Binary Snapshots

J-H Hoepman, J. Tromp
Computer Science/Department of Algorithmics and Architecture

CS-R9319 1993

https://core.ac.uk/display/301653979?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Binary Snapshots

Jaap-Henk Hoepman
jhh@cwi.nl

John Tromp
tromp@cwi.nl

cwi
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract

This paper considers the shared memory wait-free atomic snapshot object in its simplest form where each
cell contains a single bit. We demonstrate the ‘universality’ of this binary snapshot object by presenting an
efficient linear-time implementation of the general multibit atomic snapshot object using an atomic binary
snapshot object as a primitive. Thus, the search for an efficient (subquadratic or linear time) wait-free atomic

snapshot implementation may be restricted to the binary case.

AMS Subject Classification (1991): 68M10, 68Q22, 68Q25

CR Subject Classification (1991): B.3.2, B.4.3, C.1.2, D.1.3, D.4.1, E.1

Keywords € Phrases: snapshot, shared memory, atomicity, linearisability, wait-free implementations
Note: Partially supported by the Dutch foundation for scientific research (NWO) through NFI Project AL-
ADDIN, under contract number NF 62-376

1. INTRODUCTION

Consider a concurrent shared memory system. A snapshot memory object shared between
n processes is a vector of n memory cells, one ‘owned’ by each process. All processes can
independently and concurrently write to (update) the cell they own, and all processes can
‘instantaneously’ collect (scan) all values in the vector in a single operation.

The problem of implementing a wait-free atomic snapshot object was independently pro-
posed and solved by Anderson [And89a, And89b, And90] and Afek et al. [AAD"90]. Anderson
gives an exponential time! solution to this problem using single-writer multi-reader registers,
and also considers the multi-writer case in which more than one process may update a par-
ticular cell. In his solution for the multi-writer case he uses the single-writer snapshot object
as a primitive, so his solution does not rely on multi-writer multi-reader registers. Afek et
al. give a polynomial time implementation of a single-writer atomic snapshot object, also
using single-writer multi-reader registers. They also consider the multi-writer case, but give
a solution using multi-writer multi-reader registers instead.

'Tn the literature on this subject the time complexity is usually measured by the number of shared register
accesses per operation as a function of the number of processes.

2. The Model 2

The atomic snapshot memory object is a powerful tool to construct other atomic wait-free
objects, for instance counters, logical clocks, or bounded concurrent time-stamp schemes.
Aspnes and Herlihy [AH90] give a general method to convert a sequential specification of
a shared memory object that satisfies certain constraints to a wait-free implementation of
that object using an atomic snapshot memory object as a primitive. They also give a a
polynomial-time implementation of a wait-free atomic snapshot object.

The main question remains whether it is possible to deterministically implement an atomic
snapshot object with single-writer multi-reader registers such that the time complexity of
both the update and the scan operations is linear. Much research has focused on affirm-
ing this, by imposing certain restrictions on the applicability of the solutions. In [KST91],
Kirousis et al. present a linear-time solution for the case in which no two scans ever over-
lap. Dwork et al. [DHPW92] introduce the weaker time-lapse snapshot object, and give a
linear time implementation of this object. Time-lapse snapshots satisfy the same properties
atomic snapshots do, except that the former allow concurrent scans to contradict each other.
In [ISS92], Israeli et al. present linear-time implementations for either the update or the
scan operations, or for unbalanced systems in which the number of updaters is substantially
smaller than the number of scanners, or vice versa. Finally, Attiya et al. [AHR92] intro-
duce the lattice agreement decision problem and show that a solution to this problem can be
converted to a wait-free atomic snapshot implementation.

In this paper we take a similar approach, and reduce the general atomic snapshot problem to
a simpler one. We present a bounded, linear time construction of a wait-free implementation
of the general atomic snapshot object from an atomic wait-free binary snapshot object (where
each cell can contain only two values) and a small amount of safe and regular single-writer
registers. Thus the search for an efficient atomic snapshot implementation may be restricted
to the binary case.

We will use a proof technique proposed in [AKKV88], also used in [LTV89] to prove the
correctness of some atomic register constructions. The technique is a derivation of Lamport’s
system as described in [Lam86], where his two precedence relations precedes and can affect
are replaced by a single interval order. We first present the model in section 2, then we state
the atomic wait-free snapshot problem in section 3. The protocol is presented in section 4,
and is proven correct in section 5.

2. THE MODEL

A concurrent shared memory system is a collection of sequential processes communicating
asynchronously through shared memory data structures. At any time a process is executing
at most one action. A process can at any time decide to start a new action when it is idle, or
to finish an ongoing action. The start time of an action a is denoted by s(a) and the finish
time by f(a).

We model an execution of the shared memory system by a tuple (A, —), where A is the
set of all executed actions ordered by — such that a precedes b, a — b, if f(a) < s(b). We
require for any execution (A, —) that for any a € A there are only a finite number of actions
b € A with =(a — b). This way we require an execution to start at some point in time,
rather than extending into the infinite past [Lam86, AKKV88]. With this definition, — is

3. Atomic Snapshot Memories 3

a special kind of partial order called an interval order (i.e. a transitive binary relation such
that if a — b and ¢ — d then @ — d or ¢ — b). Now we have abstracted away from the actual
time an action occurred, and we can specify the behaviour of actions involving access to the
shared memory in terms of the interval order.

If one wishes to implement a certain compound shared memory object, one first assumes
a set of primitive shared memory objects used in the implementation. Every operation on
the compound object is implemented by a protocol which invokes actions on these primitive
objects. Using the compound object will result in an implementation execution. Since every
operation on the compound object is implemented by a sequence of actions on the primitive
objects, an implementation execution induces a basic execution (.4, —) on the shared memory
system. In an implementation execution we model an operation as the set of actions it invokes.
The implementation execution itself is modeled by a tuple (O,-%), where O contains all
operations invoked during the execution, and where for operations A, B € O, A > B iff all
actions a € A precede all actions b € B in (A, —).

3. ATOMIC SNAPSHOT MEMORIES

A snapshot memory object on n processes is a vector of n memory cells. A process P; can
both write a new value to the i-th cell in the vector or instantaneously collect all values in the
vector in a single operation. In the first case it performs an update-operation, in the latter
case it performs a scan-operation.

We require our implementation to be wait-free to allow maximal concurrency, and failure-
resiliency in the case of crash-failures. An implementation is wait-free if and only if all update
and scan operations performed by any process will complete in an a priori bounded number
of steps, regardless of the behaviour of the other processes.

Secondly, we require our implementation to be atomic. This means that all operations must
appear to take effect at one instant of time during the actual time the operation executed?.
This allows us to ‘shrink’ the actual execution interval of an operation to a point, and we
require a scan to return the values written by the most recent preceding updates. The next
paragraph formalises this.

Let O be the set of all scan and update operations invoked in an implementation execution
(O, %) of a snapshot object. Assume for ease of presentation that O includes n initialising
updates, one per processor, that precede all other operations in @. The implementation of
an atomic snapshot object is correct if for any of its executions (O, %) we can extend - to
a total order == such that for all scan operations S € O, S returns for any cell ¢ the value
written by the last update U; € O executed by P; preceding S in =%,

4. THE SOLUTION

In the next two sections we give our implementation of the n process wait-free atomic snap-
shot object. The architecture describes all primitive shared memory objects used by the
protocols—one for each type of operation on the shared memory object. The architecture

2Although here we refer to the global time model for its more intuitive appeal, we will actually prove
atomicity by linearisation (cf. [Lam86], and the previous section).

4. The Solution 4

also specifies the initial values of the primitive objects, the operations each process is allowed
to perform on them, and the type of values it holds.

The intuition behind our implementation is quite straightforward: Suppose update oper-
ations of P; write the new value alternatingly to two registers val;[0] and wval;[1] (this idea
was independently put forward by Haldar and Vidyasankar [HV92]), after which they use an
update on the binary snapshot to inform the scans of the position they wrote to. A scan first
performs a scan on the binary snapshot, and tries to read the values from the registers val; at
the positions returned by the binary scan. As later updates may overwrite values before they
are read by a concurrent scan, updates perform a scan operation as well, the result of which
they write in the register view;. A scan uses a handshaking mechanism to detect overwriting
updates, in which case it copies the view written by an interfering update.

4.1 The Architecture

Our implementation of an n process atomic snapshot memory—with cells of type T—will
use one n process binary atomic snapshot object with operations B-Update; and B-Scan;,
performed by process P;. Each cell of this binary snapshot object is initially 0. In addition
to this, our n-process atomic snapshot protocol will use the following shared registers. For
eachi e {1,...,n}:

e 2 safe registers of type T', val;[0] and wal;[1], written by process P; and read by all.
Initially, val;[1] may be arbitrary, but val;[0] must be initialised to the desired initial
value of cell 7 of the snapshot vector.

e 1 regular register, view; (an n-value vector with elements of type T'), written by process
F; and read by all, initially arbitrary.

e for each j € {1,...,n}: a safe bit ¢;; (the ‘complement’-bit), an atomic bit s;; (the
‘start’-bit) and a regular bit e;; (the ‘end’-bit). All written by process P;, read by
process P; and initially 0.

4.2 The Protocols
Each of the n processes P; can execute both updates and scans according to the following
protocols

Procedure Update,;(value) Procedure Scan;

b:=1-1b for j € {1,...,n} do

write val;[b] «— value write ¢;; « 1—(read s;;)

B-Update;(b) b[1..n] := B-Scan;

for j € {1,...,n} do for j € {1,...,n} do
write s;; < (read ¢;;) read v[j] < val;[b[j]]

write view; < Scan; if ¢;; = (read sj;) = (read ej;)

for j €{1,...,n} do then return (read view;)
write e;; <« si; return v[l..n]

The Update-protocol uses local variables j (ranging over {1,...,n}), and b, a static bit
variable initially 0, which retains its value inbetween successive invocations of the protocol.

5. Proof of Correctness 5

The Scan-protocol uses local variables b (an n-bit vector), j (ranging over {1,...,n}), and v
(an n-value vector with elements of type T').

A few words on the programming notation are in order. Some assignments involve both a
write and a read or Scan. These are to be executed sequentially, the read/Scan first and then
the write. E.g. ‘write s < (read c)’ is shorthand for ‘ read ¢ < ¢; write s < ¢’. This should
not to be confused with read-modify-write operations that execute atomically. We assume
that the value of a shared register written by a process also belongs to that process’s local
state. This means that the value of for instance the shared variable c;; in the Scan-protocol
need not be explicitly read. The return statements in the Scan-protocol serve to return the
indicated value to the caller, and to terminate the protocol immediately.

The for loops are indexed over a set to make clear that the n loop bodies may be in-
terleaved arbitrarily. Since the registers accessed in the loop bodies are all disjoint, such a
for statement can also be interpreted as a do-in-parallel construct. Thus the parallel time
complexity [AGTV92] of snapshots equals the parallel time complexity of binary snapshots
(up to a constant factor).

5. PROOF OF CORRECTNESS

To prove correctness we assume the usual correctness conditions on the read write registers
that we use in our implementation. We also assume the correctness of the atomic binary
snapshot object used by our implementation. I.e. in an execution (A, —) we assume there
exists a total order = extending — such that every binary scan BS returns for bit 7 the value
written by the last binary update BU; executed by P; preceding BS in =-.

We write U for Update and S for Scan. For operation O € {U, S, BU, BS}, OF denotes
the z-th execution of O by process P;, including scans S; that are invoked by some update
U?. These scans are sometimes written as USY. Note that BS? is invoked by S7, and BU}
is invoked by UF. O contains all invocations S7 and UF for i € {1,...,n} and > 0. Note
that this also includes updates U that wrote the initial values for the cells i, and scans US?
invoked by updates U;.

If scan S7 sees c;; = (read s;;) = (read ej;), then process P; (or some update Uj) is said
to interfere with S7’. A scan is direct if no process interferes with it. S contains S;-’ iff
s(S7) < s(8¥) < f(S¥) < f(Sf). The next lemma shows that direct scans will return correct
values.

Lemma 1 Assume P; does not interfere with some scan ST, and let ST scan the value b[j]

updated by some U, i.e. BU]-y = BS? = BU;-H'I. Then the value val;[b]j]] read by ST was
written there by U;j .

Proof: Assume scan S does not see ¢;; = (read s;;) = (read ej;) and that BS} scanned
the value b[j] for cell j updated by BU;-’, ie. BUJ?-/ = BS? = BU;-H'I.

The write of wal;[b] by U} precedes BUY in —, and the read of wal;[b] by S7 follows BS?
in —. Since BUY = BS}, we have =(BS7 — BUY), so the write of val;[b] by U! precedes

[
the read of it by ST. So if S does not read the value written by UY it must be concurrent

5. Proof of Correctness 6

with or occur after a write to val;[b] by a later update U7 Note that this later update cannot

be U;f’H, since this update will write to val;[1 — b].

Suppose the read of val;[b] is concurrent with or occurs after a write to it by an update
U?, z > y+1. Now BS} = BU;-’H, so by a similar argument as before the read of c;; by

U;-’H occurs after the write of ¢;; by S in —. U;-’Jr1 writes the value of ¢;; to s;; and later
to e;; before S{ reads these, since the read of val;[b] by S7 is concurrent with or occurs after
a write to it by update U7. Now the values of ¢;j, sj; and ej; must be equal, and as long as
S7 does not finish, ¢;; will not change. This implies that any later writes to s;; and ej; will
not change their value and thus, as they are atomic and regular, S should see ¢;; = (read
sj;) = (read ej;), a contradiction. [|

The next lemma shows that scans that cannot collect the values directly due to interfering
updates can copy the result from such an interfering update. This interfering update will
have stored the result, called a view, of a direct scan contained in the interfered scan.

Lemma 2 If process P; interferes with scan S, then the view S copied from view; is the
result of a direct scan S, contained in Sy .

Proof: Since S} sees c¢;; = (read s;;) and sj; is atomic and S} sets ¢;; = 1—(read s;;),
there must be an update U]‘y that changed s;; after Si read s;;. This implies that the scan
US]y of ij started after S¥ did. Note that after ij changes s,;, e;; holds the old value of sj;
which is unequal to the current value of sj;. Then if S also sees ¢;; = (read ej;), U} must
have written ej; before or concurrent with the read of e;; by Sf. This implies that ST reads
view; after the result of US? was written to it by UY. This also shows that S contains this
US?. Note that view; must be a regular register, since views written by later updates may
interfere with the read of the view by S7. [|

We conclude by proving the correctness of our implementation of the atomic snapshot
object. The implementation is obviously wait-free.

Theorem 3 For any ezecution (O,->) there exists a total extension == of > such that any
scan S with U == Sf == U;?H'l returns for cell j the value written by UY.

Proof: For direct scans S7, let 5(S¥) = BS?. For indirect scans S¥ that copied the view
collected by a direct scan S;-’ (see lemma 2), let B(S¥) = BS;-’. Finally, for updates, let
p(U) = BUY.

For any two A, B € O, define A == B if 3(A) = B(B). Note that neither A == B nor
B =% A iff 3(A) = B(B). By lemma 2, 3(S) occurs inside S for any indirect scan S. This

implies that if A % B we have §(A) = 3(B) and thus A == B. So == extends %. Now
extend == to a total order.

If for some scan S¢, UY =2 S¢ =2 U¥™, then BUY = B(SF) = BU!*" by the definition
of 3 and == (Note that if 3(A) = 8(B), then both A and B are scans). If S¥ is a direct scan,
then 5(S¥) = BS? and by lemma 1 the theorem is proved. If S¥ is not a direct scan, then it

copied the result from a direct scan S7, and thus 3(S7) = BS;. But again by lemma 1 the
theorem is satisfied. []

6. Future Research 7

6. FUTURE RESEARCH
Further research might be directed at finding an implementation of atomic binary snapshots
with subquadratic or linear time complexity.

It is interesting to note that all atomic snapshot implementations we are aware of use at
least O(n) registers with O(nv) size (where v is the maximal number of bits contained in any
cell of the snapshot object). However, Dwork et al. [DHPW92] have shown that for time-
lapse snapshots O(n?) registers with size O(n + v) suffice. It is an interesting open question
whether registers with size O(nv) are necessary to implement atomic snapshot objects.

REFERENCES
[AADT90] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic
snapshots of shared memory. In 9th PODC, pages 1-13, Aug. 1990.

[AGTV92] Y. Afek, E. Gafni, J. Tromp, and P. M. B. Vitdnyi. Wait-free test-and-set. In 6th
WDAG, LNCS 647, pages 85-94. Springer Verlag, Nov. 1992.

[AH90] J. Aspnes and M. P. Herlihy. Wait-free data structures in the asynchronous pram
model. In 2nd PAAA, pages 340-349, July 1990.

[AHR92] H. Attiya, M. Herlihy, and O. Rachman. Efficient atomic snapshots using lattice
agreement. In 6th WDAG, LNCS 647, pages 35-53. Springer Verlag, Nov. 1992.

[AKKVS88] B. Awerbuch, L. M. Kirousis, E. Kranakis, and P. M. B. Vitdnyi. On proving
register atomicity. In 8th FSTTCS, pages 286-303, 1988.

[And89a] J. H. Anderson. Composite registers. Technical Report TR-89-25, Department of
Computer Science, The University of Texas at Austin, Sept. 1989.

[And89b] J. H. Anderson. Multiple-writer composite registers. Technical Report TR-89-26,
Department of Computer Science, The University of Texas at Austin, Sept. 1989.

[And90] J. H. Anderson. Composite registers. In 9th PODC, pages 15-29, Aug. 1990.

[DHPW92| C. Dwork, M. Herlihy, S. A. Plotkin, and O. Waarts. Time-lapse snapshots. In
Israel Symposium Theory of Computing and Systems, LNCS 601, pages 154-170.
Springer Verlag, May 1992.

[HV92] S. Haldar and K. Vidyasankar. Elegant constructions of atomic snapshot variables.
Unpublished manuscript, May 1992.

[ISS92] Amos Israeli, Amnon Shaham, and Asaf Shirazi. Linear-time snapshot protocols
for unbalanced systems. Technical Report CS-R9236, CWI, Sept. 1992.

[KST91] L. M. Kirousis, P. Spirakis, and P. Tsigas. Reading many variables in one atomic
operation: Solutions with linear or sublinear complexity. In 5th WDAG, LNCS
579, pages 229-241. Springer Verlag, Oct. 1991.

[Lam86] L. Lamport. On interprocess communication part i: basic formalism. Distr.
Comput., 1(2):77-85, 1986.

[LTV89] M. Li, J. Tromp, and P. M. B. Vitdnyi. How to share concurrent wait-free vari-
ables. Technical Report CS-R8916, CWI, Apr. 1989.

