
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

ARM abstract rewriting machine

J.F.Th. Kamperman and H.R. Walters

Computer Science/Department of Software Technology

CS-R9330 1993

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CWI's Institutional Repository

https://core.ac.uk/display/301653996?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report CS-R9330
ISSN 0169-118X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

ARM

Abstract Rewriting Machine

J�F�Th�Kamperman
�jasper�cwi�nl�

H�R� Walters
�pum�cwi�nl�

CWI� P�O� Box ����� ���� AB Amsterdam� The Netherlands

Abstract

Term rewriting is frequently used as implementation technique for algebraic speci�cations�
In this paper we present the abstract term rewriting machine �ARM�� which has an extremely
compact instruction set and imposes no restrictions on the implemented TRSs� Apart from
standard conditional term rewriting� associative lists are supported� ARM code is translated
to �ANSI� C� the resulting execution speeds are good �on a sun�� an average of 	

 rewriting
steps per second and a maximum of ���

 r
s were measured�� Several benchmarks are
shown� and related work is discussed in depth�

���� CR Categories	 D���� �Programming languages�� Processors � Code generation� Com

pilers� Interpreters� Optimization� D���� �Programming Techniques�� Applicative �Func�
tional� Programming� D����� Logic Programming�

���� Mathematics Subject Classi�cation	 �	N�
 �Software�� Compilers and generators�
�	Q
�� Models of Computation� �	Q��� Rewriting Systems and �	Q��� Algebraic speci��
cation�

Keywords � Phrases	 abstract machine� term rewriting� benchmarking� algebraic speci�ca�
tion� program generator� C�

Note	 Partial support received from the European Communities under ESPRIT projects ����
�Compiler Generation for Parallel Machines � COMPARE� and ���� �Generation of Interactive
Programming Environments II � GIPE II��

� Introduction

Algebraic speci�cations can be used for the description and rapid prototyping of software sys�
tems when maintainability and reusability are key issues �BHK��� Hus���	 Term rewriting is
frequently used as implementation technique for algebraic speci�cations	 In this paper we present
the abstract term rewriting machine
ARM�� which has an extremely compact instruction set
and imposes no restrictions on the implemented TRSs	

The two major problems of term rewriting implementations � low execution speed and
reliance on supporting systems � are being approached in many di
erent ways
a discussion of
work related to ours appears in section ��	 There are few ideas underlying ARM which do not
appear elsewhere in some form or another	 This is not to say that ARM was developed as a
cocktail of existing ideas� most ideas occurred independently of the indicated references	 Yet�
our combination of factors results in a model which is elegant� concise and e�cient	 ARM has
� instructions
�� when counting variants�� without any additional built�in functionality	 To our
knowledge� the latter is a rare property	

ARM supports arbitrary TRSs� with� in addition� associative lists	 There are no restricions

like left linearity� orthogonality� on the TRSs	 ARM code is translated to portable
ANSI� C	

�

The resulting code performs in the order of ����� rewr�sec for an average� non�trivial TRS	 As
will be argued in the sequel� this is fairly e�cient� considering that few optimizations have been
implemented in our system
yet�	

In this article we will present the machine model of ARM� and describe its four instructions	
In section �� we will show some benchmarks� relating the exact timings of our implementation to
timings of comparable Prolog� ML and C programs	 Finally we will give an in�depth discussion
of related research projects and we will formulate some conclusions	

� ARM� the Abstract Rewriting Machine

Rewriting is an iterative process� which repeatedly attempts to recognize an instantiation of the
left�hand side of a rule	 Then� possibly after checking conditions
which involves a recursive
invocation of the rewriting process�� the established redex is replaced by an instantiation of the
right�hand side	

In accordance� ARM performs a cyclic process in which it is guided by an ARM program	
The programming language ARM has control structures for analyzing terms� recursively calling
the rewrite process� and generating new terms	 These control structures use and manipulate the
machine�s registers� stacks and heap	 There are no instructions to manipulate these memories
explicitly� nor can arithmetic or logic computations be performed� because ARM only concerns
rewriting	

The cyclic process can be described as follows	 Initially all function symbols in a subject
term are pushed in pre�order on a stack
called the control stack�� which for that moment may
be regarded as the input stack	 In general� no tree structures will be made by ARM for terms
which have not yet been processed	 Consequently� an actual tree representation is made only if
a term is a normal form	

Each cycle a symbol is taken from the control stack and is interpreted as the outermost
function symbol of a to�be�rewritten term	 The immediate sub�terms of this term are found

that is� if the function symbol is not a constant� on a second stack� the argument stack 	
As required the sub�terms are analyzed further� until a rewrite rule matches	 Then conditions
are checked and the corresponding right�hand side is substituted	 This is done by pushing the
appropriate symbols
and complete subterms of terms on the argument stack� on the control
stack	

If no rewrite rule matches� a normal form is constructed from the function symbol on the
control stack and the required number of terms from the argument stack	 Execution continues
until the control stack is empty� at which time the argument stack holds the normal form of the
input term	 Below� we will discuss this algorithm in more detail	

��� Machine Model

ARM has two stacks and a heap	 The ARM heap contains all tree data�structures	 A single
primitive exists for the creation of tree nodes	 Destruction occurs implicitly by a garbage
collector which removes inaccessible data	

The �rst stack is called the control stack� and it serves three purposes	 First� it contains all
function symbols still to be evaluated	 Initially it contains precisely all function symbols in the
subject tree� pushed onto it in a pre�x order	 Note that no tree parts have to be made for these
function symbols� because they will probably be rewritten anyway	

The second of the two stacks is the argument or parameter stack	 It contains the values

references to trees residing in the heap� of terms which have been normalized� and for which a
parent function symbol still has to be processed
built�in innermost reduction strategy�	

�

The second purpose of the control stack is to hold certain arguments	 Two stacks as described
above can not represent an arbitrary intermediate stage of the rewriting process	 Consider� as
an example� the intermediate result g
f
�a���f
�b���� where � � � � � indicates a reference to
a tree which has already been normalized� rather than a function symbol� and in which the
function symbols g� f and f have yet to be evaluated	 Split in the middle� this term can not be
distinguished from g
f
f
�a�����b��	

For this reason the control stack may also hold arguments� and when a rule is applied� the
instantiated right�hand side is entirely pushed on this stack� again in pre�x order	 That is� it
will contain the objects g� f� �a�� f and �b�� in that order	 If� at the beginning of a cycle�
ARM �nds a tree reference
i	e	 a normal form� on the control stack it is simply pushed onto
the argument stack and the next cycle may start	

The third purpose of the control stack is to hold control information such as the return
location after the evaluation of a condition� and some backtracking information for list matching	
This will be discussed where appropriate� in the sequel	

As an example� we will describe ARM�s normalization of plus�succ�zero��succ�zero��
in the TRS consisting of the rules�

plus�zero�Nat� � Nat

plus�succ�Nat���Nat�� � succ�plus�Nat��Nat���

In the pictures below� the two stacks are shown	 Initially� the control stack contains all function
symbols in the subject term	

control stack

stack
argument

empty

zero
succ
zero
succ
plus Step �� No rule for zero exists� so the default action is

taken� a tree node is built� and a reference to that node

symbolized by a triangle� is put on the argument stack	

plus
succ
zero
succ

zero Step �� Again no rules exist	 Since succ is a unary func�
tion� a single argument is taken o
 the argument stack�
and combined with succ into the tree succ�zero�	 A
reference to this tree is put back on the argument stack	

plus
succ
zero

succ
zero Step � � �� Again� no rules exist for zero and succ� and

the following situation results	

plus

zero
succ

succ
zero

Step �� Now� the control stack has plus on top� and
the outermost symbol of the �rst item on the argument
stack is succ	 Hence rule � applies	 After removing the
arguments of plus� its right�hand side is traversed in pre�
order� and all is pushed on the control stack	

�

zero
succ

zero

plus
succ

Step 	� Observe the distinction between� e	g	� plus�
which is a function symbol� and the tree that contains
zero	 Note that the trees that were pushed on the control
stack� will immediately be moved back to the argument
stack	 An
unimplemented� optimization is to directly
push onto the argument stack these trees	

plus
succ

zero
succ

zero Step
� Plus with zero as �rst argument results in the
second argument being pushed on the argument stack�
which is then combined with succ into the tree for
succ�succ�zero��	

succ
succ
zero

Step �� As we can see� the input term is normalized as
soon as the control stack is empty	 At this time� the
argument stack holds exactly one
reference to a� term	
This is the required normal form	

��� Language

The ARM language is a very simple� structural language	 It is mainly concerned with tree
matching� in particular� tree matching automata �HO��a� Wal��� can easily be expressed in
ARM	

The only non�standard feature is that of failures	 Almost every ARM statement is con�
ditional� it has a failure part and one or more success parts	 If the condition is met� the
corresponding success part is taken� otherwise the failure part is taken	 This failure part is
again an ARM statement	 Failures in ARM are comparable though not equivalent to �failure
edges� in tree matching automata as described in �HO��a�	 There� strong left sequentiality of
the patterns allows reuse of work even if the current match fails entirely	

Ultimately an ARM construct may fail� by some check or veri�cation failing to succeed�
indicating that it de�nes no further options	 In this case the failure part of the next enclos�
ing language construct is executed
which may again fail�	 When an instruction �nally �falls
through�� the default failure action is taken� the term under consideration is in normal form�
and a node is constructed to represent it	 In any ARM statement� the failure part may be left
out if no explicit failure action is de�ned	

To a limited degree� ARM has variables	 These are used to provide temporary names for
sub�terms of subject terms� but they can not be changed	 The values of these variables reside on
the argument stack	 In order to avoid confusion with variables in the underlying term rewriting
system� ARM variables will be called locals	

Finally� all function symbols de�ned in the signature of a term rewriting system� and the
number and kind of their arguments need to be indicated in an ARM program	 This is done
implicitly in the outermost ARM instruction	 No further declarations are needed	

�

����� The select statement

As discussed� the basic cycle of the ARM engine mainly concerns the recognition of a subject
tree� the outermost function symbol of which is on the control stack� and the immediate sub�
terms of which are on the argument stack	 ARM provides the following two variants of the select
statement to express this basic action�

select f ocase� ocase� � � � g
select source in f icase� icase� � � � g on failure� stat

where ocase looks like fsym � loc� loc� � � � � � stat � and icase looks like fsym � stat 	 Here� stat
is an ARM statement� fsym is a function symbol� loc is the name of a local subterm
i	e	 a term
residing on the argument stack�� and source indicates a function symbol in one of the terms on
the argument stack� and looks like�

loc �n� � � � nk 	

where loc is a local and �n� � � � nk 	 indicates a path in its value	 For example� X����	 indicates
the third sub�term of the second sub�term of the term referred to by X	

An entire ARM program consists of a single
outer� select statement� with each ocase clause
providing symbolic names for the immediate sub�trees of the subject tree
residing on the ar�
gument stack�	 The outer select statement does not have a failure clause� because failure to
process an outermost function symbol evokes the default action� creation of a node� taking its
arguments from the argument stack	 As mentioned� the failure part of an inner select statement
should be left out if no explicit failure action is de�ned for that statement	

As an example� consider the following term rewriting system�

f
g
X� a�� Y� � � � �

f
a� X� � � � �

g
b� X� � � � �

g
X� b� � � � �

This term rewriting system is represented by the following ARM program	

select

f�P�Q�� select P�	 in

g� select P��	 in

a� ���

a� ���

g�P� Q�� select P�	 in

b� ����

 on failure�

select Q�	 in

b� ����

�

����� The check statement

Using the select statement� it is possible to recognize instances of �xed� statically known terms�
but it is not possible to compare two statically unknown terms
e	g	 two sub�terms of a subject
term� as in or
X�X��	 For this purpose ARM provides the check statement	 It compares two
arbitrary terms� and looks like�

check mterm� � mterm� f stat g on failure� stat	

where � is either � or ��� and where mterm is a so�called meta�term	 A meta�term is a term in
which no variables may occur� but in which source indications may be used	

As an example� consider the condition f
X� � g
Y�� where the locals corresponding to the
variables X and Y are XX and YY	 This condition is checked by the arm statement�

check f�XX�	�
 g�YY�	� f ���� g on failure� ����

����� The let statement

The let statement is used to implement conditions in which new variables are introduced	 It
appears as

let loc
 mterm f stat g

The statement associates a new name with a given meta�term	 The term is normalized� and its
value is left on the argument stack	 It is accessed by using the name of the local	 This local
should not already have been de�ned in the enclosing statement	

����� The for statement

In ASF�SDF� lists are a prede�ned primitive	 Any argument of a function may be declared to
be a
possibly empty� or non�empty� list of some parameter sort� and variables of such list�sorts
may be introduced	 During rewriting� these variables will match sub�lists of the argument list	
A complication is that list�matching is non�deterministic	 Whereas ordinary matching either
succeeds or fails� and if it succeeds it does so for one speci�c substitution of the occurring
variables� a list�expression could match a subject term in more than one way	 As an example�
consider the list�expression �X� I� Y� I� Z�� where I is a variable of some arbitrary sort S� and
where X� Y and Z are
possibly empty� lists of S	 When this expression is matched against the
list �to� be� or� not� to� be�� two subtitutions exist for which the expression matches the subject�
X���� I��to�� Y��be� or� not� and Z��be�� and X��to�� I��be�� Y��or� not� to� and Z���	

Our implementation has to make sure that all possible subdivisions of a list have been
tried� before a rule can be rejected as non�applicable	 This is done by maintaining backtracking
information	 That is� if during matching of a left�hand side� or any condition� a list expression is
encountered� backtrack information is maintained which allows the implementation to remember
which alternatives have been checked	 Only when all alternatives have been exhausted should
the entire match fail	

ARM has a single construct for list matching� the for statement	 This statement has one of
the following two appearances�

for source
 �loc� n�	 loc� n�	 � � � �	 f stat g on failure� stat
for source
 �loc� n�	 loc� n�	 � � � �	 f stat g on failure� stat

For each sub�list in the corresponding list expression a new local loci is declared	 The
numbers n i indicate the minimal lengths of the corresponding sub�lists	 The symbol � indicates

�

that the last sublist is allowed to stretch above its minimal length� whereas � indicates that the
minimal length of the last sublist is also the maximal length	

Each local corresponds to a �stretching� sub�list
possibly with the exception of the last�	 All
singleton elements are considered to be part of the sub�list terminated by the next list�variable	
It is up to the enclosed statement to retrieve these singleton elements from the associated local�
and to check them further� if necessary	

