
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Expressiveness results for process algebras

F.W. Vaandrager

Computer Science/Department of Software Technology

CS-R9301 1993

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301653959?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

�

Expressiveness Results for Process Algebras

Frits W� Vaandrager

CWI

P�O� Box ����� ���� AB Amsterdam� The Netherlands

fritsv�cwi�nl

University of Amsterdam� Programming Research Group

Kruislaan ��	� ���
 SJ Amsterdam� The Netherlands

Abstract

The expressive power of process algebras is investigated in a general setting of structural

operational semantics� The notion of an e�ective operational semantics is introduced and

it is observed that no e�ective operational semantics for an enumerable language can specify

all e�ective process graphs up to trace equivalence� A natural class of Plotkin style SOS

speci�cations is identi�ed� containing the guarded versions of calculi like CCS� SCCS� Meije

and ACP� and it is proved that any speci�cation in this class induces an e�ective operational

semantics� Using techniques introduced by Bloom� it is shown that for the guarded versions

of CCS�like calculi� there is a double exponential bound on the speed with which the number

of outgoing transitions in a state can grow� As a corollary of this result it follows that two

expressiveness results of De Simone for Meije and SCCS depend in a fundamental way on

the use of unguarded recursion� A �nal result of this paper is that all operators de�nable via

a �nite number of rules in a format due to De Simone� are derived operators in the simple

process calculus PC�

���� Mathematics Subject Classi�cation� ��Q	
� ��Q�	� ��Q

� ��Q�
� 	D�	�

���� CR Categories� D���� D��� F����� F����� F���� F�����

Keywords Phrases� process algebra� PC� labeled transition systems� process graphs� e�ective

process graphs� e�ective operational semantics� structural operational semantics� expressive�

ness� bisimulation equivalence� trace equivalence� action transducers�

Notes� Most of this work was carried out while the author was at the MIT Laboratory for

Computer Science� supported by ONR contract N			����
�K�	���� Part of this work took

place in the context of the ESPRIT Basic Research Action ����� CONCUR��

This paper will appear in� J�W� de Bakker� W�P� de Roever� and G� Rozenberg� editors�

Proceedings of the REX Workshop �Semantics� Foundations and Applications�� LNCS�

Springer�Verlag� ����

� Introduction

At this moment there are� besides numerous papers� four introductory textbooks on process
algebra or� as some prefer to call it� process theory by resp� Milner ����� Hoare ����� Hennessy

Report CS�R����

ISSN

CWI

P�O�Box ��	�
 ���� AB Amsterdam
 The Netherlands

�

��	� and Baeten and Weijland �
�� Each of these books gives a thorough introduction into a

particular approach to process theory� Milner focuses on operational semantics and bisimu�
lation congruences in the setting of his Calculus of Communicating Systems �CCS� Hoare

presents his theory of Communicating Sequential Processes �CSP and concentrates on the
denotational failures model� Hennessy elaborates in great detail the notion of testing equiv�

alence for a language somewhere in between CCS and CSP� Baeten and Weijland� �nally�
advocate the algebraic perspective of the Algebra of Communicating Processes �ACP� A
reader who takes the e�ort to read all the four books� will notice a lot of similarities between

the approaches� but will also be puzzled by the di�erences� and consequently �nd it hard to
make a choice between the available formalisms�

We think that the perspective of the general theory of structural operational semantics can
be helpful at this point� because it suggests that the four books just happen to concentrate on
di�erent aspects of what can essentially be viewed as a single and homogeneous theory� It is

becoming more and more clear that many of the key theorems in process theory are indepen�
dent of the particular process language that is used� Using Plotkin�s structural operational se�

mantics �SOS� one can prove theorems for whole classes of languages at the same time� This is
a much more e�cient way to develop process theory� which in addition provides more insight�
Examples of contributions along these lines are ���� ��� ��� ��� �	� �
� ��� ��� ��� ��� �� �� ����

Milner had the idea that for a proper understanding of the basic issues concerning the
behavior of concurrent systems it could be helpful to look for a simple language� with �as

few operators or combinators as possible� each of which embodies some distinct and intuitive

idea� and which together give completely general expressive power� ���� page ����� The aim
of this paper is to investigate expressiveness issues in a general setting of SOS�

There are at least three di�erent ways in which a language can have �completely general
expressive power��

�� Each Turing machine can be simulated in lock step�

�� Each �e�ective� process graph can be speci�ed up to some notion of behavioral equiv�
alence�

�� Each operation in a �natural� class of operations is realizable in terms of the operations
in the language up to some notion of behavioral equivalence�

Most process calculi that have been proposed in the literature are Turing powerful� that is�

universally expressive in the �rst sense�
A �rst result of this paper� which generalizes a result of Baeten� Bergstra and Klop ���� is

that no enumerable language with an e�ective operational semantics can be universal in the

second sense if� as behavioral equivalence� one chooses trace equivalence� Here� two process
graphs are called trace equivalent if they have the same �nite sequences of actions �so this

notion of equivalence does not involve internal actions which can be deleted in a trace� This
result implies that if one likes to have a language which is universal in the second sense� one
either has to use a notion of behavioral equivalence that does not re�ne trace equivalence� or

one has to give up the idea that the operational semantics should be e�ective�
A next result of this paper is the de�nition of a general format of Plotkin style transition

system speci�cations �TSS�s� containing the guarded versions of calculi like CCS� SCCS�
Meije and ACP� and a proof that any TSS in this class induces an e�ective operational

�

semantics� Since �the �nitary versions of process calculi like CCS are e�ective it follows

that these calculi are not universally expressive in the second sense� Also� using techniques
introduced by Bloom ��	�� it is shown that in the guarded versions of CCS�like calculi� there

is a double exponential upper bound on the speed with which the fanout� i�e�� the number of
outgoing transitions in a state� can grow� This implies that there exists a primitive recursive

process graph that can not be denoted by CCS�like languages up to trace equivalence�
De Simone ���� ��� proved that any operation on process graphs that can be de�ned in

some general format� can already be de�ned in SCCS and Meije up to bisimulation� As

a corollary of the results concerning the growth rate of the fanout� it follows that also this
result of De Simone depends in a crucial way on the use of unguarded recursion� The �nal

result of this paper is that a simple calculus called PC is universal in the third sense� that is�
each operation de�nable via a �nite number of De Simone style rules� can already be de�ned
in terms of the calculus PC�

Acknowledgements� The relational renaming operator of the language PC came up in
a discussion with Rob van Glabbeek� Thanks to Jan Bergstra� Doeko Bosscher� Jan Friso

Groote and Robert de Simone for useful comments on an earlier version of this paper�

� A Basic Limitation of Operational Semantics

A semantics is a mapping that associates to each object in a syntactic domain a corresponding

object in a semantic domain� More speci�cally� an operational semantics is a mapping that
associates to each syntactic object a machine or automaton� These machines �which are

mathematical objects typically have an associated set of states and for each state there

is a collection of transitions which give the possible ways in which the machine can evolve
to a next state� This paper takes a rather abstract approach to operational semantics by

only considering those aspects of machines and not features like real�time� true concurrency�
distribution in space� etc� Thus our machines simply are process graphs in the sense de�ned
below�

Definition ��� �Process graphs� A labeled transition system �LTS� over a given set A of
labels is a pair �S� �� where S is the set of states and �� � S � A � S is the transition

relation� As usual r a�� s abbreviates �r� a� s � �� � The fanout fan�s of a state s is
de�ned as the cardinality of the set of transitions starting in s� For � � a� � � � an � A� a
�nite sequence over A� predicate r ��� s is de�ned by

r ��� s
�
� �r�� � � � � rn � S � r � r�

a��� r�
a��� � � � an�� rn � s�

If r ��� s for some � � A�� then state s is called reachable from state r�

A process graph over A is a triple g � �r� S� �� with �S� �� a LTS over A and r � S the
root� such that each state in S is reachable from the root� Sometimes r will be referred to as

root�g� and the pair �S� �� as lts�g� If A is a LTS and s is a state of A� then graph�s�A
is the process graph with root s and an underlying LTS that is obtained by restricting A to
the part that is reachable from s�

Two process graphs g and h are isomorphic� notation g � h� if there exists a bijective
mapping between their sets of states that preserves the roots and the transition relation�

�

Definition ��� �Operational semantics� An operational semantics is a mapping that asso�

ciates to each object in its domain a process graph�

Given our intuition of process graphs as machines that compute� it seems reasonable to

focus attention to operational semantics that map expressions to e�ective process graphs�
i�e�� graphs that have a countable number of states such that in each state the outgoing
transitions can be computed� To formalize this notion of e�ectiveness� we need some simple

coding functions known from recursion theory �see ����� We �rst introduce a standard coding
from ordered pairs of integers to integers�

hk� li
�
�

�

�
� �k� � �kl � l� � �k � l�

The function CI associates to each �nite set of integers its canonical index� and provides a
standard encoding of �nite sets of integers into the integers�

CI �fk�� k�� � � � � kng
�
� if n � 	 then 	 else �k� � �k� � � � �� �kn�

Finally� the function G�odel associates to each recursive function � a corresponding G�odel
number G�odel���

Definition ��� Let A � fa�� a�� ���g is a enumerable set of actions� A process graph
g � �r� S� �� over A is e�ective if

	 S � fs�� s�� � � �g is an enumerable set of states�

	 the transition relation is �nitely branching� i�e�� for all s � S� fan�s is �nite� and

	 the transition relation is e�ective with respect to the enumerations of S and A� That

is� the function next�g � N� N de�ned by

next�g�i
�
� CI �fhk� lijsi

ak�� slg

is recursive�

Graph g is primitive recursive if in addition the function next�g is primitive recursive�

Stated di�erently� a process graph is e�ective if there exists a Turing machine that� when

provided with a �suitably coded state as input� computes for a while and then �rst outputs
the number of outgoing transitions from that state and then enumerates all these transitions

�everything suitably coded� So in each state it is known what are the possibilities to proceed�

The notion of an e�ective graph we use here is essentially the same as the one proposed
earlier by Baeten� Bergstra and Klop ��� and by Bloom� Istrail and Meyer ����� A less

restrictive de�nition has been put forward by Darondeau ����� who requires the transition
relation� as a set� to be recursive� Boudol ���� and De Simone ���� employ an even less
restrictive de�nition of e�ectiveness� they only require that the transition relation� as a set�

is recursively enumerable�
If the machines� whose behavior is described by means of process graphs� are not in control

of all their transitions� then one can argue that our notion of an e�ective process graph� and
in particular the requirement of �nite branching� is too restrictive�

�

Suppose that� like in the I�O automata model of Lynch and Tuttle ����� the set of actions

�the labels of transitions can be partitioned in a set of input actions� which are under control
of the environment� and a set of locally controlled actions� which are under the control of the

machine itself� Then it seems reasonable to allow for an in�nite number of input transitions
from a given state r� provided that� given an input action i� the set of states s which can

be reached from r via an i�transition is �nite and and can be e�ectively computed� In each
state the machine should be able to decide what to do with a given input�
Also in the case of languages with unbounded nondeterminism due to random assignment

�see Apt and Plotkin ���� the requirement of �nite branching seems too restrictive�
In this paper� just one particular de�nition of an e�ective process graph will be investigated�

which certainly is not is the most general one possible�
Baeten� Bergstra and Klop ��� show that� modulo strong bisimulation equivalence� the

calculus ACP with �nite systems of guarded recursion equations is not universal� Below�

we will show that the idea behind the proof of this result can be used to prove a much
more general theorem� no e�ective operational semantics can be universal modulo trace

equivalence�

Definition ��� An operational semantics O for an enumerable language L is e�ective with

respect to an enumeration fp�� p�� � � �g of L if

	 for all i� O�pi is e�ective�

	 the function r de�ned by

r�i
�
� index�root�O�pi

is recursive� where index is the function that associates to each state si its index i�

	 the function t de�ned by

t�i
�
� G�odel�next�O�pi

is recursive�

An e�ective operational semantics does not only associate an e�ective process graph to
each expression� but also tells how one can compute the root and transitions of this graph�

An example of an operational semantics that is not e�ective is a mapping that takes a natural
number n and associates to it a graph with one state and no transitions if the n�th Turing

machine halts� and a graph with one state and one transition otherwise� For each n� the
associated graph is �nite and hence e�ective� even though the operational semantics is not�
Let L be a programming language that one likes to implement in accordance with some

operational semantics O� If the machines of which O describes the behavior are in control of
all their transitions� then it seems reasonable to require that O is in fact e�ective with respect

to some enumeration of L� If O gives no clue about how to build e�ectively a machine that
implements programs in L� then one may even argue that it does not deserve the predicate

�

�operational�� Theorem ��� says that� provided this very reasonable requirement is met�

there is a limit on what operational semantics can do�

Definition ��� For g � �r� S� �� a process graph over A� the set traces�g is de�ned by

traces�g � f� � A� j �s � r ��� sg�

Process graphs h and h� are trace equivalent� notation h
T h�� if traces�h � traces�h��

Theorem ��� Suppose A is a set of labels containing at least two elements� Suppose O is an

operational semantics that associates to each member of an enumerable language L a process
graph over A� and suppose that O is e�ective with respect to some enumeration of L� Then
there exists an e�ective graph over A that is not denoted by any member of L up to trace

equivalence�

Proof Via a diagonalization argument� as in the proof of Theorem
�� in ����
Suppose O is e�ective with respect to an enumeration fp�� p�� � � �g of L� Let a� b � A with
a �� b� To each n � N� a function fn � N� f	� �g is associated in the following way�

	 fn�k � 	 if all traces of O�pn of length k � � end with an action a�

	 fn�k � � otherwise�

From the fact that all process graphs O�pn are e�ective it follows that all fn are recursive
functions� Consequently� the following function f� � N� f	� �g is also recursive�

	 f��n � 	 if fn�n � ��

	 f��n � � if fn�n � 	�

Now consider the e�ective process graph � with states taken from N� root 	� and transitions

n a�� n� � if f��n � 	�

n b�� n� � if f��n � ��

We claim that� for all n� O�pn �
T �� The proof is by contradiction� Suppose that for some

n� O�pn
T �� The process graph � has exactly one trace of length n�� which either ends
with an a or with a b� If it ends with an a� then fn�n � �� But this means that there is a
trace of O�pn of length n� � that does not end with an a� This contradicts the assumption

that O�pn
T �� If� in the other case� the unique trace of � ends with a b� then fn�n � 	�
But this means that all traces of O�pn of length n� � end with an a� so that again we have

a contradiction�

Since trace equivalence is coarser than bisimulation equivalence� which in turn is coarser

than graph isomorphism� the above theorem has as a trivial corollary that no e�ective oper�
ational semantics can denote all e�ective graphs modulo bisimulation equivalence or graph
isomorphism� In this sense� the above result generalizes Theorem
�� of Baeten� Bergstra and

Klop ����
Various researchers have attempted to �nd universal expressiveness results for languages

with an operational semantics in terms of process graphs� They all had to face the limitations
imposed by Theorem ���� but came up with di�erent solutions�

�

�� Baeten� Bergstra and Klop ��� prove that each e�ective process graph can be speci�ed

in the language ACP� with guarded recursion� modulo an equivalence called weak
bisimulation congruence� This universality result is possible because weak bisimulation

equivalence is incomparable with trace equivalence� due to the fact that it abstracts
from internal actions�

�� De Simone ���� ��� shows that in Meije and SCCS� each process graph with r�e� sets
of states and transitions can be �nitely speci�ed up to isomorphism� Each process

graph that is e�ective in our sense clearly has r�e� sets of states and transitions� and
can therefore be speci�ed in Meije and SCCS� Since Meije and SCCS are clearly

�recursively enumerable� Theorem ��� tells us that the operational semantics for these
languages is not e�ective� And in fact� it is easy to see that� due to the presence of
unguarded recursion� these languages can specify process graphs with in�nite branching�

Boudol ���� points out that it is not even decidable whether a state has an outgoing
transition�

�� Ponse ��	� shows that in the calculus �CRL each e�ective process graph can be speci�ed

up to isomorphism� Here the twist is that the language �CRL� although enumerable�
is not recursively enumerable� This makes that� even though for each individual �CRL
program one can e�ectively compute the root and the G�odel number of the next function

of the associated process graph� the operational semantics for the language as a whole
is not e�ective with respect to any enumeration�

� Structural Operational Semantics

Plotkin ��
� ���� advocates a simple method for giving operational semantics to programming
languages� The method� which is often referred to as SOS �for Structural Operational Seman�

tics� is based on the notion of transition systems� The states of the transition systems are
elements of some formal language that may extend the language for which one wants to give

an operational semantics� The main idea of the method is to de�ne the transitions between
states by a set of conditional rules over the syntax of the language� using structural induction�
Because of its power and simplicity� the SOS approach has been highly successful and has

become the standard way to equip programming languages with an operational semantics�
In this section we will recall some basic de�nitions and results from the theory of SOS�

	�
 SOS Calculi and Their Operational Semantics

Definition ��� �Signatures and terms� To start with� we assume the presence of two disjoint

countably in�nite sets� a set V of variables with typical elements x� y� � � �� and a set N of
names� A signature element is a pair �f� n consisting of a function symbol f � N and an

arity n � N� In a signature element �c� 	� the c is often referred to as a constant symbol�
A signature is a set of signature elements� i�e�� a subset of N � N� The set of terms over a
signature � is the smallest set �� with�

	 V � ���

	 �f� n � �� n � 	� t�� � � � � tn � �� implies f�t�� � � � � tn � ���

	

A term c� is often abbreviated as c� T�� is the set of closed terms over �� i�e�� terms in

�� that do not contain variables� With var�t the set of variables occurring in t is denoted�
For a term t� jtj denotes the size of t� i�e�� the number of variables� and constant and function

symbols occurring in t� A substitution � is a mapping from V to ��� With t���� we denote
the result of the simultaneous substitution� for all x� of x by ��x�

	 x��� � ��x�

	 f�t�� � � � � tn��� � f�t����� � � � � tn����

The expression t�t��x�� � � � � tn�xn� denotes the term obtained from t by simultaneous substi�

tution of t� for x�� t� for x�� etc�

Definition ��� �Contexts� Let � be a signature� A context of n holes C over � is a term in
�� in which n variables occur� each variable only once� If t�� � � � � tn are terms over �� then

C�t�� � � � � tn� denotes the term obtained by substituting t� for the �rst variable occurring in
C� t� for the second variable� etc� Thus� if x�� � � � � xn are all di�erent variables� C�x�� � � � � xn��

denotes a context of n holes in which xi is the i�th variable that occurs� A context is trivial
if it consists of a single variable only�

Let � be a signature� An equivalence on T �� is preserved under contexts� and it is a
congruence� if for all contexts C�x�� t t� � C�t� C�t���

Lemma ��� Let � be a signature and an equivalence over T ��� Then is a congruence

i� for all �f� n � �� t� u� � � � � � tn un � f�t�� � � � � tn f�u�� � � � � un�

Definition ��� �Calculi� Let A be a given set of labels and let � be a signature� The set

Tr��� A of transitions consists of all expressions of the form t a�� t� with t� t� � �� and
a � A� The symbols ��	� � � � will be used to range over transitions� The set Cf ��� A of

inference rules or conditional formulas over � and A consists of all expressions
	�� � � � � 	n

	
�

where 	�� � � � � 	n� 	 in Tr��� A� The transitions 	i are called the antecedents and 	 is called

the conclusion of the rule� If no confusion can arise� a rule � is also written 	� The notions
�substitution� and �closed� extend to transitions and rules in the obvious way�
A transition system speci�cation or calculus is a triple P � ��� A�R with � a signature� A

a set of labels and R � Cf ��� A a set of rules� If P and P � are two calculi� then P � P � is
obtained by taking the pairwise union of the signatures and rules�

Definition ��� �Proofs� Let P � ��� A�R be a calculus� A proof of a transition 	 from
P is a �nite tree whose edges are ordered and whose vertices are labeled by transitions in
Tr��� A� such that�

	 the root is labeled with 	�

	 if � is the label of some vertex and ��� � � � � �n are the labels of the children of this

vertex� then there is a rule ��������n
� � R and a substitution � such that �i �
i��� and

� �
����

If a proof tree for 	 exists� then 	 is provable from P � notation P � 	�

Definition ��� �Operational semantics� Let P � ��� A�R be a calculus� The LTS lts�P is
de�ned as �T ��� �� where �t� a� t� � �� i� P � t a�� t�� The operational semantics OP

is the mapping that associates to a closed term t � T�� the process graph graph�t� lts�P �

The last de�nition in this subsection recalls the notion of a ��algebra�

Definition ��� Let � be a signature� A ��algebra A consists of a set DA� the domain of

A� and a mapping that associates to each signature element �f� n � � an n�ary operation
fA on DA� A valuation in a ��algebra A is a function � that takes every variable x into an

element of DA� The ��evaluation �����	A � ��� DA is de�ned inductively by

��x��	A
�
� ��x�

��f�t�� � � � � tn��
	
A

�
� fA���t���

	
A� � � � � ��tn��

	
A�

The result of a ��evaluation of a term t depends only on the value assigned by � to the

variables occurring in t� In particular� if t is a closed term� then ��t��	A does not depend on �
at all� Thus we can write simply ��t��A in such a situation�
A congruence on A is an equivalence relation on DA with the property that for all

�f� n � ��

d� d�� � � � � � dn d�n � fA�d�� � � � � dn fA�d
�
�� � � � � d

�
n�

For A a ��algebra and a congruence on A� the ��algebra A� is de�ned by

DA
�
�
� fd�� j d � DAg�

fA
��d���� � � � � dn��
�
� �fA�d�� � � � � dn���

where� of course� e�� � fe� j e� eg� Due to the congruence property this de�nition is
independent of the choice of the representing di � di���

	� The Calculus PC

As a running example in this paper� we will now present the calculus PC �for Process Calcu�

lus�
We assume the presence of a countable set A of actions� ranged over by a� b� � � �� and of a

countable set X of process names� ranged over by X�Y� � � �� The set of process terms� which

has typical elements p� q� � � �� is de�ned via the signature �PC displayed in Table ��
In�x notation will be used for the binary function symbols� and we write a �p instead

of a ��p� To avoid parentheses� it will be assumes that pre�xing has most binding power�
followed by product� which in turn is followed by free merge� which is followed by alternative
composition �which has the weakest binding power� In the case of several sum� merge

or product operations we will mostly omit brackets since semantically these operations are
associative� �Readers who insist on complete parsing information may assume that missing

��

� 	 inaction

a� � pre�xing� for each a � A

� � alternative composition� sum

k � parallel composition� �free merge

� � synchronous composition� product

�r � renaming� for each r � A�A

X 	 process names� for each X � X

Table �� The signature of PC�

brackets associate to the right� For a �nite index set I � fi�� � � � � ing and process terms
pi�� � � � � pin �

P
i�I pi abbreviates pi� � � � � � pin � By convention

P
i�� stands for �� Trailing

��s will often be dropped�
The constant � denotes inaction� a process that cannot do anything at all� The process

a�p �rst performs an a�action and then behaves like p� Process p� q will behave either like p

or like q� It is not speci�ed whether the choice between p and q is made by the process itself
or by the environment� With pkq� we denote the parallel composition of p and q without any

synchronization between the p and q� The product p� q denotes the parallel composition of
p and q in which all actions have to synchronize� The operation �r is a slight generalization
of the renaming�relabeling operations in CCS� CSP� Meije and ACP� Process �r�p behaves

just like process p� except that if p has the possibility of doing an a� �r�p can do any action
b that is related to a via r� The recursive de�nitions of the process names are given by a

declaration function E � X � T��PC� The process expressions E�X may contain only
guarded occurrences of process names� An occurrence of a process name is guarded if it
occurs in a subexpression a �p� The condition of guardedness is standard in process theory

and excludes recursive declarations like E�X � X that give no clue about the speci�ed
behavior� Often we will write X � t as abbreviation for E�X � t�

Some references for those readers who are familiar with other work on process theory�
The constant � also occurs in CCS and Meije� and plays the same role as in ACP� The

� is the same as in CCS and ACP� The k operator occurs in ACP� CCS and TCSP� and
the � operator is taken from TCSP� The �r operator can be viewed as a generalized state
operator in the sense of Baeten and Bergstra ��� if one assumes a state space that contains

only a single element� It is also possible to view this operator as a special case of the action
re�nement operator as studied by Goltz and Van Glabbeek �� �� �r re�nes an action a into

the nondeterministic sum of the actions in fb j r�a� bg�
The inference rules of PC are presented in Table �� In the table a and b range over A�

unless further restrictions are made� Further r ranges over A� A� and variables x� x�� y and

��

a� � a�x a�� x

� �
x a�� x�

x� y a�� x�
y a�� y�

x� y a�� y�

k �
x a�� x�

xky a�� x�ky

y a�� y�

xky a�� xky�

� �
x a�� x� � y a�� y�

x� y a�� x� � y�

�r �
x a�� x�

�r�x
b�� �r�x

�
if r�a� b

X �
E�X a�� y

X a�� y

Table �� The inference rules for PC�

y� are �xed and all di�erent�

	�	 Power to Simulate �Counter Machines

The �rst �and weakest form of universality that we consider is that a process calculus has

the expressive power of ��counter machines �or� equivalently� Turing machines in the sense
that� for each n� we can exhibit a term UCM n whose process graph simulates in lock step

a universal ��counter machine on input n�
Calculi like CCS� CSP� ACP� and Meije are all universally expressive in this sense� Actu�

ally� trying to code a ��counter or Turing machine in each of these languages is a nice way to

get familiar with them� Via a rather tricky encoding� we prove below that also PC has the
power of ��counter machines��

Theorem ��	 PC has the expressive power of �counter machines�

Proof Suppose that a universal ��counter machine has code of the form

l�� if I�� goto l�
l�� inc I

l�� dec J

l�� goto l�
���

�In Section �� it will be shown how many operations can be de�ned as derived opertions of PC� Using

derived operations like sequential composition� much simpler encodings can be obtained�

��

lk� halt

The �nite control part of this machine can be modeled by the PC expression Control � de�ned

recursively by�

Control � X�

X� � zeroI �X� � non zeroI �X�

X� � incI �X�

X� � decJ �X�

X� � skip �X�

���

Xk � halt ��

The next step in the construction of a universal ��counter machine is the following speci�ca�
tion of a counter�

C � inc ��r��SynkFull�C � dec �C � zero �C � non zero �C

Syn � inc �Syn � dec �Syn � non zero �Syn

Full � dec �Empty � non zero �Full

Empty � zero �Empty

where

r
�
� f�inc� inc� �dec� dec� �dec� dec�zero� zero� �non zero�non zero�

�zero� dec� �zero�non zero� �non zero�non zerog

Using the above recursive de�nitions� we can de�ne� for each n� a PC expression representing

a counter with value n�

Counter�
�
� C�

Countern��
�
� �r��SynkFull�Countern�

Now the ��counter machine with input n can be obtained by glueing together the �nite control
with � counters�

UCM n
�
� Control � ��i�Counternk�j�Counter��

where

i
�
� f�inc� incI� �dec� decI� �dec� decI� �zero� zeroI� �non zero�non zeroIg

j
�
� f�inc� incJ� �dec� decJ� �dec� decJ� �zero� zeroJ� �non zero�non zeroJg

��

	�� Bisimulation Equivalence

A serious problem with the isomorphism relation � on process graphs is that it is not a

congruence for calculi like CCS and PC� For instance� � � �k� but a���a�� �� a���a���k��
Thus it is not allowed to replace a subexpression by an ��equivalent expression if one likes
to preserve ��
In order to remedy this problem� we will introduce the notion of bisimulation equivalence�

Bisimulation equivalence is somewhat coarser than isomorphism and is a congruence with

respect to all the constructs in the language� Actually� most researchers who use bisimulations
motivate them in a di�erent way� In ����
�� for instance� it is at least suggested that two
process terms are bisimilar i� they cannot be distinguished by an observer� We consider the

arguments for bisimulation as a testing equivalence �see ��� not really convincing and prefer
to motivate this important notion in a di�erent way� The following de�nition is essentially

due to Park �����

Definition ��
 �Bisimulation� Let gi � �ri� Si� �� i �i � �� � be process graphs� A relation
R � S� � S� is a �strong� bisimulation between g� and g� if it satis�es�

�� r�Rr��

�� if sRt and s a�� �s
�� then there exists a t� � S� with t a�� �t

� and s�Rt��

�� if sRt and t a�� �t
�� then there exists an s� � S� with s a�� �s

� and s�Rt��

Graphs g� and g� are bisimilar� notation g��!!g�� if there exists a bisimulation between them�

Note that bisimilarity is an equivalence relation�
Two states s and s� of a LTS A are bisimilar i� graph�s�A and graph�s��A are bisimilar�
Two closed terms t� t� are bisimilar with respect to a calculus P � notation P � t�!!t

�� if

OP �t�!!OP �t
��

Since any isomorphism between two process graphs is also a bisimulation� it follows that
� is contained in �!!� It turns out that� just like isomorphism� bisimulation equivalence is not

a congruence relative to all transition system speci�cations� For instance� if one adds to the
calculus PC a rule x�x b�� �� then one can show that ��!!�k� but ��� ��!!���k�� In ���� the

question under which conditions bisimulation is a congruence is considered in great depth�
It turns out that if the rules in a calculus �t the very general tyft�tyxt format� bisimulation

is a congruence� We will not discuss the tyft�tyxt format here� but instead present a more
restricted format� essentially due to De Simone ���� ���� which is su�ciently general for our
purposes� The reader may check that the transition system speci�cation for the language PC

�ts this format�

Definition ���� �De Simone�s format� Let fxi j i � Ng and fyj j j � Ng be two �xed sets of
variables in V with all xi and yj di�erent� Let � be a signature and let A be a set of labels�

A rule in Cf ��� A is a De Simone rule if it takes the form�

xi
ai�� yi �i � I

f�x�� � � � � xn
a�� t

where

��

	 �f� n � ��

	 I � f�� � � � � ng�

	 if� for � � i � n� zi � yi if i � I and zi � xi otherwise� then t � �� is a context with

variables in fz�� � � � � zng �so each variable occurs at most once�

In the above rule� �f� n is the type� a the action� t the target� and the tuple hl�� � � � � lni with
li � ai if i � I and li � � otherwise� is the trigger� If i � I� then the i�th position is active

in the rule� otherwise it is passive� Each rule is characterized uniquely by its type� action�
target and trigger� If r is a rule� these ingredients will be referred to as type�r� action�r�
target�r and trigger�r�

A calculus ��� A�R is a De Simone system if � can be partitioned into �� and ��� and R
can be partitioned into R� and R� in such a way that�

	 all the rules in R� are De Simone rules with a type in ���

	 there exists a set X � N and a mapping E � X � �� such that�

�� � f�X� 	 j X � Xg and R� � f
E�X a�� y�

X a�� y�
j X � X and a � Ag�

Elements of X are referred to as process names and E is called the declaration mapping� If
a calculus P is a De Simone system� then both the set of process names and the declaration

mapping are uniquely determined and will be referred to as XP and EP �

Theorem ���� Let P be a De Simone system� Then bisimulation equivalence with respect
to P is a congruence on the signature of P �

Proof Standard� This theorem was �rst proved in ���� in a slightly di�erent setting� The

theorem is in fact a corollary of some of the other results in this paper �see remark at the
end of Section ����

� Power to Specify Graphs

In this section we will present what one could call bad news� in the case of "strong� equiv�
alences the expressiveness of SOS languages is� in many cases� even less than suggested by
Theorem ���� For a rather large class of languages we can give an upper bound on the speed

with which the fanout can grow� This upper bound implies that� for each of these languages�
there exists a primitive recursive process graph that cannot be denoted up to �strong trace

equivalence�

��
 E�ective De Simone Systems

In this subsection� we will identify a class of De Simone systems that induce an e�ective
operational semantics� This result is a useful� because if one is able to de�ne an operational

semantics for a programming language by means of a calculus in this class� then one knows
that �at least in principle it is possible to implement the language�

��

Bloom� Istrail and Meyer ���� introduce a particular format of transition system speci�ca�

tions� which they call GSOS rule system�s� and show that for any speci�cation in this format
the associated operational semantics is e�ective and has some other desirable properties as

well� The authors argue that it is not possible to generalize the GSOS format in any obvious
way without loosing one of these desirable properties� However� one of the clauses in the

de�nition of the GSOS format is that the number of rules must be �nite� We think that this
clause is unnecessarily restrictive and hinders application of the nice theory developed for
this format� Calculi like CCS� SCCS andMeije all have an in�nite number of actions and an

in�nite number of rules� Consequently it is not possible to view them as GSOS rule systems�
even if one restricts attention to subcalculi with guarded recursion� Below� we introduce

the increasingly restrictive notions of guarded� bounded and e�ective De Simone systems� A
bounded De Simone system associates to each term a �nitely branching process graph� An
e�ective De Simone system guarantees all the nice properties required in ���� and in par�

ticular that the induced operational semantics is e�ective� It will turn out that CCS�like
calculi with guarded recursion can be viewed as e�ective De Simone systems� We claim that

a similar restriction can replace the �niteness constraint in GSOS rule systems without any
of the desired properties getting lost�

Definition ��� �Guardedness� Let P � ��� A�R be a De Simone system� let �f� n be a

signature element of �� and let � � i � n� Then �f� n tests its i�th argument and the i�th
argument is awake if there is a rule in R of type �f� n in which the i�th position is active

�i�e�� i occurs in the index set of the rule� otherwise the i�th position is sleeping� A term
t � �� is guarded if all process names in t occur in subterms that are on a sleeping position�
P is guarded if all terms in the image of EP are guarded�

The only signature elements of PC with a sleeping position are the pre�xing operations�
Thus� the above notion of guardedness generalizes the de�nition of guardedness for the lan�
guage PC� The notion of an operator testing an argument is due to Bloom ����� However�

the use of this notion in a de�nition of guardedness is new in the present paper�

Definition ��� �Boundedness� A guarded De Simone system is bounded if for each type that

is not a process name and for each trigger� the corresponding set of rules is �nite�

The inference rules for the operations of CCS� SCCS and Meije� which are all in De
Simone�s format� have the property that for a given type and a given trigger there is only

a single rule� If the action alphabet is in�nite� then the De Simone system for PC is not
bounded� due to the generalized renaming operator� In the case of PC it is easy to see that

this unboundedness leads to in�nite branching� Thus� if one prefers to have �nite branching
then one has to restrict attention to a subset of PC with renaming operations that relate
each action to at most �nitely many other actions�

Theorem ��� Let P be a bounded De Simone system� Then the operational semantics OP

maps each term to a �nitely branching process graph�

Proof Routine and omitted�

��

Definition ��� A bounded De Simone system P � ��� A�R is e�ective� relative to enu�

merations �f�� n�� �f�� n�� � � � and a�� a�� � � � of � and A� respectively� if�

	 the set of process names is recursive�

	 for each type that is not a process name and for each argument� it is decidable whether
this argument is tested or not�

	 for a given type that is not a process name and a given trigger� the cardinality of the
corresponding ��nite set of rules as well as the set itself are recursive�

	 the function EP is recursive�

If the action alphabet is in�nite� then PC is not e�ective� E�ective versions of PC can
be obtained by allowing only renaming relations r which relate an action to at most �nitely

many other actions� in such a way that for each ai the canonical index of fj j r�ai� ajg
is recursive� Some additional restrictions will be needed to make the language recursively

enumerable or recursive�

Theorem ��� Each e�ective De Simone system induces an e�ective operational semantics�

Proof Routine and omitted�

�� The Expressiveness of CCS�like Languages

In his Ph�D� thesis� Bloom ��	� shows that no GSOS rule system can denote all e�ective
process graphs up to strong bisimulation� This result is an immediate corollary of Theorem ���

of this paper and the basic result about the GSOS format of ����� which says that this format
induces an e�ective operational semantics� A nice aspect of Bloom�s proof however is that the

counterexample which he produces �for any GSOS�language an e�ective graph that cannot
be denoted up to bisimulation equivalence is quite simple and provides additional insight in
the expressive power of GSOS languages� Bloom�s proof uses two lemma�s� The �rst lemma

provides� for a given set of rules� an upper bound on the fanout of a term �i�e�� the number of
outgoing transitions that only depends on the size of that term� The second lemma provides�

given a set of rules and a transition p a�� q� an upper bound on the size of successor q in terms
of the size of p� The combination of the two lemma�s implies that in any GSOS�speci�able

process graph the rate at which the fanout can grow is bounded� Using this observation it is
easy to construct a counterexample�
Below� we will adapt Bloom�s idea to the setting of this paper� In the case of a De Simone

system it is not possible to give upper bounds on the fanout and the size of successor states of
p in terms of p� If p is a process name then� depending on the size of the recursive de�nition

of this process name� fanout and successors of p can be arbitrarily big� Therefore� we will
give upper bounds on the fanout and the size of successors in terms of the size of p and the
supremum over all process names X that occur unguarded in p of the size of the recursive

de�nition for X�
The di�erent treatment of recursion and the di�erent �niteness constraints make any com�

parison nontrivial but� due to the fact that De Simone rules are more restricted than GSOS�
rules� it appears that the upper bounds which we derive are smaller than those of Bloom ��	��

��

A closer investigation of these bounds will be interesting because it might lead to a proof

that certain process graphs are GSOS de�nable but not de�nable using De Simone systems�
We start o� by de�ning� for each De Simone system� some parameters which will determine

the possible growth rate in the process graphs�

Definition ��� Let P � ��� A�R be a De Simone system�

	 �P � N � f�g is the supremum of � and� for each rule in R� the number of function

symbols occurring in the target�

	 �P � N � f�g is the supremum over all process names X of the size of EP �X�

	 �P is the supremum over all types and triggers of the number of rules in R with that
type and that trigger�

We write �� � and � if P is clear from the context�

It is probably useful to illustrate this de�nition with some examples� In the De Simone

system for PC� the ��parameter has value �� In fact� and this is interesting to note� in most
major process calculi proposed in the literature� the ��parameter is �� One exception is the
desynchronising operator #� present in an earlier version of SCCS and needed by De Simone

���� in order to show equivalence of SCCS and Meije� The # operator has an � parameter
of ��

x a�� x�

#x a�� #x�
x a�� x

x a�� x�

x a�� x�

Another example of an operator with an ��parameter of � is the is the p watching S construct
from synchronous programming language Esterel ����
It is possible to have an in�nite number of recursive de�nitions in a De Simone system

and still have the ��parameter �nite for each expression� For instance� consider the following
in�nitary PC de�nition of a counter�

C� � zero�C� � up�C�

Cn�� � down�Cn � up�Cn���

One can easily check that the ��parameter of this system is ��

Due to the presence of the relational renaming operations� the ��parameter for PC is jAj�
if r is the universal relation� then for any trigger hai� �r has jAj rules� Process calculi like
CCS� SCCS and Meije all have a � of ��

Below� we will show that for any guarded De Simone system P with �� � and � �nite�
there are strong bounds on the speed with which branching can grow�

Lemma ��� Let P be a guarded De Simone system with a transition p a�� q� Suppose that
�P and �P are �nite� Then�

jqj �

���
��

� � jpj if p is guarded

� � � � jpj otherwise

�	

Proof First� consider the case that p is guarded� By induction on the size of p� we prove

that jqj � � � jpj�
Consider a proof of p a�� q� Since p is guarded� it is not a process name� So the last

inference rule used in the proof must be a De Simone rule� Let this rule be

xi
ai�� yi �i � I

f�x�� � � � � xn
a�� t

and let � be the substitution by which this rule is instantiated� Then for all i � I the term

��xi is guarded and a proper subterm of p� Therefore the induction hypothesis can be used
to conclude that for all i � I� j��yij � � � j��xij� Because the rule is in De Simone�s format�

it follows that for all � � i � n� t contains at most one occurrence of either xi or yi� This
observation can be used to derive�

jqj � j��tj � � � � � j��x�j� � � �� � � j��xnj �

� � � �� � j��x�j� � � � � j��xnj � � � j��f�x�� � � � � xnj � � � jpj�

This completes the proof for the case p is guarded�

Next� we prove� by induction on the size of p� that jqj � � � � � jpj if p is not guarded�
If p is of the form X� with X a process name� then EP �X a�� q� But since EP �X is

guarded� the statement proved in the above can be used to derive�

jqj � � � jEP �Xj � � � � � � � � � jpj�

So assume that p is not a process name� Consider a proof of p a�� q� The last inference rule
used in the proof must be a De Simone rule� By an inductive argument which is similar to
the one used for the guarded case it follows that jqj � � � � � jpj�

Lemma ��	 Let P be a guarded De Simone system and let p be a closed expression over the

signature of P � Suppose that �P and �P are �nite� Then�

fan�p �

���
��

�jpj � �jpj�� if p is guarded

���jpj � ���jpj�� otherwise

Proof First� consider the case that p is guarded� By induction on the size of p� we prove

fan�p � �jpj � �jpj���
Let p � f�p�� � � � � pn� Then �f� n is not a process name� and for each argument i that is

tested by �f� n the term pi is guarded� Consider the collection I of pairs �r� ��u�� q�� � � � � �un� qn
satisfying

	 r is a rule with type �f� n and trigger hu�� � � � � uni� and

	 for each i either ui � qi � � or pi
ui�� qi�

It is not hard to see that I has at most � �
Q

i tested�fan�pi � � elements� Since there is a
straightforward surjective mapping from I to the transitions of p� it follows that

�

fan�p � � �
Y

i tested

�fan�pi � ��

By induction hypothesis we obtain� for each i that is tested� fan�pi � �jpij � �jpij��� Thus we
can derive�

fan�p � � �
Y

i tested

�fan�pi � � �

� � �
Y

i tested

��jpij � �jpij�� � � �

� � �
nY
i	�

��jpi j � �jpij�� � � �

� � �
nY
i	�

��jpi j � �jpij �

� �jpj � �jpj���

This completes the proof for the case p is guarded�
Next� we prove� by induction on the size of p� that fan�p � ���jpj � ���jpj�� if p is not

guarded� If p is of the form X for some process name X� then EP �X is guarded and of size
less or equal than �� Hence�

fan�p � fan�EP �X � �� � ���� � ���jpj � ���jpj���

So assume that p is of the form f�p�� � � � � pn with �f� n not a process name� By an inductive
argument very similar to that used for the guarded case one can show fan�p � ���jpj ����jpj���

Theorem ��
 Let A be a countably in�nite set of actions� Then there exists a primitive
recursive process graph g over A that cannot be denoted modulo trace equivalence by any

guarded De Simone system over alphabet A with �P � �P and �P �nite�

Proof Without loss of generality assume A � N� Let P � ��� A�R be a guarded De

Simone system with �P � �P and �P �nite� Suppose

p � p�
a��� p�

a��� � � � an�� pn

is a sequence of transitions starting in p� Then� by Lemma �� � we have for all i � n�

jpi��j � � � � � jpij� Thus� for all i� jpij � �i � �i � jpj� Combining this result with Lemma ��

yields�

fan�pi � ��
i��i���jpj � ��

i��i���jpj���

Thus� if NT �n is the number of di�erent traces of length n in OP �p� we have�

NT �n �
n��Y
i	�

��
i��i���jpj � ��

i��i���jpj��

� ��
n����n�n�jpj � ��

n����n�n�jpj

��

 ��� �

x n�� x�

succ�x n���� 	

triple�x ��� triple�succ�x

x n�� x�

triple�x m�� 	
if 	 � m � ��

�n

Table �� Rules for process graph with triple exponential growth rate�

Even though NT �n can grow fast� its growth rate is still double exponential�

Let Triple be the calculus with a signature consisting of two constant symbols � and 	�
two unary function symbols succ and ack� and rules as given in Table �� Now de�ne g to be
the process graph OTriple�triple��� It is easy to see that graph g is primitive recursive� and

also that� for each n� it has ��
�n

di�erent traces of length n� Thus� if n is chosen su�ciently
large� then there is some trace of length n in graph g� that is not a trace of the graph of p�

a routine exercise tells us that� for big enough n� NT �n � ��
�n

� Thus it cannot be the case

that OP �p
T g�

A corollary of the above result is that graph g can not be speci�ed in the guarded� �nitary

versions of calculi like CCS� SCCS� Meije and ACP�

Theorem ���� The graph g can be speci�ed in an e�ective version of PC�

Proof Take as the alphabet of actions the set N of natural numbers� De�ne the relations
Succ and Triple by�

Succ
�
� f�	� 	g � f�n� n� � j n � 	g�

T riple
�
� f�	� 	g � f�n�m j n�m � 	 and m � ��

�n

g�

Let X be a process name with recursive de�nition X � 	��Succ�X � �� Then it is straight�
forward to check that the term �Triple�X denotes g up to isomorphism�

� Power to Specify Operations on Graphs

The third way in which a process calculus can be universal is that all operations in a given
natural class can be de�ned in terms of the operations in the language modulo a given
equivalence� The �rst result of this kind occurring in the literature is due to De Simone

���� ���� who shows that all operations that can be de�ned in a format similar to what we
call De Simone�s format in this paper� are de�nable in terms of both the languages Meije

and SCCS up to �strong bisimulation equivalence� Another result is due to Parrow �� �� who
shows that all network operators speci�able in a restricted De Simone format can be de�ned

��

up to weak bisimulation equivalence in terms of only two operators� disjoint parallelism and

linking�

��
 From Calculi to Operations on Graphs

Strictly speaking� the above phrasing of De Simone�s result is not correct� What he shows in
fact is that for any calculus in a particular format� and for any n�ary function symbol f from

that calculus� there exists aMeije�SCCS context which is �FH�bisimilar� with the expression
f�x�� � � � � xn� Clearly� there is a close connection between the notion of FH�bisimilarity and

the equality of certain operations on process graphs modulo bisimulation� However� this
is left implicit in De Simone�s work� It is not even made clear how a calculus determines
operations on process graphs�

A �rst contribution of this section is a precise de�nition of the transformation from a
calculus to operations on graphs� Although the result is the same� the de�nition of the

transformation that we present here is quite di�erent from the de�nition in Baeten and
Vaandrager � �� Our de�nition� which in spirit is very close to De Simone�s notion of FH�
bisimulation� turns out to be useful for proving that an operation from one calculus is a

derived operation from another calculus�
Technically� a key role is played by the notion of an action transducer� to each function

symbol in a given calculus a �rooted action transducer is associated� which in turn determines
an operation on process graphs� Action transducers were introduced by Larsen and Xinxin
���� as a technical tool for proving certain compositionality results� An action transducer

is an object that consumes actions provided by its internal processes� in return produces
an action for an external observer� and may change as a result of this transduction� The

de�nition of an action transducer below di�ers from the corresponding de�nition of a context
system in ����� and captures explicitly the possibility that in a dynamic situation a context
may now and then lose some of its holes� The idea to associate an action transducer to a

calculus using the notion of a linear proof is also new in this paper�

Definition ��� An action transducer over a set A of actions is a triple T � �C� h����

where

	 C is a countable set of contexts�

	 h is a mapping from C to �nite subsets of N� which associates holes to contexts�

	 �� is a subset of C�A�Pow�N�A�C with for each �C� a� �� C � ���� h�C � � h�C
and � a function with domain�� � h�C�

Elements of �� are called transductions� and we write C
a
��

C � if �C� a� �� C � ����

A rooted action transducer or operator graph over A is a tuple �C�� C� h��� where �C� h��
is an action transducer over A� C� � C is the root� and each context in C is reachable via

zero or more transductions from C�� If T is an action transducer and C is a context of T �
then og�C� T is the operator graph with root C and an underlying action transducer that is

obtained by restricting T to the part that is reachable from C�

��

Definition ��� �Graph domain� G�A is the set of process graphs with states taken from N

and transition labels from A� For g � G�A� �g� denotes the isomorphism class of g� bG�A is
the set of isomorphism classes of G�A�

Definition ��� �From action transducers to operations on graphs� Let F � �C�� C� h� ��
be an operator graph over A with h�C� � fi�� � � � � ing� To F an n�ary operator op�F onbG�A is associated as follows� Assume w�l�o�g� that ij � ik for � � j � k � n� Let� for

� � j � n� gj � �rj � Sj ���j � G�A� Then op�F ��g��� � � � � �gn� is the isomorphism class in
$G�A of graphs that are isomorphic to the process graph graph�r� �S��� where

	 r � �C�� r�� � � � � rn�

	 S � C � S� � � � � � Sn�

	 �C� s�� � � � � sn
a�� �C �� s��� � � � � s

�
n i� there is an � such that C

a
��

C � and for � � j � n�

ij �� domain��� sj � s�j and �b � A � �ij � b � � � sj
b�� js

�
j �

Lemma ��� Let F � �C�� C� h� �� be an operator graph� with op�F an n�ary operator on
$G�A� Let for � � i � n� gi� g

�
i � G�A� Then

�i � gi���g
�
i � op�F ��g��� � � � � �gn����op�F ��g���� � � � � �g

�
n��

Proof Suppose that for all i� gi�!!g
�
i� Let Ri be a bisimulation between gi and g�i� De�ne

the relation R between states of op�F ��g��� � � � � �gn� and states of op�F ��g���� � � � � �g
�
n� by

�C� s�� � � � � snR�C� s
�
�� � � � � s

�
n i� �i � si�!!s

�
i�

It is easy to check that R is a bisimulation� from which it follows that op�F ��g��� � � � � �gn�
�!! op�F ��g���� � � � � �g

�
n��

We will now de�ne how action transducers can be associated to De Simone calculi� The

obvious choice for the contexts of the action transducer are the contexts of the De Simone
calculi �open terms over the signature in which variables occur linearly� In an attempt
to emphasize that an SOS calculus is essentially a logical theory� the transductions of the

action transducer will be de�ned in terms of conditional formulas that are provable from the
calculus�

Definition ��� �Linear proofs� Let P � ��� A�R be a calculus� A linear proof from P of

a conditional formula � � ��������n
� � Cf ��� A is a �nite tree whose edges are ordered and

whose vertices are labeled by transitions in Tr��� A� such that�

	 the root is labeled with 	�

	 there are distinct vertices v�� � � � � vn in the tree� which occur as leaves and are labeled

with 	�� � � � � 	n� respectively�

��

	 if � is the label of a node v �� fv�� � � � � vng and ��� � � � � �m are the labels of the children

of v� then there is a rule ��������m
� � R and a substitution � such that �i �
i��� and

� �
����

Write P �L � if a linear proof of � from P exists�

The term �linear� is used because of the apparent connection with the Linear Logic of
Girard ����� In a linear proof of a conditional formula� each hypothesis is used exactly once�
This �resource consciousness� should be contrasted with proofs in non�linear conditional

logics� in which an hypothesis may be used several times� or not at all� The notion of linear
provability generalizes the proof notion of De�nition ��� in the sense that for closed terms

t� t��

P � t a�� t� i� P �L
t a�� t�

�

The following lemma is easily proved by induction on the structure of linear proofs�

Lemma ��� Let P be a De Simone calculus with

P �L
xi

ai�� xi �i � I

C a��C �
�

where C is a context with variables from fxi j i � Ng� Then C � is a context� fxi j i � Ig �
var�C� and var�C � � var�C�

Definition ��� �From calculi to transducers� To each De Simone system P � ��� A�R� an
action transducer transducer �P � �C� h��� is associated as follows�

	 C consists of the contexts in �� with variables in fxi j i � Ng�

	 h associates to each context the set of indices of its variables�

	 Let C�C � � C� a � A� and � � f�i� ai j i � Ig a �nite subset of N�A� Then

C
a
��

C � i� P �L
xi

ai�� xi �i � I

C a�� C �
�

It follows using Lemma ��� that transducer�P is indeed a transducer�

The use of premisses xi
ai�� xi in the above de�nition may appear strange at �rst sight�

after performing a transition an agent does not in general evolves into itself and therefore the
hypotheses seem too strong� However� this turns out not too be the case� one can prove by

straightforward induction on the structure of proofs that

P �L
xi

ai�� xi �i � I

C a��C �
i� P �L

xi
ai�� yi �i � I

C a��C ��yi�xi�i � I�
�

��

Thus� modulo syntactic details� the transductions in transducer �P are exactly the formulas

that can be derived using a linear form of logical inference�

Definition ��	 �From SOS contexts to operators� Let P � ��� A�R be a De Simone system

and let C be an n�ary context over � and fxi j i � Ng� The n�ary operator hhCiiP on bG�A
is given by

hhCiiP � op�og�C� transducer �P �

For h�C � fi�� � � � � ing with j � k � ij � ik� and � � var�C � bG�A� the process graph

hhCii	P is de�ned by

hhCii	P � hhCiiP ���xi�� � � � � ��xin�

The following two technical lemmas play a key role in the further developments of this section�

Lemma ��
 Let P be a De Simone system and let t be a closed term over the signature of

P � Then OP �t � hhtiiP ��

Proof Straightforward�

Lemma ���� Let P be a De Simone system� Let C�C�� � � � � Cn be contexts over the signature
of P with var�C � fx�� � � � � xng and var�Ci � fxi j i � Ng such that k �� l � var�Ck �
var�Cl � �� Let �i be mappings from var �Ci to bG�A� Then

hhCiiP �hhC�ii
	�
P � � � � � hhCnii

	n
P ��� hhC�C��x�� � � � � Cn�xn�ii

	������	n
P �

Definition ���� �From calculi to process algebras� Let P � ��� A�R be a De Simone system�
The ��algebra A�P has as domain bG�A� each signature element �f� n is mapped to the

n�ary operation fA
P � � hhf�x�� � � � � xniiP �

For a given De Simone system P � the evaluation function �����A
P � maps each closed term
to an isomorphism class of process graphs� An obvious question is how this compositional

semantics relates to the operational semantics OP � It turns out that the two mappings are
di�erent if we consider them up to isomorphism� The counterexample is similar to the one

used in Section ��� to show that isomorphism is not a congruence for PC�

��a� a��A
PC� �� OPC�a� a�

However� as we will see� the two mapping are the same modulo bisimulation equivalence�
Notice that� due to Lemma ���� strong bisimulation is a congruence on algebras A�P � and

therefore the quotient algebra A�P ��!! is well�de�ned�

Theorem ���� Let P � ��� R be a De Simone system over A� let C be a ��context with
variables in fxi j i � Ng� and let � be an evaluation in A�P � Then

��C��	A
P �
��� hhCii

	dvar
C�
P �

��

Proof By induction on the structure of C� If C is of the form xi� then

hhCii
	dvar
C�
P � hhxiiiP ���xi � op�og�xi� transducer �P ���xi�

The operator graph og�xi� transducer �P has a single state xi� and all its transductions are

of the form

xi
a
��

i�a�

xi

for a in A� It follows that op�og�xi� transducer �P is the identity operation on bG�A� This
implies

op�og�xi� transducer �P ���xi � ��xi � ��C��	B�

If C is of the form f�C�� � � � � Cn� then we derive �with B short for A�P �

��C��	B �

� hhf�x�� � � � � xniiP ���C���
	
B� � � � � ��Cn��

	
B fby De�nitions ��� and ����g

�!! hhf�x�� � � � � xniiP �hhC�ii
	dvar
C��
P � � � � � hhCnii

	dvar
Cn�
P fby ind�hyp� and Lemma ��	g

�!! hhCii
	dvar
C�
P fby Lemma ���
g

Corollary ���� �Compositional and operational semantics agree Let P be a De
Simone system and let t be a closed term over the signature of P � Then ��t��A
P ����OP �t�

Proof By combination of Lemma ��� and Theorem �����

One possible interpretation of Corollary ���� and the counterexample that a similar result
does not hold up to isomorphism� is that there is some arbitrariness in the de�nitions of

����A
P � and OP �� This arbitrariness disappears if one considers the resulting graphs up to
strong bisimulation congruence�

Lemma ���	 and Lemma ��� can be used to give a short proof of Theorem ����� which
says that bisimulation equivalence is a congruence for De Simone calculi� Because� suppose
P � ��� A�R is a De Simone calculus� C is a unary context over �� and t and t� are closed

terms over � with OP �t�!!OP �t
�� Then

OP �C�t� �!!

�!! hhC�t�iiP � fby Lemma ���g

�!! hhC�x��iiP �hhtiiP � fby Lemma ���
g

�!! hhC�x��iiP �OP �t fby Lemmas ��	 and ���g

�!! hhC�x��iiP �OP �t
� fby Lemma ��	g

�!! � � ��!! OP �C�t���

��

Basically� what happens in the above derivation is that the question whether bisimulation is

a congruence� is reduced via Lemma ���	� from a problem in the syntactic world of SOS to a
problem in the semantic world of action transducers� We claim that the same reduction can

be used to give simple congruence proofs for a variety of behavioral equivalences which are
coarser than bisimulation equivalence�

�� Realizing Operations in PC

Definition ���� �Realizability� Let A be a ��algebra and let f be an n�ary operation on a
subset D of DA� We say that f is realizable �or de�nable in terms of the operations of A if
there exists a term t over signature � with var�t � fx�� � � � � xng such that for all valuations

� � V � D� f���x�� � � � � ��xn � ��t��	A�

The following theorem gives a su�cient condition for realizability in the setting of De
Simone systems�

Theorem ���� Let P and Q be De Simone calculi over A� let f be an n�ary function symbol
of P � and let C be a context over the signature of Q with variables fx�� � � � � xng� such that

og�f�x�� � � � � xn� transducer �P ��� og�C� transducer �Q�

Then fA
P �
��� is realizable in A�Q�����

Once the notion of realizability has been de�ned� it is easy to see that also the other

expressiveness result of De Simone ���� ��� depends in a crucial way on the use of unguarded
recursion� First� we will state De Simone�s theorem using the terminology of this paper�

As action alphabet De Simone considers an in�nite commutative monoid M �The reader
may just think of M as the set of natural numbers� In addition� a �nite signature � is
considered and a �nite collection of rules of the form

fxi
ui�� yi j i � Ig

f�x�� � � � � xn
u�� t

P r�uj�� � � � � ujl � u

where I � fj�� � � � � jlg� These rules are De Simone rules in our sense� except that the ui� � � �
which occur above the arrows are variables ranging over actions and not actions� Moreover

the rules have as an additional ingredient a recursively enumerable relation Pr on M � The
reader may think of a rule in the above format as a way to de�ne a set of rules in our sense
of De�nition ���	� one for each instantiation of the action variables for which the predicate

holds� In order to distinguish the above format from the De Simone format introduced earlier�
we will refer to it as the classic De Simone format�

Phrased in the terminology of this paper� De Simone ���� ��� proved that any operation of
the algebra induced by a speci�cation in classic De Simone format �induced in the sense of
De�nition ���� with bG�M taken as domain can be realized up to bisimulation equivalence

in terms of the operations of the algebra induced by the calculi SCCS and Meije�
The question arises to what extent this result still holds if the guarded versions of SCCS

and Meije are used� In guarded SCCS and Meije only �nitely branching graphs can be
speci�ed� However� using the classic De Simone format it is easy to specify an in�nitely

��

branching graph that is not bisimilar with any �nitely branching graph� just take a constant

� with the single rule

�

� u�� �
true�

Thus some restrictions have to be imposed on the classic De Simone format if we want to main�

tain the expressiveness result in a guarded setting� An obvious restriction is to allow only for
predicates Pr�u�� � � � � ul� u with for each a�� � � � � al � M the set fa � M j Pr�a�� � � � � al� ag
�nite and recursive �together with its cardinality� However� this does not work� It is trivial
to check that the rules of the calculus Triple in the proof of Theorem ��� �t the restricted
format� Consider the result of applying the operation tripleA
P � on the graph OTriple���

Clearly� the resulting graph is isomorphic to the graph g de�ned in Theorem ���� However�
as a corollary of Theorem ���� the graph g can not be speci�ed up to trace equivalence in

proces calculi like SCCS and Meije with guarded recursion� Thus the operation tripleA
P �

is certainly not realizable up to bisimulation in terms of the operations of these calculi�

We can now state the following theorem� which asserts that the calculus PC is universally
expressive for operations de�nable by �nite De Simone systems�

Theorem ���� Let f be an operation on the domain of �nitely branching process graphs over
some �nite alphabet A that is speci�ed via a De Simone system with a �nite number of rules�

Then f is realizable in terms of the operations of �a �nite instantiation of� PC�

Proof Similar to proof of the corresponding result in ����� using Theorem �����

References

��� S� Abramsky� Observation equivalence as a testing equivalence� Theoretical Computer
Science� ������!���� ��
 �

��� L� Aceto� B� Bloom� and F�W� Vaandrager� Turning SOS rules into equations� In
Proceedings th Annual Symposium on Logic in Computer Science� Santa Cruz� Cali�
fornia� pages ���!���� IEEE Computer Society Press� ����� Full version available as

CWI Report CS�R���
� June ����� Amsterdam� Invited to the LICS �� Special Issue of
Information and Computation�

��� K�R� Apt and G�D� Plotkin� Countable nondeterminism and random assignment� Journal

of the ACM� ����� ��! � � October ��
��

��� E� Badouel and P� Darondeau� Structural operational speci�cations and trace automata�
In W�R� Cleaveland� editor� Proceedings CONCUR �� Stony Brook� NY� USA� volume

��	 of Lecture Notes in Computer Science� pages �	�!���� Springer�Verlag� �����

��� J�C�M� Baeten and J�A� Bergstra� Global renaming operators in concrete process algebra�
Information and Computation�
����	�!���� ��

�

��� J�C�M� Baeten� J�A� Bergstra� and J�W� Klop� On the consistency of Koomen�s fair
abstraction rule� Theoretical Computer Science� ����������!� �� ��
 �

�	

� � J�C�M� Baeten and F�W� Vaandrager� An algebra for process creation� Acta Informatica�

������	�!���� �����

�
� J�C�M� Baeten and W�P� Weijland� Process Algebra� Cambridge Tracts in Theoretical
Computer Science �
� Cambridge University Press� ���	�

��� G� Berry and G� Gonthier� The synchronous programming language Esterel� design�
semantics� implementation� Report
��� INRIA� Centre Sophia�Antipolis� Valbonne

Cedex� ��

� To appear in Science of Computer Programming�

��	� B� Bloom� Ready Simulation� Bisimulation� and the Semantics of CCS�like Languages�

PhD thesis� Department of Electrical Engineering and Computer Science� Massachusetts
Institute of Technology� August ��
��

���� B� Bloom� Strong process equivalence in the presence of hidden moves� Preliminary
report� October ���	�

���� B� Bloom� S� Istrail� and A�R� Meyer� Bisimulation can�t be traced� Preliminary report�
In Conference Record of the ��th ACM Symposium on Principles of Programming Lan�

guages� San Diego� California� pages ���!���� ��

� Full version available as Technical
Report �	����	� Department of Computer Science� Cornell University� Ithaca� New York�

August ���	� Accepted to appear in Journal of the ACM�

���� R�N� Bol and J�F� Groote� The meaning of negative premises in transition system speci�

�cations �extended abstract� In J� Leach Albert� B� Monien� and M� Rodr%&guez� editors�
Proceedings �
th ICALP� Madrid� volume ��	 of Lecture Notes in Computer Science�
pages �
�!���� Springer�Verlag� ����� Full version appeared as Report CS�R�	��� CWI�

Amsterdam� ���	�

���� G� Boudol� Notes on algebraic calculi of processes� In K� Apt� editor� Logics and Models
of Concurrent Systems� pages ���!�	�� Springer�Verlag� ��
�� NATO ASI Series F���

���� P� Darondeau� Concurrency and computability� In I� Guessarian� editor� Semantics
of Systems of Concurrent Processes� Proceedings LITP Spring School on Theoretical

Computer Science� La Roche Posay� France� volume ��� of Lecture Notes in Computer
Science� pages ���!��
� Springer�Verlag� ���	�

���� J��Y� Girard� Linear logic� Theoretical Computer Science� �	����!�	�� ��
 �

�� � R�J� van Glabbeek and U� Goltz� Re�nement of actions in causality based models�

In J�W� de Bakker� W�P� de Roever� and G� Rozenberg� editors� REX Workshop on
Stepwise Re�nement of Distributed Systems� Models� Formalism� Correctness� Mook�

The Netherlands ��
�� volume ��	 of Lecture Notes in Computer Science� pages �� !
�		� Springer�Verlag� ���	�

��
� J�F� Groote� Transition system speci�cations with negative premises� Report CS�
R
��	� CWI� Amsterdam� ��
�� An extended abstract appeared in J�C�M� Baeten and

J�W� Klop� editors� Proceedings CONCUR ��� Amsterdam� LNCS ��
� pages ���!����
Springer�Verlag� ���	�

�

���� J�F� Groote and F�W� Vaandrager� Structured operational semantics and bisimulation

as a congruence� Information and Computation� �		����	�!��	� October �����

��	� M� Hennessy� Algebraic Theory of Processes� MIT Press� Cambridge� Massachusetts�
��

�

���� C�A�R� Hoare� Communicating Sequential Processes� Prentice�Hall International� Engle�
wood Cli�s� ��
��

���� K�G� Larsen and L� Xinxin� Compositionality through an operational semantics of con�

texts� In M� Paterson� editor� Proceedings � th ICALP� Warwick� volume ��� of Lecture
Notes in Computer Science� pages ���!���� Springer�Verlag� July ���	� An extended
version appeared as� Report R
����� The University of Aalborg� Dept� of Mathematics

and Computer Science� Aalborg� Denmark� May ��
��

���� N�A� Lynch and M�R� Tuttle� Hierarchical correctness proofs for distributed algorithms�
In Proceedings of the �th Annual ACM Symposium on Principles of Distributed Comput�

ing� pages �� !���� August ��
 � A full version is available as MIT Technical Report
MIT�LCS�TR��
 �

���� R� Milner� Calculi for synchrony and asynchrony� Theoretical Computer Science� ����� !
��	� ��
��

���� R� Milner� Communication and Concurrency� Prentice�Hall International� Englewood
Cli�s� ��
��

���� D�M�R� Park� Concurrency and automata on in�nite sequences� In P� Deussen� editor�

�th GI Conference� volume �	� of Lecture Notes in Computer Science� pages �� !�
��
Springer�Verlag� ��
��

�� � J� Parrow� The expressive power of parallelism� Future Generation Computer Systems�
��� �!�
�� ���	�

��
� G�D� Plotkin� A structural approach to operational semantics� Report DAIMI FN����

Computer Science Department� Aarhus University� ��
��

���� G�D� Plotkin� An operational semantics for CSP� In D� Bj'rner� editor� Proceedings
IFIP TC Working Conference on Formal Description of Programming Concepts � II�
Garmisch� pages ���!���� Amsterdam� ��
�� North�Holland�

��	� A� Ponse� Computable processes and bisimulation equivalence� Report CS�R��	 � CWI�

Amsterdam� January �����

���� H� Rogers� Theory of Recursive Functions and E�ective Computability� McGraw�Hill

Book Co�� ��� �

���� J�J�M�M� Rutten� Deriving denotational models for bisimulation from structured op�
erational semantics� In M� Broy and C�B� Jones� editors� Proceedings IFIP Working

Conference on Programming Concepts and Methods� Sea of Gallilea� Israel� pages ���!
� � North�Holland� ���	�

��

���� R� de Simone� Calculabilit�e et Expressivit�e dans l�Algebra de Processus Parall�eles Meije�

Th(ese de �e cycle� Univ� Paris � ��
��

���� R� de Simone� Higher�level synchronising devices in meije!SCCS� Theoretical Computer
Science� � ����!�� � ��
��

���� F�W� Vaandrager� On the relationship between process algebra and input�output au�

tomata �extended abstract� In Proceedings �th Annual Symposium on Logic in Computer
Science� Amsterdam� pages �
 !��
� IEEE Computer Society Press� �����

