
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Graphics for ABC

J
�
. Zwaan, R. Zwart

Computer Science
�

/Department of Algorithmics and Architecture

CS-R9255 1992
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301653938?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Graphics for ABC

Jaap Zwaan and Rolf Zwart

CWI
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

&
IHBO De Maere

P.O. Box 1075, 7500 BB Enschede, The Netherlands

Abstract

This report sets the first steps towards a graphical facility for the programming
language ABC. It discusses which features are to be included as primitives in a
graphical extension to the language, the way pictures could be represented and
gives directions towards an implementation.

1991 Mathematics Subject Classification: 68N15, 68Q50, 68U05.

1991 CR Categories: I.3.0, I.3.4, I.3.6, H.5.2, H.1.2.

Keywords and Phrases: Computer graphics, graphics utilities, programming languages,
user interfaces, ergonomics.

Note: Work performed during a stay at the CWI, Amsterdam.

2 Graphics for ABC

1 Introduction
This report discusses a graphical extension to the programming language ABC the final
version of a sequence of languages called B. An informal introduction to ABC can be
found in [2] and a more technical introduction in [8].

 ABC is a programming language designed for personal computing and suited for the
non-professional programmer, although the professional will also find ABC worth using. It
is a simple language that supports structured programming. The design objectives for
ABC were:

♦ simplicity;

♦ suitability for conversational use;

♦ inclusion of structured-programming tools.
From the start of the design, ABC was not envisaged as an isolated programming
language, but as part of an environment dedicated to the ABC programmer. Such an
environment supports tools to assist the user in making the most out of their computer in
an easy and powerful way. One of these tools will be a graphical package, integrated with
the language and the environment.

1.1 Design objectives
The same design objectives underlying ABC should apply to its graphical package.
Graphics for ABC is designed as an extension to the programming language ABC. This
makes it possible to create and manipulate ‘pictures’ with an ABC program in an easy
way. The features discussed here only deal with non-interactive use. Like any other ABC
object, it should be possible also to create or modify pictures interactively with the
standard editor of the ABC environment, similar to MacPaint [5] and Cip [11]. Clearly, this
requires some extensions to the capabilities of the currently existing editor. This, however,
falls outside the scope of this report. It should also be possible to receive interactive data
input in ABC programs via a graphical interface (e.g., to write menu-driven programs). A
proposal for a set of primitives for such a facility is given in [1].

One of the design objectives is simplicity: the creation of pictures must be easy. It is
only possible to judge the merits of alternatives in the design process if one has a clear
idea of the kind of pictures the graphics facility is aiming to support. The assumption is
here that these pictures have mainly the nature of diagrams: two-dimensional charts, or
schemas, built from simple geometrical figures that could be drawn by an artist equipped
with a line-drawing pen, possibly adorned with text. In this respect, the scope of the facility
described here is the same as that of Ideal [12] and Pic [7]. Thus no attention is paid to
the problem of representing and rendering three-dimensional objects; although many of
the primitives proposed can be given an obvious meaning in a 3D context, the philosophy
here has been that the inevitable complications caused by possible excursions into higher
dimensions should not burden in any way the user who is only interested in planar
pictures. Before the present 2D proposal is finalised, it may nevertheless be worth
spending some effort in considering the design of a 3D extension, since it is conceivable
that a future addition in that direction could be facilitated by modifications to the current 2D
primitives without adding complexity. It would be a pity, then, if possible future extensions,
even if not envisaged now, would be thwarted unduly by earlier commitments.

Another matter entirely out of reach of the proposal in this report is that of animation.
The envisioned properties of the full ABC environment, in which representations on the
screen of objects modified by a running program will be continually updated, should
supply a limited form of animation. Real-time control of animation is currently out of the
question, and nothing like a video arcade game could therefore be programmed.

Other graphical languages and packages 3

1.2 Operational versus object-centred approach
The traditional approach to graphics in programming languages is operational: pen down,
move to here, pen up, move to there, and so on. The conceptual entities from which a
picture is composed are hidden in this approach, and simple modifications to a picture
may require a major rewrite of the program. These quite low-level primitives may be
replaced by somewhat higher ones (draw a line from here to there), or still higher ones,
leading to extensive packages such as GKS [4].

Still, the operational approach tends to force the user to be overly concerned with
coordinates, and is in general rather inflexible. For example, suppose a user has defined a
procedure for drawing bar charts. To draw two charts next to each other, the user has to
exert extreme care in positioning the charts to prevent overlapping. In some way, the
information about the width of the charts is present in their procedural descriptions, but it is
not available as such to the program. The procedure for bar chart drawing can be
amended to return the width of the chart just drawn, which may depend on the number of
entries in the table represented in the chart, and also on the length of the texts
representing the table keys. However, this information is then available only after a chart
has been drawn. This means that this amendment still does not make it possible to let the
program centre the picture composed of the two charts.

These problems can be overcome with a object-centred approach. Here the act of
creating a picture and that of drawing it on the screen are separated: a picture is a value
that can be created and modified by a program. This makes it possible to define, for
example, a picture as consisting of two sub-pictures next to each other, or of another
picture with a box around it.

This philosophy to pictures has been adopted from ILP [3]. The primitives of ILP are
rather primitive compared to the conceptual entities comprising the kind of diagrams for
which the ABC graphics facility is intended. A better model in this respect is provided by
Ideal and Pic, for example; these packages largely obviate the necessity of undue user
concern with coordinates. However, in contrast to an ILP picture, which is a structured
object, an Ideal or Pic ‘picture’ is a sequence of symbols, a linearized representation of a
structured description of a drawing that has to be parsed to retrieve the structure; building
a picture from components entails low level textual operations. Thus, Ideal and Pic,
although more felicitous in the level of their primitives, are less suitable if it comes to the
algorithmic creation or manipulation of pictures (nor were they designed with such aims in
mind).

The present proposal attempts to combine the best of these two worlds: the object-
creation approach of ILP with the user-friendly high level of Ideal and Pic.

2 Other graphical languages and packages

2.1 An overview

MacPaint
MacPaint [5] is a high-level graphic package for the Macintosh. Nearly all the drawing is
done with a mouse and a little help from the keyboard. The largest positive difference
between MacPaint and the other graphical packages described in this section, is that
MacPaint makes use of a mouse and is interactive. Some disadvantages of MacPaint are:

♦ Its absence of exact positioning, which makes it hard to position a drawing at a
precise position (the user has to do that with a mouse).

♦ The user cannot undo something she did two or more steps before. There is no
data structure but a pixel map, so structured editing is impossible.

4 Graphics for ABC

♦ Parts of pictures are only accessible to other programs as long as they are not
printed under or over something else.

♦ Using input from a program for painting a picture is impossible.
It is the only package that has no programming language at all.

Pic
Pic [7, 6] is a language for specifying pictures so that they can be typeset as an integral
part of a document preparation system: it is meant as a preprocessor for Troff [9]. The
basic objects in Pic are boxes, lines, arrows, ellipses, arcs and splines, which may be
placed anywhere and labeled with arbitrary text. An advantage of Pic is that it is possible
to specify the sizes and positions of objects with minimal use of absolute coordinates. But
there are also some negative points: Pic is useful for drawing flowcharts, but it takes a
long description to specify a more complex drawing, e.g. a directed graph. An interactive
program Cip [11] exists, that facilitates drawing in a way similar to MacPaint and
generates a — quite readable — Pic-file.

Ideal
Like Pic, Ideal [13] is a preprocessor for Troff. The greatest disadvantage of Ideal is its
principal theorem: complex numbers are good. This fact excludes nearly all ABC users.
Studying the language takes a lot of time before one can describe even a simple picture.
But as soon as the language is mastered, it is powerful. A program written in Ideal
includes a system of constraints that declares the relative positions of its significant points
and requests for actions to be performed at those points. Two commands embody the
idea of sketching several pictures on different parallel planes, then merging them into a
single picture. This is used when otherwise creating one part of a picture would destroy
another part.

Graphical Kernel System (GKS)
GKS [4] is a graphics system that allows programs to support a wide variety of graphic
devices. It is defined independently of programming languages. Before it can be used
from a particular language, a language binding must be defined for that language. GKS
does not make use of relative positioning within a segment, so it is difficult for non-
experienced people to deal with the language. Its low level primitives are powerful; in
particular its primitives for text are elaborate.

Intermediate Language for Pictures (ILP)
ILP [3] is a special purpose data description language: it is intended solely for the
description of pictures and to fill the gap between instructions for drawing on the one hand
and a picture description as part of a more sophisticated language or data structure for an
application area on the other. ILP is a low-level language in the sense that for each feature
required the simplest construction is chosen.

2.2 Capabilities in other languages
What should be included in the graphical package for ABC? In this section is discussed
which primitives other packages use. We have distributed all these primitives over three
categories:

♦ Basic primitives are the fundamental building blocks of a picture.

♦ Modification primitives alter the picture in one way or another:
- extend the picture with an enclosing object, e.g. a box (container primi-

tives);

Other graphical languages and packages 5

- alter aspects like position, drawing mode, shading and colour (appearance
primitives);

- change the whole picture by rotating, mirroring or scaling it.

♦ Composition primitives compose a picture out of other pictures.

Basic primitives
These primitives take a value as an argument and make a picture out of it.

Point
Points seem to be the most obvious drawing primitive, but only MacPaint has one; it will
probably not be used frequently.

Line
Drawing a line is one of the simplest primitives. The user only has to specify two points in
some way:

♦ In MacPaint the user marks the two endpoints of the line with the mouse and it
draws a line between them.

♦ In GKS is it harder to draw a line, because GKS only features polylines; so the
user has to specify an array consisting of two coordinates. These coordinates
need to be absolute, because GKS has no facility for relative positioning.

♦ Pic does not supply absolute positioning; it only supplies directions and compass
points of a picture. This is fine to work with:

- the user can specify, e.g., line from C.north to C2.south
where C and C2 are pictures. This has the advantage that the user need
not guess what the exact point is.

- Another way of specifying a line in Pic is: line up 1 inch line right
2 inch .

- The third way is related to the first, but one can reference a picture just by
its name and Pic will calculate the best looking point on that picture for one
of the ends of that line.

♦ ILP caters for absolute points (called FIXED) and moving in a certain direction
(called FREE, this is like line up 1inch right 2inch in Pic), but there is no
relative positioning.

♦ Ideal draws a line between two points, a point being described by its coordinates.

Arrow
It is difficult to specify arrows by means of other primitives, because the head of the arrow
needs to be properly oriented about the shaft of the arrow, no matter what angle the arrow
points.

♦ MacPaint does not cater for arrows at all, but a small head of an arrow is easily
entered in ‘fatbits’ mode.

♦ GKS and ILP have no arrows. Pic does supply arrows. These have a default
length and direction which can be changed easily, like lines can.

♦ Ideal has no facility for arrows, but they can be defined by means of the equations
given in [12].

6 Graphics for ABC

Text
This is a common primitive. All the packages supply a way to include text in a picture and
some have a rather elaborate set of these primitives.

♦ MacPaint supplies left, right and middle alignment as well as various point sizes
and fonts. A difficulty with MacPaint is its positioning: the user needs to position
the pointer carefully and has to undo and try again many times. MacPaint has no
primitive for centring several lines one under the other, except when the user
types them in at one time.

♦ GKS supplies left, middle, top and bottom alignment, writing from right to left,
angled text, multiple fonts, multiple sizes and multiple styles.

♦ Since Pic and Ideal are both preprocessors for Troff, they need not supply text
primitives, because Troff itself can take care of that.

♦ ILP has low level text primitives: it only supplies standard characters in standard
sizes.

Rectangle or box
There are two different primitives for making a rectangle. One creates a rectangle of a
certain width and length (sometimes there is a default) and the other places a rectangle
around some existing picture (this is usually called box ing).

♦ In MacPaint you draw rectangles by positioning the mouse in one corner, dragging
it to another corner and then releasing the button.

♦ Pic can make a good fitting rectangle around text or other picture, called BOX. It
can also draw rectangles of a default size or any size the user wants.

♦ Ideal supplies a primitive called box , but the sizes must always be specified .

Circle and ellipse
Circles and ellipses are hard to construct by means of other primitives, and therefore need
to be a primitive.

♦ MacPaint supplies circles and ellipses; the user only has to specify two points and
MacPaint draws the largest possible ellipse or circle that will fit in a rectangle
between the two points; the circle will be drawn adjusted to the first point.

♦ Pic draws ellipses (circles) in the same way as it draws rectangles (squares):
either drawing a circle around something or by specifying its dimensions.

♦ A circle is a primitive in Ideal (the description of a circle is given in [13]).

Arc

♦ Only Pic and Ideal support arcs. In Ideal the user has to specify a centre, a radius
and starting and ending angles, whereas in Pic she has to specify the direction
(clockwise or counterclockwise), starting and ending points and a radius (if the
radius is omitted, a radius of 1 inch is assumed).

Polygon and polyline
A polyline is a figure consisting of one or more lines, each line starting at the end point of
the previous one. A polygon is a polyline having an extra line from the last to the first point.

♦ In MacPaint the user only has to click on the desired positions and MacPaint will
draw a polyline or a polygon (depending on what was specified).

Other graphical languages and packages 7

♦ GKS draws a polyline or polygon with the aid of an array consisting of positions.

Spline
Splines are smooth curves passing through specified points. Only Pic and Ideal supply
splines.

Modification primitives
These primitives take a picture as their argument and result in a modified picture.

Box
A box is a rectangle around some other picture; boxes were discussed in the previous
section under rectangle.

Line mode
A line can be drawn in several ways, e.g. with dots, dashes, solid or some predefined
pattern.

♦ All graphical packages supply at least two drawing modes. MacPaint also
supplies thin and fat.

Colouring and shading
Colouring can only be done if an output device provides colours. Shading is easy, but the
big problem is how to specify a pattern and the object to be shaded.

♦ Colouring is not implemented in MacPaint, because its output devices (a printer or
terminal) do not feature it, whereas shading is easy in MacPaint. The user only
has to be sure that there are no gaps or holes in the outline of the wanted area,
otherwise the pattern will ‘leak through’. The user cannot shade in a certain
painted object, the user can only shade an outlined area, because MacPaint does
not cater for the underlying data structure; it only knows of pixels being white or
black.

♦ GKS features colouring and shading in and does this in a nice way (it recognises
the data structure).

♦ Pic and Ideal do shading as the user expects it to be done.

Rotation, mirroring and scaling
Rotation means turning a picture around some point, mirror means exchanging left and
right or top and bottom, and scaling means increasing or decreasing the sizes horizontally
or vertically or both.

♦ MacPaint can only rotate by 90o. Scaling can be done for some specified field
(only a rectangle) horizontally and vertically independently.

♦ GKS can rotate pictures by any angle and scale horizontally and vertically
independently.

Composition primitives
Once the user has created various pictures, she might like to create a new picture existing
of the previously created pictures. For example, she has described a tree and a duck and
now wants the duck to sit under the tree.

8 Graphics for ABC

Combine
Here, combining (merging) means to draw one picture upon the other without leaving out
certain parts.

♦ With MacPaint this is very complicated, but it is possible.

♦ In GKS this can be done by specifying the new position of the object to be
dropped in the picture.

Overlay
Overlaying means drawing a picture over another and removing the parts that would be
under the picture: underlying parts of previously painted pictures will disappear.

♦ MacPaint can do this, but it is not easy, mainly because MacPaint does not
recognise the structure of the drawing. The picture to be painted over the other
must be selected with a surrounding rectangle, so everything outside the wanted
picture, but inside the rectangle will be considered part of the picture. Therefore
more may disappear than wanted. This can be avoided by selecting the lasso (for
selecting nonrectangular things), but the user has to be precise: it is hard to move
the lasso around the outline.

3 Graphics primitives for ABC
In this section, possible graphics primitives for ABC are examined. The first section
contains a comprehensive list of candidate primitives, all enumerated for discussion. In
the second section the candidates list is pruned: a selection of these primitives is made
and it is explained why others are left out or are transformed into a different shape; where
necessary, the semantics of a primitive are refined.