Let us consider some examples	 Below are two list expressions� each with a corresponding
ARM statement	 In the list expressions� we assume that P and Q are variables ranging over
non�empty lists� and that X� Y and Z are possibly empty	 The locals PP� QQ� XX� YY and ZZ

correspond to the listpatterns P� �s�s�N���Q�� X� �i�Y� and �i�Z�� respectively	

P� s�s�N��� Q for L � �PP �� QQ � �	 f
select QQ�	 f

s� ����

X� i� Y� i� Z for L � �XX �� YY �� ZZ � �	 f
check YY��	 � ZZ��	 f ����

The for statement is executed by ARM as follows	 For each list variable in the clause an entry is
put on the argument stack� which is initialized to the suitable sub�list of the subject list
taking
the space used by explicit singleton elements� as indicated� into account�	 For example� given
the for statement

for L � �XX �� YY �� ZZ � �	 f� � � g

and the subject list ��� �� �� �� �	� the entries for XX� YY and ZZ are initialized to the empty
sub�list before �� the sub�list containing �� and the sub�list ��� �� �� ��	 Now matching can
be started	 If failure is indicated whilst matching the expression in the for statement� or at
any point in the body of the statement
this includes possible nested conditions�� then a special
�failure� action is taken� the sub�list variables are changed to re�ect the next possible division
of the subject list
in our example YY becomes ������ and ZZ becomes ��������	 Then the body
of the statement is started anew	 Only after all possible list divisions have been examined and
rejected� the failure part of the for statement is taken	

The above described procedure has a worst�case exponential complexity in the size of the
list expression	 Methods exist by which this theoretical complexity is reduced to polynomial
proportions �Eke��a�	 In practice� however� this exponential behavior rarely occurs	 In com�
mon cases� the simplicity of our matching algorithm outweighs the overhead incurred by more
sophisticated algorithms	

����
 The proceed statement

When an instance of a rewrite rule has been recognized� and all its conditions have been validated�
its right�hand side must be �instantiated�	 As mentioned earlier� this is done by placing function
symbols and already normalized sub�terms on the control stack	 After instantiation� all locals
on the argument stack are discarded	 This is done with the proceed statement� which looks like�

proceed mterm

The proceed statement does not have a failure part� applying a rule can not fail� and in term
rewriting there is no backtracking over the application of rules	 A summary of all arm statements
is given in the

table below�

�

A summary of ARM statements
Outer select� select focase�� � � g
Inner select� Source indicates subterm select source in ficase� � � � g on failure�stat

Equality and inequality of terms check m� � m
 fstatg on failure�stat

�Open ended� list matching for source � �loc� n�� � � � �� fstatg on failure�stat

List matching with �xed size last sublist for source � �loc� n�� � � � �� fstatg on failure�stat

Construction of a new term proceed mterm

� Compilation of TRSs into ARM programs

Translating rewrite rules to ARM instructions is a fairly straightforward process	 In �WK��
we describe the compiler ASF�C which transforms TRSs into ARM� and subsequently into a C
program	 ASF�C is an executable algebraic speci�cation� written in the ASF�SDF formalism
�BHK���	 ASF�C was successfully used to compile itself	

Here� we will only explain the process by showing an example TRS together with the ARM
program generated for it	 In general� an ARM program can only be constructed using all rules in
a TRS	 We will therefore assume that this example is a complete speci�cation� de�ning ordered
sets of integers	 In this speci�cation� gt�Nat��Nat�� only reduces to z�� if Nat� is strictly
larger than Nat�	 In the equations for sets fg� X�Y and Z are list variables	 Double elements in
sets are removed by the �rst equation� and all elements are sorted by the second equation	

gt�z�s�X�� � z��

gt�s�X��s�Y�� � gt�X�Y�

X i Y i Z
 �
X i Y Z

gt�j�i� � z�� ���

X i Y j Z
 �
X j Y i Z

select

z��� fail�

s�X��� fail�

gt�X��X���

select X��	 in

s� select X��	 in

z� proceed z���

s� proceed gt�X���	�X���	�

�

set�L��

for L � �L� �� L� �� L� � �	

check L���	 � L���	

proceed set��L������L������L�����	�

 on failure�

for L � �L� �� L� �� L� � �	

check gt�L���	�L���	� � z��

proceed set��L������L���	�L������

L���	�L�����	�

In the arm part of this example� it is assumed that the abstract name of a set is set� and lists
are indicated by rectangular brackets	 The notation L�n�� is used to indicate that a sublist
starting at n should be taken from the list L	 Note that the same list pattern occurs twice in the
ARM program above� conform what is currently generated by ASF�C	 An optimizing compiler
could combine these two for loops	

There is no check which veri�es if a list indeed occurs as the argument of the set function
symbol	 Failure would indicate a type error rather than a matching error	 In ARM� no type�
checking is done� since all type errors can be detected statically	 That is� if the program is
correct� and the input term is correct� then all results are also correct	

�

� C�Implementation

When a TRS is translated into an ARM program� there are basically two options	 The �rst
one is to feed it into an ARM interpreter� the second one is to compile it into object�code	 A
disadvantage of the �rst option is that it introduces an additional layer of interpretation� which
decreases speed	 A disadvantage of the second option� however� is the fact that compilation into
object code takes additional time	 In this section we will discuss the second approach	 We will
not go into much detail� merely sketching how the various constructs are implemented	 Note
that this C code is never meant to be generated by hand	

The choice of C as a target language is inspired by portability considerations	 It is likely
that a hardware speci�c approach
e	g	 ARM to ��K or SPARC� would yield better results	 The
main objection to C is the inaccessibility to the location of control�	 That is� it is impossible
to store and later retrieve the current location
this behaviour could be mimiced with function
calls� using function pointers� but that feature comes at a substantial price in e�ciency�	 Our
solution is to store location tokens
integers�� and to use these in a jump table	

Before we start an ARM�speci�c discussion� we would like to make notes on the compilation
time and the code size	 The code for one speci�cation contains only one big function	 Whereas
this removes the overhead for function calls completely� there is a potential danger resulting
from the non�linear complexity of the optimizations done in C compilers	 Currently� the C
compilation phase is the bottleneck in ASF�C� but this is even the case with all optimizations
switched o
	 The code size is negatively in�uenced by the use of macros for all basic actions in
ARM	 However� as it is put in �WB����

The usage of macros instead of subroutines produces more lengthy code but the
resulting program is much more e�cient	 All overhead of subroutine calls is avoided�
and instruction�prefetch queues and program caches of modern processors can be
used in an optimal way	

The main body of a program generated by ASF�C is an in�nite loop� which is entered after
initializing the control stack with
the function symbols of� an input term� and which is only
exited when that stack is exhausted	 The resulting normal form is the single item remaining on
the argument stack	

The basic mode of control is the C continue statement� which restarts ARM by re�starting
this loop	 Furthermore� failure cases simply follow success cases
which appear inside C control
structures such as if or switch�	 In this manner� control automatically reaches failure cases as
long as no explicit continue is performed	 The very last action in the loop� which is the most
general failure case� is the construction of a tree node using the supplied function symbol	

Function symbols are odd integers� whereas addresses in the heap are always even	 This is
a well�known technique to implement type tags without consuming additional space	 The �rst
action in the outer loop is to check whether the top element of the control stack is a function
symbol or a heap value	 In the latter case it is immediately placed on the argument stack� and
the loop is restarted	

The select statement can be translated directly to a switch statement	 The failure part
of the select is not placed in the default section� but immediately after the switch statement�
for it should be executed� for example� if a condition fails	 When a branch of the switch is
succesful� control will not reach the end of the switch� because continue is used	

The check statement is similarly translated to an if statement	 Again the failure part
appears after the if rather than in the else part	

�In gcc there is a non�standard operation to obtain the address of a label� which we have not used for portability

reasons

�

The for statement is not translated to the C for� because control may exit� and later re�enter
this loop� which is unde�ned in C	 Labels and goto�s are used for this purpose	 After pushing a
slot with proper initialization on the argument stack for each list variable� a label appears	 After
the code corresponding to the for body� but before its failure part� code is generated which goes
through all possible list divisions� each time updating the list items on the argument stack and
jumping to the label mentioned above	 After this code� we �nd the code corresponding to the
failure part of the for statement itself	

The proceed statement pushes function symbols and subterms corresponding to its argument
on the control stack and then enters the next cycle using C�s continue	

