Three Metric Domains of Processes for Bisimulation

Franck van Breugel

Computer Science/Department of Software Technology

CS-R9335 1993

Three Metric Domains of Processes for Bisimulation

Franck van Breugel

cwi
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
Vrije Universiteit

P.O. Box 7161, 1007 MC Amsterdam, The Netherlands

Abstract

A new metric domain of processes is presented. This domain is located in between two metric process domains
introduced by De Bakker and Zucker. The new process domain characterizes the collection of image finite
processes. This domain has as advantages over the other process domains that no complications arise in the
definitions of operators like sequential composition and parallel composition, and that image finite language con-
structions like random assignment can be modelled in an elementary way. As in the other domains, bisimilarity
and equality coincide in this domain.

The three domains are obtained as unique (up to isometry) solutions of equations in a category of 1-bounded
complete metric spaces. In the case the action set is finite, the three domains are shown to be equal (up to
isometry). For infinite action sets, e.g., equipollent to the set of natural or real numbers, the process domains

are proved not to be isometric.

AMS Subject Classification (1991): 68Q55

CR Subject Classification (1991): D.3.1, F.3.2

Keywords & Phrases: process, complete metric space, bisimulation, finitely branching, image finite, sequential
composition

Note: This work was partially supported by the Netherlands Nationale Faciliteit Informatica programme,
project Research and Education in Concurrent Systems (REX). This paper will appear in Proceedings of the
Ninth Conference on the Mathematical Foundations of Programming Semantics, New Orleans, LA, USA, April
7-10, 1993.

INTRODUCTION

In semantics, a process is usually understood as a behaviour of a system. Labelled transition systems
have proved to be suitable for describing the behaviour (or operational semantics) of a system (cf.
[Plo81]). A labelled transition system can be viewed as a rooted directed graph of which the edges are
labelled by actions (cf. [BK87]), or as a tree of which the edges are labelled by actions, which is obtained
by unfolding the graph. The semantic notion of a process is usually defined by means of a suitable
behavioural equivalence over the labelled transition systems. Bisimilarity (cf. [Par81]) is commonly
accepted as the finest behavioural equivalence over labelled transition systems (cf. [Gla90, Gla93]).

In this paper, processes are studied from the point of view of denotational semantics. In the
literature, domains of processes are found for several mathematical structures. For complete partial
orders, process domains are presented by Milne and Milner in [MM79], and Abramsky in [Abr91].
Aczel introduces in [Acz88] a process domain for non-well-founded sets. For complete metric spaces,
process domains are presented by De Bakker and Zucker in [BZ82, BZ83], and Golson and Rounds in
[GR83, Gol&4].

Aczel shows in [Acz88] that processes can be viewed as labelled transition systems. Bisimulation
relations on these labelled transition systems induce bisimulation relations on the processes. A process

2 Introduction

domain is called strongly extensional (or internally fully abstract) if bisimilarity - being the largest
bisimulation relation - coincides with equality, i.e. processes are bisimilar if and only if they are equal.
Abramsky and Aczel prove that their process domains are strongly extensional. The process domains
introduced by De Bakker and Zucker in [BZ82] and [BZ83] are shown to be strongly extensional by
Van Glabbeek and Rutten in [GR89] and [Rut92].

The metric process domains introduced by De Bakker and Zucker in [BZ82] and [BZ83], which will
be denoted by P; and Ps in the sequel, and a third new process domain, which will be denoted by
Py, are studied in detail in this paper. Processes can be viewed as trees (both finite and infinite in
depth) of which the edges are labelled by actions, and which are absorptive, i.e. for all nodes of a tree
the collection of subtrees of that node is a set instead of a multiset, and commutative. For example,
the tree

JIN /\

1s not a process, and

is the process obtained by absorption. Furthermore, the processes

/N N
N b and b “
Vi N v N

are identified by commutativity. The processes are endowed with a metric such that the distance
between processes decreases if the maximal depth at which the truncations of the processes coincide
increases. All processes considered in this paper are closed with respect to this metric. For example,
the process

7

a

|

a

v

- <

C<a—

|

a

v
including the infinite branch is closed in contrast with the process not containing this infinite branch.
A process is called finitely branching if each node has only finitely many outgoing edges. A process
is called image finite if, for each action, each node has only finitely many outgoing edges labelled with

that action. A finitely branching process is image finite, but an image finite process is in general not
finitely branching. For example, the process

v

[X)

Introduction 3

1s image finite but not finitely branching.

7

|
A
]

an a1 as

b

is an example of a general (or unrestricted) process being not finitely branching nor image finite. The
process domains P;, Ps, and P; can be shown to correspond to the collections of (finite in depth and)

e general processes,
e finitely branching processes, and

e image finite processes.

For example, the correspondence between the process domain P3; and the collection of image finite
processes of finite depth will be accomplished as follows. First, the space of image finite processes
of finite depth is completed. In this way, a complete metric space of (finite and infinite in depth)
processes is obtained. Second, the completed space is shown to be isometric to the process domain Ps.

The three process domains can be related in the following way. The process domain P, can be
isometrically embedded in the process domain Ps; and the process domain P5; can be isometrically
embedded in the process domain P;. If the action set is finite, then the three process domains can
be shown to be isometric. If the action set is infinite, e.g., equipollent ot the set of natural or real
numbers, then it can be demonstrated that the three process domains are not isometric.

For P;-processes, complications arise in the definitions of the following operators:

e sequential composition (cf. [BZ82, BM88]),
e parallel composition (cf. [BZ82, BM88, ABKR89, AR92]),
e trace set as defined by De Bakker et al. in [BBKMS84], and

e fairification as defined by Rutten and Zucker in [RZ92].

For example, it is not possible to give a (denotational) definition of the sequential composition of
Py -processes, which coincides with the operational definition of the sequential composition. (Note
that processes can be viewed as labelled transition systems.) In [BM88], the sequential composition of
P, -processes is not, well-defined. The definition of the sequential composition in [BZ82] is well-defined,
but does not coincide to the operational one. It can be shown that these complications do not arise
in the definitions of the operators mentioned above on P;- and Ps-processes.

Unlike the process domain P,, the process domain P; makes an elementary semantic modelling
of image finite language constructions like random assignment possible (cf. [Bre94]). (For a detailed
overview of metric semantic models the reader is referred to [BR92].)

Novel in the present paper are

e the process domain Ps, which can be shown to correspond to the class of image finite processes
and to be strongly extensional,

e the detailed comparison of the process domains Py, Ps, and Ps, and

4 Introduction

e the relation of the process domains P;, P, and P5; with the classes of general, finitely branching,
and image finite processes, extending results concerning the process domains P; and P of [BZ82]

and [BZ83].

In the first section of this paper, some preliminaries concerning metric spaces can be found. In the
second section, the three process domains are introduced. In the third section, the correspondence
between Pj-, Ps-, and Ps-processes and general, finitely branching, and image finite processes is
studied. The process domains are related as described above in the fourth section. In the fifth section,
the process domains are shown to be strongly extensional. In the sixth section, some complications
arising in the definition of the sequential composition of P;-processes are pinpointed. Furthermore, it
is shown that these complications do not arise in the definition of this operator on Ps-processes. The
other three operators, viz parallel composition, trace set, and fairification, are considered in [Bre94].

In this paper, several definitions from other papers have been modified slightly to stress the corre-
spondence with the other definitions.

1. METRIC SPACES

Some preliminaries concerning metric spaces are presented. Only some nonstandard notions, i.e.
notions which are not found in the main text of [Eng89], are introduced.

Contractive functions, which are called contractions, are introduced in

DEFINITION 1.1 Let (X,dx) and (X’,dx/) be metric spaces. A function f : X — X' is called
contractive if there exists an e, with 0 < e < 1, such that, for all z and 2,

dX’ (f (I’), f(wl)) <e- dX (xawl)'
These contractions play a central role in

THEOREM 1.2 (BANACH’S THEOREM) Let (X,dx) be a complete metric space. If f : X — X is a
contraction then f has a unique fized point fiz (f). For all z,

lim 7 () = fix ()
where

F () = = and [(@) = (" (@),
PROOF See Theorem 11.6 of [BanZQ]. O

In this paper, several recursive definitions are presented (cf. Definition 4.1, 4.3, 4.4, 6.1, and 6.3).
Banach’s theorem can be used to prove the well-definedness of these definitions (cf. [KR90]).

The embeddings to be introduced in Section 4 will be defined by means of nonexpansive functions.

DEFINITION 1.3 Let (X,dx) and (X', dx/) be metric spaces. A function f : X — X' is called
nonexpansive if, for all z and z’,

dx: (f (), (")) < dx (a,2").

2. Three process domains 5

2. THREE PROCESS DOMAINS

Three process domains are presented. These process domains are defined by means of recursive domain
equations.

In [ARRB9], America and Rutten present a category theoretic technique to solve recursive domain
equations. The objects of the category are 1-bounded complete metric spaces. With a domain equation
a functor is associated. If this functor satisfies certain conditions, then it has a unique fixed point (up
to isometry) which is the intended solution of the domain equation.

The recursive domain equations, by which the process domains are defined, are built from an action
set A, which is endowed with the discrete metric, and the constructions described in

DEFINITION 2.1 Let (X,dx) and (X', dx') be 1-bounded complete metric spaces.
A metric on the Cartesian product of X and X', X x X' is defined by

dxxx' ((z,2'),(2,2")) = max{dx (z,%),dx (z',z2") }.

A metric on the collection of functions from X to X', X — X', is defined by
dx—x (f, ") =sup{dx (f (2), f (z)) |z € X }.

A new metric on X is defined by

~dx (z,2").

Lo

dig, (x) (2, 2") =
2

The Hausdorff metric on the set of closed subsets of X, P (X), and on the set of compact subsets of
X, Peo (X), is defined by

dp (x) (A, B) = max {sup {inf {dx (z,2") |2’ € B} |z € A},
sup{inf{dx (z,2') |z’ € A} |z € B}}

where sup) = 0 and inf § = 1.
The three process domains are introduced in

DEFINITION 2.2 The process domains P;, P>, and P; are defined by the recursive domain equations

FF T
1R 1R
SN
=}
S
X
&
ol NI
>.U

Processes as described in the introduction can be represented by elements of these process domains.
For example, the process

a/'\b

is represented by the P;- and Ps-process

{(a,0), (0, 0)}

6 Introduction

and by the Ps-process

\a' {{)\a".@} ifa'=aora =56
10

otherwise

The process

is represented by the P;- and Ps-process

{(a,{(,0)}), (a,0)}

and by the Ps-process

)\a,.{ {po,p1} ifd =a

1] otherwise
where
n {da"" .0} ifd" =b
Po=Aa". { 0 otherwise
and
pr=Aa" . 0.

Not every process can be represented in all three process domains. In Section 4, we will show that
the process domain P; is located in between P; and Ps, i.e. P, can be isometrically embedded in P
and Ps can be isometrically embedded in P;.

3. Finite processes 7

Next, processes in the shaded regions of the above picture are presented. The process

is represented by the Pj-process
{(an,0) |neIN}.

However, this is not a P,-process, because the above set is closed but not compact. The process is
also represented by the Ps-process

\d' { {A\a" .0} ifd = a, for some n

] otherwise

The process

is represented by the P;-process

{(a,{(an,0)}) | n e N}

Again, this is not a P;-process, because the above set is not compact. The process can also not be
represented by a Ps-process. The obvious candidate

! { {pn|n €N} ifad =a

1] otherwise
where
n {A" .0} ifa =a,
Pn = Aa. { 0 otherwise

i1s not a Ps-process, since the set
{pn|neN}

1s not compact.

3. FINITE PROCESSES

The three process domains are related to certain collections of finite (in depth) processes. It is
demonstrated that Py-; P»-, and Ps-processes correspond to general, finitely branching, and image
finite processes, respectively.

The set of processes of finite depth is introduced in

8 Introduction

DEFINITION 3.1 The set P of processes of finite depth is defined by

P =P Ine N}
where

e [0} itn=0
T P(Ax P otherwise

Obviously, each Pj-process is a Pj-process. The Pj-processes are endowed with the restriction of

the metric on the Pi-processes. The obtained metric space is not complete. For example, the sequence
(pn)n of Pr-processes defined by

[0 fn=0
bn = {(a,pn—1)} otherwise

is a Cauchy sequence but does not have a limit in P;* (the sequence converges to a process of infinite

depth). The metric completion of the metric space of P;-processes, which is denoted by]31;7 is shown
to be isometric to the process domain P; in

THEOREM 3.2]3? ~P.

PROOF See Theorem 2.11 of [BZ82]. |

The set of finitely branching processes of finite depth is introduced in the following definition, in
which Pg denotes the set of all finite subsets.

DEFINITION 3.3 The set Py of finitely branching processes of finite depth is defined by
Py =J{P|neN}

where

pr_ | {0} ifn=0
2 Pr(AX Py~Y) otherwise

Similarly, the metric completion of the metric space of P5-processes is proved to be isometric to
the complete metric space of Py-processes in

THEOREM 3.4 1/52:‘ >~ P

PROOF See Theorem 3.2 of [BZ83]. O
The set of image finite processes of finite depth is introduced in

DEFINITION 3.5 The set Ps of image finite processes of finite depth is defined by

Py =J{P} Inen)

4. Comparison of the process domains 9

where

pr_ {da -0} ifn=0
T A— P (Pyl) otherwise

The process domain P3 can be shown to be isometric to the metric completion of the metric space
of Pg-processes.
THEOREM 3.6 133:‘ = Ps.

PROOF Similar to the proofs of the Theorems 3.2 and 3.4. ad

4. COMPARISON OF THE PROCESS DOMAINS

The three process domains are related. It is shown that the process domain P can be isometrically
embedded in the process domain P; and that the process domain P3 can be isometrically embedded
in the process domain P;. Furthermore, if the action set A is finite, then the process domain P; can
be isometrically embedded in the process domain P; such that the diagram

id

)

. PSJ.
VN
G I

./ ./

id id

commutes. Consequently, if the action set A is finite, then the process domains Py, P>, and Ps are
isometric. If the action set A is infinite, then it can be proved that the process domains Py, P, and
P35 are not isometric.

The embedding ¢; from the process domain P to the process domain Pj is introduced in
DEFINITION 4.1 The embedding 7; : P, — Ps is defined by
it (p)=Xa-{i(p') | (a,p) €p}.

In order to prove the well-definedness of the above recursive definition of the embedding 7;, a
so-called higher-order transformation ¥;, is introduced in

DEFINITION 4.2 The higher-order transformation ¥;, : (P, —! P3) — (P —! P3) is defined by
@i, (¥)(p) = Xa-{&(p') | (a,p") €p}.

In order to be well-defined, the higher-order transformation ¥;, is restricted to nonexpansive func-
tions, i.e.

W € (Py —=' Py) — (Py =" Py).

10 Introduction

(The collection of nonexpansive functions from P, to Py, Py —! P, endowed with the restriction
of the metric on functions from P, to Ps is a complete metric space.) Although only continuity,
which 1s implied by nonexpansiveness, is needed in the well-definedness proof of the higher-order
transformation ¥, , the restriction induces half of the proof that the embedding ¢, is isometric (see
below). This higher-order transformation ¥;, can be shown to be contractive (here the idy in the
domain equation of process domain Pj is crucial). According to Banach’s theorem (cf. Theorem 1.2),
the higher-order transformation ¥;, has a unique fixed point which is the intended embedding 7;, i.e.

il = ﬁi’ (!p,,;l)

Consequently, i € P, —! P;. To show that the embedding 7; is isometric it is left to prove that, for
all p and p’,

d (i1 (p),1 (p')) = d(p,p').

This can be demonstrated by fixed point induction using Banach’s theorem.

The embedding 22 from the process domain P to the process domain P is introduced in
DEFINITION 4.3 The embedding is : P; — Pj is defined by
iz (p) = {(a,32(p")) [P' € p(a) }.

As the embedding 7;, also the embedding ¢ can be shown to be well-defined and isometric.

Assume the action set A is finite. Then the process domain P; can be isometrically embedded in
the process domain P,. The embedding i3 from the process domain P; to the process domain P; is
introduced in

DEFINITION 4.4 The embedding i3 : P, — P» is defined by
is (p) = {(a,i5(p")) [(a,p') € p}.

Also this embedding can be shown to be well-defined by means of a higher-order transformation. In
the well-definedness proof of the higher-order transformation the compactness of the process domain
Py is exploited. The process domain P; is compact, since the solution of a recursive domain equation
built from 1-bounded compact metric spaces (e.g., the finite action set A endowed with the discrete
metric), Py, X, and idy is a 1-bounded compact metric space as is proved in [BW93].

The embedding i3 can also be shown to be isometric. Furthermore, it can be demonstrated that
the above diagram commutes. For example, it can be proved that

d(ig0is01y,id) < §-d(ig0is0iy,id)
and hence i3 045 027 = id. As a consequence, the process domains P;, P, and P; are isometric.

THEOREM 4.5 If A is finite, then PL 2 Py, P» 2 Ps, and P; &2 P;.

Assume the action set is infinite. More precisely, assume A is equipollent to 2 T n, for some n, where
2 T n is defined in

5. Bisimulation 11

DEFINITION 4.6 The sets 2 | n are defined by

N ifn=0
2 T n= { 22T(n—1)

otherwise

The set 2 T w is defined by

QTWZUnE]NQTn.

The case n = 0, i.e. A &~ IN, is considered to be the most interesting case. The case n = 1, i.e.
A~ 2N ~ 1R, is also of interest when one considers real-time processes.

THEOREM 4.7 If A~ 21 n, for some n, then Py & Py, Po 2 P, and Py % P;.

The above theorem can be proved as follows. It can be demonstrated that P, Py, and P5 are
discrete spaces. Consequently, the weight of these spaces is equal to the cardinality of the spaces.
Since the weight of the metric completion of a space is equal to the weight of the original space, the
weight of P, P5, and P5 is equal to the cardinality of P{", P5, and P3. The weight of a space being
smaller than some cardinal number is a topological property. Because the cardinality of Py (2 1 n) is
strictly smaller than the cardinality of Py (21 (n+ 1)) and the cardinality of P5 is strictly smaller

than the cardinality of P/ (2 T w), it can be concluded that Pj, P, and ,ﬁg‘ are not isometric. From
the theorems of the previous section immediately follows that Py, P>, and P3; are not isometric.

5. BISIMULATION

The process domains can be viewed as labelled transition systems. The bisimulation relations on
these labelled transition systems induce bisimulation relations on the process domains. The process
domains are proved to be strongly extensional, i.e. the largest bisimulation relation - bisimilarity -
coincides with equality.

The process domain P; is turned into a labelled transition system of which the configurations are
Pj-processes, the labels are actions, and the transition relation is defined by

p Lp' if and only if (a,p') € p.
Bisimilarity on the process domain P; coincides with equality as is shown in

THEOREM 5.1 Py is strongly extenstonal.

PROOF See Theorem 1 of [GR89]. m|

A similar result is proved for the process domain P; in

THEOREM 5.2 P, is strongly extensional.

PROOF See [Rut92]. O

The process domain Ps is turned into a labelled transition system of which the configurations are
Ps-processes, the labels are actions, and the transition relation is defined by

12 Introduction

P Lp' if and only if p' € p(a).
Also the process domain P35 can be shown to be strongly extensional.

THEOREM 5.3 Ps is strongly extensional.

PROOF Similar to the proofs of the Theorems 5.1 and 5.2. a

6. SEQUENTIAL COMPOSITION

Some complications arising in the definition of the sequential composition of Pj-processes are pin-
pointed. Furthermore, it is shown that these complications do not arise in the definition of the
sequential composition of Ps-processes.

In Definition 4.4 of [BM88], the sequential composition of Pj-processes is defined by

DEFINITION 6.1 The operator ;: P x P — P; is defined by

a7 ifp=10
pap= {{a,p";0") | (a,p") €p} otherwise

This definition coincides with the operational definition of the sequential composition. (Note that
processes can be seen as labelled transition systems.) However, the above definition is not well-defined,

as Warmerdam ([War90]) showed (cf. Appendix A).
Also in Definition 2.14 of [BZ82], the sequential composition of Pj-processes is defined.

DEFINITION 6.2 For a finite process p, p;p’ is defined as in Definition 6.1, and for an infinite process p,
pip' =lim(pn];p')
where p [n] denotes the truncation of process p at depth n.

This definition is well-defined. However, the above definition does not coincide with the operational
definition of the sequential composition (cf. Appendix A).

For Ps-processes, the sequential composition is defined in

DEFINITION 6.3 The operator ; : Ps X P; — P5 1s defined by

a7 if p=2Aa-0
P3P = a- {p" ;9" |p" €p(a)} otherwise

The well-definedness of the above definition of the sequential composition can be proved along the
lines of the well-definedness proof of the embedding 71 in the fourth section of this paper.

Also in the definitions of the operators parallel composition, trace set, and fairification on P;-
processes similar complications arise (cf. [BK87, BBKMS84, Bre94]). These complications do not arise
in the definitions of the operators on Ps-processes (cf. [Bre94]). Also process domain P, does not give
rise to these complications (cf. [KR90]). However, unlike process domain Pj, process domain P, does
not allow an elementary modelling of image finite language constructions like random assignment (cf.

[Bre94]).

Concluding remarks 13

CONCLUDING REMARKS

In this concluding section, some related work is discussed and some points for further research are
mentioned.

A fourth process domain P, defined by the recursive domain equation Py 2 A — P (zd% (Py)) is

considered in [Bre94]. The process domain P, can be shown to be isometric to the process domain Py
(independent of the size of the action set A).

An alternative metric process domain is introduced by Golson and Rounds in [GR83, Gol84]. The
processes are Milner’s rigid synchronization trees endowed with a pseudometric. The pseudometric
is induced by the (strong) behavioural equivalence relation introduced in [Mil80]. This behavioural
equivalence relation and the bisimilarity equivalence relation considered in Section 5 do not coincide
(cf. [Mil90]). Golson and Rounds show that their process domain is isometric to the process domain
P; in case the action set is finite or countably infinite (for the countably infinite case, the power
set construction used in the domain equation defining P; should be restricted to the collection of
countable subsets).

In [Ole87], Oles defines a denotational semantics for a nonuniform language with the so-called angelic
choice operator. The mathematical domain of this denotational semantics is defined as the solution
of a recursive domain equation over bounded complete directed sets. For a uniform language with
the conventional choice operator, the mathematical domain defined by the recursive domain equation
P = A — Py (P) has been suggested ([Ole92]). This domain equation shows some resemblance with
the domain equation for process domain Ps.

Some topics for further research are the study of the process domains P;, P, and P; with the action
set endowed with an arbitrary complete metric instead of the discrete metric, and process domains
corresponding to general, finitely branching, and image finite processes for complete partial orders
and non-well-founded sets.

ACKNOWLEDGEMENTS

The author would like to thank Jaco de Bakker, Jan Rutten, and Fer-Jan de Vries for several discus-
sions and their comments on a preliminary version of this paper. Furthermore, the author is grateful
to Marcello Bonsangue, Frank Oles, Daniele Turi, and Erik de Vink for discussion.

REFERENCES

[ABKRR9] P. America, J.W. de Bakker, J.N. Kok, and J.J.M.M. Rutten. Denotational Semantics
of a Parallel Object-Oriented Language. Information and Computation, 83(2):152-205,
November 1989.

[Abro1] S. Abramsky. A Domain Equation for Bisimulation. Information and Computation,
92(2):161-218, June 1991.

[Acz88] P. Aczel. Non-Well-Founded Sets. Number 14 in CSLI Lecture Notes. Centre for the Study
of Languages and Information, Stanford, 1988.

[AR&9] P. America and J.J.M.M. Rutten. Solving Reflexive Domain Equations in a Category
of Complete Metric Spaces. Journal of Computer and System Sciences, 39(3):343-375,
December 1989.

[AR92] P. America and J.J.M.M. Rutten. A Layered Semantics for a Parallel Object-Oriented
Language. Formal Aspects of Computing, 4(4):376-408, 1992.

14

[Ban22]

References

S. Banach. Sur les Opérations dans les Ensembles Abstraits et leurs Applications aux
Equations Intégrales. Fundamenta Mathematicae, 3:133-181, 1922.

[BBKMS84] J.W. de Bakker, J.A. Bergstra, J.W. Klop, and J.-J.Ch. Meyer. Linear Time and Branch-

[BK87]
[BMSS]
[BR92]
[Bre94]
[BW93]
[BZ82]

[BZ83]

[Eng89]

[Gla90]

[Gla93]
[Gol84]

[GRS3]

[GRSY]

[KR90]
[Mil80]

[Mil90]

[MM79]

ing Time Semantics for Recursion with Merge. Theoretical Computer Science, 34(1/2):135—
156, 1984.

J.A. Bergstra and J.W. Klop. A Convergence Theorem in Process Algebra. Report CS-
R8733, CWI, Amsterdam, July 1987. Appeared in [BR92], pages 164-195.

J.W. de Bakker and J.-J.Ch. Meyer. Metric Semantics for Concurrency. BIT, 28:504-529,
1988.

J.W. de Bakker and J.J.M.M. Rutten, editors. Ten Years of Concurrency Semantics,
selected papers of the Amsterdam Concurrency Group. World Scientific, Singapore, 1992.

F. van Breugel. Topological Models in Comparative Semantics. PhD thesis, Vrije Univer-
siteit, Amsterdam, 1994. In preparation.

F. van Breugel and J.H.A. Warmerdam. Solving Recursive Domain Equations in a Category
of Compact Metric Spaces. CWI, Amsterdam. Preprint, to appear.

J.W. de Bakker and J.I. Zucker. Processes and the Denotational Semantics of Concurrency.
Information and Control, 54(1/2):70-120, July/August 1982.

J.W. de Bakker and J.I. Zucker. Compactness in Semantics for Merge and Fair Merge.
In E. Clarke and D. Kozen, editors, Proceedings of 4th Workshop on Logics of Programs,
volume 164 of Lecture Notes in Computer Science, pages 18-33, Pittsburgh, June 1983.
Springer-Verlag.

R. Engelking. General Topology, volume 6 of Sigma Series in Pure Mathematics. Helder-
mann Verlag, Berlin, revised and completed edition, 1989.

R.J. van Glabbeek. The Linear Time - Branching Time Spectrum. In J.C.M. Baeten and
J.W. Klop, editors, Proceedings of CONCUR’90, volume 458 of Lecture Notes in Computer
Science, pages 278-297, Amsterdam, August 1990. Springer-Verlag.

R.J. van Glabbeek. The Linear Time - Branching Time Spectrum II. To appear in Pro-
ceedings of CONCUR’93, Hildesheim, August 1993.

W.G. Golson. Denotational Models based on Synchronous Communicating Processes. PhD
thesis, University of Michigan, Ann Arbor, 1984.

W.G. Golson and W.C. Rounds. Connections between Two Theories of Concurrency:
Metric Spaces and Synchronization Trees. Information and Control, 57(2/3):102-124,
May/June 1983.

R.J. van Glabbeek and J.J.M.M. Rutten. The Processes of De Bakker and Zucker represent
Bisimulation Equivalence Classes. In J.W. de Bakker, 25 jaar semantiek, pages 243-246.
CWI, Amsterdam, April 1989.

J.N. Kok and J.J.M.M. Rutten. Contractions in Comparing Concurrency Semantics. The-
oretical Computer Science, 76(2/3):179-222, 1990.

R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer
Science. Springer-Verlag, 1980.

R. Milner. Operational and Algebraic Semantics of Concurrent Processes. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, volume B: Formal Models and
Semantics, chapter 19, pages 1201-1242. The MIT Press/Elsevier, Cambridge/Amsterdam,
1990.

G. Milne and R. Milner. Concurrent Processes and Their Syntax. Journal of the ACM,

A. Warmerdam’s counterexample 15

[Ole87]

[Ole92]
[Par81]
[Plo&1]
[Rut92]
[RZ92]

[War90]

26(2):302-321, April 1979.

F.J. Oles. Semantics for Concurrency without Powerdomains. In Proceedings of the 14th
Annual ACM Symposium on Principles of Programming Languages, pages 211-222, Mu-
nich, January 1987.

F.J. Oles, August 1992. Personal communication.

D. Park. Concurrency and Automata on Infinite Sequences. In P. Deussen, editor, Proceed-
ings of 5th GI-Conference on Theoretical Computer Science, volume 104 of Lecture Notes
tn Computer Science, pages 167-183, Karlsruhe, March 1981. Springer-Verlag.

G.D. Plotkin. A Structural Approach to Operational Semantics. Report DAIMI FN-19,
Aarhus University, Aarhus, September 1981.

J.J.M.M. Rutten. Processes as Terms: Non-Well-Founded Models for Bisimulation. Math-
ematical Structures in Computer Science, 2(3):257-275, September 1992.

J.J.M.M. Rutten and J.I. Zucker. A Semantic Approach to Fairness. Fundamenta Infor-
maticae, 16(1):1-38, January 1992.

J.H.A. Warmerdam, November 1990. Personal communication.

A. WARMERDAM’S COUNTEREXAMPLE

Warmerdam ([War90]) showed that the sequential composition of Pj-processes as defined in Defini-
tion 4.4 of [BM88] (cf. Definition 6.1) is not well-defined by proving that the set

{(a,p";p") [(a,p") € p}

is in general not closed. Here, Warmerdam’s counterexample is presented. Furthermore, this coun-
terexample is used to illustrate that the sequential composition as defined in Definition 2.14 of [BZ82]
(cf. Definition 6.2) does not correspond to the operational definition of the sequential composition.

Let Pj-process p be defined by

p={(a,p,)|necN}

where

Pn = {bna (aOa 0)7 B (an_la 0)7 (ana {(C7 (Z))})v (a71/+1ﬂ @)7 .- }

and

. { (b,0) ifn=0

(b, {b""1}) otherwise

16 A. Warmerdam’s counterexample
This P;-process p is depicted by
. !
_ {
7N, 71N 7 I\

0 1 2 e b agp a1 a PP b aog ai a2

SN TN T N
! ,') l zl) l
+ v v v +

|

b

!

Let P;-process p' be defined by
p' = {limc"}.

This P;-process p' is depicted by

= — s = —

According to Definition 4.4 of [BM88] (cf. Definition 6.1), the sequential composition of the P;-
processes p and p’ is defined by

p;p ={(a,py) | n €N}

where

p,r: = {bn ;p,7 (a’07p,)7 (alapl)7 .. }

and

b'n, oAl (b,pl) lf n=20
= (b, {b"71;p'}) otherwise

A. Warmerdam's counterexample 17

This process p ; p' is depicted by

|
b7 ao a1

_7IN. I\, 7 IN
D B N TS

- —
-~ a—
-~ a—
~<—a—
-~ —
-~—a—
e — -
- —
- —
-~ —
-~
N —

T
AN 2 2 T 2R Z 2 AN S SRR AR
.
A A A A 2 2 2 2 A AR

However, p; p' is not a Pj-process, since the set p;p' is not closed. The set p;p' contains the Cauchy
sequence ((a, p!!)),, but not its limit (a,p") where

p" = {limd", (a,p'), (a1,2), ..}

which is depicted by

-~ -~
<~o— .« <0—
e n— € a— -
<~ < o—

-~
-~

. e —
-~ —

The above counterexample also shows that the limit construction in the definition of the sequential
composition presented in Definition 2.14 of [BZ82] (cf. Definition 6.2) adds unexpected subprocesses;
the limit construction lim,, (p[n];p') adds subprocess (a,p").