3.1 Candidate primitives

Basic primitives
The position of the origin of the pictures returned by these primitives will be discussed in
the next section.

Dot
dot pos A dot at position pos .

dot This is a zeroadic function that returns a dot at (0, 0). To posi-
tion this dot use at(pos, dot) , which has the same effect as
dot pos .

Line and arrow
line (pos1, pos2) Return a line from pos1 to pos2 .

line pos Return a line from (0,0) to pos .

line (pic1, pic2) Return a line from pic1 to pic2 in a neat way (from border to
border).

arrow (pos1, pos2) Return an arrow from pos1 to pos2 .

arrow pos Return an arrow from (0,0) to pos .

arrow (pic1, pic2) Return an arrow from pic1 to pic2 in a neat way (from border
to border).

Graphics pr imit ives for ABC 9

Text
text Return the text at the given position.

text expression Return the expression, converted to text with its origin at
(0, 0).

Rectangle and square
rectangle (pos1, pos2) Return a rectangle with corners at the specified points.

rectangle (x,y) Return a rectangle with width and height with its origin at
(0, 0).

square size Return a square of the specified size.

square (pos, size) Return a square of size with origin positioned at pos .

Circle and ellipse
circle radius Return a circle with radius and middle point at

(radius , radius)

circle (pos, radius) Return a circle with radius with centre pos .

ellipse (pos1, pos2) Return the largest ellipse that would fit in rectangle (pos1,
pos2) .

ellipse (x, y) Return an ellipse with width x and height y with its origin at
(0, 0).

Arc
arc (centre, pos1, pos2) Return a counterclockwise circular arc with centre at centre ,

starting point at pos1 and end point on the line from centre
through pos2 .

arc (radius, pos1, angle) Return a counterclockwise circular arc with centre at (0, 0),
starting point at pos1 and the specified angle.

arc(centre, pic1, pic2) Return a counterclockwise circular arc with centre at centre ,
starting point at pic1 and end point at pic2 determined in the
same way as with line and arrow.

Polygon and polyline
polyline seq Return lines between all successive points in seq (absolute

coordinates).

polygon seq Return lines between all points in seq and one extra line from
the first to the last point.

Curve and loop
curve seq Return a smooth curve (often called spline), connecting suc-

cessive points in seq .

loop seq Return a smooth curve through successive points and
through the first and last point.

Modification primitives

Container primitives
box pic Return pic with the smallest possible box around it.

10 Graphics for ABC

circle pic Return pic with the smallest possible circle around it.

ellipse pic Return pic with the smallest possible ellipse around it.

square pic Return pic with the smallest possible square around it.

hull pic Return pic in a convex hull.

padded pic Return pic in a nice, not too thick border (margin).

padded (pic, margin) Return pic in a border with thickness margin .

Positioning
at(pos, pic) Give pic a new origin at pos .

Line mode
bold pic Return pic drawn in boldface instead of the default solid.

dotted pic Return pic drawn dotted instead of solid.

dashed pic Return pic drawn dashed instead of solid.

drawn (pic, mode) Return pic drawn in the specified drawing mode.

hidden pic Return pic invisibly instead of solid.

Colouring and shading
colour Return pic painted in the specified colour col.

shade Return pic shaded (filled) with pattern.

Rotate, mirror, scale
rotate(pic, angle) Rotate pic around its origin through angle .

mirror pic Mirror pic left to right.

mirror (pic, line) Mirror pic around line .

scale (pic, factor) Multiply the dimensions of pic with factor .

scale (pic, (xfac, yfac)) Multiply the dimensions of pic with a factor xfac and yfac in x
and y directions respectively.

Remarks

♦ There are other conceivable modes of drawing e.g.: thin, dotdashed, longdashed,
shortdashed, dotdotdashed, but it is not convenient to predefine functions for all
possible modes. A problem is, how to specify a non-built-in pattern or drawing
mode.

♦ In hull and padded should the enclosing figure be visible or invisible? Invisible
will probably be desired most often, but that will give these primitives a special
status: users have to remember which containers are visible and which are not.
Also, there would have to be a visible function to make the hull or padding
conspicuous.

♦ Some adjusting could be necessary if the obtained container has strange
dimensions (a long thin box containing one line of text), but the user should also
be able to turn off this automatic adjusting.

♦ What should the following do?
”purple” coloured box circle “yellow” coloured text “tie”

Graphics pr imit ives for ABC 11

Should the circle be purple too, or should the circle have the default colour? And
the text: yellow, purple or the standard colour? The same situation applies to
drawing modes. There are several solutions:

- The modification always works through the entire picture.
- It works through on all deeper levels until the mode or colour is explicitly

mentioned (otherwise they have the default value); a function throughout
causes even an explicit shade, colour or mode to be overridden.

- It works through on all deeper levels until the mode or colour is explicitly
mentioned; composite pictures (see next section) cause even an explicit
colour or mode to be overridden, because the ‘composition’ can’t have a
colour on its own.

- It works only one level deep, but works through on default values if the pic-
ture is a composite one.

- It works only one level deep; when the effect is wanted throughout the pic-
ture, one has to repeat the action for each level, or special functions
throughout and default (undoes the last throughout) would have to be
introduced.

Ideally, you want a method that distinguishes between when the picture is already
an object (like ”grey” colour mouse: entire mouse painted grey) or is just
being created (like ”grey” colour circle text “peep”: only a grey
circle), but that is unfortunately not possible. The second, third and fourth
alternatives look acceptable.

Composition primitives
pile (seq, shift) Return a picture, containing all the pictures in seq on top of

each other. Shift is a number denoting how far the ‘next’ pic-
ture will be displaced horizontally; -1 and +1 probably mean-
ing the left and right border of the ‘previous’ picture (other
numbers interpolate or extrapolate).

row (seq, shift) Similar to pile , but the pictures are juxtaposed; shift denotes
the vertical displacement.

splittable pic Allow the program to split a picture with type row, pile or text
automatically in multiple parts if it does not fit on the screen,
to make it more compact.

combine list Return all the pictures contained in list combined.

overlay seq A special form of combine ; underlying parts of previous pic-
tures disappear.

3.2 Suitable primitives for ABC
Some objectives for the selection process are:

♦ minimize the number of functions;

♦ use monadic and dyadic versions wherever useful;

♦ choose high level functions;

♦ combinations of operations should be meaningful;

♦ there should be no unnecessary user concern with coordinates;

♦ appropriate defaults should be chosen;

12 Graphics for ABC

♦ creating simple pictures must be simple, yet creating extensive pictures not too
complicated;

♦ it must be user friendly, no unexpected effects should occur;

♦ the functions should be powerful and versatile;

♦ the functions should be logical and should match fair expectation;

♦ the functions should be easily extensible;

♦ the functions should have mnemonic names.
So, summarising: in the spirit of ABC.

Naming conventions
What form should the names of the functions have? One can either view the function as
an action to be performed:

 mirror that.picture
or consider it in the context of its occurrence in an expression:

 DISPLAY mirrored picture
hence a name in the form of a past participle. The latter interpretation is attractive because
in many cases it resembles natural English rather well. This usage is reflected by the
following syntax:

 expr: [specif ication] past-participle object
 specif ication: pref ix | number | adverb | adjective
 (...etc)

Some functions take the form of a noun, e.g. dot, ellipse : the object to be returned. In
some cases different forms are indistinguishable. One problem is, that equivalent forms of,
for instance, encircled do not exist (enboxed or boxed or boxed.in could be
acceptable, but [en-]squared ? And what about enellipsed ?). Also, long ‘sentences’
written in this fashion do not look like natural language any more than the alternative. For
the composite primitives, it also would give ugly names: rowed, overlaid (only
combined and piled seem to be acceptable), so they will keep their original form.
Otherwise, wherever it does not look too far-fetched, the participle form has been chosen.

Basic primitives
at pos Return an ‘empty picture’ at pos ; enables use of positions

where pictures are required.

dot Return a dot at the origin. This zeroadic version of dot can
easily be given a position with dot at pos (see modification
primitives).

pic1 line pic2 Return a line from the border of pic1 to the border of pic2 .
This dyadic function avoids all the extra specifications about
where to start or end a line; the other versions are easily sim-
ulated using at

line pic Return a line from (0,0) to pic . This line can be given a new
position by (line at pos2) at pos1 , which has the
same effect as the dyadic primitive and is useful if only a
direction and a starting point is specified, as in:
(line at (-2,-3)) at east.of some.picture.
Alternatively, one can use polyline {pos1; pos2} .

pic1 arrow pic2 Similar to line ; the size of the arrowhead should depend on
the length of the arrow.

Graphics pr imit ives for ABC 13

arrow pic Similar to monadic line .

text expr Where expr is an expression of any type; expr will first be
converted to a text. The text is transformed into a (special
sort of) picture and positioned at (0, 0). ABC already has
functions on text: x<<n , x>>n and x><n . More elaborate
functions on text (-pictures) fall outside the scope of this
report, but should support font families, sizes and styles.

centre arc (start, end) Return a counterclockwise arc with centre at centre , starting
point at start and end point on the line from centre to end .
The other arc primitives were left out because this one will be
used more often, especially in combination with the additional
functions as in:
(x, y) arc (north.of box1, south.of circle2)
and it is easy to simulate the other arc primitives with this
one.

arc (start, end) Equivalent to (0, 0) arc (start, end) .

polyline seq: Return lines between successive points in seq .

polygon seq Return lines between successive points in seq and one extra
line from the first to the last point. Though it can be simulated
by polyline , it is included for convenience because it will
be used more frequently.

curve seq Return a smooth curve, connecting successive points.

loop seq Similar to curve, but connects the last to the first point in the
same way as the other points.

The circle, ellipse, rectangle and square -primitives are dealt with using
modification primitives, below.

Modification primitives
 margins box pic Return pic with a rectangle around it; how tight it will fit is

determined by margins (the margins between the smallest
possible box around pic in x- and y-direction, and the present
box). The box has a horizontal edge.

margin square pic Return the pic with a margin in the smallest possible square.

margin circle pic Return the pic with a margin in the smallest possible circle.

margins ellipse pic Return the pic with margins in the smallest possible ellipse.
The margins will have to be compressed at certain places to
force a real ellipse to be returned.

margin hull pic Return the pic with a margin in a convex polygon with
rounded corners.

margin padded pic Return the pic with a padding of thickness margin .

box pic Equivalent to nice.margins box pic : a box around a pic-
ture with ‘nice’ looking margins. What is ‘nice’ depends on the
[smaller dimension of the] enclosed picture and differs
between the various ‘containers’ (it will need to be deter-
mined experimentally).

square pic Equivalent to nice.margin square pic (margin is equal
for the x- and y-direction).

14 Graphics for ABC

circle pic Equivalent to nice.margin circle pic .

ellipse pic Equivalent to nice.margins ellipse pic .

hull pic Equivalent to nice.margin hull pic .

padded pic Equivalent to nice.margin padded pic .

pic at pos Give pic a new origin at pos .

mode drawn pic Return pic in a different drawing mode instead of (the default)
solid. The mode is a text identifying the drawing mode in a,
hopefully, mnemonic way: there should be a simple, intuitive
meaning associated to texts defining a pattern e.g.
”.” drawn pic (dotted) or
”-.-” drawn pic (dash-dot-dashed). Forms such as
”<.>” drawn line (double-headed dotted arrow) and
”->” drawn curve (curved arrow) have been suggested,
but these might be prone to be generalised and certain
choices would be rather arbitrary, e.g. the position of the
arrowhead in
”->” drawn (circle at anywhere).

angle rotated pic Return pic rotated around its origin through an angle speci-
fied in radians.

mirrored pic Return pic mirrored left to right; the other primitive will sel-
dom be needed and can be expressed, if necessary, using
rotated .

(fac.x, fac.y) scaled pic Return pic with its coordinates multiplied by factors fac.x and
fac.y respectively. This primitive is more general than the
other one; a user can simply write a function
factor zoom pic .

col coloured pic Return pic painted in the specified colour col .

pattern shaded pic Return pic shaded with a pattern . Specifying a pattern could
be done in a way similar to specification of drawing modes; in
fact, the pattern can be seen as the drawing mode of the
‘shade’.

Problems and remarks

♦ pic1 around pic2 would be nice as a generalisation of the container
primitives, but it is hard to find a reasonable algorithm.

♦ If a plain circle, rectangle, ellipse or square is desired, it can be specified by
something like:
radius circle (at anywhere).
The monadic use
box at anywhere
for instance, would yield a box with ‘nice’ sizes.

♦ If a single layer of padding (margin) is specified, plain rectangles, squares etc will
have ‘half’ sizes as arguments; otherwise, the total padding must be specified. It is
not clear what the most desirable property is.

♦ A few functions could be either predefined or user-defined:

HOW TO RETURN dotted pic: RETURN “.” drawn pic

Graphics pr imit ives for ABC 15

HOW TO RETURN drawn pic: RETURN “solid” drawn pic
HOW TO RETURN hidden pic: RETURN “ “ drawn pic
HOW TO RETURN shaded pic: RETURN “/” shaded pic
HOW TO RETURN yellow pic: RETURN “yellow” coloured pic
HOW TO RETURN coloured pic: RETURN ““ coloured pic

but this again raises the question, where we should draw the line. It is probably
best to leave it to the user, since this gives a smaller and therefore more
manageable set of primitives.

♦ Drawing mode, colour and shading work through on all deeper levels until the
mode or colour is explicitly mentioned (otherwise they have the ‘weak’ default
value); the function throughout pic will cause even an explicit colour or mode
to be overridden. In

PUT purple box circle yellow text ‘Hallo!’ IN hallo

the circle and the box should be purple and the text yellow, whereas in

”orange” coloured throughout hallo

all will be painted orange, no matter what colours hallo happens to contain.
”” coloured pic
gives pic the default colour; similarly for drawn and shaded . Perhaps these
primitives should always at least affect the top level; specifying throughout on a
one-levelled picture looks somewhat silly. Some experiments in this field need to
be done.

Composition primitives
shift pile seq Return a picture, containing all the pictures in seq on top of

each other. shift is a number denoting how far the ‘next’ pic-
ture will be displaced horizontally; -1 and +1 meaning the left
and right border of the ‘previous’ picture (other numbers inter-
polate or extrapolate, so 0 stands for the middle and +2
denotes a position to the right of the previous picture).

shift row seq Similar to pile , but the pictures are juxtaposed; shift
denotes the vertical displacement.

pile seq Equivalent to 0 pile seq , i.e. centred.

row seq Equivalent to 0 row seq .

split pic Allow the DISPLAY-command and the container primitives to
split a picture with type row, pile or text automatically in multi-
ple parts, in order to make it look better. split should do
something reasonable with other types of picture.

combine seq Return all the pictures contained in seq combined (the order
is irrelevant).

overlay seq Special form of combine; underlaying parts of previous pic-
tures disappear.

Remarks

♦ For seq lists, tables or (in the future) sequences of pictures should be allowed;
only in a combine is the order unimportant.

16 Graphics for ABC

Additional functions
To make the process of drawing easier, there are also several extra functions proposed,
all returning the (absolute) coordinates of a point:
vector exit pic Return the position of a point on the border of pic , where the

half line through the centre of pic , and in the direction of vec-
tor crosses the border of pic .

centre.of pic Return the position of the centre of pic .

north.of pic Return the position of the ‘north’ point of pic .

dist north.of pic Return the position at a distance dist north of pic .

south.of pic

dist south.of pic Similar to north.of ; analogous forms exist for:
west.of, east.of, nw.of, ne.of, se.of, sw.of .

Problems and remarks
♦ Absolute positioning should be avoided, but this is not possible when the user

wants to specify a polygon or polyline. However, the picture can always be moved
and scaled, so this is not likely to cause problems.

♦ The user will be given as much space as needed; the screen acts as a window on
the picture, but the question of how the screen should be divided arises.
Reasonable choices for the position of the origin and the coordinate system are:

- centre of screen —> (v, h) or (x, y) coordinates
- bottom left —> (x, y) coordinates
- top left —> (v, h) coordinates

(v, h) means: first coordinate = ‘down’ (vertical), second = ‘across’ (horizontal).
Preferably, the origin of the screen is put in the middle, because most primitives
return a picture with default position (0, 0). Unfortunately, this necessitates the use
of negative coordinates which may not be convenient for novices. Putting the
origin in one of the corners, on the other hand, has the drawback that the
occurrence of negative coordinates is invisible but nevertheless valid (there are
no limits on the size of a picture; it can be shifted and scaled down to fit on the
screen). Moreover the choice between the bottom left and the top left is difficult: it
depends on the coordinate system chosen.

When the screen origin is in the middle, there still is the dilemma between (x, y)
and (v, h) coordinates; the former suits mathematicians better, but a naive user
would probably expect the latter, since it reflects the way one reads in a lot of
languages. Polar coordinates (r, φ) are naturally out of the question. For the time
being, (x, y) coordinates are chosen but later experience may change this
decision. Users will probably quickly get used to either system.

Allowing the user to specify their own preferences as to the position of the origin
and the coordinates is another possibility; but then, the system can be in different
states, the current one likely to be forgotten. Another possibility is, to provide for
functions that convert from one system to the other.

♦ Units can be chosen in two ways:
- absolute (‘real world’) units, e.g. physical screen pixels, meters, cm, 1/61

feet, character positions (ens), points, mm etc.
- units relative to the dimensions of the device; the maximum is something

like 1, 10, 100, 1000, 1024 or whatever.

Structure of p ictures 17

Relative units are preferable, because pictures can be displayed in their entirety
on any device independent of its physical dimensions: what you see (on the
screen) is what you get (on paper, on a large demo-monitor, television set or
whatever), possibly scaled up or down. The smaller dimension of the device
should determine the maximum; thus it can be guaranteed that any picture having
dimensions smaller than twice the maximum in either direction will fit. Choosing 1
[or 0.5, assuming the origin in the centre] as the maximum is an obvious choice; it
is the least arbitrary. It causes no rounding problems because exact (rational)
numbers can be used. The nuisance of using fractions can be overcome by
expressing coordinates in whatever units you like and scaling pictures down
before DISPLAYing.

To use absolute units, the system has to know the physical sizes of all devices
connected to it, which is not always possible. Of the absolute units, the most
acceptable would be 1 mm which has the advantage that fractions would hardly
ever be used and that it is a standard unit in many fields of engineering, etc.
Character positions is another possibility, but a problem arises with different fonts.

♦ Where will the origin be for each picture? It could be positioned at one of the
corners of its borders, for instance the lower left corner, but then mirroring and
rotating can cause the origin to change abruptly. Putting the origin of a picture at
its centre is preferable; this position has to be calculated for other operations
anyway.

4 Structure of pictures

4.1 Linking (connectivity) of sub-pictures
Any non-trivial picture consists of sub-pictures; these sub-pictures have an interrelation
based on the specification of the picture. At first sight it seems desirable, in some cases,
to maintain these structural relations in the resultant picture. The picture, then, has a kind
of ‘memory’: it contains details about the way it was constructed and which elements of it
are really the same entity (clones as opposed to copies). An example is a picture
consisting of a box and a circle connected by an arrow:

combine {box1; circle1; box1 arrow circle1}
The user can make minor modifications to the picture with the editor without disturbing the
internal structure, for instance: moving or scaling the circle causes the arrow to shift too
(the structure is always maintained).

On the other hand, modifying the structure itself is quite complicated and may not yield
the expected result. It has the inherent danger that a minor modification starts a ‘chain
reaction’ of resulting changes to the picture, or even a circular (endless) chain, even more
so when pictures are created by a program. An analogy can be made with a parse-graph
for functions, in which variables of the same name conceptually contain pointers to one
and the same string, so that renaming a variable causes it to change everywhere in the
function. Though this might be useful sometimes, in many cases it is a nuisance. Also, it
violates the rule in ABC that wherever you put an expression, it is evaluated and its
‘original form’ is unknown afterwards:

>>> PUT box keys IN keyboard
>>> PUT combine {keyboard; keyboard arrow screen; screen}

IN terminal

would yield a structure for terminal different from this case:

18 Graphics for ABC

>>> PUT combine {box keys; (box keys) arrow screen; screen}
IN terminal

 One of the questions to be answered is: in which cases should changes work through?

♦ Lines or arrows between objects: should moving or changing the size of the object
affect the line or arrow? And the other way round?

♦ Circles, boxes etc around an object: should moving or changing the object affect
the enclosing object? And what about changing the enclosing object itself?

♦ Composite pictures: are they always to be considered as a whole?

♦ Mirroring, scaling etc.: should they work on all clones of a picture?
Strongly linked pictures would give the user the impression that the system is ‘not
cooperating’ and acts in a too ‘pseudo-intelligent’ way. Incorporating only a few
connections leads to the problem that one forgets which functions work through and which
don’t.

Furthermore, every picture has its own structure (or lack of structure) and in order to
generalise it one always will have to make assumptions on heuristic grounds (for example:
‘‘this line connects two objects’’, rather than ‘‘this line happens to go from one object to the
other’’). This also assumes discipline from a programmer to build pictures in a structured
way.

4.2 A tree-model
If strong connectivity is not desired, a picture can be represented by a tree rather than a
graph. A node of the tree should contain information about the type , the coordinates of
relevant points of the picture and, dependent on the type, zero or more [pointers to]
subtrees . There is no reason to limit the number of subtrees in this representation: it is a
real n-ary tree with dynamic n. Until an ABC-editor for general data structures is available,
a picture is most easily modified by editing the function that describes it, rather than
editing the data structure itself. This fits the concept of permanently updated session
records (see [10]). Assuming that that part of the environment has been implemented,
one can modify the description of a picture and immediately see the result in another
window. This will, in effect, amount to the same as the graph-like structure mentioned
previously, but without the chaining problems: changes will work through in the rest of the
picture, because the entire picture is completely recalculated.

4.3 Representation of pictures
Pictures can be unambiguously defined in a number of different ways. The ones
considered are described below, with as little redundant information as possible:
Additionally, properties such as drawing mode and colour have to be incorporated in the
structure (for all types of picture). It is desirable to minimize calculations while modifying
pictures. Therefore, coordinates should be as independent from each other as possible.
The alternatives that are starred in Table 1, share some properties:

♦ The origin can be located in the centre of the picture; the coordinates are
absolute, so the centre is quickly retrievable.

♦ All other coordinates are relative to the origin; this provides for easy shifting,
rotation, scaling and mirroring of pictures.

♦ The DISPLAY-command has to calculate the absolute positions.
The relevant data have a number of common elements:

type, centre, list of vectors

Examples of creat ing pictures 19

The precise interpretation of the vectors depends on the type of picture involved. These
data have to be put in a ABC-data structure.

5 Examples of creating pictures
HOW TO RETURN ed’s.oracle: \ van Thijn dus

PUT choice {“1992”; “heeft ‘t”} IN slogan
IF slogan = “1992”:

RETURN combine {olympic.rings; bottom.text}
RETURN bottom.text

bottom.text:
RETURN text (“Amsterdam “^slogan)

HOW TO RETURN olympic.rings:
PUT hidden (20 padded (100 circle at (0, 0)) IN ring
\make a padded ring
PUT row {ring; ring; ring} IN top.row
PUT (row {ring; ring}) at south.of top.row IN bottom.row
RETURN combine {top.row; bottom.row}
\rings can be coloured if output device supports it

HOW TO RETURN just.a.picture:
PUT ellipse text “coffee” IN el
PUT circle square box (el at (30, 70)) IN combi
PUT combine {el; el arrow combi; combi} IN res
RETURN (.01, .01) scaled res

type origin vectors size,
radius

remarks chosen category

dot 1 * BASIC

line, arrow 1 1 1 <— length *

text 1 + the text *

arc 1 2 *

1 1 1 <— radius *

polygon, polyline 1 n-1 *

curve, loop 1 n[+m] (m= ALL pts) *

box 1 2 + enclosed * MODIFICATION

square 1 1 *

circle 1 1 *

ellipse 1 2 *

2 1 (2 foci) *

hull, padded 1 n[+m] *

row, pile 1 2 (borders) * COMPOSITION

overlay, combine 1 2 (borders) *

Table 1. Relevant data of pictures (numbers denote the number of variables of that kind).

20 Graphics for ABC

6 References
[1] M.J.A.C. Andreoli, Taalprimitiva in B voor grafisch editen. Een verkenning, Internal

Report , CWI, Amsterdam (September 1985).

[2] Steven Pemberton, An alternative simple language and environment for PCs, IEEE
Software 4, 1, January 1987, 56—64.

[3] P.J.W. ten Hagen, T. Hagen, P. Klint, H. Noot, H.J. Sint and A.H. Veen, Intermediate
Language for Pictures, Mathematical Centre Tracts 130, ISBN 90 6196 2048,
Amsterdam (1980).

[4] F.R.A. Hopgood, D.A. Duce, J.R. Gallop and D.C. Sutcliffe, Introduction to the
graphical kernel system GKS, Academic Press, Rutherford Appleton Laboratory,
Didcot, UK (1983).

[5] Carol Kaehler, MacPaint, Apple, Cupertino, California 95014 (1983).

[6] Brian W. Kernighan, PIC — A Language for Typesetting Graphics, Bell Laboratories,
Murray Hill, New Jersey 07974 (March 1982).

[7] Brian W. Kernighan, PIC User manual, Bell Laboratories, Murray Hill, New Jersey
07974 (March 1982).

[8] L.G.L.T. Meertens, S. Pemberton, and L. Geurts, The ABC Programmers Handbook,
Prentice-Hall, Englewood Cliffs, New Jersey, 1990. ISBN 0-13-000027-2.

[9] Joseph F. Ossanna, “Nroff/Troff User’s Manual,” UNIX programmers Manual 2,
section 22, Bell Laboratories, Murray Hill, New Jersey 07974 (January 1977).

[10] S. Pemberton, “A glimpse at the B-environment,” The B Newsletter (issue 1), CWI,
Amsterdam (August 1983).

[11] “Cip User’s Manual: One Picture is worth a Thousand Words, TM-82-11276-1
(1982).

[12] Christopher J. Van Wyk, IDEAL User’s Manual, Bell Laboratories, Murray Hill, New
Jersey (1979).

[13] J. Van Wyk, A graphics language for typesetting, Bell laboratories, Murray Hill, New
Jersey (1979).