The check statement pushes a token for the current location on the control stack� followed
by the special operator
equal or inequal� and the symbols and subterms corresponding to its
arguments	 Then the next cycle is started using C�s continue	 When the special operator is
encountered�
in�equality of its arguments is tested� and control returns to the indicated location�
where the failure or the success branch is taken� depending on the result of the test	

The code for the let instruction is similar	 In a let� only the side without new variables is
pushed on the control stack	 On return� the result is on top of the argument stack� ready to be
investigated by the matching code generated from the other side of the condition	

� ARM on the testbench

The reader might expect here a comparison with the speeds reported for interpreters of TRSs�
or with those reported for compilers developed in various research projects which are similar to
ours �WB��� Ken���	 Considering the fact that the ASF�SDF interpreter is already one of the
fastest interpreters known to us �Eke��b�� and the fact that compiled code runs roughly �fty
times as fast as interpreted code� we will not pay attention to interpreted systems	

For two other reasons� we will also refrain from systematically comparing similar compilers
directly	 The �rst reason is that a lot of time is involved in obtaining versions of those systems
that run in our environment� installing them� and getting to know the formalisms	 Trying to
compare the systems on paper is an even more hopeless task	 In some cases� just the number of
reductions per second was given� without the rewrite system that was tested	 In other cases� the
rewrite systems were so simple� that only a few machine instructions were left after optimization	
Such tests tell more about the hardware they run on� than about the speed that can be expected
for an average rewrite system	

The second reason is that many of the other systems focus on speci�c optimizations� whereas
ASF�C does a very straightforward job	 Rough estimates indicate that some optimizations
in�
cluding generation of machine�speci�c code� will yield speeds comparable to those reported by
others	 Not withstanding these observations we have tried to evaluate �gures and considerations
in various publications	 A discussion is presented in section �	

Instead of the comparison above� we have attempted to make a fair comparison between
ASF�C and commercial or generally valued compilers for several other languages� C� ML� and
Prolog	 The speci�cations and programs we used� are ftp�able from the directory pub�gipe of
the site cwi�nl	 We would like to encourage every implementor of a system similar to ours to
run these speci�cations� and report on their �ndings	 For lazy functional languages� an extensive
set of benchmarks was studied in �Lan���	

Naturally� we have chosen a number of problems from domains where executable algebraic
speci�cations are an appropriate way to �nd solutions	 We stress that the results we found
are only meaningful within this domain	 Particularly with respect to the language C� we have
to remark that it is not well suited for the kind of problems that are solved using algebraic
speci�cations	 Because of its widespread use and portability� it is however a probable candidate

��

for the �nal implementation of the speci�cations	 ML and Prolog were chosen because they are
most likely to be considered as direct alternatives to writing executable algebraic speci�cations	
The versions of the compilers used are� GNU cc
gcc� version �	�	� without any optimization
�ags on� BIMProlog �	�� � and Standard ML of New Jersey version �� of �� november ���� which
generates native code for our sparcstation	 The C�code generated by ASF�C was compiled by
gcc �	�	� also without any optimization �ags on	

��� Criteria for language comparison

There are a number of caveats in trying to compare such immensely di
erent programming
languages	 Firstly� all languages considered have prede�ned abstract datatypes such as lists
and arrays� which are treated in a special way to improve e�ciency	 It is di�cult to �nd exact
equivalents of these features in all compared languages	 Moreover� the speed of a program that
makes extensive use of one of these special datatypes is a bad measure for the overall e�ciency
of the programming language under consideration	 For these reasons� we have refrained from
using other than basic datatypes while constructing the benchmarks	 It should be noted that
we do not even view integers as basic datatypes	 In fact only symbolic constants and tuples or
structs are used in the benchmark programs	

A second caveat is expressive power	 Even if only basic datatypes are used� most problems
occurring in the benchmarks have a �natural� solution in the languages considered	 E	g	 list
reversal is naturally solved by a recursive function in ML or a recursive predicate in Prolog�
but in C one would choose a while loop	 More involved is the non�trivial use of uni�cation or
nondeterminism in Prolog to solve certain problems	 It is hard to say how well these language�
speci�c styles of programming scale with program size� therefore we have chosen for a uniform�
functional� programming style in all languages considered	

A third caveat is the runtime behaviour of the programs	 In the executables that perform
garbage collection
ML and Prolog�� we have taken care not to measure garbage collection time	
In the C programs we allocate one private block of memory to eliminate the well�known overhead
incurred by the use of malloc	 Measurements of the system time do not give much information
and tend to show large variations	 Therefore� we have only measured cputime	

Finally� the kind of program could in�uence the relative speeds of the executables� every
compiler is expected to excel in a di
erent area	 We have distinguished seven factors that could

more or less independently� lead to di
erent relative speeds	

� The number of rewrite rules� This is a measure of the program size	 It is expected that
not all languages behave the same under an increase of program size	

� The number of function symbols� Especially for highly optimizing pattern�matching lan�
guages� this factor is expected to have in�uence	

� Average arity of functions� E
ects of the average arity are expected to correlate with the
e
ects of pattern size� amount of recursion and the overlap of patterns	

� Condition depth� This is the average number of conditions per rewrite rule	

� Overlap of patterns� The degree of overlap determines the time to �nd the correct match	

� Amount of recursion� This is expected to di
erentiate between functional and imperative
languages	

�One of the fastest WAM�based commercially available Prolog compilers

��

Table �� Aspects of the benchmarks
aspect� number number of arity condition overlap recursion pattern

benchmark of rules symbols depth size

nrev � � � � � �

nats �� �� �	�� � �	�

arm �� �� �	�� �	�� �� � �	��

� Pattern size� A measure of the e�ciency of the pattern matching	 We counted the number
of function symbols in the left�hand sides of rules and conditions	

Ideally� we could have sought seven problems that independently measure these factors and
also satisfy the constraint that only basic datatypes must be used	 Apart from the fact that
this proves to be very di�cult� writing and testing the �� resulting programs would have taken
up too much time	 Not knowing if these factors have di
ering relative importance doesn�t
encourage one to start the implementation e
ort	 Therefore� we have chosen to implement only
three problems� spanning the extremes for all factors� but not independently� naive reversal of
lists
nrev�� addition on a decimal representation of integers
nats�� and an interpreter for our
intermediate language ARM
arm�	

Whereas these three problems give a good impression of the average speed to be expected
of ASF�C� we also felt the need for a speci�cation that would show the highest speed possible�
comparable to the n�b problem for implementations of functional programming languages	 Due
to the fact that machine arithmetic is unavailable in ARM� it is impossible to write a speci�
�cation that results in a huge number of the simplest rewrite steps thinkable	 Therefore� in
the benchmark max� we embedded an equation causing such a simple rewrite step in a more
complex TRS� and measured the di
erence in execution speed of this TRS� and a TRS without
the simple equation	 This results in a maximum of ������ simple rewrite steps per second	

��� The benchmarks

In table �� we give an overview of the relevance of the abovementioned aspects for the three prob�
lems	 Most of the scores have been obtained simply by counting in the ASF�SDF speci�cations	
The scores that show ��s and �s only give relative judgements	

The arity� condition depth and pattern size are only static averages	 Though computing a
runtime average would probably yield slightly di
erent �gures� close inspection of the programs
shows that the relative order of the benchmarks with respect to these aspects would be the
same	 Therefore we have not bothered to measure the runtime averages	

The speci�cations in ASF�SDF were always the shortest and easiest to write	 The Prolog
and ML versions took a little bit more e
ort� the Prolog benchmark programs look less elegant
than their ASF counterparts because of the extra argument that must be added to pass the result
of a function	 The ML versions are a little bit more complicated because non�free constructors

occuring in the Nats benchmark� must be translated using both a de�ned and a constructor
function	 Only in the C versions we had the feeling to be bothered with an unnecessary amount
of low�level detail	 The ASF�SDF speci�cations can be found in appendix A	

��

��� The Measurements

In table �� we give the results of our measurements	 The machine used was a SparcStation ��

sun���� with ��MB internal memory� running SunOS �	�	�	 All measurements were performed
three times with inputs causing running times su�ciently large to show variation only in the
last digit	 If a loop was needed to obtain a longer running time� the same loop was run with a
dummy task and the resulting time subtracted	 The task given to nrev was to reverse a list of
length ��� for �� times� arm was given an ARM program to compute �!� and nats ����� times
added ����� to �����
this number was chosen to cause many carries during addition�	 The

Table �� Measurements
cputime� seconds�

Benchmark BIMProlog �	� NJsml �� �������� gcc �	�	� ASF�C

nrev �	�� �	�� �	�� �	��

nats �	�� �	�� �	�� �	��

arm ��	�� �	�� �	��

�rst thing to be observed is the last position of C� in the nrev and nats benchmarks	 The arm
benchmark has not been implemented in C� because we did not expect enough di
erence in its
execution time to justify the implementation e
ort	

Bearing in mind that the overhead involved when using malloc�� has already been elimi�
nated by using explicit memory management� we conclude that C is a bad alternative for direct
implementation of algorithms for symbolic computation	 To put it slightly di
erently� using C
for the �nal implementation of a speci�cation in one of the other languages can only be bene�cial
if knowledge of the speci�cation can be used to �nd representations that are much more e�cient
in C	

In the measurements for Prolog� it can be seen that the expressive power provided by Prolog�s
uni�cation and backtracking comes at a price� only in the case of nrev it can easily be inferred
that no backtracking information needs to be kept	 In the Prolog code for the arm interpreter�
we have even inserted �green� cuts to make explicit its deterministic character� otherwise the
code takes an order of magnitude more time and runs out of available memory	 Just like
the replacement of malloc in the C benchmark� the insertion of green cuts is a relatively cheap
transformation that can be performed using only super�cial meta knowledge of the speci�cation	

The ML compiler proved to be two to four times as fast as ASF�C	 Given the fact that
we have not implemented any optimizations such as generation of machine speci�c code�� tail
recursion elimination� partial evaluation� common subexpression elimination� use of constructor
information or even the prevention of unnecessary movements to and from the stack� we feel
that the results of ASF�C are satisfying and very promising	

� Related work

We are certainly not the �rst to remove a layer of interpretation from a term rewriting imple�
mentation	 Most of the ideas in our paper occur in some form in earlier work	 Therefore� we

�The reader may wonder how it is possible that the C program generated by ASF�C is faster than the

handwritten C program� This is because the generated program has an entirely di�erent structure� it consists

of one single function� allowing it to keep much information in registers� and it has its own stack and heap

management�
�According to the folk�lore� a factor of ��� can be gained by this technique�

��

will only claim an original combination of these ideas into a model that is very simple� fast�
powerful and nonrestrictive	 This is not to say that we developed ASF�C as a cocktail of existing
ideas� a more faithful representation is to say that we sometimes reinvented variants of existing
approaches	 With this in mind� we will discuss some compilers for formalisms similar to ours	

��� Compilers mapping functions one to one

In the �rst class of compilers we will consider� one target�language function is generated per
de�ned function in the TRS	 Compared to our approach� strong points of this approach are�

� A relatively easy interface with other software� because compiled functions can be accessed
as a library	

� The implicit call stack in the target language eliminates the need for an explicit control
stack	

� Separate compilation of modules or functions is relatively easy	 Incremental development
only requires relinking	

There are also disadvantages�

� No �ne tuning of control	 E	g� elimination of general tail recursion is impossible	

� The function call mechanism in the target language is more general� and consequently
slower� than what is needed in the generated programs	

� The memory management of the target language implementation caters for more than is
actually needed	 For example� garbage collection of LISP has to cope with cyclic structures�
which do not occur in TRSs	

Compilation of CTRSs into LISP programs is described in �Kap��� and �Dik���	 As in all other
compilers mentioned in this section� no built�in associative lists are provided� but otherwise
the formalism compiled has the same expressive power as ours	 Reliance on features of LISP�
especially the features used to implement the optimisations� makes this approach less portable
than ours	 It is di�cult to compare the timings given with ours	

In �Heu���� a compiler similar to Kaplan�s is described	 Matching sequences that can be
shown to always fail
by using the fact that subterms are always in normal form under an
innermost reduction strategy� are eliminated	 However� this optimization is only computable
for unconditional TRSs	

In �GHM���� compilation of CTRSs into PASCAL programs is described	 The formalism is
much more restrictive than ours� overlapping patterns� non�linearity� and non�free constructors
are not supported	 From the timings on a sun�� we estimate that the code would run at �����
r�s on our machine	

In �Gar���� compilation of the data part of LOTOS speci�cations into libraries of C functions
is discussed	 No non�free constructors are allowed� but a transformation to eliminate them is
given	

In �SG���� the compilation of OPAL to C functions is described	 A reference counting
RC�
scheme is used for garbage collection	 At compile time� the overhead of RC is decreased by
data�ow analysis� and at runtime� updates on a node with zero RC do not create garbage by
reusing the node	 The formalism is both stronger and weaker than ours	 Higher order functions
are supported� but overlapping patterns with backtracking over conditions lead to a duplication
of code	 The speed was measured on sun����
��MB� hardware� slightly more powerfull than

��

our machine	 The only benchmark that can be compared well is the Tree benchmark� form a
complete binary tree� �atten it� and reverse the resulting list � times	 For a tree of depth ���
this takes 	�� seconds without RC optimizations� and 	��� seconds with the RC optimizations	
Note that the �reverse� function
most frequently called in the example� pro�ts maximally from
the RC optimization� no space is consumed at all	 Our code takes 	�� seconds for Tree	

In �Sch���� rewrite rules are translated into an abstraction of imperative programming lan�
guages� �if�then�else� structures	 The algorithm is claimed to be very similar to �Aug���� but
it is optimized with respect to the domain over which the function should be compiled	 An
interesting point is that the algorithm may give more e�cient code when non�free constructors
are allowed	

��� Compilers mapping to an abstract machine

The idea to use an abstract machine as an intermediate level for compilation is widespread in
the area of functional programming languages �Ken��� FW��� CCM��� and logic programming
languages
many commercial implementations of Prolog are based on WAM� the Warren Ab�
stract Machine �AK����	 However� most of these machines are an order of magnitude more
complicated than ARM	 In the case of the WAM� this is because uni�cation and general back�
tracking available in Prolog are much more di�cult to implement than matching and the limited
form of backtracking that occurs in ASF�SDF	 In the case of functional languages� higher order
functions are the complicating factor	 For all machines� we will give the number of run�time
parameters
program counter� stack pointers and pointers to other spaces� and the number of

parameterized� instructions	 ARM has four runtime parameters� and four
two of which have
two variants� instructions	

In �WB���� compilation of the data part of LOTOS into code for LATERM
Lazy Abstract
TErm Rewriting Machine� implemented by macro�s in ����� assembler� is described	 A speed of
������ r�s on a sun����� is claimed� but it is not clear which TRS was used for this measurement	
The formalism is much more restrictive
TRSs must be unconditional� stable� and left linear�	
LATERM is more complicated than ARM� it has variable bindings� � reduction strategies� �
run�time parameters and �� instructions	

In �KI���� attention is focussed on the e�cient implementation of functions on recursively
de�ned datastructures without function activation records	 To cater for this� two extra stacks
are needed	 The abstract machine has � parameters and �� instructions	 The TRS may not
contain non�free constructors� patterns must be less than two deep� and in each de�ned function�
all constructor cases must appear	

In �Str��� SSD���� CTRSs in the class of forward branching
FB� programs are compiled to
EM code	 The class FB is less restrictive than strong left sequentiality �HO��b�� but still a subset
of strongly sequential programs �HL���	 EM has � instructions and an unbounded number of
registers	 The matching automaton is extended by taking righthand sides into account� several
rewrite steps are combined into one matching cycle	 From the explicit handling of registers� it
appears that the abstraction level of EM is a bit lower than ARM	

Finally� we will consider some abstract machines used for the implementation of
higher order�
functional programming languages	 In most of these machines� a functional framework is ad�
hered to as long as possible� whereas in our approach� the only intermediate level
ARM� is
already imperative	 Landin�s SECD machine �Jon��� is the �rst abstract machine for functional
languages and a source of inspiration for many others	 Here� we will only discuss some modern
descendants	

As �Jon��� notes� all implementations of functional languages make use of built�in functions
to implement pattern matching� though this is not a theoretical necessity	 In an attempt to

��

compare the numbers of instructions available in the several abstract machines� it should be
kept in mind that ARM needs no built�in functions at all� the four instructions described in
section � form a complete set	

The simplest architecture for functional languages is the Three Instruction Machine
TIM��
described in �FW���� which has three
parameterized� instructions and three run�time parame�
ters	 The operational behaviour of TIM shows a remarkable similarity to ARMS�s� apart from
the use of frames� dictated by the higher order features� and the absence of a second stack which
could be viewed as an optimization in ARM	

Another class of machines is based on Turner�s SK machine �Tur���� which implements
the lambda calculus using combinatorial logic	 An example is the Categorial Abstract Machine

CAM�� described in �CCM���	 It has � instructions and � runtime parameters� and it is claimed
that compiling CAM code to machine�speci�c code yields faster code than an equivalent C
program	

Finally� the ABC machine �Ken���� used in the implementation of Clean �vENPS���� based
on graph rewriting� has three stacks� a descriptor store� a program counter� a program store�
�� instructions for rewriting� and a still larger number to handle basic values	 No non�free
constructors are allowed	 Impressive speeds are claimed for machine speci�c implementations
on stock hardware	 On a sun������ ������ function calls per second were measured	 A direct
comparison with our results is hard� because the benchmark
n�b� uses machine arithmetic in
an esential way	 Of our benchmarks� max
������ r�s on a sun�� most closely corresponds to
n�b	

	 Conclusions and future work

In this paper� we have presented an abstract machine for the implementation of conditional term
rewriting systems with associative lists	 We do not claim fundamentally new ideas� but we do
claim a combination of several ideas into a model that is simple� fast� powerful and nonrestrictive	
Summarizing section �� we note that simplicity is re�ected in the complete lack of prede�ned
functions� the small number of both instructions and run�time parameters and the ease of both
the compilation from ASF�SDF into ARM and from ARM into C	 The speed shows from the
benchmarks	 Direct handling of associative lists� and the handling of overlapping patterns by
failure parts make ARM a powerful machine	 The fact that non�free constructors�
negative�
conditions� new variables in conditions� non�left�linearity� overlapping and deep patterns are
allowed� only adds to this power	
From a software engineering point of view� we conclude from the benchmarks� that

� The speci�cations in ASF�SDF were the shortest and most readable	 Of course� we are
not the most objective judges of the readability of ASF�SDF speci�cations	

� ML produces the fastest code� but it is to be expected that future optimizations will narrow
the gap between ML and ASF�C	

� Using C for a straightforward implementation of a speci�cation does not bring e�ciency	
Only if meta knowledge is used to �nd e�cient representations� an e�ciency gain may be
expected	

� If a speci�cation can be easily written using the expressive power available in ASF�SDF
or ML� there is no reason to use Prolog with its more powerful features	

In the future� we will add some optimizations to the current implementation of ASF�C	

��

� The simplest optimization was already mentioned� decreasing the vacuous tra�c of normal
forms from the control stack to the argument stack	

� This can be generalized to the immediate construction of terms if
parts of� the right hand
side of a rewrite rule are known to be in normal form	

� Then there is a notion of matchless rewriting� deducing from a right hand side what
matching steps will be taken in the following cycle� and immediately jumping to the
corresponding position in the arm program	

� In the C�version of the arm program� some other small optimizations concerning the use
of registers can be done	

� Lastly� there is the possibility of machine�speci�c code generation	

Another path of research is concerned with reducing the compilation time	 Currently� the main
bottleneck is the speed of the C�compiler	 A cure for this problem is interpretation� instead of
compilation� of ARM	 The speed of compiled speci�cations will decrease as a result of this� but
�exibility will increase signi�cantly	 To overcome the decrease in speed� it could be worthwile
to investigate the combination of interpreted code for incremental changes and compiled code
for the stable part of a speci�cation	

A The speci
cations used for benchmarking

A�� Nrev

�a	� append
nil�X� � X

�a
� append
cons
X�Y��Z�

� cons
X�append
Y�Z��

�n	� nrev
nil� � nil

�n
� nrev
cons
X�Y��

� append
nrev
Y��cons
X�nil��

A�� Nats

In the Nats benchmark� the equations labeled z�i and d�j de�ne addition on digits� and the
equations n�k de�ne addition on composite numbers
composed by the function nat�	 The
left argument of nat must be interpreted as being multiplied with one power of �� more than
the right argument� the equation c�� removes leading zero�s� and the equation c�� takes care
that the right argument of a nat term in normal form always contains only one digit	 Thus
plus�nat�nat���������nat������ yields as normal form nat�nat��������� easily interpreted
as representing ���	 A more detailed analysis of a similar speci�cation for binary numbers�
including a proof of termination� can be found in �Wal���	

�z�	� plus
��X� � X

�z�
� plus
X��� � X

�d�	� plus
	�	� �

�d�
� plus

�	� � �

�

�

�d��	� plus
���� � nat
	���

�n�	� plus
nat
B�S��X�

� nat
B�plus
S�X��

�n�
� plus
X�nat
B�S��

� nat
B�plus
S�X��

�c�	� nat
B	�nat
B
�S��

� nat
plus
B	�B
��S�

�c�
� nat
��S� � S

��

A�� A �ARM interpreter in ASF�SDF

The speci�cation presented in this section serves a dual purpose	 Firstly� it is a non�trivial
speci�cation that involves considerable amounts of matching during execution	 Secondly� it
gives a formal speci�cation of the operational semantics of a somewhat restricted version of
ARM	 �ARM supports only functions with arity ��� or �
higher arities can be dealt with by
compoundingmultiple arguments into tuples or lists �� and no for construct is supported	 �ARM
will be used in an experiment where speci�cations with associative lists are transformed into a
speci�cation with only cons lists	 Nevertheless� �ARM shows almost all interesting aspects of
ARM� especially the failure handling	

�� Module Terms

imports Layout

exports

sorts FSYM MTERM

context�free syntax

ap�
 FSYM � �� MTERM

ap	
 FSYM� MTERM � �� MTERM

ap

 FSYM� MTERM� MTERM � �� MTERM

void �� MTERM

��� �� FSYM

�s� �� FSYM

��� �� FSYM

��� �� FSYM

��� �� FSYM

variables

Fsym������� �� FSYM

Mterm������� �� MTERM

In the module Terms� terms with a function symbol and �� � or � children are represented using
the functions ap�� ap� and ap�
cf	 the meta�terms on page ���	 The function void is used
only where a placeholder for a tree is needed	 For the sake of readability� a �xed number of
suggestive function symbols is provided in the benchmark
�� �� �� s and ��	 A more realistic
speci�cation would provide an in�nite supply of function symbols	

�� Sources

imports Terms

exports

sorts INDEX LOC PATH

context�free syntax

funof
 MTERM � �� FSYM

zero �� INDEX

one �� INDEX

two �� INDEX

here �� PATH

down
 INDEX� PATH � �� PATH

retrieve
 PATH� MTERM � �� MTERM

loc
 INDEX� PATH � �� LOC

at
 LOC � �� MTERM

variables

Path������� �� PATH

Loc������� �� LOC

Index������� �� INDEX

equations

�Funof��� funof
ap�
Fsym�� � Fsym

�Funof�	� funof
ap	
Fsym�Mterm�� � Fsym

��

�Funof�
� funof
ap

Fsym�Mterm�Mterm��� � Fsym

�Retrieve�here� retrieve
here�Mterm� � Mterm

�Retrieve�one	� retrieve
down
one�Path��ap	
Fsym�Mterm�� � retrieve
Path�Mterm�

�Retrieve�one
� retrieve
down
one�Path��ap

Fsym�Mterm�Mterm��� � retrieve
Path�Mterm�

�Retrieve�two
� retrieve
down
two�Path��ap

Fsym�Mterm�Mterm��� � retrieve
Path�Mterm��

In the module Sources� access to the components of terms
possibly living on the argument
stack� is de�ned	 The function symbol of a term can be obtained with the function funof	

An INDEX is used for three purposes	 Firstly� an index is used to indicate the arity of a
term to be created by a create or a proceed instruction	 Secondly� an index is used in a PATH

to indicate which child should be taken to �nd a particular subterm	 The function retrieve

actually retrieves such a subterm	 Thirdly� an index is used to indicate a position on the
argumentstack in the function loc	 With at� a subterm of a term on the argumentstack can
be obtained	 Note that sources are added to the sort MTERM� thus extending the sort to exactly
what is needed in the proceed statement	

�� Arm

imports

Layout Terms Sources

exports

sorts

VALUE STACK CASE STAT ARM

context�free syntax

fsym
 FSYM � �� VALUE

tree
 MTERM � �� VALUE

mt �� STACK

psh
 VALUE� STACK � �� STACK

select
 LOC� STAT � �� STAT

cases
 CASE� STAT � �� STAT

case
 FSYM� STAT � �� CASE

proceed
 INDEX� MTERM � �� STAT

create
 INDEX� FSYM � �� STAT

arm
 STACK� STACK� STAT � �� ARM

eval
 ARM � �� ARM

arm case
 FSYM� STAT� STACK� STACK� STAT � �� ARM

arm execute
 STAT� STACK� STACK� STAT � �� ARM

arm process
 MTERM� MTERM� MTERM� STACK � �� STACK

nfof
 ARM � �� MTERM

variables

Val������� �� VALUE

Stack������� �� STACK

�MA�S���� �� STACK

Case������� �� CASE

Stat������� �� STAT

Arm������� �� ARM

equations

�Eval�tree�

eval
arm
psh
tree
Mterm��MS��AS�Stat�� � eval
arm
MS�psh
tree
Mterm��AS��Stat��

�Eval�fsym�

eval
arm
psh
fsym
Fsym��MS��AS�Stat�� � eval
arm case
Fsym�Stat�MS�AS�Stat��

�Case�this�

��

arm case
Fsym�cases
case
Fsym�Stat��Stat	��MS�AS�Stat��

� arm execute
Stat�MS�AS�Stat��

�Case�further�

Fsym �� Fsym� ���

arm case
Fsym�cases
case
Fsym��Stat��Stat	��MS�AS�Stat��

� arm case
Fsym�Stat	�MS�AS�Stat��

�default�Case�

arm case
Fsym�Stat�MS�AS�Stat��

� arm execute
Stat�MS�AS�Stat��

�Select�	�

retrieve
Path�Mterm	� � Mterm�

funof
Mterm� � Fsym ���

arm execute
select
loc
one�Path��Stat��MS�psh
tree
Mterm	��AS��Stat��

� arm case
Fsym�Stat�MS�psh
tree
Mterm	��AS��Stat��

�Select�
�

retrieve
Path�Mterm
� � Mterm�

funof
Mterm� � Fsym ���

arm execute
select
loc
two�Path��Stat��MS�

psh
tree
Mterm	��psh
tree
Mterm
��AS���Stat��

� arm case
Fsym�Stat�MS�psh
tree
Mterm	��psh
tree
Mterm
��AS���Stat��

�Proceed���

arm execute
proceed
zero� Mterm��MS�AS�Stat��

� arm
arm process
Mterm�void�void�MS��AS�Stat��

�Proceed�	�

arm execute
proceed
one� Mterm��MS�psh
tree
Mterm	��AS��Stat��

� arm
arm process
Mterm�Mterm	�void�MS��AS�Stat��

�Proceed�
�

arm execute
proceed
two� Mterm��MS�psh
tree
Mterm	��psh
tree
Mterm
��AS���Stat��

� arm
arm process
Mterm�Mterm	�Mterm
�MS��AS�Stat��

�Create���

arm execute
create
zero� Fsym��MS�AS�Stat��

� arm
MS�psh
tree
ap�
Fsym���AS��Stat��

�Create�	�

arm execute
create
one� Fsym��MS�psh
tree
Mterm��AS��Stat��

� arm
MS�psh
tree
ap	
Fsym�Mterm���AS��Stat��

�Create�
�

arm execute
create
two� Fsym��MS�psh
tree
Mterm	��psh
tree
Mterm
��AS���Stat��

� arm
MS�psh
tree
ap

Fsym�Mterm	�Mterm
���AS��Stat��

�Process���

arm process
ap�
Fsym��Mterm	�Mterm
�MS�

� psh
fsym
Fsym��MS�

�Process�	�

arm process
ap	
Fsym�Mterm��Mterm	�Mterm
�MS�

� arm process
Mterm�Mterm	�Mterm
�psh
fsym
Fsym��MS��

�Process�
�

arm process
Mterm�Mterm	�Mterm
�psh
fsym
Fsym��MS�� � MS� ���

arm process
ap

Fsym�Mterm�Mterm���Mterm	�Mterm
�MS�

� arm process
Mterm��Mterm	�Mterm
�MS��

�Process�arg	�

��

arm process
at
loc
one�Path���Mterm	�Mterm
�MS�

� psh
tree
retrieve
Path�Mterm	���MS�

�Process�arg
�

arm process
at
loc
two�Path���Mterm	�Mterm
�MS�

� psh
tree
retrieve
Path�Mterm
���MS�

�Normal�Form�

nfof
arm
MS�psh
tree
Mterm��AS��Stat�� � Mterm

The module Arm starts with the de�nition of the values that can be found on the control and
argument stacks� function symbols and
references to� trees	 A STACK is either empty
mt� or
contains a value pushed on another stack
psh�	

Arm continues with the constructor functions that de�ne ARM programs	 A select contains
a list of cases constructed with the function cases	 A proceed has an extra INDEX argument that
indicates the arity of the function in the current case of the outer select� apart from the meta�
term that must be proceeded	 The create statement creates a node with the required arity and
function symbol	 The function arm represents an ARM machine together with the program it is
running	 The extra argument in proceed� and the create function are not present in ordinary
ARM	 In �ARM� they are needed� because ocasionally� when a proceed or a construction of a
normal form takes place� it is otherwise not known to the interpreter how many arguments must
be popped o
 the argument stack	

The evaluation of an ARM program is de�ned by the function eval	 If a
reference to a� term
is found on the control stack� it is moved to the argument stack	 If a function symbol is found�
the correct case in the outer select is found by arm case� to be evaluated by arm execute	
Otherwise� a normal form has been reached
the control stack is empty�� or an error has occurred	
In this case� eval just returns the state of the ARM machine	

arm execute executes the statement in its �rst argument� using the control and argument
stacks in its second and third argument	 In the fourth argument� the statement to be executed
on failure is passed	 The most complicated statement is the proceed statement� which leads to
the processing
by arm process� of a meta�term� a recipe for an update on the control stack	
Finally� nfof extracts the computed normal form from the argument stack	

References

�AK��� Hassan A"#t�Kaci	 Warren�s Abstract Machine� A Tutorial Reconstruction	 The MIT
Press� ����	

�Aug��� Lennart Augustsson	 Compiling pattern matching	 In J	P	 Jouannaud� editor� Func

tional Programming Languages and Computer Architecture� volume ��� of Lecture
Notes in Computer Science� pages ��� ���	 Springer�Verlag� ����	

�BHK��� J	A	 Bergstra� J	 Heering� and P	 Klint� editors	 Algebraic Speci�cation	 ACM Press
Frontier Series	 The ACM Press in co�operation with Addison�Wesley� ����	

�CCM��� G	 Cousineau� P	�L	 Curien� and M	 Mauny	 The categorical abstract machine	 In
J	�P	 Jouannaud� editor� Functional Programming Languages and Computer Archi

tecture� volume ��� of Lecture Notes in Computer Science� pages �� ��	 Springer�
Verlag� ����	

��

�Dik��� Casper H	S	 Dik	 A fast implementation of the algebraic speci�cation formalism	
Master�s thesis� Faculty of Mathematics and Computer Science� University of Ams�
terdam� February ����	

�Eke��a� S	M	 Eker	 Associative matching for linear terms	 Report CS�R����� Centrum voor
Wiskunde en Informatica
CWI�� Amsterdam� ����	

�Eke��b� S	M	 Eker	 A comparison of obj� and asf�sdf	 Report CS�R����� Centrum voor
Wiskunde en Informatica
CWI�� Amsterdam� ����	

�FW��� Jon Fairbairn and Stuart Wray	 Tim� A simple� lazy abstract machine to execute
supercombinators	 In Gilles Kahn� editor� Functional Programming Languages and
Computer Architecture� volume ��� of Lecture Notes in Computer Science� pages
�� ��	 Springer�Verlag� ����	

�Gar��� Hubert Garavel	 Compilation of lotos abstract data types	 In S	T	 Vuong� editor�
Formal Description Techniques� II� pages ��� ���	 Elsevier Science Publishers B	V	

North�Holland�� ����	 IFIP� ����	

�GHM��� A	 Geser� H	 Hussmann� and A	 M"uck	 A compiler for a class of conditional term
rewriting systems	 In S	 Kaplan and J	�P	 Jouannaud� editors� Proceedings of the
First International Workshop on Conditional Term Rewriting Systems� volume ���
of Lecture Notes in Computer Science� pages �� ��	 Springer�Verlag� ����	

�Heu��� Thierry Heuillard	 Compiling conditional rewriting systems	 In S	 Kaplan and J	P	
Jouannaud� editors� Proceedins of the First International Workshop on Conditional
Term Rewriting Systems� volume ��� of Lecture Notes in Computer Science� pages
��� ���	 Springer�Verlag� ����	

�HL��� G	 Huet and J	�J	 L$evy	 Call by need computations in non�ambiguous linear term
rewriting systems	 Rapports de Recherche ���� INRIA� ����	 To appear as� Com�
putations in Orthogonal Rewriting Systems� Part I and II� in J	L	 Lassez and G	
Plotkin� editors� Computational Logic� essays in honour of Alan Robinson� MIT
Press� ����	

�HO��a� C	M	 Ho
mann and M	J	 O�Donnell	 Pattern matching in trees	 Journal of the
ACM� ��
����� ��� ����	

�HO��b� C	M	 Ho
mann and M	J	 O�Donnell	 Programming with equations	 ACM Transac

tions on Programming Languages and Systems� �
����� ���� ����	

�Hus��� H	 Hussmann	 The Passau RAP system� rapid prototyping for algebraic speci�ca�
tions	 In S	 Kaplan and J	�P	 Jouannaud� editors� Proceedings of the First Inter

national Workshop on Conditional Term Rewriting Systems� volume ��� of Lecture
Notes in Computer Science� pages ��� ���	 Springer�Verlag� ����	

�Jon��� Simon L	 Peyton Jones	 The Implementation of Functional Programming Languages	
Prentice�Hall� ����	

�Kap��� S	 Kaplan	 A compiler for conditional term rewriting systems	 In P	 Lescanne�
editor� Proceedings of the First International Conference on Rewriting Techniques�
volume ��� of Lecture Notes in Computer Science� pages �� ��	 Springer�Verlag�
����	

��

�Ken��� R	 Kennaway	 The speci�city rule for lazy pattern�matching in ambiguous term
rewrite systems	 In N	 Jones� editor� ESOP ���
 Proceedings of the Third European
Symposium on Programming� volume ��� of Lecture Notes in Computer Science�
pages ��� ���	 Springer�Verlag� ����	

�KI��� H	 Klaeren and K	 Indermark	 E�cient implementation of an algebraic speci�cation
language	 In M	 Wirsing and J	A	 Bergstra� editors� Proceedings of the METEOR
workshop on Algebraic Methods� Theory� Tools and Applications� Passau �
� volume
��� of Lecture Notes in Computer Science	 Springer�Verlag� ����	

�Lan��� Koendert Gustaaf Langendoen	 Graph Reduction on Shared
Memory Multiproces

sors	 PhD thesis� University of Amsterdam� ����	

�Sch��� Ph	 Schnoebelen	 Re�ned compilation of pattern�matching for functional languages	
Science of Computer Programming�
������� ���� ����	

�SG��� Wolfram Schulte and Wolfgang Grieskamp	 Generating e�cient portable code for a
strict applicative language	 In Phoenix Seminar and Workshop on Declarative Pro

gramming� Hohritt �Sasbachwalden� Germany�� Lecture Notes in Computer Science	
Springer�Verlag� ����	 to appear	

�SSD��� David Sherman� Robert Strandh� and Ir%ene Durand	 Optimization of equational
programs using partial evaluation	 ACM SIGPLAN Notices� ��
����� ��� september
����	

�Str��� Robert Strandh	 Classes of equational programs that compile into e�cient ma�
chine code	 In M	 Dershowitz� editor� Rewriting Techniques and Applications� third
international conference� Lecture Notes in Computer Science� pages ��� ���	 ����	

�Tur��� D	A	 Turner	 A new implementation technique for applicative languages	 Software
Practice and Experience� ���� ��� ����	

�vENPS��� Marko van Eekelen� Eric Nocker� Rinus Plasmeijer� and Sjaak Smetsers	 Concurrent
clean	 Technical Report ������ University of Nijmegen� November ����	 Version �	�	

�Wal��� H	R	 Walters	 On Equal Terms� Implementing Algebraic Speci�cations	 PhD thesis�
University of Amsterdam� ����	

�WB��� Dietmar Wolz and Paul Boehm	 Compilation of lotos data type speci�cations	
In E	 Brinksma� G	 Scollo� and C	A	 Vissers� editors� Protocol Speci�cation� Test

ing� and Veri�cation� IX� pages ��� ���	 Elsevier Science Publishers B	V	
North�
Holland�� ����	 IFIP� ����	

�WK� H	R	 Walters and J	F	Th	 Kamperman	 A self�ful�lling prophecy� design and imple�
mentation of a compiler for algebraic speci�cations	 to appear	

��

