
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Miniford: a Kernel for a Manifold-like Coordination Language

E.P.B.M. Rutten

Computer Science/Department of Interactive Systems

CS-R9252 1992

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301653934?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Minifold� a Kernel for a Manifold�like

Coordination Language

E�P�B�M� Rutten

CWI

P�O� Box ����� ���� AB Amsterdam� The Netherlands

Abstract

Minifold is a kernel for a coordination language� following the Manifold model�

This model focuses on the coordination of processes� separated from their computation

functionality� Processes are considered as black boxes� and their behavior is abstracted

to their communications�

Minifold provides constructs to build up an environment of concurrent processes

and to manage the communication between them� On the one hand� a data��ow

mechanism can be used to build networks of streams� linking input and output ports

of the processes� and carrying the units exchanged between them� On the other hand�

an event broadcasting mechanism provides control on the dynamical modi�cation of

the data��ow network� Minifold is introduced in a constructive and incremental

way� It is provided with an operational semantics� a model of its execution based on

automata is proposed� and illustrated by simple classical example�

The purpose of the study of this very simpli�ed instance of the Manifold concept

is to explore models of its behavior� and to give a formalization of its bare essentials� It

is intended that the Manifold language can take advantage of this� as guidelines for

formalisms underlying practical tools for program analysis� clari�cation of its structure

and as a basis for the comparison with other models�

���� Mathematics Subject Classi�cation� ��N�� �Software�� Programming Lan�
guages	 ��Q
�� ��U�



���� CR Categories� C
�
�� C
�
�� C
�
m� D
�
�� D
�
�� F
�
�� I
�
�


Key Words and Phrases Formal speci�cations� parallel computing� models of com�
putation� programming language semantics� coordination languages


Note Author�s present address� IRISA�INRIA� F���
�� Rennes� France	
rutten�irisa
fr

�



Contents

� Introduction �

� Minifold� a kernel of Manifold �

��� Atomic processes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Data��ow connections � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� Streams� connecting ports of processes � � � � � � � � � � � � � � � � � �
����� Data��ow networks� sets of streams � � � � � � � � � � � � � � � � � � � 	

��
 Event�driven state change of the network � � � � � � � � � � � � � � � � � � � � �
��
�� States� associating networks and events � � � � � � � � � � � � � � � � � �
��
�� Coordinator� set of states � � � � � � � � � � � � � � � � � � � � � � � � �

��� Single coordinator applications � � � � � � � � � � � � � � � � � � � � � � � � � � ��
����� Applications � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
����� A 
rst complete example � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Concurrent coordinators applications � � � � � � � � � � � � � � � � � � � � � � ��
����� Applications � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
����� An example with concurrent coordinators � � � � � � � � � � � � � � � � ��

��� Minifold and its complete grammar � � � � � � � � � � � � � � � � � � � � � � �


� Formal model of Minifold ��


�� States of an application � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Construction of the state of a program � � � � � � � � � � � � � � � � � � � � � ��

�
 Transitions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	


�
�� Unit exchange between ports and streams � � � � � � � � � � � � � � � ��

�
�� Event exchange between atomic and coordinator processes � � � � � � ��

�
�
 Termination of processes and networks � � � � � � � � � � � � � � � � � ��

�
�� Relation between event level and unit level � � � � � � � � � � � � � � � ��


�� An alternative model� automaton of an application � � � � � � � � � � � � � � ��

���� Automaton of a coordinator � � � � � � � � � � � � � � � � � � � � � � � ��

���� Operations for combining interacting automata � � � � � � � � � � � � �	

���
 Automaton of an application � � � � � � � � � � � � � � � � � � � � � � � ��

� Examples ��

��� The Fibonacci series � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�
��� The sieves of Eratosthenes � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�

����� Arrays of processes � � � � � � � � � � � � � � � � � � � � � � � � � � � � 


����� The example of the sieves of Eratosthenes � � � � � � � � � � � � � � � 
�

� Miscellaneous ideas and open problems ��

� Conclusion ��

�



� Introduction

We presentMinifold� a kernel for a coordination language� following theManifold model
���� As such� Minifold can also be seen as an abstraction of the Manifold parallel
programming language� The focus of this language is on the coordination of processes� and
on their communication� it is not on the computations performed by some of the processes�
These latter are considered as black boxes� the behavior of which is abstracted to their
input and output� This work is in the area of coordination languages �	�� of which Linda

can be seen as a di�erent instance ���� Communication is supported by two mechanisms�
data��ow streams� and event broadcasting� Thus it is an approach to data��ow languages
���� originated from and motivated by practical problems in data�ow hardware realization�
rather than theoretical considerations� Manifold is a practical and experimental language�
de
ned in a detailed informal speci
cation ���� and for which an implementation is being

nalized ����

A formal speci
cation is given of a sub�language ����� in the form of an operational
semantics focusing on the transitions of the event�driven mechanism and the representation
of connection states of the data��ow networks� It is intended to clarify formally the structures
and behaviors of the model� while keeping most of the programming language� and has been
implemented in the ASF�SDF environment ����� The complexity of the result was mainly
due to the representation of features that are not of a primary signi
cance� Hence the need
for a still more abstract model�

In this paper� we perform a reconstruction of only very essential features of Manifold�
into the kernel language Minifold� However� fundamental assumptions of the model are
kept� data��ow and event communication co�exist� some processes are there to coordinate
the communication between others� while atomic processes are those not decomposable as a
coordinator process� and are the only ones responsible for the computations�

An important di�erence betweenMinifold andManifold is a simpli
cation concerning
the event communication� The event mechanism of Minifold is deterministic� and leads
to simpler models in terms of states and transitions� The goal of this work is to propose
formal models for some of the concepts ofManifold�like languages� in order to keep a clear
understanding of the behavior of these models� it is preferable to keep them small� which
is a motivation for the simpli
cation� As such� this model does not meet the choices of full
asynchrony and non�determinism made for Manifold� which correspond to its practical
and real�world motivations� But it constitutes a set of clari
ed concepts� and a base for
possible extensions in these direction�

Minifold provides constructs to build up an environment of concurrent processes and to
manage the communications between them� On the one hand� a data��ow mechanism allows
to build networks of streams� linking input and output ports of the processes� and carrying
the units exchanged between them� On the other hand� an event broadcasting mechanism
provides control on the dynamical modi
cation of the data��ow network�

In the following section� we introduce one by one the basic features of Minifold� il�
lustrating them with examples� and explicitly describing their inter�relations� we introduce
atomic processes� streams connecting these processes� data��ow networks made of several of






these streams� states associating such a network with an event� coordinators made of a set
of such states� and applications grouping concurrent coordinators� In section 
� we give a
formal model of theMinifold language and its constructs� and rules describing the possible
transitions between the states of an application� We also describe Minifold applications
in terms of 
nite state deterministic automata� In section �� the two classical examples of
Fibonacci and prime numbers by Eratosthenes method are given in Minifold� We discuss
open issues in section �� and conclude in section ��

� Minifold� a kernel of Manifold

Minifold is de
ned as a con
guration language where atomic processes� characterized only
by their input and output� are connected through streams attached to their ports� The
streams together form a data��ow network� and a change of state of the dynamic data��ow
network is made by a coordinator process on the reception of an event occurrence� raised by
one of the atomic processes� � The atomic processes� the coordinators� the streams� and the
ports constitute the environment in which events are broadcasted�

��� Atomic processes

Atomic processes are external� and atomic in the sense that they are considered as black boxes�
of which no internal feature or behavior is known� This is justi
ed by the fact thatMinifold

is a con�guration language� meant to manage the communication between processes� but not
the computations performed inside them� Thus� at the level of Minifold� they cannot be
decomposed further than their input and output channels� hence they are said to be atomic�

The atomic processes communicate only using units �input in or output from ports�
where the connections will be attached�� and events �raised and broadcast in the surrounding
environment�� An atomic process can perform the following actions�

� it can raise an event�

� one of its input ports can take a unit in from a stream� to which it is connected�

� one of its output ports can put a unit out to all the streams� to which it is connected�

Seen from Minifold� atomic processes can terminate on their own� without condition�
their ports are then not accessible anymore� and their events cannot be raised�

The syntax for the de
nition of such a process is as follows�

�In Minifold� coordinator processes are not given the possibility of raising events�
�A port might be attached to several streams� but it accepts units form only one of them at a time�

merging them non�deterministically�
�This means that each unit put out is duplicated for each of the streams�

�



A

inA1

outA2

outA1

e1 e3

Figure �� An atomic process�

hatomici ��� atomic hprocessi hports ini hports outi heventsi

hports ini ��� in hporti � � hporti�� j �
hports outi ��� out hporti � � hporti�� j �
heventsi ��� event heventi � � heventi�� j �

The names hprocessi of the process� hporti of ports in the lists� and heventi of the events
in the list� are identi
ers� The empty word is designated by ��

From outside the atomic processes� at the global level of an application considered further�
the name of the process will be used to build absolute names of its ports� in the form of a
composition using the dot� ����

A port hporti of a process hprocessi will have the absolute name�

hport namei ��� hprocessi�hporti

In the same way� event occurrences� can be given global names� by mentioning their
source i�e�� the port or process that raised them� an heventi raised by a process hprocessi will
have the absolute name�

hevent�occi ��� heventi�hprocessi

An example of atomic process is the process A� with one input port named inA� and two
output ports named outA� and outA�� It can raise the events e� and e�� This process is
de
ned in the statement�

atomic A in inA�

out outA� � outA�

event e� � e�

This example is illustrated graphically in 
g� ��

�



A

inA1

outA2

outA1 inB1

inB2

outB1

B

Figure �� The stream� A�outA� �� B�inB� �

��� Data��ow connections

�	�	� Streams� connecting ports of processes

The streams are connections between ports of processes� They are attached to two ports�
one source port �which is an output port of its owner process� and one sink port �which is
an input port of its owner process��

Streams carry units unidirectionally� from the source to the sink port� They behave like
a �rst�in �rst�out link� without loss of units� There is no assumption whatsoever about the
contents or meaning of units� this is left to computations in atomic processes�

A stream can perform the following actions�

� take a unit in from its source port�

� put a unit out to its sink port�

The e�ect of a process disappearing is that all the streams involving one of its ports are
terminated i�e�� broken�

The syntax to denote a stream between two ports is as follows�

hstreami ��� hport namei �� hport namei

where the left hport namei is the source� and the one on the right is the sink�
An example of stream is to link the processes A� de
ned previously� and B� de
ned by�

atomic B in inB�� inB� out outB� event e�� e�

with a stream going from the port outA� of process A to the port inB� of process B� with
the statement�

A�outA� �� B�inB�

as illustrated graphically in 
g� ��

�



�	�	� Data
�ow networks� sets of streams

A set of streams between processes de
nes a communications network� In a network� all
member streams are simply acting concurrently� A network of which all streams are
broken is broken also� In cases where only some of several streams in a network are broken�
there are two ways of grouping streams into sub�networks�

� pipe�lines are sets of streams such that a pipe�line breaks if at least one of its members
breaks�

� groups are sets of pipe�lines such that a group breaks if all of its members break�

For groups we use an addition�like notation 	 i�e�� for two streams s� and s�� s� 	 s�� For
pipe�lines� we use a multiplication�like � i�e�� for two streams s� and s�� s� � s���

The intuitive reason for the choice of these notations is simply that if a broken stream is
interpreted as �� then��

� a group s 	 � � s� which can be interpreted as� one of the members of the group
disappears� but others continue to exist�

� a pipe�line s � � � �� when one member of a pipe�line breaks� then the whole pipe�line
is broken�

The pipe�line operator has a higher priority than the group operator� n� 	 n� � n� means
n� 	 �n� � n��� Such an expression is to be interpreted in the context of an application�
and a stream P�p �� P ��p� is � if either process P � or process P � is terminated� Rules for
evaluating such networks are� n 	 � � � 	 n � n and n � � � � � n � ��

The syntax for networks de
nes them as groups of pipe�lines of streams�

hnetworki ��� hpipe�linei 	 hnetworki j hpipe�linei
hpipe�linei ��� hstreami � hpipe�linei j hstreami

In the case where several streams share the same port as source� as in the network� p ��

p� 	 p �� p��� illustrated in 
g� 
 �a�� the units are duplicated to all the streams at ounce�
In the case where several streams share the same port as a sink� as in the network� p� ��

p 	 p�� �� p� illustrated in 
g� 
 �b�� their outcoming units are accepted by the port and
merged in a non�deterministic order�

We illustrate this in our example� extended with a third process C de
ned by�

atomic C in inC out outC event e�

A network between these three processes is�

A�outA� �� B�inB� 	 C�outC �� A�inA� 	 B�outB� �� C�inC

as illustrated in 
g� ��

�Other notations could be chosen� like di�erent styles of parentheses� as in Manifold ���� ��	
 �����

and ������
�Another way of noting this is to say that� if a breaking stream is interpreted as false� then noting pipe�

lines with a conjunction � and groups with a disjunction � means that
 the pipe�line s� false is false i�e��
terminates� the group s � false is s i�e�� behaves like s�

	



(a) (b)

p

p’

p"

p’

p"

p

Figure 
� The networks� �a�� p��p� 	 p��p��� �b�� p���p 	 p����p�

A

inA1

outA2

outA1 inB1

inB2

outB1

B

outC inC

C

Figure �� A network�

�



��� Event�driven state change of the network

�	�	� States� associating networks and events

The Minifold language is about changing states of a data��ow network� in reaction to an
occurrence of an event raised by a source�

A new construct of the language associates a data��ow network expression with one or
several event occurrences� forming a label� It is called a state� and has the following syntax�

hstatei ��� hlabeli
 hnetworki �

hlabeli ��� hevent�occi � � hevent�occi ��

Here is its intuitive semantics� when the event is raised by an atomic process� the previous
state of the network is preempted� its corresponding network is dismantled� and the new state
is the network associated with the label featuring the event occurrence�

The termination of a state means that this state can not be reached anymore� and its
network can not be installed� This can be de
ned from its network� and from the event
occurrences in its label� A state terminates when one of the two following is veri
ed�

� the network is broken�

� all sources of event occurrences in the label of the state are terminated processes� this
means that the state is not reachable anymore� even if the network is unbroken�

As long as it is not terminated� a state is maintained up to date during execution of an
application� meaning that events from terminated sources are removed from its label� and
broken pipe�lines are removed from the network�

For example� the network of the previous example� illustrated in 
g� �� can be associated
with the event e�� raised by process A� into the state�

e��A 
 A�outA� �� B�inB� 	 C�outC �� A�inA� 	 B�outB� �� C�inC

A coordinator goes into that state when reacting to the raising of event e� by process A�

�	�	� Coordinator� set of states

A coordinator is a process� that might have input and output ports itself� and consists of
a collection of states� It coordinates the communications between processes� by installing
di�erent con
gurations of the data��ow network� It is de
ned following the syntax�

hcoordinatori ��� coordinator hprocessi
hports ini
hports outi
f hstatei� g

�



Its execution consists of the transition to the corresponding state on reception of an
event raised by a process� The states in the body are required to correspond to events in an
exclusive manner� in order to keep the transition to the next state deterministic� In other
terms� the labels have to be disjoint�

In each of these states� the network is built between processes declared in the declarations
of the application� A coordinator can access its own ports in a way di�erent from the
others� ports� it can use its own input ports as sources in streams� and its output ports as
sinks� These ports of the coordinator processes give a means of structuring the network by
encapsulating sub�networks� in the case of concurrency introduced further� connections to
the coordinator�s ports can be managed by other processes without taking into account how
the coordinator manages its sub�network� This point is illustrated in the example of section
������ in 
gs� � and �� where the ports input and output of the coordinator are used this
way�

A coordinator terminates when it has nothing left to coordinate i�e�� when all its states are
terminated� This means in particular that the coordinator has nothing to install anymore�
for a coordinator having k states li � ni�� i � ����k�� this could be written with the 	 notation�P

i�����k� ni � �� During execution� the set of states is updated by removing terminated
states�

��� Single coordinator applications

�	�	� Applications

An application is made of at least one coordinator process and atomic processes� Its behavior
consists of reacting to events raised by the atomic processes by changing the state of the
data��ow network� following the coordinator�

All processes are started together at the start of the application� and the coordinator has
an initial state featuring an empty network�

Each terminating process disappears from the application� An application terminates
when the coordinator is terminated� If there are remaining unterminated atomic processes�
they are not coordinated any more� thus they do not comprise an application� therefore the
application termination forces their termination�

We can introduce a 
rst approximation ofMinifold with a single coordinator� Its syntax
is�

happlicationi ��� hatomici�

hcoordinatori

We can now give a 
rst complete example� representing the language in one of its simplest
expressions�

�	�	� A �rst complete example

A simple but complete example� featuring the previous partial examples� is shown in table
��

��



A

inA1

outA2

outA1

inB1

inB2

B

input
outB1

outC inC

C

output

Figure �� Single�coordinator example� the state s��

The application is in the state illustrated in 
g� �� and that we will call s�� if the event
e� is raised by process A�

e��A 
 A�outA���B�inB� 	 C�outC��A�inA� 	 B�outB���C�inC �

If the event e� is raised by B� the previous state of the network is dismantled� and instead
the new state s�is installed� as shown in 
g� ��

e��B 
 A�outA���B�inB� 	 C�outC��B�inB�

	 B�outB���C�inC 	 main�input��B�inB�

	 C�outC�� main�output �

If the event e� is raised� by process A or C� the previous state of the network is dismantled�
and instead the new state s� is installed� as shown in 
g� ��

e��A � e��C 
 A�outA���B�inB� 	 C�outC��A�inA�

	 A�outA���C�inC 	 main�input��A�inA�

	 B�outB��� main�output �

��� Concurrent coordinators applications

�	�	� Applications

The network between the ports of the processes can be structured by dividing it into several
sub�networks� each changing states according to its own rules� These sub�networks need not
be disjoint� they might involve common processes� the same ports of these processes� or even
feature common streams� The global network is de
ned as the union of the local networks�

The way to specify this is to have several concurrent coordinators� each managing its own
sub�network� They evolve independently� and add up their behaviors to de
ne the evolution
of the global network� The only di�erence with the single coordinator case is that there are

��



A

inA1

outA2

outA1 inB1

inB2

outB1

B

input

output

outC inC
C

Figure �� Single�coordinator example� the state s��

several coordinators� each of them behaving exactly the same way as the one de
ned earlier�
When an event is raised by a process� they all receive it� this event occurrence is broadcast�
and each coordinator reacts according to its set of states� All coordinators that can react
to an event occurrence� do so simultaneously� the resulting global state of the application is
composed of the states of all individual processes�

Such an application terminates when all coordinators have terminated�
One atomic process terminates at a time� just like one atomic process raises an event at

a time� In the cases of event exchange� all coordinators that can� do react at the same time�
in the case of termination� the termination of one atomic process can cause the termination
of one or more coordinators at the same time� which can in turn cause the termination of
further processes� in a cascading e�ect�

The syntax of this concurrent coordinators version is thus simply�

happlicationi ��� hatomici�

hcoordinatori�

�	�	� An example with concurrent coordinators

In table �� the program is composed of two atomic processes A� and A�� and of two coordi�
nators� C� with states s� and s�� and C� with states s��� s

�
� and s���

Each state of each individual coordinator corresponds to the subnetworks illustrated in

g� 	� When the coordinators act concurrently� their sub�networks merge into a global
network� The states the application can be in� depend on the way the di�erent coordinators
react to event occurrences� In our example� when event occurrence e��A� is raised� C� is
in state s� and C� in state s��� i�e�� the application� on the raising of e��A�� will be in a
state �merging� s� and s��� let us call it s�s

�
�� When event occurrence e��A� is raised� C� is

necessarily in state s�� and C� in state s��� the application is in state s�s
�
��

When event occurrence e��A� is raised� the coordinator C� goes into state s��� but C� is
not a�ected� because it has no corresponding state� Thus the state of the application can

��



C� s�

i oA1

i oA2

i o
C1

s�

i oA1

i oA2

i o
C1

C� s��

i oA1

i oA2

i o
C2

s��

i oA1

i oA2

i o
C2

s��

i oA1

i oA2

i o
C2

Figure 	� Two�coordinators example� subnetworks for C� and C��

be� if the previous state of C� was s�� s�s
�
�� or� if the previous state of C� was s�� s�s

�
�� These

states s�s
�
�� s�s

�
�� s�s

�
�� and s�s

�
�� are illustrated in 
gure ��

��	 Minifold and its complete grammar

The features introduced until now already provide us with the basic constructs ofMinifold�
Augmenting them with other features is possible� this is discussed in section �� Also�

notational facilities can be introduced� as we do in section � by de
ning arrays of processes�
However� the basic elements that we wanted to integrate in this language kernel i�e�� pro�
cesses� ports� streams� and events� are present� even if they are in their simplest form�

The grammar of the language is given in table 
� As said earlier� the non�terminals
hprocessi� hporti and heventi are identi
ers�

� Formal model of Minifold

In this section� we de
ne the operational semantics of Minifold� using transition systems�
We 
rst give the structures with which to build a model of an application� and to give
its states� we give the rules for the translation of an application into these structures� and
then give the rules describing the transitions from one state to another� for the di�erent
actions that can be taken by an application� We also introduce an alternative representa�
tion of coordinators as automata� and of applications as the synchronized product of these
automata�

�




application with coordinators C� and C�

s�s
�
�

i oA1

i oA2

i o
C1

i o
C2

s�s
�
�

i oA1

i oA2

i o
C1

i o
C2

s�s
�
�

i oA1

i oA2

i o
C1

i o
C2

s�s
�
�

i oA1

i oA2

i o
C1

i o
C2

Figure �� Two�coordinators example� networks for the application�

��� States of an application

In this section we de
ne a formal model of Minifold
	� The states of applications will

be de
ned in terms of the states of their components i�e�� ports� atomic and coordinator
processes� and streams�

Atomic processes	 They are characterized by�

� a name P �

� a set E of events e that can be raised by P �occurrences � will have the form e�P ��

These aspects are formulated in a tuple� hP�Ei� The terminal state of an atomic
process is noted ��

Coordinators	 They are characterized by�

� their name P �

�We could call it ��fold �To be read
 Munufold
�

��



� their set of states S� each state being of the form hLs� Nsi� where�


 Ls is the label of that state i�e�� a set of event occurrences�


 Ns is a network� i�e� a set of pairs hso�sii� where so and si are the names of the
source port �so� and the sink port �si��

� N is the current network of the coordinator process� of the form described above�

This is formulated in a tuple� hP�S�Ni� The terminal state of a coordinator process is
noted ��

The units queues	 The sets of units are �rst�in �rst�out queues� of unbounded size� They
are written as lists� �u�� � � � un�� The empty list is � �� Operations on these lists of units are�

� empty � � ��

� get��u�� � � � un�� � u��

� put�u� �u�� � � � un�� � �u�� � � � un� u��

� rest��u�� u�� � � � un�� � �u�� � � � un��

The cases� get�� �� and rest�� �� are unde
ned�

Ports	 They are de
ned by

� a name p of the form hport namei i�e�� hprocessi�hporti�

� contents pc� a set of units� The set of units is de
ned to have a �rst�in �rst�out
behavior�

This is noted as a pair� hp�pci�

Streams	 They are de
ned by�

� the name of their source port so�

� the name of their sink port si�

� the set of names of the coordinators which installed them� sl�

� their contents sc� a set of units�

i�e� the tuple� hso�si�sl�sci�
A newly installed stream has an empty content� hso�si�fpg�� �i� where p is the name of

the process installing it�

��



Application state	 An application is de
ned as a tuple hA� C�P �Si where�

� A is the set of atomic processes�

� C is the set of coordinator processes�

� P is the set of ports�

� S is the set streams�

Terminated components of an applications disappear from the set to which they belong�
The terminal state of an application is noted ��

��� Construction of the state of a program

This section describes the translation from Minifold to the formal model�


An application is translated into a tuple hA� C�P �Si� computed on an empty tuple by
the closure of the transition relation�

h happlicationi� h�� �� �� �i i ��� hA� C�P �Si

An atomic process is translated into a pair hP�Ei� featuring its name P and the set of its
raisable events E� which is added to A� while its ports� the input ones as well as the output
ones� are added to P �

h heventsi� � i ���E� h hports ini� P i ���P �� h hports outi� P � i ���P ��

h atomic hprocessi hports ini hports outi heventsi helementi�� hA� C�P �Si i
�� h helementi�� hA � fh hprocessi� E ig� C�P ���Si i

The list of events is transformed into a set containing all the event occurrences �we show
here only the general case� leaving the management of the end of the list to the reader�s
imagination��

hevent heventi�heventsi �Ei �� hevent heventsi�E � fheventigi

The lists of ports are transformed into a single set containing for each port a pair hp�pci
where p is the name of the port� and pc is its contents� this latter is initially empty �we
show here also only the general cases� leaving the management of the end of the lists to the
reader�s imagination��

hin hporti�hportsi�Pi �� h in hportsi�P � fh hporti� empty ig i

hout hporti�hportsi�Pi �� h out hportsi�P � fh hporti� empty ig i

�Actually� the introduction of helementi makes this translation more liberal than Minifold� but as it is
a strict superset of Minifold that is recognized� this does not impair the obtained result�

��



In any case� the empty word � is translated into nothing� leaving a set E una�ected in
this terminal rule�

h�� Ei �� E

A coordinator process is translated into a tuple hP�S�Ni� of which P is its name� S is
its set of states� and N is its current network �i�e�� in a sense� state�� this latter is initially
empty� This tuple is added to the set C� Its processes� the input ones as well as the output
ones� are added to P �

h hstatei�� � i ���S�
h hports ini� P i ���P �� h hports outi� P � i ���P ��

h coordinator hprocessi hports ini hports outi f hstatei� g helementi��
hA� C�P �Si i

�� h helementi�� h A� C � fh hprocessi� S� � ig�P ���S i

Each state is translated into a pair hL�Ni where L is the set of event occurrences translat�
ing the label� and N is the set of port�pairs �representing the ports of a stream� translating
the network�

h hlabeli� � i �� L� h hnetworki� � i �� N

h hlabeli � hnetworki � hstatesi�� S i �� h hstatesi�� S � fhL�Nig i

A label is translated into a set of event occurrences�

h hevent�occi�hevent�occsi � Ei �� h hevent�occsi� E � fhevent�occig i

h hevent�occi � Ei �� E � fhevent�occig

Each stream of a network expression is translated into a pair hso�sii where so is the name
of its source port� and si is the name of its sink port�

h hport�i �� hport�i � Ni �� N � fhhport�i�hport�iig

A pipe�line is a set of streams�

h hport�i��hport�i	hpipe�linei � Ni �� h hpipe�linei� N � fhhport�i�hport�iig i

A group or network is translated into the set of the pipe�lines translations�

h hpipe�linei� �i �� N �

h hpipe�linei 	 hnetworki � Ni �� h hnetworki� N � fN �g i

��� Transitions

For the di�erent possible actions presented informally in previous sections� transition rules
de
ne the changes in the states of the application and of its components�

�	



�	�	� Unit exchange between ports and streams

We 
rst present the exchange of units between ports and streams� this involves the capability
for a stream to receive a unit and to send it out� and the same two capabilities for a port�
From these bases� we can de
ne the passing of a unit from a stream to a port� and from a
port to streams�

Stream receiving a unit	 The transition is labeled by hport namei�huniti� where hport
namei is the name of the source port with which the communication is made� namely�
from which the unit is taken in i�e�� the port sending the unit� This unit is appended to
the stream�s contents� The condition for this transition to be made� is that the stream is
installed i�e�� that its list sl of names of installer processes is not empty�

sl 	� �

hso�si�sl�sci
so�u
�� hso�si�sl�append	u�sc
i

Stream sending a unit	 The transition is labeled by hport namei�huniti� where hport
namei is the name of the sink port with which the communication is made� namely� to
which the unit is sent i�e�� the port receiving the unit� This unit is removed from the
stream�s non empty contents� if the stream is installed�

sc 	� � � sl 	� �

hso�si�sl�sci
si�get
sc�
�� hso�si�sl�rest	sc
i

Port receiving a unit	 The port p can make a transition when it receives a unit u sent
explicitly to him� hence the label p�u� it appends it in its contents�

hp�pci
p�u
�� hp�append	u�pc
i

Port sending a unit	 The port p can send the 
rst unit u taken from its non empty
contents� and sends it to all the streams connected to it as a source� the label p�u carries the
port name�

pc 	� � �

hp�pci
p�get
pc�
�� hp�rest	pc
i

Passing a unit from a stream to a port	 A unit u passes from a stream S to a port
P �hp�pci if the stream can make a sending transition for this port and the port can make
a receiving transition� We note E �e��e� the set �E n feg� � fe�g i�e�� the set E where a new
element e� replaces element e�

Then� the application is modi
ed in its ports set P and in its streams set S�


S � S� S
p�u
�� S �� 
P � P � P

p�u
�� P �

hA� C�P �Si
�
�� hA� C�P �P ��P ��S�S ��S�i

��



The transition is labeled by � � hp� ui� in order to mark it with the process p and the
unit u involved in the exchange�

Passing a unit from a port to streams	 A unit u passes from a port P �hp�pci to
streams in S if the port can make a sending transition and some streams in S can make a
receiving transition for this port� Then� the application is modi
ed in its ports set P and in
its streams set S� by the application level transition� labeled by � � hp� ui�

For this latter set of streams� we need to write that all the streams that can make a
transition� do it� while the others remain in the same state� Therefore� we introduce a
transition relation between sets� de
ned in terms of the possible transitions of its elements�
For a set E � the transition E��eachE � means that E � is the set of elements e� resulting from
the application� when possible� of the transition to an element e of E � e�� e�� or e itself
otherwise��


P � P � P
p�u
�� P �� S

p�u
��eachS

�

hA� C�P �Si
�
�� hA� C�P �P ��P ��S �i

�	�	� Event exchange between atomic and coordinator processes

The exchange of an event occurrence between an atomic process and coordinators involves
the capability of an atomic process to raise an event� the capability of a coordinator to react
to en event� and from the point of view of the data��ow network� the modi
cation to its
global state must be deduced from the modi
cations to the individual sub�networks� which
are in turn induced by the new state of each coordinator process�

From these bases� we can describe the e�ects of an event occurrence exchange on the
states of the processes and on the state of the data��ow network�

Atomic process raising an event occurrence	 An atomic process P can make a tran�
sition raising an event occurrence e�P �labeled� ��e�P�� if e is in the set of raisable events of
P � Its state does not change from the point of view of our model�

e � E

hP�Ei
�e�P
�� hP�Ei

Coordinator process reacting to event occurrence	 A coordinator process P can
make a transition receiving event occurrence � �labeled ������ which is an event occurrence
of the form e�P � if a state hL�N �i belongs to its set of states S such that � � L� the current
network N of the process is then changed into N ��

hL�N �i� S� � � L

hP�S�Ni
��
�� hP�S�N �i

�In particular� if the transition from e to e� is not deterministic� then ��each isn�t either� and E � is one
possible outcome of the transition� with each e� being one possible transform of some e in E �

��



Modi�cations to the global network from one local sub
network	 Each coordi�
nator hP�S�Ni has a local network of current state N � set of sets of pairs of port names�
corresponding to streams installed by P � The distinction between groups and pipe�lines
is irrelevant to their installation� the set of all streams must be installed� Therefore� we
introduce a �attened network N � the union of N �s elements� N �

S
Np�N Np� In S� we

have the streams hso�si�sl�sci� We have several cases�

� if hso�sii is in N � and hso�si�sl�sci is in S� then P is added to the set of installers�
sl � fPg�

s �hso�sii � N � S �hso�si�sl�sci � S

hS�Ni
P
�� h S� hso�si�sl�fPg�sci � S �� N n fsg i

� if hso�sii is in N and hso�si�sl�sci is not in S� then a new stream must be added to S�
with P as installer� and empty contents�

s �hso�sii � N � hso�si�sl�sci 	� S

hS�Ni
P
�� h S � fhso�si�fPg�emptyig� N n fsgi

� if hso�sii is not in N and there is a hso�si�sl�sci in S such that P � sl� then it is a
stream that was removed from the current local network of P � thus P must be removed
from sl�

S �hso�si�sl�sci � S� P � sl hso�sii 	� N �

hS�Ni
P
�� h S� hso�si�slnfPg�sci � S �� N i

At this point� if sl n fPg � �� then no units �ow through the stream� Its contents are
kept until some coordinator re�installs the stream��

� 
nally� this rule terminates the transitions�

hS� �i
P
�� S

Modi�cations to the global network from all the local sub
networks	 The global
network is a combination of all the local networks� each coordinator process C �hP�S�Ni of C
contributes its local network N �or more easily its �attened form N �

S
Np�N Np introduced

before�� thus modifying S into S �� in a transition labeled by the process� name P � The
following rules accumulate the modi
cations for all coordinators in C�

C �hP�S�Ni� C� hS�
S
Np�N Npi

P
��

�

S �

hS� Ci �� hS �� C n fCgi

and this rule for termination of the transition�

hS� �i �� S

	InManifold��	� the stream is said to be in a dormant state� and an alternative speci�cation was chosen

units are considered to be lost� sc being reset to �� Further versions of Manifold feature both mechanisms�

��



Raising and reaction to an event occurrence	 An application makes a transition by
raising and reacting to an event occurrence�

� if some atomic port of A can make the transition for the raising of event ��

� and the set of coordinators C can make the transition to C � corresponding to the
transitions of each its elements reacting �or not� to the event occurrence ��

� and the set of streams S makes transitions of modi
cations according to the new states
of the coordinators�


A � A� A
��
�� A�� C

��
��eachC �� hS� C �i���S �

hA� C�P �Si
�

�� hA�A��A�� C ��P �S �i

�	�	� Termination of processes and networks

Termination of applications� coordinators� networks and atomic processes is de
ned hierar�
chically�

Termination of atomic processes	 They can terminate without condition� Their state
is transformed into ��

hA�Ei
y

�� �

Termination of networks	 The transition system ��n formalizes the termination of
networks� evaluating the network of non�terminated streams N � for a network N � in the
context of an application with sets of coordinators C and of atomics A�

A stream is broken if a process owning one of its ports is terminated i�e�� if it belongs
neither to A nor to C�

�hP�Ei	� A�hP�S�Ni	� C� � �hP��E�i	� A�hP��S��N�i	� C�
h hP�p�P��p�i� C� A i ��n �

otherwise it is kept as it is�

�hP�Ei� A�hP�S�Ni� C� � �hP��E�i� A�hP��S��N�i� C�
h hP�p�P��p�i� C� A i ��n hP�p�P��p�i

A pipe
line being a set of streams� it is broken if one of its streams is broken�


s � N�hs� C�Ai ��n �
hN� C�Ai ��n �

��



otherwise it is kept as it is�


s � N�hs� C�Ai ��n s� s 	� �
hN� C�Ai ��n N

A group being a set of pipe�lines� terminates when all its members are terminated� if one
of them terminates� it is removed from Ng�

Np � Ng�hNp� C�Ai��n �
hNg� C�A� N �

gi ��n hNg n fNpg� C�A� N �
gi

otherwise it is kept in its updated form�

Np � Ng�hNp� C�Ai��n N �
p� N �

p 	� �
hNg� C�A� N �

gi ��n hNg n fNpg� C�A� N �
g � fN

�
pgi

This transformation is completed by the following rule�

h�� C�A� Ngi ��n Ng

Termination of states	 As said informally before� the termination of a state can involve
two reasons� reachability or networks�

Unreachable states � The transition ��r evaluates the set of states for which the label
is accessible�

A state hL�Ni is unreachable with regard to a set of atomic processes A� if no e�P � L
has a source P present in A� It is removed from A�

hL�Ni � S� 
e�P � L� hP�Ei 	� A
hS�A� S �i ��r hS n fhL�Nig�A� S �i

otherwise it is kept� with updated label L� featuring only raisable events�

hL�Ni � S� L� � fe�P � LjhP�Ei� Ag� L� 	� �
hS�A� S �i ��r hS n fhL�Nig�A� S � � fhL��Nigi

This transformation is completed by the following rule�

h��A� Si ��r S

��



Broken network �

A state hL�Ni has a broken network with regard to sets A and C of atomic and coor�
dinator processes� if all pipe�lines are broken� It is removed from S�

hL�Ni� S� hN� C�A� �i ��n �
hS� C�A�S �i ��n hS n fhL�Nig� C�A�S �i

otherwise� it is kept� its network updated by removal of broken pipe�lines�

hL�Ni� S�hN� C�A� �i ��n N �� �N � 	� ��
hS� C�A�S �i ��n hS n fhL�Nig� C�A�S � � fhL�N �igi

