separate animation editor is also provided� which allows for the interactive creation and editing
of animation curves� and animation scripts�

Note that� under MS�WINDOWS� Microsoft�s Multimedia Environment already contains some mul�
timedia editors� to avoid duplication� these editors will be reused as much as possible�

��� Composition Utilities
Composition editing and playback is the mechanism within MADE for developing and viewing mul�
timedia�hypermedia documents� both from the point of view of an author of such documents and
also from the point of view of the �nal user	s
 of a MADE application based on the document con�
cept� The composition editing and playback utility is one of the main integrating components of the
MADE application environment� It is through the de�nition of an abstract document structure that
a hypermedia document is created and it is the presentation of this hyperdocument which the end
user may interact with� During both the authoring and playback modes of operation the composition
utility makes direct use of the other MADE utilities for viewing or editing particular media objects�
for presenting help information� for navigating the hyperdocument structure� and perhaps also for
monitoring the user�s actions� The composition utility drives the operation of these other utilities
based on a composition graph 	ie� the internal representation of the hyperdocument
�

An essential aspect of the composition facilities is the ability to de�ne and manipulate an abstract
document structure� The abstract document structure is a representation of logical components which
describes not only the speci�c types of media involved in the presentation� but also the semantic
connections between media� the synchronisation constraints associated with the presentation of the
logical components� geometric and other presentation attributes for each component� and speci�c
interaction entities to be used in reading the multimedia document�

The authoring and presentation of a hyperdocument is not only determined by the media and the
composition utilities� There may be a number of alternative styles 	or metaphors
 for presenting a
particular hyperdocument that are dependent not on the speci�c document itself but on the application
domain in which the MADE application exists�

A speci�c goal of the composition utilities of MADE as a whole is to separate the presentation
metaphor used for authoring and viewing a MADE hyperdocument from the underlying composition
graph� The aim is to accommodate di�erent styles of authoring and di�erent forms of visually struc�
turing the hypermedia information� Within the MADE project� a prototype authoring application
will be developed� with a speci�c application area and presentation metaphor� However� this applica�
tion should be considered merely as a test of the MADE concepts� it is perfectly possible for another

�This abstract document structure is also referred to in this speci�cation as a composition graph�

��



MADE� A Multimedia Application Development Environment

application to choose a radically di�erent presentation scheme and implement it on the �top� of the
MADE composition utilities�

Another important aspect of the composition editing and playback facility is making provision for
use of an interchange format that represents the abstract document structure in a more persistent
form� An interchange format enables the reuse of existing compositions� either fully or in part� and
enables the exchange of documents among MADE applications� This aspect is not straightforward�
however� and there are a number of decisions to be made on which speci�c format should be adopted�
The main contenders at the moment appear to be HyTime��� and MHEG���� A third choice would
be to develop aMADE speci�c format 	temporarily denoted as MIFF
� perhaps based partly on either
of the above or some other less well known format� Other possibilities include the Microsoft�s AVI
format 	���
 and the MOVIE format de�nes as part of Apple�s QuickTime environment 	���
� At the
time of writing� the choice of the appropriate format is still to be made�

The composition utilities include some sub�modules with well speci�ed tasks� These include�

An interaction editor � used to create or modify interaction objects 	see x�����
� This involves
de�ning sensors associated with MADE objects 	or with their associated visual metaphor
� specifying
the objects the interaction object has to control� and editing the corresponding script� The de�nition
and�or the modi�cation of sensors may involve� eg� graphics editing� which means that the interaction
editor may also start up a �D graphics editor internally� In this setting� interaction objects provide a
possible internal representation for hyperlinks�

The role of the synchronization editor is to interactively de�ne the synchronization patterns among
several synchronizable MADE objects� This may involve the speci�cation of reference points� setting
references of other object the synchronizable object has to synchronize with� de�ning the details of
this synchronization� etc� Time objects are also managed by this editor� the user may indeed prefer
to use the notions of time� scheduler� and time�constraints for the purpose of synchronization� rather
than the concept of reference points� 	As described in x������ both mechanisms are available within
the MADE toolkit�


The choice of the interchange format will greatly in�uence whether� in the synchronization editor�
the emphasis will be placed on reference point on time�based synchronization� HyTime� for example�
expresses all synchronizations using an abstract notion of time� quite naturally� if the HyTime format�
or a subset of it� is chosen� this will determine the �nal shape of the synchronization editor� too�

The graph or layout editor gives a visual interface for the direct manipulation and visualization of
the composition graph 	ie� the hyperdocument structure
�

Finally� the composition editor is the most complex composition utility� which combines and controls
all other composition utilities as well as the monomedia editors� and MADE toolkit objects� It is this
module which lies at the heart of all composition utilities� which is responsible for providing all the
general functionalities described above�

�� Application Architectures

The notion of multimedia application is a very broad concept and application programmers may make
use of a package like MADE in di�erent ways� Also� the concept of a user of MADE 	or of similar
packages
 has become a somewhat fuzzy notion� there are� in fact� di�erent types of users 	toolkit
or utility developers� C��� script programmers� hypermedia document authors� etc
 which are all�
in some way or other� �users� of the MADE environment� Without claiming to be exhaustive� this
section will give some� very typical examples of application program architectures�

Note that the fullMADE ESPRIT project includes the development of some pilot applications� too�
It is not the purpose of this paper to give a thorough description of the whole ESPRIT project� hence
these applications are not described here� Su�ce it to say� however� that the application program

��



MADE� A Multimedia Application Development Environment

U
se

r 
In

te
rf

ac
e 

T
o

o
ls

 (
E

g
er

ia
,..

.)

Interchange/Communication (MIFF,KEDIT,OLE, ...)

Toolkit

Application

Database

Utilities

S
cr

ip
ti

n
g

 L
an

g
u

ag
es

 (
P

yt
h

o
n

,W
o

o
l,T

cl
, .

..)
Figure �� Traditional Programming with MADE

architectures� as presented below� are all represented in these various pilot applications�

��� �Traditional	 Programming
The MADE toolkit objects� plus some of the utility objects� form a powerful� albeit �traditional�
programming environment for C�� programmers� This means that applications may be developed
in C�� or C� and then linked to a set of run�time MADE libraries�

Figure � 	which is identical to Figure �
 gives a faithful picture of a traditional program using
MADE� The application program 	which is usually a single UNIX� MS�DOS� or Windows�NT task

uses di�erent toolkit objects either directly or indirectly� via some utility objects� A more elaborate
application would also make use of an external database� accessed via the MADE database object
facilities�

The application program may interchange data with other applications via� eg� the MIFF exchange
format� Alternatively� the application program may o�er services� in the form of a sophisticated
multimedia server� using either the KEDIT protocol or OLE� Other applications may then either
directly manipulate MADE objects via this protocol or full MADE objects may be transferred back
and forth� and manipulated upon� by di�erent modules�

��



MADE� A Multimedia Application Development Environment

Video
Graphics

2D 3D
Graphics

Animation

KEDIT Protocol/OLE

Composition GraphDatabase
Object

Audio

Layout

monomedia editors

editor

Synchro-

editor
nisation Composition

editor
Interaction

editor

Presentation interface

composition utilities

Figure �� Composition Utilities in a MADE Application

Various objects� such as the interaction and animation objects� may use scripting languages� which
may be revisable by the end�user� In fact� the skeleton of the application program may also be written
in a scripting language instead of C or C��� the script would then manipulateMADE objects 	written
in mC��
 via the appropriate MADE�script interpreter interface�

Another possibility is to use C�� and� eg� Motif to create the user�interface� this is when a graphics
user interface application builder� like EGERIA� or Visual C��� may play an important role�

��� Hyperdocument Editing and Playback
Figure � illustrates a possibility for hypermedia document manipulation using the full�blown compo�
sition utilities described in x���� The programming environment o�ered by MADE in this setting is
hypermedia document authoring� quite naturally� the user community for such an environment di�ers
radically from the community of �traditional� programmers� 	Very often� to make the distinction�
members of this community are referred to as �authors�� as opposed to �users��


In this authoring environment� the composition utilities are conceptually separate from the media
editors� The composition utilities act as the coordinating components of the complete architecture�
E�ectively� there is an inter�editor message facility that is used to both control the operation of the
media editors and to provide information to the composition utilities representing actions performed by

��



MADE� A Multimedia Application Development Environment

the user through dialogues with the media editors� In this setting the media editors may be considered
as separate applications or� in other terms� as separate service providers� These applications may be
realized following the scheme described in the previous section�

This organisation implies that media objects or references to objects are passed between the com�
position utility and the media editors in order to �render� them� Similarly� edited media objects may
need to be passed back to the composition editor and placed into the multimedia database�

Note that a simpler version of the architecture� including a simpler version for each of the media
editors� may be de�ned to be used for �playback� only�

��� Other Application Schemes
The application architectures presented in the preceding two sections represent� in a way� the two
extremes of a large palette� Intermediate architectures� making use of only part of the full MADE

functionality are also possible and feasible� It is possible to create� for example� a HyTime�like engine
based on the MADE toolkit and some of the utilities only 	although these utilities may be distributed
services rather then linked to the HyTime engine
�� interactive modelling applications� or scienti�c
visualization applications� are also possible� which may use the services of media editors� just as a full
hypermedia authoring tool does� but with a fundamentally di�erent user�interface�

The application architecture shown on Figure � illustrates another possibility for an authoring envi�
ronment� As said earlier� media editors� realized as MADE applications� may be used as independent
servers� provided that the external communication protocol is understood by the �wrapper� around
the MADE editor objects� In such a case� an �external� 	ie� not closely MADE dependent
 hyper�
document authoring tool may be used instead of the MADE composition utilities� The example used
in Figure � is HyperPATH� formerly known as Multicard 	���
� a hypermedia editing tool developed
by Bull� 	The M���� protocol referred to in the �gure is the internal communication protocol de�ned
for HyperPATH�


�� Standardization

In a somewhat unexpected way� activities in the MADE project have become very much relevant
recently for an ongoing standardization process within ISO� Indeed� after several years of preparations�
the ISO committee ISO�IEC JTC ��SC �� 	the committee which developed graphics standards in the
past
 has decided to engage into a project for the standardization of a presentation environment for
multimedia programming� The scope and purposes of this new project� called PREMO��� are indeed
very close to the project speci�cations of MADE� an object�oriented presentation environment for
multimedia objects� including graphics� video� audio� etc�� which incorporates speci�c means for the
synchronization� interaction� and combination of such media�

Fortunately for theMADE project 	and� hopefully� for the PREMO project� too
� contacts between
MADE project members and the relevant ISO committee could be set up very quickly� due to some
earlier ISO activities of several participants of the MADE project� Concepts developed within the
MADE project have been included into the PREMO activities� and� conversely� some of the issues
that have arisen at the PREMO meetings have provided valuable input in the design work ofMADE�
It can be expected that this fruitful interaction will help to shape the outcome of the MADE project
in the future� too�

�In fact� creation of an engine for a specialized set of HyTime documents is part of the full ESPRIT project�

��



MADE� A Multimedia Application Development Environment

HyperPATH interface

HyperPATH

M2000 Protocol

monomedia editors

AnimationAudio Video
2D

Graphics Graphics
3D

Figure �� Usage of an External Composition Tool� HyperPATH

Acknowledgements

Obviously� MADE is a large�scale teamwork project� involving experts from a number of industrial
and academic institutions�� Although only some of the partners are involved in the speci�cation details
of the MADE framework 	others being responsible for the pilot applications
� the team of experts
is still rather voluminous� Instead of trying to list everybody and thereby incurring the danger of
forgetting� and therefore o�ending� somebody� we prefer to omit such a long list� We would just like
to express our gratitude to the full MADE team altogether�

References

�� F� Arbab� I� Herman� and G�J� Reynolds� An object model for multimedia programming�Computer
Graphics Forum 
Eurographics��� Conference Issue� ��	�
� September �����

�� F� Arbab� P�J�W� ten Hagen� M� Haindl� F�C� Heeman� I� Herman� G�J� Reynolds� and A� Siebes�
Speci�cation of the MADE object model� Technical Report T�OM S�� Version ���� Esprit Project
���� 	MADE
� March �����

�� G� Blakowski� J� H�ubel� and U� Langrehr� Tools for specifying and executing synchronized multi�
media presentations� In R� G� Herrtwich� editor� Second International Workshop on Network and

�Namely� Groupe Bull �France� CWI �The Netherlands� INESC �Portugal� INRIA �France� FhG	IAO �Germany�
BaE �UK� NR �Norway� ESI �France� Iselqui �Italy�

��



MADE� A Multimedia Application Development Environment

Operating System Support for Digital Audio and Video� number ��� in Lecture Notes in Computer
Science� pages �������� Heidelberg� ����� Springer Verlag�

�� V� Bouthors� Egeria Reference Manual� Bull SA� Paris� version ��� edition� August �����

�� D� Carver� X video extension protocol� version �� Technical report� DEC Technical Report� MIT
X�� Contributions� �����

�� W� Cli�ord� J�I� McConnell� and J� Saltz� The development of PEX� In D�A� Duce and P� Janc ene�
editors� Eurographics��� Conference Proceedings� Amsterdam� ����� North�Holland�

�� J� Davy� Go� A graphical and interactive C�� toolkit for application data presentation and
editing� In Proceedings of the �th Annual Technical X Conference on the X Window System�
January �����

�� N� Guimar!aes and N� Correia� Speci�cation of the MADE time objects� Technical Report
T�TO S�� Esprit Project ���� 	MADE
� June �����

�� M� Haindl� I� Herman� and G�J� Reynolds� Presentation scheme " preliminary speci�cation�
Technical Report T�PRS S�� Version ���� Esprit Project ���� 	MADE
� July �����

��� I� Herman� F�C� Heeman� and F� Leygues� Interfacing scripting languages� Technical Report
Version ���� Esprit Project ���� 	MADE
� June �����

��� I� Herman� F�C� Heeman� and G�J� Reynolds� Interaction objects " functional speci�cation�
Technical Report T�IAO S�� Version ���� Esprit Project ���� 	MADE
� June �����

��� T�L�J� Howard� W�T� Hewitt� R�J� Hubbold� and K�M� Wyrwas� A Practical Introduction to
PHIGS and PHIGS PLUS� Addison�Wesley� Workingham � Reading� �����

��� Internation Standard Organization� Information Technology � Hypermedia�Time�based Struc�
turing Language 
HyTime� ISO�IEC ����������
E� �����

��� International Standard Organization� Coded Representation of Multimedia and Hypermedia In�
formation Objects 
MHEG� ISO�IEC JTC ��SC �� N��� edition� February �����

��� International Standard Organization� Presentation Environment for Multi�Media Objects

PREMO� Initial Draft ISO�IEC JTC � SC �� WG � OME ��� June �����

��� J� Davy 	ed�
� Paris� MADE �� ESPRIT III Project ����� Technical Annex� March �����

��� O� Jojic and J� Davy� C�� API implementation� Technical Report T�OM�C���P��� Esprit
Project ���� 	MADE
� July �����

��� P� Kaplan and A� Baird�Smith� The KEDIT protocol� Technical Report U�UIE�KEDIT�S���
Esprit Project ���� 	MADE
� July �����

��� T�M� Levergood� A�C� Payne� J� Gettys� W� Treese� and L�C�S Steward� AudioFile� A network�
transparent system for distributed audio applications� Technical Report CLR ����� Digital Equip�
ment Corporation� Cambridge Research Laboratory� Cambridge� MA� June �����

��� H� Lieberman� Using prototypical objects to implement shared behavior in object oriented sys�
tems� In Proceedings of the First ACM Conference on Object�Oriented Programming Systems�
Languages� and Applications� pages �������� Portland� September ����� ACM Press�

��� Microsoft Inc� AVI � Microsoft Technical Note� November �����

��� Microsoft Inc� Users� Guides� Microsoft Visual C��� Development System for Windows� Version
���� �����

��� C� Nahaboo� Koala Project� Wool� Reference Manual� V��� Beta�� Groupe Bull� Paris� November
�����

��� Object Management Group� The Common Object Request Broker� Architecture and Speci�cation�
OMG Document Number �������� Revision ���� �����

��



MADE� A Multimedia Application Development Environment

��� J�K� Ousterhout� An Introduction to Tcl and Tk� University of California� Berkeley� October
�����

��� A� Rizk and L� Sauter� Multicard� An open hypermedia system� In European Conference on
Hypertext ECHT���� Cambridge� ����� Cambridge University Press�

��� P�S� Strauss and R� Carey� An object�oriented �D graphics toolkit� Computer Graphics 
SIG�
GRAPH���� ��	�
��������� July �����

��� B� Stroustrup� The C�� Programming Language� Addison�Wesley� Reading� Massachusetts�
second edition� �����

��� F� van Dijk and A� Siebes� Speci�cation of the database object� Technical Report T�DBO S��
Version ���� Esprit Project ���� 	MADE
� June �����

��� J�E�A� van Hintum and G�J� Reynolds� Constraint objects� Technical Report T�COO S�� Version
���� Esprit Project ���� 	MADE
� June �����

��� G� van Rossum� Python Reference Manual� Centrum voor Wiskunde en Informatica� Amsterdam�
July �����

��� P� Wayner� Inside QuickTime� BYTE� pages �������� December �����

��


