Termination and confluence of rule execution

M.H. van der Voort, A.P.J.M. Siebes
Computer Science/Department of Algorithmics and Architecture

CS-R9309 1993

https://core.ac.uk/display/301653967?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Termination and Confluence of Rule Execution

Leonie van der Voort, Arno Siebes
CWI
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

{leonie,arno}@cwi.nl

Abstract

Rules provide the functionality for constraint enforcement and view maintenance. A provably
correct implementation of both issues based on rules, requires confluent and terminating behaviour of
the rule set. However, little work has been done so far on the static detection of these properties. In
this paper, a design theory for rule sets in an OODBMS is developed.

This paper introduces two predicates, viz., Terminate(n) and Independent, which imply respectively
termination and confluency. Both predicates are characterised under two kinds of rule execution se-
mantics: set and instance based. The decidability of the predicates is proven and it is shown that set
and instance based semantics coincide whenever the rule set is independent and terminates. Moreover,
sufficient conditions of low algorithmic complexity for both Terminate(n) and Independent under both
kinds of semantics are given.

1991 CR Categories: H.2.1[Information Systems]: Logical Design- data models; H.2.3[Information
Systems|: Languages- data description languages(DDL); data manipulation languages(DML);

Additional Keywords and Phrases: Rule design theory, Triggers, Active Databases

1 Introduction

A DBMS becomes active through the addition of rules or triggers. Rules allow specification of data
manipulation operations that are executed automatically when certain conditions are met. They offer a
flexible, unifying mechanism for common database management tasks, like constraint enforcement and
view maintenance. As a consequence, a number of proposals for incorporating rules into DBMS’s appeared
recently [16, 4, 6, 3,9, 5, 2, 11, 12].

The correct implementation of constraint enforcement and view maintenance based on rules requires
that the set is confluent and terminates [15]. A rule set terminates if its execution terminates on all
database states. A terminating rule set is confluent if for each initial database state dby the order of rule
execution does not influence the final database state db;. That is, db; is uniquely determined by dby and
the rule set. Confluency of rule sets is thus similar to confluency of rewrite systems [7] in that the execution
order is immaterial. The difference, however, is that a rule sets behaviour is affected by the underlying
database state, and a rule set is confluent if it is confluent on all database states.

Whether a rule set is confluent or terminates depends, of course, on the rule execution semantics. There
are two pre-dominant models in the literature: set and instance based semantics. Set based semantics
means processing all qualifying objects at a time, while instance based semantics means processing one
qualifying object at a time. The choice between either one is mainly based on the computational model of
the underlying DBMS and on the functionality of anticipated applications.

Rule interaction can be quite intricate. For example, rules may mutually activate or deactivate each
other. This complicates static detection of properties such as termination and confluency. It is therefore
necessary to develop a design theory which simplifies their analysis at design time. The relevance of such a
theory is also endorsed by [1, 2, 5, 8, 13]. However, little work has been done so far on their development.

This paper introduces a design theory for rule sets in the context of of an object oriented data model.
Tt is focussed on two predicates, i.e. Independent and Terminate(n), under both pre-dominant execution
semantics.

Rule sets are Independent, if their members are pairwise independent. Two rules R; and Ry are
independent if the sequential execution of R; after Ry results in the same database state as the execution
of Rs after R;. In other words, the executions of R; and Ry commute. Terminating independent rule sets
are confluent.

For example, consider a database populated by cells together with rules paint_red and paint_blue. Rule
paint_red selects red cells from the database and paints them orange and rule paint_blue selects blue cells
from the database and paints them green. Initially paint_red and paint_blue select different cells. Further-
more, painting a cell by paint_red never causes a cell to be repainted by paint_blue and vice versa. Thus,
for each database the execution of paint red followed by paint_blue results in the same database as when
the execution order was the other way around and consequently they are independent.

Termination of rule execution is enforced by Terminate(n) to express that rule execution terminates in
n steps. The steps are related how often a rule executes (set semantics) or how often an object is subject
to rule execution (instance semantics). For example, the execution of paint_red and paint_blue terminates
in one step under both set and instance based semantics because each selected cell is painted with a color
such that it is never again selected by either paint_red or paint_blue.

The prime result of this paper is that recognition of both Independent and Terminate(n) is decidable
under both rule execution semantics. Moreover, it is shown that for terminating, confluent rule sets set
and instance based semantics coincide. Finally, as the algorithmic complexity of our decidability proof is
unpractically high, sufficient conditions of low complexity are provided for both predicates.

The decidability proofs are based on typical database states (tdb). A tdb is a database state such that
whenever a condition holds after rule execution in tdb, it holds in every database state after rule execution.

Whereas the decidability proofs are of a model-theoretic nature, our sufficient conditions are proof-
theoretic. The sufficient condition for independence of two rules is based on mutual respect of each others
select set and updates. That is;, whenever the updates of a rule Ry do not affect the select set and the
updates of a rule Ry and vice versa, Ry and Ry are independent. For example, reconsider the rules paint_red
and paint_blue. The execution of paint_red never removes a cell from or adds a cell to the select set of
paint_blue and vice versa. Furthermore, they always have a disjoint select set. Thus they are independent.

The sufficient condition for Terminate(n) is based on the notion of a flag. Intuitively, objects with
a raised flag are selected by a rule’s query. The execution of the rule’s action gradually lowers the flag.
Whenever a flag is lowered in less than n action executions, Terminate(n) holds. For a set of rules,
terminate(n) holds if it holds for all rules and the flags are all private. Rule R has a private flag, if only
rule R can (un)set the flag. For example, the red color of a cell is the flag of paint_red. As this color is
changed by one action execution paint(new_color=orange), Terminate(1) holds for paint_red.

Related work

Preliminary work on a design theory for rules have been published recently [11, 17, 15, 10]. In the context
of the RDL rule system, Simon and deMaindreville [11] formulate a condition under which set and instance
based rule execution coincide. Zhou and Hsu [17] describe a trigger (= rule) definition language and give
it semantics such that conflicts in trigger execution results in an execution-abort. Under these semantics,
a condition for confluency of trigger behaviour is formulated. Aiken, Widom, and Hellerstein [15] discuss
the confluence and termination of rules in the context of the STARBURST rule system, which has set
based rule execution semantics. For both properties they formulate sufficient conditions based on the
static analysis of read and write sets of rules.

Our design theory differs in several ways from the work mentioned above. The prime difference is that
we proof the static detection of two important predicates to be decidable.

Furthermore, the difference between set and instance based semantics as described in [11] is taken into
account in our design theory as well. But besides establishing a condition under which both coincide, we
also consider termination and confluency. Our theory aims at the static detection of these properties to

guarantee well-behaved execution, which in our opinion excludes execution-aborts. In this respect we differ
from [17].

Our work is closest to that of Aiken, Widom, and Hellerstein. Similar, we discuss confluence and
termination, but we deal with both execution semantics. Moreover, for the rules as defined in Section 2,
we refine detection of these properties in two ways. Not only do we prove that our, weaker, predicates are
decidable. Our resulting sufficient conditions for termination and confluency are also sharper.

Outline

Section 2 introduces a simple object oriented data model together with our rules. The definition of In-
dependent and Terminate(n) together with a condition under which both semantics coincide are given
in Section 3. Section 4 discusses the decidability of the predicates and section 5 describes the sufficient
conditions. Finally, in section 6 we conclude and discuss future work.

2 Data and rule model

This section provides a brief overview of the simple object oriented data model and rule language used
in this paper through some examples; for a full report see [14]. The data model is not meant to be yet
another object oriented data model, it is just a reflection of the common concepts in this area.

Data model

A Class definition describes the properties and behaviour of its objects through Attributes and Methods.
The attributes consist of a name and a type. Each class induces a simple type and these can be combined
inductively with tuple and set constructors to obtain complex types. The methods are of a simple nature;
they assign new values to attributes of an object. An example is the class cell defined by:

Class cell
Attributes
no: Integer
color: String
neighbors: (left: cell, right: cell)
Methods
paint_cell(new_color: String) = self except color := new_color
Endclass

As usual, a hierarchy is as usual a set of classes, defined directly or through (multiple) inheritance. A
database state is a set of objects. Fach object belongs to one or more classes. In this paper, we as-
sume some fixed hierarchy. The universe of its database states is denoted by DB, with typical elements
db, dby, dby, dbs, - - -.

Let m be a method from a class C with header m(ly : 71,1, : 7,) A method-call for m is an expression
of the form: m(l; = ey, -1, = e,) with each e; € F_ezpr and e; : C — 7. The execution of a method-call
m by an object o is denoted by o(m).

Queries are formulated through the definition of query classes. A query class is a class, derived from
a superclass using a selection condition. This condition identifies the objects from the superclass that are
member of the query class.

An example of a query is neighbor, which selects cells with equal colored neighbors.

Qclass neighbor isa cell
Where

color = color o neighbors.left A color = color o neighbors.right
Endqclass

The selection condition is defined using a simple functional language, generated with the following
grammar:

Ezpr = basic_expr | Expr o Exzpr | (ly = Ezpr, ---, l, = FExpr) |
Expr.l| {Ezpr, - -, Ezpr} | Ezpr N Expr | Ezpr U Ezpr

Basic expressions are the (polymorphic) identity function id, the class attributes, and constants. The
constants are objects in basic classes such as Int and String. The o denotes function-composition, i.e.,
e1 o e2(z) = e1(ea(w)). This slightly unconventional notation is chosen because it simplifies the reasoning
later in this paper. e.l denotes the projection of a tuple-type expression e on it’s | component. And
finally, {e1,---,e,} denotes a set with elements e, ---,e,. Both N and U have their usual set-theoretic
interpretation

F_exzpris the set of well-typed expressions generated with Ezpr, with the obvious typing rules [14]. Some
examples are: color, neighbors.left, (left_color = color o neighbors.left, right_color = color o neighbors.right),
and {color o neighbors.left} U {color o neighbors.right}.

The selection condition of a query @, denoted by Cy, is of the form A, Vj(e wf)ij withw € {=,#,C,¢
L€, ¢}, e, [€ F_expr, and (ewf);; well-typed. Furthermore, Cg(o,db) means that the condition C holds
for object o in database state db. The select set, Sq3(@) of the query @ in database state db is defined by
{o € db|C¢(o,db)}.

For the decidability results, we need the notions of the length of a condition, and the length of a
method-call. These are defined using the length of a functional expression, which is the depth of its parse
tree. For example, length(color) = 1 and length(neighbors.left) = 2. Then:

1. length(\,; \/j(e wf)ij) = max({mazx(length(e), length(f))}:;)
2. length(m(ly = ey, - -1, = e,)) = maz({length(e1), - - -, length(e,)})

Rule model

A rule is a (query, method_call) pair where the query selects the objects that have to execute the method-
call. The method has, of course, to be one of the methods of the class underlying the query-class. The
syntax for rule definition is:

Rule rule_name = (query, method_call)

An example of a rule is the familiar Rule paint_red = (red,paint_cell(new_color=orange)) where the query
red is defined by Qclass red isa cell Where color = red Enqclass.

The execution of a rule R = (Q, M) in a database db is represented by either execute(R, db, set) or
execute(R, db, instance) depending under what semantics R is executed. Under set semantics the execution
of R results in the execution of M by all objects that satisfy the selection condition of R in database db.
With the provision that first the select set is determined, then for each object that satisfies the query the
method-header is evaluated, and then the objects execute the method_call. This provision guarantees that
the resulting state does not depend on a particular order. So, it is defined by:

exzecute(R,db,set) = {
forall o € S4(Q) do
evaluate(o(M)) od
forall 0 € S4(Q) do
db:=db\ {o} U{o(M)} od
return db }

Under instance semantics the execution of R results the execution of M by one randomly chosen object
that satisfies the selection condition of R in database db. This is defined by:

execute(R,db,instance) = {
if S3(Q) # 0 then
0 := choose(S4(Q))
. db:=db\ {o} U{o(M)}
return db }

We will sometimes use the, auxiliary, notation ezecute(R(0),db,instance). It denotes the execution of rule
R with subject o under instance semantics. If o is in the select set of R in db, it results in the execution of
M by o otherwise it is a no-operation.

Rules are meant to respond automatical to interesting database states. As we only consider rule sets in
isolation, i.e. there are no other queries or transactions, this behaviour can be represented by a repeating
execution cycle, which executes a random selected, activated rule. The cycle stops when all rules have
empty select sets. The execution, denoted by E(Rules,db,sem), of a rule set Rules on a database db under
semantics sem is thus defined by:

E(Rules,db,sem) = {
while IR € Rules : S3(Qr) # 0 do
R := choose({R|R € Rules N\ Sqp(Qr) # 0})
db := execute(R, db, sem)
od
return db }

Given an initial database db, a set of rules Rules and a semantics sem, F(Rules,db,sem) induces the set
Seq(Rules,db,sem) of execution sequences. Under set semantics, such an execution sequence registers which
rule was chosen by the choose command. That is, an execution sequence is a, possibly infinite, list of rules,
Sq= [R5, R1, R3,---]. S¢; denotes the rule on the i-th position in the execution sequence.

Under instance semantics, an execution sequence not only registers which rule was chosen, but also
which object was chosen to execute the method. So, in this case, an execution sequence is a, possibly
infinite, list of the form Sq = [R5(01), R1(04),]

The predicate finite(Sq) returns true if Sq is a finite list. So, if for Sq € Seq(Rules,db,sem) finite(Sq)
holds, the execution of the rule set on the database terminates in a stable database state. This final state

will be denoted by Ez(Sq,db,sem).

3 Definition of the predicates

As mentioned in the introduction, confluence and termination are important properties for rule sets that
are used for constraint enforcement or view maintenance. These properties are defined formally as follows:

Definition 1: Let Rules be a rule set and let sem denote either set or instance based semantics:

1) Terminate(Rules, sem) f vab e DB VSq € Seq(Rules, db, sem) : finite(Sq)

2) Confluent(Rules, sem) ef Terminate(Rules, sem) N\
Vdb € DBV Sq, Sq, € Seq(Rules, db, sem) : Ex(Sq,,db, sem) = Ex(Sq,, db, sem)

Terminate(n)

In this paper, we restrict our attention to termination in n steps. The most obvious definition of which
would be to restrict the length of all execution sequences to n. Under instance semantics, however, this
implies that no non-trivial rule terminates in n steps, as n puts a limit on the size of the database state.

Therefore, under set based semantics n denotes the maximum number of times a rule may execute
and under instance based semantics, it denotes the maximum number of times a rule may execute on a
particular object:

Definition 2: Let Rules be a rule set:
1) Terminate(n, Rules, set) def
Vdb € DBV Sq € Seq(Rules,db,set) VR € Rules: [{i| S¢; = R}| <n
2) Terminate(n, Rules, instance) def

Vdb € DBVo € dbV¥Sq € Seq(Rules,db,instance) VR € Rules: |{i| S¢; = RN o; =o}| <n

Because all rule sets and all databases are finite, both definitions imply that all execution sequences are
finite. That is, they imply termination of the rule-sets!:

Theorem 1: Let Rules be a rule set and let sem denote either set or instance based semantics:

Terminate(n, Rules, sem) — Terminate(Rules, sem)

Independence

Our detection mechanism for confluency is like that of [15] based on commutativity of rule execution, which
is called Independent:

Definition 3: Let Rules be a rule set:

1) Independent(Rules, set) def
VR;, R; € RulesVdbe DB:
execute(R;, evecute(R;, db, set), set) = execute(R;, execute(R;, db, set), set)
2) Independent(Rules, instance) def
VR;, R; € Rules Vdb € DBVoy,0; € db:
execute(R;(oy,), execute(R; (o), db, instance), instance) =
execute(R; (o), execute(R; (o), db, instance), instance)

So, to prove independence, it is sufficient to prove pair-wise independence. In particular; that a rule is
independent of itself. Under set based semantics, this is obvious. Under instance based semantics it is not.

Definition 4: Let R be a rule,

Self-independent(R) ' vibe DB Yo;,0j € db:

exzecute(R(o;), execute(R(o;), db, instance), instance) =
execute(R(o;), execute(R(o;), db, instance), instance)

Under both kinds of semantics, independence of rule sets implies the re-arrangability of execution sequences.
This re-arrangability is a strong property. First, it enables a straight-forward proof that independence
implies confluency for terminating rule sets (see also [15]):

Theorem 2: Let Rules be rule set and let sem denote either set or instance based semantics:
Terminate(Rules, sem) A Independent(Rules, sem) — Confluent(Rules, sem)

Secondly, re-arrangability allows for a characterisation of a class of rule sets for which set and instance
based semantics coincide, viz., those rule set which are independent and terminate under both semantics:

Theorem 3: Let Rules be a rule set. Then

Terminate(Rules, set) A Terminate(Rules, instance) A
Independent(Rules, set) A Independent(Rules, instance)
—

Vdb € DB : E(Rules,db,set) = E(Rules,db,instance)

LAll formal proofs can be found in [14].

4 Decidability of the predicates

In this section it is proven that the termination and independence predicates, defined in the previous
section, are decidable. That is, it is proven that there exists an effective algorithm that given a rule set
Rules as input decides the truth value of any of these predicates for Rules. In other words, for each rule
set it can be determined whether, e.g., it terminates under set based semantics.

The decidability proof is based on reasoning with pre- and post-conditions. The pre-condition of a rule is
given by the selection condition of its query. Its post-condition is determined by its action. To illustrate the
reasoning, assume that the post-condition of a rule R implies the negation of its pre-condition. Moreover,
assume that if an object o does not satisfy R’s pre-condition, then no execution of R by any (set of)
object(s) in the database can make o satisfy R’s pre-condition. Then {R} is clearly a terminating set of
rules.

It is well-known that implications between logical expressions can be proven either proof-theoretically
or model-theoretically. That is, either syntactically or semantically. Our decidability proof relies on model-
theoretic reasoning through the notion of a typical database state (tdb).

Such a tdb can be compared to the minimal models of logic programming. Informally, if a certain
condition holds in the typical database state after the execution of a rule R, it holds in all database states
after the execution of R.

In contrast with minimal models, however, tdbs are parameterized by L. and L,,. L. and L,, denote
respectively the maximal length of the conditions and the maximal length of the method-calls for which
it is typical. The reason for this restriction is that L. and L,, determine a strictly increasing lowerbound
on the number of objects in the typical database state. Because neither conditions nor method-calls are
restricted in length, no finite database state can be typical for all conditions and method-calls. The formal
definition is as follows:

Definition 5: Let tdb be a database state, let R be the set of all possible rules, and let sem denote
either set or instance based semantics. Then tdb is a typical database state for conditions of length L. and
methods of length L,, if

VCy,Cq € {C | length(C) < L.} :
VR=(Q,M) e {ReR|length(Cg) < L. A length(M) < L,,} :
Vdb € DB: ([Vo € tdb : Cy(o,tdb) — Cs(o, execute(R, tdb, sem))]
— [Vo € db : Cy(o,db) — Cy(o, execute(R, db, sem))])

This definition is obviously non-constructive. The first result of this section is that there exists a con-
structive characterisation of typical database states. That is, there exists an effective algorithm for the
construction of typical database states. The algorithm is only sketched in this paper, a full description can
be found in [14].

The construction of typical database states is based on three observations. The first observation is that
a condition induces an equivalence relation on a database state. Reconsider for example the rule paint-red,
with selection condition color = red. For this rule, the actual color of an object is immaterial. All one
needs to proof termination is the distinction between color = red and color # red. So, a database with only
two objects, one whose color is red and the other whose color is not, is typical for this particular problem.

The second observation is that the truth of a post-condition depends on the truth of a, related, pre-
condition. Consider for example the rule (red, paint-cell(color = color o neighbor.left), which gives red cells
the color of their left neighbor. The evaluation of the condition color = red for an object o after execution
of the rule equals the evaluation of color o neighbor.left = red for that same object o before execution of
the rule.

The final observation is that consistency is decidable for our class of conditions. That is, given a
condition C' it is possible to determine whether there exists a database state db with an object o, such that
C(o,db). In fact, if the condition is consistent, the algorithm returns such a pair (o, db), otherwise it fails.
The pair (o, db) is called a witness for C.

The consistency check goes roughly as follows. First the condition C is re-ordered according to some
suitable order (basically in ascending complexity). Then one starts building a witness database state
around an object o, using the elementary conditions of C in order. If at any point the construction of the
state cannot be continued C' is inconsistent, otherwise it is consistent.

With these three observations the construction of the typical database is roughly as follows:

1. Generate all consistent conditions of length L, X L,,, together with their witnesses.
2. Merge the witness database states into a final database state.
This final database state is typical for conditions of length L, and methods of length L.,,.

Theorem 4: There exists an effective algorithm for the construction of a typical database for conditions
of length L. and methods of length L,, 2.

Now that typical database states can be constructed, it is relatively straightforward to prove that our
predicates are indeed decidable. The basic idea is that one simply executes all possible execution sequences
upto a certain maximal length on a typical database state of suitable lengths and checks if the necessary
conditions are satisfied. The burden of the proofs lies in determining combinatorial expressions for the
lengths of typical database states and the maximally needed length of the execution sequences.

For example, if one wants to check whether two rules R; and Ry commute under set based semantics,
one simply executes Rj; Rs and Rs; R; on a suitable typical database and checks whether the resulting
database states are the same.

Theorem 5: Let Rules be a rule set, R € Rules, and let n € AN. The predicates Terminate(n,
Rules, set), Terminate(n, Rules, instance), Independent(Rules, set), Independent(Rules, instance) and
Self_independent(R) are decidable.

5 Sufficient conditions for the predicates

In the previous section, it is shown that our predicates are decidable. However, the decision algorithm
has an unpractically high complexity. Even after the considerable improvements that can be made on the
sketch presented above. Therefore, we formulate sufficient conditions of low algorithmic complexity for the
predicates in this section.

The decidability algorithm is model-theoretic, first a typical database state is generated, and then
conditions are checked by execution of all possible execution sequences. That is, conditions are semantically
checked by forward reasoning and model-checking. Both tdb-generation and condition checking are of
considerable complexity in this approach.

The approach in this section is proof-theoretic. It is again performed in two steps. The first step is
based on the observation that a post-condition can often be transformed into a pre-condition using the
method-call. An example of this phenomenon was already given in the previous section, where it was
shown that if a rule gives red cells the color of their left neighbor and we want to evaluate the condition
color = red for an object o after it executed the rule, it suffices to evaluate color o neighbor.left = red for
that same object o before execution of the rule.

If the post-condition and the method-call do not lead to a well-defined pre-condition, this simply means
that the required post-condition may or may not hold after execution of the rule. Which means that in
such cases our predicates are simply not true.

So, the first step is transforming post-conditions into pre-conditions. The second step is checking
whether these pre-conditions hold by checking their implication from given knowledge (selection conditions
of rules). In fact, both steps rely on syntactical derivation of implications.

A priori, there are no evident performance gains in going from model-theoretic reasoning to proof-
theoretic reasoning. The low complexity of our sufficient conditions is reached by two relaxations in the
proof-theoretic scheme.

2Under the assumption that the set of constants is finite which it is in practice.

The first is that we do not pursue completeness for implication proving. Rather, we define a relation
~» of low algorithmic complexity such that:

(C(o,db) ~ C'(0,db)) — (C(o,db) — C'(0,db))

The second is that we prove our predicates indirectly. That is, our sufficient conditions imply our predicates
but not necessarily vice versa.
The ~» is defined as follows:

Definition 6: Let ey, - -, e, be functional expressions and let C7, Cy, C3 be conditions. The ~» is defined
inductively by:

1. the logical rules:

(a) C1~ Cy;

(b) Cy ACy ~ Ch;

(c) CiL~CaNCy~ C3 — CpL~ Cs
(d) C1 ~ Cy — =Cy ~ =C}

2. the rules for equalities:

(a) e1 =ea Neg =eg~re1 =eg
(b) Leibnitz restricted to:
1. e = ey ~>e30€] = €30 eg;
. e1 = ea ~ e;.l =eq.l
iii. e = eg~ {e1,e3, e,} = {ea,e3, -en}
iv. e1 = eg~r ey Ueg = ey Ueg

V. eg =ey~rerlleg =ealeg
3. the rules for sets:

(a) e1 Ees ANeg Ceg~req € eg;

(b) e1 CeaAey Ceg~reg Ces;

For the deduction algorithm based on ~», see [14].

The transformation of postconditions into preconditions is described with three substitutions. The first,
|R*|, for objects that satisfy the selection condition of rule R and execute its method. The second, |R¥|,
for objects that satisfy the selection condition of rule R but do not execute its method. The third, |R™|,
for objects that do not satisfy the selection condition. The notation Sub™ is used to denote n repeated
applications of substitution Sub. To exemplify the substitutions, let o be an object in the database and
consider the expression b, o---0by(0), in which all b; are attributes. Assume that a rule R is executed, then
clearly the value of b, o -+ -0 by(0) is invariant if R does not assign a new value to any of the b; attributes.
In all other cases the value of b, o -0 b;(0) may change. The actual change depends on whether the
argument of an b;, thus the object b;_1 o --0b1(0) was subject to the execution of R. The latter can often
be derived from the (negated) selection condition of R.

We exemplify the substitutions on expressions. From this, their effect on conditions can be derived
straightforwardly.

Let rule R only assign the expression ¢ to the attribute b, let the selection condition of R be C' =e =
fAeoc# foc and assume o satisfies it. If we want to know the value of b(0) after execution of R, then we
have to know the value before execution of R of either ¢(o) if o was subject to the execution of R (set or

instance semantics) or of b(o) if o was not subject to the execution of R (instance semantics). Therefore,
b|R|* = c and b|R|* = b.

If we want to know the value of bo c(0) after execution of R, then we have to know the value of b o ¢(0)
before execution of R. The b in the expression b o ¢ is not substituted as we know that this attribute has
not been assigned another value as the object ¢(0) for an arbitrary object o is not selected by a. This can
be seen from the selection condition C = e = fAeoc # foc. Whenever an object o satisfies C' we know that
e(c(0)) # f(c(o)) holds and thus c(0) does not satisfy the first conjunct of C. Therefore, bo ¢c|R|*T =boc
and boc|R|f =boec

For an example of derivation from negated selection conditions, let R still only assign the expression ¢
to attribute b, but let the selection condition be C = e # fV eoc = fo ¢ and assume o does not satisfy
C. If we want to know the value of b(0) after execution of R, then we only have to know the value of b(0)
before execution of R as o is not selected by R and therefore its attributes are not changed. Therefore,
b|R|~ =b.

If we want to know the value of b o ¢(0) after the execution of R, then we have to know the value
of ¢ o c(o) before execution of R. The b in the expression b o c(0) is substituted by ¢ as we know that
the object c(o) is selected by A for all objects 0. This can be seen from the negated selection condition
-C =e=fAeoc # foc. As object o satisfies ~C we know that e(c(0)) # flc(0)) and so c¢(0) does
not satisfy the first conjunct of =C' and therefore satisfies C. So its attribute b is surely updated with c.
Therefore, bo c|R|™ =coc.

To formalise the transformation of post-conditions, we define some functions. The functions Sattr,
Wattr, and Uattr that return the select-attributes, write-attributes and the update-attributes of a rule
respectively. The latter is the set of all attributes a rule uses to update its write-attributes. Furthermore,
the function attr that returns the attributes used in an expression. This function is used for the definition
of the other three.

Definition 7:
1. The function attr.expr for functional expressions to attribute sets is defined inductively as follows:

(a) attr.expr(a) = {a} if a is an attribute;
(b) attr.expr(ey o e2) = attr.expr(e;) U attr.expr(es);
(c) attr.expr(e.l) = attr.expr(e);
(d) attr.expr((li =e1,---,l, = €,)) = Ui, attr.expr(e;);
(e) attr.expr({ey,---e,})) = Ui_, attr.expr(e;);
(f) attr.expr(e; Ueg) = attr.expr(e;) U attr.expr(es);
(g) attr.expr(e; Nes) = attr.expr(e1) U attr.expr(es).

2. The function attr for conditions to attribute sets is defined inductively by:
(a) attr(ejwes) = attr.expr(er) U attr.expr(es);
(b) attr(e; A c2) = attr(er) U attr(cs);
(c) attr(cy Vez) = attr(cr) Uattr(cz).

3. Let R = (Q,m(ly = e1, -, 1, = ey,) be a rule, with m defined by m(ly : 7, ,lm : T) =
self except a; := 1y, -+, a,, := [, then:
(a) Sattr{R) = attr(Cqp);
(b) Watir(R) ={a1, -, am};
(c) Uattr(R) = Ui~ attr(e;)

10

To simplify the definition of these substitutions, we first introduce the function link that is used to
determine whether an expression could have been changed by rule execution:

Definition 8: Let C be a condition and let e be a functional expression. The function link is inductively

defined by:
1. if C = ejwes, then link(Ce) = e; cewes o €;
2. if C = C; A Cyq, then link(C,e) = link(Cq,e) A link(C2,e);
3. if C = Cy V Oy, then link(C,e) = link(Cy,e) V link(Cy,e);
4. if C = ~C4, then link(C,e) = —link(C,e)
With this function the substitution rules are defined as follows:

Definition 9: Let R = (@Q,m(ly = e1, -+, l;m = en) be a rule, with m defined by m(ly : 71, -,y :
Tm) = self except a; := Iy, -+, a,, := l,, The substitutions |R*|, |[R™|, and |R¥| on expressions of the
form b, o ---o0b; where the b; are attributes are defined by:

1. bpo---ob|RT| =cyo0---0c with
b; ifVa€e Watir(R):b; #a V
Vie{2,---,n}:¢ = AC" : C ~» C' AN C ~» =link(C',b;_10---0by)
? otherwise
and
_ [b ifVae€ Wattr(R): by # a
cl{ei ifdie{l,---,m}:a; =0

2. bpo---0b|R™|=cp0---0cgo0by with
; ifEIjE{l,~-~,m}:a]~:b,-/\

AC" : =C ~ C' A =C ~» =link(C', bij—y 0 -+ - by))
b; ifVae Wattr(R):a #b;

7?7 otherwise

Vie{2,---,n}:¢ =

3. bpo---ob|RT|=¢,0---0cy0by with
b, ifVae Wattr(R) :b; #a V
Vie{2,---,n}:c = AC" : C~» C' AN C ~» =link(C' bj—1 0 -+ -0 b))

7 otherwise

The question marks indicate that in these cases, it is impossible to derive the related condition. The
substitutions on other expressions and conditions are defined by:

Definition 10: Let Sub be one of the three substitutions defined above.
- ((e1)d(e2))Sub = (e1)Sub ¢ (e3)Sub with ¢ € {n, U};

({e})Sub = {(e)Sub};

3. (e.)Sub = ((e)Sub).I;

4 (I =e1, Ly = en)Sub = (I = (e1)Sub, - -, L, = (en)Sub)
(ewes)Sub = (e1)Sub w (e3)Sub with w € {=,#,C, ¢, €, &}.

N =

o

if no question marks arise, otherwise the substitution process fails.

Finally, we have come to the formulation of the sufficient conditions. Rules are independent if they do
not change each others select set, do not overwrite each others updates, and do not use attributes for their
own updates if they are updated by others.

11

Theorem 6: Let R; and R be two rules with selection condition C; and Cy respectively. Then, under
the assumption that the substitutions succeed:

1. Independent({R1, R2}, set) holds if

(a):

(Cl A 02 ad 01|R;| A C2|Ri*'|) A ("Cl AN —|02 > —|01|R2_| A —|CQ|R1_|)/\
(Cl A —Cy ~» C1|R2_| A —|C2|Ri|_|) A (—|Cl A Co ~» —|01|R;_| A 02|R1_|)
() :
Wattr(Ry) N Wattr(Ry) = 0 A Uatir(Ry) N Wattr(Re) = 0 A Uattr(Ry) N Wattr(Ry) = 0

2. Let the method call of Ry be M;(l; =by,---,l,, = b,) then Self_independent(R;) holds if

(a)

(C1 ~ C1|R{]) A (=Cy ~ —C1|Ry|)
(b):

Wattr(R) N Uattr =0 Vv Vi € {1,---,n} : length(b;) = 1

3. Independent({Ry, Ry}, instance) holds if conditions of item 1 hold and if for both R; and R, the
conditions of item 2 hold.

The first condition (a) of item one describes the stability of select sets and the second condition (b) of item
one expresses that otherones updates are not used and not overwritten.
A simple corolarry of this theorem is based on the disjointness of attribute sets.

Corolarry 1: Let Ry and Ry be two rules, then:
1. Independent({Ry,Rs},set) holds if

(Sattr(Ry) U Uatir(Ry) U Wattr(Ry)) N Wattr(Re) = 0 A
(Sattr(Rs2) U Uatir(Re) U Wattr(Rg)) N Watir(Ry) =0 A

2. Self independent(R;) holds if
(Sattr(Ry) U Uattr(Ry)) N Wattr(Ry) =0

3. Independent({Ry, Rz}, instance) holds if both R; and R satisfy the criteria of items 1 and 2 above.

A set of rules terminates in n steps if the selection condition of each rule R implies a condition C' that is
falsified in at most n executions of R and if the truth of this condition for an object o can only be changed
by the execution of R with subject o. Such a condition C' is called a private flag.

Theorem 7: Let Rules = {Ry,- -, R,}, and let C; denote the selection condition of R;. Assume that
for each C; there exists a C] such that:

1. C! is a conjunct of Cj;
2. Cl~s (~C!|RF|V - -V =C!RF|™)
3. VR; # Ry - attr(C}) N Wattr(R;) = 0 Alength(C}) = 1

and all substitutions succeed. Then Terminate(n, Rules, instance) and Terminate(Rules, set) hold.

12

The first item identifies the flag, the second item describes the lowering of the flag in at most n steps, and
the third item expresses the privateness of each flag.

To guarantee termination in n steps under set semantics, we need an addititonal restriction which states
that whenever a negated selection condition holds for an object this can never be changed by the execution
of any active object. For the formulation of this condition, we define the set Sub_seq(A,n) of repreated
substitutions.

Definition: Let Rules be a set of rules. Then Vi € {1,---,n}: |Rf1| ---|R?"| € Sub_seq(R,n) where for
allje{l,---,i},¢i=—ifRi=Rand ¢; € {—,+} i R; # R.

The sufficient condition for Terminate(n, Rules, set).

Theorem 8: Let Rules = {Ri,- -, R,}, and let C; denote the selection condition of R;. Assume that
for each C;

1 Vje{l, - ,n} VSub € Sub_seq(A, j) : =C; ~» =C;Sub;
and for each C; there exists a flaf C! such that:

2 C! is a conjunct of Cy;

3 Clmo (CIRF|V -V ~CY R

4 VR; # R; : attr(C}) N Wattr(R;) = 0 Alength(C}) =1

and all substitutions succeed. Then Terminate(n, Rules, instance) and Terminate(Rules, set) hold.

6 Conclusions and future work

We have described a powerful design theory to facilitates the static detection of confluency and termination
of rule sets under the two pre-dominant rule execution semantics. For this, we introduced several predicates
that capture important properties of a rule set and that can be staticly inferred.

For a rule set Rules, Terminate(n, Rules, set) and Terminate(n, Rules, instance) imply termination
under set and instance based semantics respectively. While Independent(Rules, set) and Independent(Rules,
instance) imply confluency for terminating rule sets.

We have shown that these predicates are decidable, and we have given sufficient conditions of low
algorithmic complexity for all the predicates.

Finally, we have shown that for terminating, independent rule sets the two pre-dominant rule execution
semantics coincide.

The most important extension we are planning is to consider complex rules. For example, the rule
R3 = Ry; Ry would first execute Ry and then Ry as one atomic action.

Acknowledgments

Thanks to Martin Kersten for helpful comments on an initial draft.

References

[1] S. Ceri and J. Widom. Deriving production rules for incremental view maintenance. In Proceedings

of the 17th International Conference on VLDB, pages 577-589, 1991.

[2] U. Dayal, A. Buchmann, and D.R. McCarthy. Rules are objects too: a knowledge model for an
active object oriented dbms. In Proceedings of the Second International Workshop on Object-Oriented
Database Systems, pages 129-143, 1988.

13

3]

[10]

[11]

[12]

[13]

O. Diaz, N. Paton, and P. Gray. Rule management in object oriented databases a uniform approach.
In Proceedings of the 17th International Conference on VLDB, pages 317-326, 1991.

S. Gatziu, A. Geppert, and K.R. Dittrich. Integrating active concepts into an object-oriented database
system. In Proceedings of the 3th International Workshop on DBPL, pages 341-357, 1991.

E.N. Hanson. An initial report on the design of ariel: A dbms with an integrated production rule
system. In SIGMOD RECORD, volume 18, pages 12-19, 1989.

R. Hull and D. Jacobs. Language constructs for programming active databases. In Proceedings of the
17th International Conference on VLDB, pages 455-467, 1991.

J.W. Klop. Term rewriting systems: A tutorial. In Bull. European Assoc. Theoretical Computer
Science, volume 32, pages 143-183, 1987.

A.M. Kotz, K.R. Dittrich, and J.A. Mulle. Supporting semantics rules by a generalized event/trigger
mechanism. In Advances in Database Technology: EDBT 90, LNCS 416, pages 76-91, 1990.

U. Schreier, H. Pirahesh, R. Agrawal, and C. Mohan. Alert, an architecture for transforming a passive
dbms into an active dbms. In Proceedings of the 17th International Conference on VLDB, pages
469-478, 1991.

A.P.J.M. Siebes, M.H. van der Voort, and M.L. Kersten. Towards a design theory for database triggers.
In Database and Fzpert Systems Applications, pages 338—344, 1992.

E. Simon and C. deMaindreville. Deciding whether a production rule is relational computable. In
Proceedings of the ICDT 88, LNCS 326, pages 205-222, 1988.

M. Stonebraker, E. Hanson, and C.H. Hong. The design of the postgres rule system. In Readings in
Database Systems, eds. M. Stonebraker, pages 556-565, 1988.

M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos. On rules, procedures, caching and views in
database systems. In Proceedings of the ACM SIGMOD conference, pages 281-290, 1990.

M.H. van der Voort and A.P.J.M. Siebes. A design theory for active objects. Technical report, CWI,
1993.

A. Aiken J. Widom and J.M. Hellerstein. Behavior of database production rules: Termination, con-
fluence, and observable determinism. In SIGMOD RECORD, volume 21, pages 59-68, 1992.

J. Widom and S.J. Finkelstein. Set-oriented production rules in relational database systems. In

Proceedings of the ACM SIGMOD conference, pages 259-270, 1990.

Y. Zhou and M. Hsu. A theory for rule triggering systems. In Advances in Database Technology:
EDBT 90, LNCS 416, pages 407-422, 1990.

14