This transformation is completed by the following rule�

h�� C�A� Si ��n S

Termination of coordinators	 A coordinator terminates if all its states are terminated�
If its transformation by removal of unreachable states and of broken streams results in a
non�empty set of states S ��� then C �hP�S�Ni is updated into C � �hP� S ��� Ni�

hS�Ai ��r S
�� hS �� C�Ai ��n S ��� �S �� 	� ��

h hP�S�Ni � C �A i
y

�� hP�S ���Ni

otherwise it is terminated�

hS�Ai ��r S
�� hS �� C�Ai ��n �

h hP�S�Ni � C �A i
y

�� �

When a coordinator C terminates� it disappears from the set C� and the whole set is
checked again� as other coordinators might terminate in turn�

C � C� hC� C � C ��Ai
y

�� �

hC�A� C �i
y

�� h�C � C �� n fCg�A� �i

otherwise it is kept� in its modi
ed form C ��

C � C� hC� C � C ��Ai
y

�� C �� �C � 	� ��

hC�A� C �i
y

�� hC n fCg�A� C � � fC �gi

�




�	�	� Relation between event level and unit level

On the one hand� there is a transition between two states of the application when an event
occurrence � is exchanged i�e�� raised and reacted to�

hA� C�P �Si
�

�� hA�� C ��P �S �i

On the other hand� there is a transition labeled � � hp� ui between two states of the
application when a unit u is passed through port p �in either direction� from the port to
streams� or from a stream to the port�� This transition is of the form�

hA� C�P �Si
�
�� hA� C�P ��S �i

This transition leaves A and C una�ected� this means that process states in our model are
not changed by changes in the streams and ports�

The event transitions are thus quite independent of the unit transitions� and can be
considered separately� We therefore isolate event�level states� thereby acquiring a higher�
level view on the state of an application� The event�level is detached from the circulation of
units� and concerns only the states of processes in A and C� Furthermore� atomic processes
in A do not really change states� as the transition does not modify them� thus the states of
coordinators C are su�cient to de
ne the state of an application at this level� Finally� it can
be noted that this coordinator state hP�S�Ni changes only in N i�e�� in its local network�

At this level� one state de
ned by C �or actually the sub�networks N of the processes in
C� can be seen as the set of all states hA� C�P �Si with the same C� We can recall that there
is an initial state for each coordinator� where its sub�network is empty� before reacting to
the 
rst event occurrence�

Thus� the states of an application correspond to the di�erent possible con
gurations of
the streams in the network� responding to events arbitrarily raised by the atomic processes�
It seems interesting to study this particular aspect of the behavior of applications with a
speci
c model� We therefore propose an alternative model based on 
nite state automata�

��� An alternative model
 automaton of an application

Formulated in terms of automata� the event�driven behavior of coordinators and applications
corresponds to�

� states� corresponding to the network connection states�

� transitions� leading� for each label� from each state to the state corresponding to that
label�

We do not take termination into account� in order to keep the model simple�
We will de
ne such automata for isolated coordinators 
rst� and then combine these

automata into an automaton for the application�

��



�	�	� Automaton of a coordinator

A coordinator has n states� i � ����n�� each with a label li and a network expression ni�
represented as �li � ni��� Each �li � ni�� corresponds to a pair hLi� Nii in the formal model
in section 
��� that describes a coordinator as�

coordinator hprocessi in hports ini out hports outi f � � � li 
 ni� � � � g

The automaton corresponding to this coordinator is de
ned by�

� one state si for each network Ni� and one state s� for the initial state� before any event
occurrence has been raised� and corresponding to an empty network �N� � ���

� one transition tijk� i � ����n�� j � ����n�� k � ����jLj j� from each state si to each state
sj � labeled by each event occurrence �k in the label Lj �of cardinality jLj j � m i�e��
Lj � f��� ���� �mg� for the destination state sj �

We also de
ne null re�exive transitions on each state� representing the fact that when
there is no event occurrence to be reacted to� the coordinator remains in the same
state� doing nothing� This transition goes from si to si for each i � ����n�� and is
labeled by the null event occurrence� noted �� In this sense� it is di�erent from the
re�exive transitions tiik� k � �� �k � Li� We note the null transitions tii�� i � ����n��
Given k � �� an alternative notation can be �� � ��

This null event occurrence represents in fact event occurrences for which the coor�
dinator makes no state change� this will be useful when considering asynchronous
concurrent coordinators� reacting di�erently to event occurrences� It enables us to
represent that some processes do nothing while others advance�

In the following� we will explicitly represent ��transitions only when needed� otherwise�
in discussions� 
gures and tables of the examples� we leave them out of sight� but they
are implicitly present�

The automata corresponding to the coordinator processes C� and C� in the example of
section ����� are illustrated in 
gure �� The states correspond to the networks given in 
gure
	� and the transitions are labeled with the event occurrences that can lead to them�

More formally� we note an automaton following the notations of Arnold �
� ��� because of
their adequacy for the combination of automata de
ned further� A labeled transition system
�or automaton� A is a 
ve�tuple hS� T� �� �� 	i where�

� S is a set of states�

� T is a set of transitions�

� � and 	 are applications from T in S� associating to each transition t in T the two
states ��t� and 	�t�� which are respectively the origin and the goal of the transition t�

� � is an application from T in the labels alphabet A� associating to each transition t its
label ��t��

��



coordinator C� coordinator C�

s1

s2

e1.A1

e
1
.
A
1

e
1
.
A
2

e1.A2

e1
.A
2

e1.A1

s0

e1.A1

s’3

s’2

s’1 e1.A1

e
1
.
A
1

e
1
.
A
2

e1.A2

e1.A1

e1
.A
1

e2.A2

e2.A2

e2
.A
2

e1.A2

e2.A2
s’0

Figure �� Two�coordinators example� automata for the coordinators C�� C��

A transition t can then noted� ��t�
�
t�
�� 	�t��

In our framework� we note hSC � TC � �C � �C � 	Ci the automaton AC for a coordinator C
modeled by hC�S�Ni� where�

� SC � fsijs� � �� i � ����n� � si � Ni such that hLi� Nii� Sg�

� TC � ftijk j i � ����n�� j � ����n�� k � ����jLj j�g � ftii�ji � ����n�g�

� �C�tijk� � si� such that si � SC �

� 	C�tijk� � sj � such that si � SC �

� �C�tijk� �

�
�k if k � �� such that �k � Lj ofhLj � Nji � S
� if k � �

i�e�� the transitions have the form� tijk � si
�k�� sj�

The formal language recognized by this automaton AC is that of strings on the alphabet
AC � f�g� where AC is in fact

S
i�����n� Li� The automaton recognizes the series of event

occurrences to which it reacts and of null transitions�
Such an automaton is deterministic here because of the uniqueness of the state of a

coordinator corresponding to an event occurrence i�e�� the fact that labels denote disjoint
sets of event occurrences� 
i� j � ����n�� i 	� j � Li � Lj � �� Hence� when in a state
si� and making a transition on event occurrence �� we never have more than one transition
labeled with �� and thus the new state sj is uniquely de
ned� Formally� determinism is
de
ned as� 
t� t� � T� ��t� � ��t�� � ��t� � ��t�� � 	�t� � 	�t��� For tijk and ti�j�k� � we have
��tijk� � ��ti�j�k�� � �� � � Lj �� � Lj� i�e�� � � Lj�Lj� � We saw that labels Lj are disjoint�
thus 
� � Lj � Lj� � j � j � i�e�� Lj � Lj� and sj � sj� � Hence 
nally� 	�tijk� � 	�ti�j�k��� �

For n states in the body of a coordinator� each with a label Li� i � ����n�� the size in
number of states of the automaton is �n��� �including the initial state s��� For the number

��



application with coordinators C� and C�

e
1
.
A
1

e
1
.
A
1

e
1
.
A
2

e
1
.
A
2

s1s’1

s2s’2

s1s’3

s2s’3

e2.A2

e2.A2

e1.A1

e1.A2

e1
.A
1

e1.A2

s0s’0 s0s’3

e2.A2
e2.A2

e1.A2

e1.A1

e2.A2

e2.A2

e1
.A
2

e1.A1

Figure ��� Two�coordinators example� automaton for the application�

of transitions� we have n� � origins� n goals� for each goal j� j � ����n�� jLj j ways of getting
there and one ��transition tii� for each state si� i � ����n� i�e��

P
i�����n��� �

P
j�����n� jLj j��

In our example� the coordinators C� and C� have the automata �indicated with sizes� not
featuring the ��transitions��

C C� C�

SC fs�� s�� s�g �
� fs��� s
�
�� s

�
�� s

�
�g ���

TC

t�� � s�
e��A�
�� s�

t�� � s�
e��A�
�� s�

t�� � s�
e��A�
�� s�

t�� � s�
e��A�
�� s�

t�� � s�
e��A�
�� s�

t�� � s�
e��A�
�� s�

���

t��� � s
�
�
e��A�
�� s��

t��� � s�
e��A�
�� s��

t��� � s�
e��A�
�� s��

t��� � s
�
�
e��A�
�� s��

t��� � s
�
�
e��A�
�� s��

t��� � s
�
�
e��A�
�� s��

t��� � s
�
�
e��A�
�� s��

t��� � s
�
�
e��A�
�� s��

t��� � s
�
�
e��A�
�� s��

t��� � s
�
�
e��A�
�� s��

t��� � s
�
�
e��A�
�� s��

t��� � s
�
�
e��A�
�� s��

����

�	�	� Operations for combining interacting automata

An application is composed of concurrent coordinators� Its behavior is modeled by an
automaton combining the automata of its component coordinators� This combination must
be de
ned to correspond to the behavior of applications de
ned earlier�

As an example� the automaton for the application in the example of section ����� is
illustrated in 
gure ��� The states correspond to the networks given in 
gure ��
and the transitions are labeled with the event occurrences that can lead to them� In particu�
lar� we can notice that making a transition on event occurrence e��A� from state s�s

�
� leads

to state s�s
�
� i�e�� the two coordinators C� and C� each made a transition simultaneously�

However� from the same state s�s
�
�� a transition on event occurrence e��A� leads to state

�	



s�s
�
�� where only the coordinator C� has actually made a transition� Also� there is no state

s�s
�
�� because s�� is the state accessed in reaction to event occurrence e��A�� and this event

occurrence causes C� to transit to state s�� thus� when C� is in state s��� C� can only be in
state s�� not in s�� which makes an application state s�s

�
� impossible�

This shows that states of the application automaton are combinations of states of the
individual coordinator automata� and that transitions are also combinations of the transitions
in the coordinator automata� However� this combination is not just the cross product of the
two automata� their interaction is restricted by constraints� that can be used to reduce the
size of the resulting automaton�

Therefore� we introduce 
rst the free product of automata� de
ned by the cross product
of its components in the absence of constraint �hence free�� Then we introduce the means
to express and take into account the interaction constraints�

Free product of automata	 Following the de
nition given by Arnold ���� the free product
A � A� � ����An of automata Ai �hSi� Ti� �i� �i� 	ii is de
ned by�

hS� T� �� �� 	i �
Y

i�����n�

hSi� Ti� �i� �i� 	ii

� h
Y

i�����n�

Si �
Y

i�����n�

Ti � h��� ���� �ni � h��� ���� �ni � h	�� ���� 	ni i

A global state has the form s �hs�� ���� sni� and it can be changed to the state s� �hs��� ���� s
�
ni

by a global transition t �ht�� ���� tni such that� in each transition system Ai� there is a transi�
tion ti � si � s�i� Hence� the origin of a transition t is� ��t� � ��ht�� ���� tni� �h���t�� ���� �n�t�i�
its goal� 	�t� � 	�ht�� ���� tni� �h	��t�� ���� 	n�t�i� and� 
nally� the label of t is� ��t� �
��ht�� ���� tni� �h���t�� ���� �n�t�i�

The transitions t �ht�� ���� tni represent the simultaneity of transitions ti� this makes the
assumption of atomic elementary actions� and is natural for synchronous systems� However�
our coordinators are only loosely coupled� while some of them� in an application� might react
to an event occurrence �� others� not having any state featuring � in its label� might remain
inactive� and stay in the same state� For these cases� and for enabling the representation of
an asynchronous behavior� the null transitions� labeled by �� were introduced� 
s � S� s

�
� s�

Then� in the free product� some components can make a transition and change state� while
others will remain in the same state� doing nothing under the form of ��

Synchronized product of automata	 The synchronized product is introduced� in order
to represent the fact that the possible existence of global transitions depends on the interac�
tions between processes� It restricts the transitions to a sub�set of those in the free product�
These interactions entail communication and synchronization constraints� which de
ne the
sub�system called a synchronized product�

Such constraints are given in the form of a set SV of possible synchronization vectors�
specifying the allowed actions� i�e� labelings of the transitions� I�e�� each automaton being
labeled on an alphabet Ai� SV is such that� SV � A� � ���� An�

��



The synchronized product of the Ai with regard to SV is noted hA�� ���An�SV i� and is
the sub�system of the free product that contains only the global transitions t �ht�� ���� tni
such that ��t� is an element of SV i�e�� h���t�� ���� �n�t�i � SV �

�	�	� Automaton of an application

Now that we have these operations at our disposal� we are going to apply them in the
framework of the applications�

For an application A with n coordinators Ck� k � ����n��

� � �
coordinator Ck in hports inik out hports outik f � � � lki 
 nki � � � � g

� � �

we have an automaton with�

� states being vectors of states of the coordinators automata� sA �hs�� ���� sni� for sk � Sk�
The actual set of states SA is a subset of the cross�product of states sets� SA �Y
k�����n�

Sk � S� � ���� Sn�

� transitions being vectors of transitions of the coordinators automata� in a way similar
to the states� tA �ht�� ���� tni� for tk � Tk� Note that the transitions tk can be ��
transitions� and that a global ��transition is labeled h�� ���� �i� The actual transitions
set TA is also a subset of the cross�product of the Tk� TA �

Y
k�����n�

Tk � T� � ���� Tn�

These sets are restricted in order to respect the constraints on the behavior of the lan�
guage� when an event is raised� it is received and handled by all coordinators that have a
state for it and the others do not change� We will detail this in the remainder of this section�

Product of coordinator automata� case of the example	 In our framework of appli�
cations of coordinator processes� the constraint is that� as a consequence of the speci
cations
given in section 
�
� one event occurrence is exchanged at a time� and all coordinators that
can react to it� do so in the same reaction� the others staying in the same state���

In the example of section ������ the synchronization constraint is that the transitions
must be labeled by one the following�

� he��A�� e��A�i �that we will note e��A� for a shorthand�� when reacting to event
occurrence e��A�� both coordinators C� and C� must make a transition together�

� he��A�� e��A�i �that we will note e��A� for a shorthand�� when reacting to event
occurrence e��A�� in the same way� both coordinators must make a transition together�

�
This corresponds to the transition on the set C of coordinators
 ��each de�ned in section ����

��



� h�� e��A�i �that we will note e��A� for a shorthand�� only C� can react to this event
occurrence� C� is una�ected by it� thus C� makes a transition to react to it� while C�

does nothing i�e�� ��

The synchronized product is obtained by keeping transitions and states from the free
product only when they respect the synchronization constraint and are accessible from the
initial state hs�� s��i� We obtain�

s�s
�
�

e��A�
�� s�s

�
�

e��A�
�� s�s

�
�

e��A�
�� s�s

�
�

s�s
�
�

e��A�
�� s�s

�
�

e��A�
�� s�s

�
�

e��A�
�� s�s

�
�

s�s
�
�

e��A�
�� s�s

�
�

e��A�
�� s�s

�
�

e��A�
�� s�s

�
�

s�s
�
�

e��A�
�� s�s

�
�

e��A�
�� s�s

�
�

e��A�
�� s�s

�
�

s�s
�
�

e��A�
�� s�s

�
�

e��A�
�� s�s

�
�

e��A�
�� s�s

�
�

s�s
�
�

e��A�
�� s�s

�
�

e��A�
�� s�s

�
�

e��A�
�� s�s

�
�

Compared to the free product Afree � AC��AC� of the automata of C� �AC�� 
 states� �
transitions� and C� �AC�� � states� �� transitions�� which would have had 
 � � � �� states
and � � �� � 	� transitions� the synchronized product As has � states and �� transitions�
The automaton is illustrated in 
g� ���

Product of coordinator automata� general case	 In general� an application is com�
posed of coordinators C�� ���� Cn� they each have a corresponding automaton

ACi
�hSCi � TCi � �Ci

� �Ci � 	Cii

The global transitions will be labeled by the synchronization vectors of the form� v �hv�� ���� vni�
For i � ����n�� each vi will be the label �Ci�ti� of some transition ti � TCi �

The constraint for these synchronization vectors is that all processes that can react to
one event occurrence � do so� while the others do nothing �i�e�� a ��transition�� In other
terms� the global transition is made on event occurrence � i�� for all processes Ci such that

t � TCi � �Ci�t� � � 	� �� we have� vi � �� and for the others Cj � vj � �� We add the vector
h�� ���� �i of ��transitions� that provides a global ��transition� More formally�

SV � f v � hv�� ���� vni j i � ����n�� ti � TCi � vi � �Ci�ti� � � 	� ��

j � ����n�� j 	� i� vj �

�
� if 
tj � TCj � �Cj �tj� � �
� otherwise

g � fh�� ���� �ig

This de
nition ensures that� 
i � ����n�� vi 	� � � vi � �� 	 
t � TCi � �Ci�t� � � i�e�� only
the processes that cannot react don�t� and make the ��transition instead�

We can also note that� 
i� j � ����n�� vi � vj�vi � ��vj � �� which means that transitions
can be distinguished by a label �� as a shorthand of hv�� ���� vni where � is the only signi
cant
value� In the case of h�� ���� �i� the global ��transition can be labeled by ��


�



o1

o0

oadd
i2

i1 o
i2

i1
fol1o

i2

i1
fol2 i io

Figure ��� Fibonacci series example� the network of processes�

� Examples

In this section we treat two classical academic examples for the illustration of the use of
programming languages� the computation of the Fibonacci series� and the sieves of Eratos�
thenes�

��� The Fibonacci series

The Fibonacci series consists of the calculation of the numbers f�n�� for each positive integer
n� such that�

���
��

f��� � �
f��� � �
f�n� � f�n� �� � f�n� ��

In terms of a data��ow between processes� this involves essentially an addition process�
an input�output interaction process� and a su�cient management so that units to be added
are given in the right order�

A new solution to this speci
c problem is not our primary interest� we get inspiration
from that presented by Boussinot ���� and express it our language as presented in table ��
which results in the network illustrated by 
g� ���

The input�output process io raises an event start when the application must start to
produce the Fibonacci series� and takes in the numbers of the series through its input port
i� The addition process add has two input ports i� and i�� and when it has one unit on
each of them� it calculates the sum of their values� and outputs it on its port o�

The problem here is to insure that units will be presented at these input ports in an
order such that the series of outputs coming out of o is the Fibonacci series� For this� we
can note that the third equation in the system above de
nes f�n� as f�n����f�n��� i�e��
in the general case �n � ��� the unit on port i� of add must be the unit output by add two


�



additions earlier� and on the input i� it must be the result of the former addition� hence�
the output of add must be reconnected to its inputs�

For the initialization cases �n � � and n � ��� a di�erent management is needed� When
n � �� neither n � � nor n � � are de
ned� thus the result � is given directly to process io�
from the output of the process const�� de
ned to deliver the integer constant � on its output
port o� When n � �� the previous value f�n � �� � f��� � �� but n � � is still unde
ned�
nevertheless� f��� is the result of the addition of f�n��� � f��� and �� Hence� the operator
add is fed on its input i� with the integer value � output by the process const�� and on its
input i�� with the previous value of the series i�e�� the value that was put out by const��

Thus� expressed form the point of view of the series of output values� which is what we
are interested in� the results given as input to the input�output process io are� 
rst� the
output of the process const�� followed by the results of the addition� from port add�o� The
inputs of the addition process add are� on its port i�� the previous results of the addition
�i�e�� for the calculation of the nth value of the series� n � �� i� receives the value of rank
n� ��� and on its input port i�� 
rst the output of constant const�� followed by the same
that i� received �i�e�� for the calculation of the nth value of the series� n � �� i� receives the
value that i� received on the previous operation i�e�� the value of rank n� ���

In order to program this in Minifold� we must de
ne an operator for the expression
�followed by� that we used above� What was meant is that a 
rst element of a series was
taken from one source� and all the others from another source� We have two instances fol�
and fol� of such a process� each of them with input ports i� and i�� and an output port
o� The 
rst unit output on o comes from i�� and the subsequent ones come from i�� The
application calculating the Fibonacci series can be depicted as in 
g� ���

The coordinator process foli encoding the �followed by� functionality can be de
ned
with use of atomic processes pi� with one input port i and one output port o� and raising an
event u as soon as the 
rst unit arrives in their input port��� After having raised the event�
the process passes the unit to its output port� as well as all the following units coming on
its input� The coordinator foli begins by installing a stream between one of its inputs i�

and the input of pi� This happens when the interaction process io raises the start event�
On reception of the event occurrence u�pi� meaning that the 
rst unit from i� has been
received� it changes state� breaking the stream from i� to pi�i� and installing a stream from
foli�i� to pi�i� while the stream from pi�o to foli�o remains� The states of this behavior
are illustrated by 
g� ���

Compared to the solution presented by Boussinot ���� this one does not feature a notion
of Pre operator� giving the previous value of a series� this aspect of the problem is taken
into account here by the �rst�in �rst�out behavior of streams�

��� The sieves of Eratosthenes

In the previous section� when presenting informally the coordinator foli� we used an in�
dexed notation that does not belong to the language as it is� We want to introduce here

��As such� it is reminiscent of the guard pseudo�process in Manifold ��� ��	�


�



fol
i

i1

o

i2

i

o

i
p

fol
i

i1

o

i2

i

o

i
p

on event occurrence start�io on event occurrence u�pi

Figure ��� Fibonacci series example� states of the foli coordinator�

the possibility to de
ne arrays �uni�dimensional vectors or multi�dimensional matrices� of
processes�

�	�	� Arrays of processes

In the case of foli and pi� we might have written�
atomic �����
 p in i out o event u

coordinator �����
 fol in i�� i� out o

f start�io 
 self�i� �� p�i
�i � p�i
�o �� self�o �

u�p�i
 
 self�i� �� p�i
�i � p�i
�o �� self�o � g
For an atomic process p� this notation means that there are � instances� named p��
 and

p��
� with ports and events of the same name� These will be distinguished by their absolute
names� heventi�p�i
 for events� and p�i
�hporti for ports�

For a coordinator process� it means basically the same thing� for references to indexed
processes in its states� the index used is that of the coordinator itself� in the example above�
each fol�i
 coordinates the network around one process p�i
� where i is the same for fol
and p�

Multi�dimensional arrays of processes follow the same principles� for P of 
 dimensions
of respective ranges ������� ������� and �	���� we note� P����������������
� This is just a
syntactic augmentation to Minifold� as it can be translated into programs in the previous
language by simple extension� It is however an extension to it� The de
nition of an array or
matrix of processes can be multi�dimensional� with one index per dimension�

It follows the syntax�

hrangei ��� � hd�rangei � � hd�rangei �� 


hd�rangei ��� hlower boundi �� hupper boundi
ha�arrayi ��� atomic hrangei hprocessi � hindexi 


hports ini hports outi heventsi
hc�arrayi ��� coordinator h rangei hprocessi � hindexi 


hports ini hports outi f hstatei� g
happlicationi ��� � hatomici j ha�arrayi �� � hcoordinatori j hc�arrayi ��







o
i1 o1

S[1]

i1 o1

S[N]

...

...
i

int

io o2 i2 o2 i2

Figure �
� The sieves of Eratosthenes example� the network�

i1 o1

S[i]

i2
o2

i o
filter[i]

o
i2

i1

fol[i]

Figure ��� Eratosthenes sieves example� one sieve�

where hindexi is an identi
er �e�g�� i�� and hlower boundi and hupper boundi are integers�
It is straightforward to translate each array into as much single processes as necessary�

thus the semantics need not be extended� Also� in network expressions� indexes of processes
are easily interpretable�

�	�	� The example of the sieves of Eratosthenes

An example suited to this extension is the program calculating the n 
rst prime numbers�
following the method of the sieves of Eratosthenes�

A number of processes will share the task of 
ltering away the integers that are multiples
of some already known prime number� For each number passing through this 
lter� a new

lter is given� The program encoding this is given in table ��

If we name each of these processes s�i
� then the application looks like the illustration in

g� �
� A process int gives all integers n � � on its output port o� The interaction process
io takes the results in its input port i� Each of the sieves S�i
 takes a series of integers in
its input i�� outputs those that are not 
ltered in o�� takes in results from further sieves in
i�� and outputs results in o��

The sieve process S�i
 itself is illustrated in 
g� ��� It coordinates two sub�processes�
foli is like the one previously described� and allows to output 
rst the prime number for the
sieve itself� then those coming from further sieves� The process filter�i
 is atomic� and�
taking integers through its input port� gives out only those that are not a multiple of the


�




rst received �i�e�� for the kth unit uk� it is output if uk mod u� 	� ���
The termination of this example can be obtained as follows� when having received N units

on its input port� the process io raises an event terminate� and outputs a special unit ut�
The coordinator main has a state�

terminate�io 
 ����N
 � io�o �� S�i
�i� �

The atomic process p�i
 terminates when receiving ut�
When each S�i
 receives ut on i�� it is given through to p�i
� which terminates� causing

fol�i
 to terminate� causing S�i
 to terminate� which� when all of them are terminated�
causes main to terminate� which causes the application to terminate� thereby causing the
termination of io� int and all the filter�i
�

� Miscellaneous ideas and open problems

Controlling state transitions	 In the automata shown in section 
�� for the examples�
there exist transitions between all of their states� namely from any state of the application
to the state si �corresponding to li � ni��� labeled with events of the label li� The multitude
of these transitions makes the automata complex� and compromises the overview on the
behavior of a process� Restricting these transitions means controlling the execution path of
the program through all the possible transitions�

Ways to moderate this explosion of transitions consist of giving rules restricting which
events might cause a transition from a state to an other one� Such rules can de
ne the
selection criteria as a function of the current state e�g�� restricting transitions to events
for which the source is involved in the network of that state� in Manifold this is called
preemptivity ��� ����

Coordinators raising events	 This possibility could enable coordinators to change state
with an internal cause �i�e�� with a local event raising�� or also interaction between coordi�
nators�

However� even if the coordinators are provided with this possibility� the ultimate source
of a state change is still always an atomic process� Indeed� if a coordinator can raise an
event �be it locally or externally�� it is from one of its state� in order to arrive in this state�
the coordinator had to react to an event occurrence� Thus� a coordinator can raise an event
only in reaction to another event occurrence� coming either form a coordinator� or from an
atomic process� Thus� the cause of a transition will eventually be an event occurrence from
an atomic process�

In this sense� the fact that Minifold coordinators do not raise events is a simpli
cation
without being a real impoverishment�

Furthermore� the possibility that� in a reaction� several events can be raised and reacted
to� possibly by raising other events� implies that one coordinator might receive several event
occurrences to which it has to react� A coordinator can be in only one state at a time�
these event occurrences must be treated one at a time� The consequence of this is that an


�



event memory is needed� and that the uncoupling between event reception and treatment
introduces asynchrony� Also� the order in which event occurrences are treated must be 
xed�
in Manifold� this is done non�deterministically�

Network expressions	 Networks are graphs� and inMinifold� they are described by the
enumeration of their arcs i�e�� streams� This is su�cient to describe any graph�

However� having more elaborate constructs would ease the speci
cation of networks� A
full graphical language with branching� joining� looping operators could be useful�

From the point of view of the operators ��� 	 and � that we already introduced� it can
also mean the de
nition of distributivity rules� like�

p� �� p� �� p� � p� �� p� � p� �� p�
p� �� �p� 	 p�� � p� �� p� 	 p� �� p�
p� �� �p� � p�� � p� �� p� � p� �� p�
�n� 	 n�� � n� � �n� � n�� 	 �n� � n��

n� 	 �n� � n�� � �n� 	 n�� � �n� 	 n��

Producing and using the automata The description of applications in terms of au�
tomata in section 
�� was done in informal accordance with the transition system of the
semantics in section 
� Termination states and transitions were left out for simplicity� and
unit exchange states and transitions were ignored because of a clear di�erence of level be�
tween the two aspects of the language� for the rest� the event occurrence exchange transitions
and the automata describe the same behaviors�

It would be interesting to have rules for the translation of a source program into an
automaton �i�e� a compilation into an automaton�� following the semantics�

The automata�based model could be useful for a deep and complete analysis of programs�
For example� detecting the problematic states or parts of the automaton� unreachable states�
states with no outcoming transition� states from which terminal states are unreachable� can
be done by simple operations on graphs and automata�

Further� the analysis of applications could bene
t from existing results in the area of
formal speci
cation and veri
cation of concurrent systems� namely using techniques and
concepts as bi�simulation equivalences�

A problem� general to any analysis of an application in Manifold�like languages� is that
the semantics of the language does not re�ect the behavior of the atomic processes� because
they are outside the scope of the language� however it is necessary to know their behavior
in order to know the behavior of a whole application� To this end� it should be possible to
give partial speci
cations of their behavior� abstracted to the raising of events and the input
and output of units�

Practically� the use of an environment generating tool like ASF�SDF ��� would enable
to experiment with the speci
cation of Minifolditself� and to have a whole environment
for testing each of its versions by running example programs� and incrementally modify the
speci
cation�


�



� Conclusion

We have presentedMinifold� a kernel for a coordination language� following theManifold

model� We introduced it constructively� illustrated it by examples� and provided it with an
operational semantics� as well as a model based on automata� Various extensions are possible�
in order to augment the possibilities of the language� The models deserve more attention�
in particular automata and the existing concepts in the area of the modeling of concurrent
systems might lead to the possibility of formally analyzing the behavior of applications�

The purpose of the study of this very simpli
ed instance of the Manifold concept is
to explore models of its behavior� and to give a formalization of its bare essentials� It is in�
tended that theManifold language can take advantage of this� as guidelines for formalisms
underlying practical tools for programs analysis� clari
cation of its structure and as a basis
for the comparison of Manifold with other models�

References

��� F� Arbab� Speci�cation of Manifold� CWI Report� Interactive Systems Dept�� CS�R
����� �����

��� F� Arbab� I� Herman� P� Spilling� An overview of Manifold and its implementation�
CWI Report� Interactive Systems Dept�� CS�R ����� �����

�
� A� Arnold� Transition systems and concurrent processes� In Mathematical problems in
Computation theory �Banach Center Publications� vol� ���� � � ��� �����

��� A� Arnold� Syst emes de transitions 
nis et s!emantique des processus communicants�
T�S�I� Technique et Science Informatiques� vol� �� no� 
� ����� �in French�

��� F� Boussinot� R�eseaux de Processus R�eactifs� Rapport de Recherche� INRIA� Sophia�
Antipolis� n� ����� Janvier ����� �in French�

��� N� Carriero� D� Gelernter� Linda in context� Comm� of the ACM� April ����� vol� 
��
no� ��

�	� D� Gelernter� N� Carriero� Coordination languages and their signi
cance� Comm� of the
ACM� February ����� vol� 
�� no� ��

��� G� Kahn� D� MacQueen� Coroutines and networks of parallel processes� In Proceedings
of IFIP �

 �A� Finlay� ed��� pp� ��
����� ��		�

��� P� Klint� A meta�environment for generating programming environments� CWI Report�
Dept� of Software Technology� to appear� �����

���� E�P�B�M� Rutten� F� Arbab� I� Herman� Formal Speci�cation of Manifold� a Prelim�
inary Study� CWI Report� Interactive Systems Dept�� CS�R ����� �����


	



���� E�P�B�M� Rutten� S� Thi!ebaux� Formal Semantics of Manifold� Speci�cation in
ASF�SDF and extensions� CWI Report� Interactive Systems Dept�� to appear� �����

List of Figures

� An atomic process� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� The stream� A�outA� �� B�inB� � � � � � � � � � � � � � � � � � � � � � � � � �

 The networks� �a�� p��p� 	 p��p��� �b�� p���p 	 p����p� � � � � � � � � � � � � �
� A network� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� Single�coordinator example� the state s�� � � � � � � � � � � � � � � � � � � � � ��
� Single�coordinator example� the state s�� � � � � � � � � � � � � � � � � � � � � ��
	 Two�coordinators example� subnetworks for C� and C�� � � � � � � � � � � � � �

� Two�coordinators example� networks for the application� � � � � � � � � � � � ��
� Two�coordinators example� automata for the coordinators C�� C�� � � � � � � ��
�� Two�coordinators example� automaton for the application� � � � � � � � � � � �	
�� Fibonacci series example� the network of processes� � � � � � � � � � � � � � � 
�
�� Fibonacci series example� states of the foli coordinator� � � � � � � � � � � � 


�
 The sieves of Eratosthenes example� the network� � � � � � � � � � � � � � � � 
�
�� Eratosthenes sieves example� one sieve� � � � � � � � � � � � � � � � � � � � � � 
�

List of Tables

� Single�coordinator example� the application� � � � � � � � � � � � � � � � � � � 
�
� Two�coordinators example� the application� � � � � � � � � � � � � � � � � � � 
�

 The grammar of Minifold� � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
� Fibonacci series example� the application� � � � � � � � � � � � � � � � � � � � ��
� Eratosthenes sieves example� the application� � � � � � � � � � � � � � � � � � ��


�



atomic A in inA� out outA�� outA� event e�� e�

atomic B in inB�� inB� out outB� event e�� e�

atomic C in inC out outC event e�

coordinator main

in input

out output

f
e��A 
 A�outA���B�inB�

	 C�outC��A�inA�

	 B�outB���C�inC �

e��B 
 A�outA���B�inB� 	 C�outC��B�inB�

	 B�outB���C�inC 	 main�input��B�inB�

	 C�outC�� main�output �

e��A � e��C 
 A�outA���B�inB� 	 C�outC��A�inA�

	 A�outA���C�inC 	 main�input��A�inA�

	 B�outB��� main�output �

g

Table �� Single�coordinator example� the application�

atomic A� in i out o event e�

atomic A� in i out o event e�� e�

coordinator C� in i out o

f
e��A� 
 C��i��A��i 	 A��o��A��i � s�
e��A� 
 A��o��A��i 	 A��o �� C��o � s�
g

coordinator C� in i out o

f
e��A� 
 A��o��C��o � s��
e��A� 
 C��i �� A��i 	 A��o �� C��o � s��
e��A� 
 A��o �� A��i � s��
g

Table �� Two�coordinators example� the application�


�



hatomici ��� atomic hprocessi hports ini hports outi heventsi
hports ini ��� in hporti � � hporti�� j �
hports outi ��� out hporti � � hporti�� j �
heventsi ��� event heventi � � heventi�� j �
hport namei ��� hprocessi�hporti
hevent�occi ��� heventi�hprocessi
hstreami ��� hport namei �� hport namei
hpipe�linei ��� hstreami � hpipe�linei j hstreami
hnetworki ��� hpipe�linei 	 hnetworki j hpipe�linei
hlabeli ��� hevent�occi � � hevent�occi ��

hstatei ��� hlabeli 
 hnetworki �

hcoordinatori ��� coordinator hprocessi hports ini hports outi f hstatei� g
happlicationi ��� hatomici� hcoordinatori�

Table 
� The grammar of Minifold�

atomic const� out o

atomic const� out o

atomic add in i�� i� out o

atomic io in i event start

atomic p� in i out o event u

atomic p� in i out o event u

coordinator fol� in i�� i� out o

f start�io 
 fol��i� �� p��i � p��o �� fol��o �

u�p� 
 fol��i� �� p��i � p��o �� fol��o � g

coordinator fol� in i�� i� out o

f start�io 
 fol��i� �� p��i � p��o �� fol��o �

u�p� 
 fol��i� �� p��i � p��o �� fol��o � g

coordinator main

f start�io 
 const��o �� fol��i� � fol��o �� fol��i�

� fol��o �� add�i� � fol��o �� add�i�

� const��o �� fol��i� � add�o �� fol��i�

� fol��o �� io�i � g

Table �� Fibonacci series example� the application�

��



atomic int out o

atomic io in i event start terminate

atomic �� �� N
 p�i
 in i out o event u

atomic �� �� N
 filter�i
 in i out o

coordinator ����N
 fol�i
 in i�� i� out o

f start�io 
 fol�i
�i� �� p�i
�i � p�i
�o �� fol�i
�o �

u�p�i
 
 fol�i
�i� �� p�i
�i � p�i
�o �� fol�i
�o � g

coordinator �� �� N
 S�i
 in i�� i� out o�� o�

f start�io 
 S�i
�i� �� filter�i
�i � filter�i
�o �� S�i
�o�

� S�i
�i� �� fol�i
�i� � S�i
�i� �� fol�i
�i�

� fol�i
�o �� S�i
�o� � g
coordinator main

f start�io 
 int�o �� S��
�i� � S��
�o� �� io�i

� ����N��
 � S�i
�o� �� S�i	�
�i�

� S�i	�
�o� �� S�i
�i� � �

terminate�io 
 ����N
 � io�o �� S�i
�i� � � g

Table �� Eratosthenes sieves example� the application�

��


