View metadata, citation and similar papers at gore.ac.uk brought to you by fCORE

provided by CWI's Institutional Repository

Miniford: a Kernel for a Manifold-like Coordination Language
E.P.B.M. Rutten
Computer Science/Department of Interactive Systems

CS-R9252 1992

https://core.ac.uk/display/301653934?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MINIFOLD: a Kernel for a MANIFOLD-like
Coordination Language

E.P.B.M. RUTTEN

CWI
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Abstract

MINIFOLD is a kernel for a coordination language, following the MANIFOLD model.
This model focuses on the coordination of processes, separated from their computation
functionality. Processes are considered as black boxes, and their behavior is abstracted
to their communications.

MINIFOLD provides constructs to build up an environment of concurrent processes
and to manage the communication between them. On the one hand, a data-flow
mechanism can be used to build networks of streams, linking input and output ports
of the processes, and carrying the units exchanged between them. On the other hand,
an event broadcasting mechanism provides control on the dynamical modification of
the data-flow network. MINIFOLD is introduced in a constructive and incremental
way. It is provided with an operational semantics, a model of its execution based on
automata is proposed, and illustrated by simple classical example.

The purpose of the study of this very simplified instance of the MANIFOLD concept
is to explore models of its behavior, and to give a formalization of its bare essentials. It
is intended that the MANIFOLD language can take advantage of this, as guidelines for
formalisms underlying practical tools for program analysis, clarification of its structure
and as a basis for the comparison with other models.

1991 Mathematics Subject Classification: 68N15 [Software]: Programming Lan-
guages; 68Q05, 68U30.
1991 CR Categories: C.1.2, C.1.3, C.2.m, D.1.3, D.3.1, F.1.2, 1.1.3.

Key Words and Phrases Formal specifications, parallel computing, models of com-
putation, programming language semantics, coordination languages.

Note Author’s present address: IRISA/INRIA, F-35042 Rennes, France;
rutten@irisa. fr

Contents

1 Introduction

2 MiNIFOLD: a kernel of MANIFOLD
2.1 Atomic processes
2.2 Data-flow connections
2.2.1 Streams: connecting ports of processes . .
2.2.2 Data-flow networks: sets of streams
2.3 Event-driven state change of the network
2.3.1 States: associating networks and events . .
2.3.2 Coordinator: set of states
2.4 Single coordinator applications
24.1 Applications
2.4.2 A first complete example
2.5 Concurrent coordinators applications
2.5.1 Applications
2.5.2 An example with concurrent coordinators .
2.6 MINIFOLD and its complete grammar

3 Formal model of MINIFOLD
3.1 States of an application
3.2 Construction of the state of a program
3.3 Transitions. oL
3.3.1 Unit exchange between ports and streams

3.3.2 Event exchange between atomic and coordinator processes

3.3.3 Termination of processes and networks . .

3.3.4 Relation between event level and unit level
3.4 An alternative model: automaton of an application

3.4.1 Automaton of a coordinator

3.4.2 Operations for combining interacting automata

3.4.3 Automaton of an application

4 Examples
4.1 'The Fibonacci series
4.2 'The sieves of Eratosthenes
4.2.1 Arrays of processes
4.2.2 The example of the sieves of Eratosthenes

5 Miscellaneous ideas and open problems

6 Conclusion

13
14
16
17
18
19
21
24
24
25
27
29

31
31
32
33
34

35

37

1 Introduction

We present MINIFOLD, a kernel for a coordination language, following the MANIFOLD model
[1]. As such, MINIFOLD can also be seen as an abstraction of the MANIFOLD parallel
programming language. The focus of this language is on the coordination of processes, and
on their communication; it is not on the computations performed by some of the processes.
These latter are considered as black boxes, the behavior of which is abstracted to their
input and output. This work is in the area of coordination languages [7], of which LiNDA
can be seen as a different instance [6]. Communication is supported by two mechanisms:
data-flow streams, and event broadcasting. Thus it is an approach to data-flow languages
[8], originated from and motivated by practical problems in dataflow hardware realization,
rather than theoretical considerations. MANIFOLD is a practical and experimental language,
defined in a detailed informal specification [1], and for which an implementation is being
finalized [2].

A formal specification is given of a sub-language [10], in the form of an operational
semantics focusing on the transitions of the event-driven mechanism and the representation
of connection states of the data-flow networks. It is intended to clarify formally the structures
and behaviors of the model, while keeping most of the programming language, and has been
implemented in the ASF+SDF environment [11]. The complexity of the result was mainly
due to the representation of features that are not of a primary significance. Hence the need
for a still more abstract model.

In this paper, we perform a reconstruction of only very essential features of MANIFOLD,
into the kernel language MINIFOLD. However, fundamental assumptions of the model are
kept: data-flow and event communication co-exist, some processes are there to coordinate
the communication between others, while atomic processes are those not decomposable as a
coordinator process, and are the only ones responsible for the computations.

An important difference between MINIFOLD and MANIFOLD is a simplification concerning
the event communication. The event mechanism of MINIFOLD is deterministic, and leads
to simpler models in terms of states and transitions. The goal of this work is to propose
formal models for some of the concepts of MANIFOLD-like languages: in order to keep a clear
understanding of the behavior of these models, it is preferable to keep them small, which
is a motivation for the simplification. As such, this model does not meet the choices of full
asynchrony and non-determinism made for MANIFOLD, which correspond to its practical
and real-world motivations. But it constitutes a set of clarified concepts, and a base for
possible extensions in these direction.

MINIFOLD provides constructs to build up an environment of concurrent processes and to
manage the communications between them. On the one hand, a data-flow mechanism allows
to build networks of streams, linking input and output ports of the processes, and carrying
the units exchanged between them. On the other hand, an event broadcasting mechanism
provides control on the dynamical modification of the data-flow network.

In the following section, we introduce one by one the basic features of MINIFOLD, il-
lustrating them with examples, and explicitly describing their inter-relations: we introduce
atomic processes, streams connecting these processes, data-flow networks made of several of

these streams, states associating such a network with an event, coordinators made of a set
of such states, and applications grouping concurrent coordinators. In section 3, we give a
formal model of the MINIFOLD language and its constructs, and rules describing the possible
transitions between the states of an application. We also describe MINIFOLD applications
in terms of finite state deterministic automata. In section 4, the two classical examples of
Fibonacci and prime numbers by Fratosthenes method are given in MINIFOLD. We discuss
open issues in section 5, and conclude in section 6.

2 MiINIFOLD: a kernel of MANIFOLD

MINTFOLD is defined as a configuration language where atomic processes, characterized only
by their input and output, are connected through streams attached to their ports. The
streams together form a data-flow network, and a change of state of the dynamic data-flow
network is made by a coordinator process on the reception of an event occurrence, raised by
one of the atomic processes’ . The atomic processes, the coordinators, the streams, and the
ports constitute the environment in which events are broadcasted.

2.1 Atomic processes

Atomic processes are external, and atomic in the sense that they are considered as black bozes,
of which no internal feature or behavior is known. This is justified by the fact that MINIFOLD
is a configuration language, meant to manage the communication between processes, but not
the computations performed inside them. Thus, at the level of MINIFOLD, they cannot be
decomposed further than their input and output channels, hence they are said to be atomic.

The atomic processes communicate only using wunits (input in or output from ports,
where the connections will be attached), and events (raised and broadcast in the surrounding
environment). An atomic process can perform the following actions:

e it can raise an event,
e one of its input ports can take a unit in from a stream? to which it is connected,
e one of its output ports can put a unit out to all the streams® to which it is connected.

Seen from MINIFOLD, atomic processes can terminate on their own, without condition;
their ports are then not accessible anymore, and their events cannot be raised.
The syntax for the definition of such a process is as follows:

'Tn MINIFOLD, coordinator processes are not given the possibility of raising events.

2A port might be attached to several streams, but it accepts units form only one of them at a time,
merging them non-deterministically.

3This means that each unit put out is duplicated for each of the streams.

Figure 1: An atomic process.

(atomic) = atomic (process) (ports in) (ports out) {(events)
(ports iny == in (port) [, (port)]" | €
(ports outy ::= out (porty [, (port)[| ¢

(events) ::= event (event) [, (event)] | e

The names (processy of the process, (port) of ports in the lists, and (event) of the events
in the list, are identifiers. The empty word is designated by ¢.

From outside the atomic processes, at the global level of an application considered further,
the name of the process will be used to build absolute names of its ports, in the form of a
composition using the dot: “.”.

A port (port) of a process (process) will have the absolute name:

(port name) ::= (process).(port)

In the same way, event occurrences, can be given global names, by mentioning their
source i.e., the port or process that raised them; an {event) raised by a process (process) will
have the absolute name:

(event-occ) = (event).(process)

An example of atomic process is the process A, with one input port named inA1 and two
output ports named outAl and outA2. It can raise the events el and e3. This process is
defined in the statement:

atomic A in inAl
out outAl , outA2
event el , e3

This example is illustrated graphically in fig. 1.

Figure 2: The stream: A.outAl -> B.inB1 .

2.2 Data-flow connections
2.2.1 Streams: connecting ports of processes

The streams are connections between ports of processes. They are attached to two ports:
one source port (which is an output port of its owner process) and one sink port (which is
an input port of its owner process).

Streams carry wnits unidirectionally, from the source to the sink port. They behave like
a first-in first-out link, without loss of units. There is no assumption whatsoever about the
contents or meaning of units: this is left to computations in atomic processes.

A stream can perform the following actions:

o take a unit in from its source port,
e put a unit out to its sink port.

The effect of a process disappearing is that all the streams involving one of its ports are
terminated i.e., broken.
The syntax to denote a stream between two ports is as follows:

(stream) ::= (port name) => (port name)

where the left (port name) is the source, and the one on the right is the sink.
An example of stream is to link the processes A, defined previously, and B, defined by:

atomic B in inB1, inB2 out outBl event e2, e3

with a stream going from the port outAl of process A to the port inB1 of process B, with
the statement:

A.outAl -> B.inB1

as illustrated graphically in fig. 2.

2.2.2 Data-flow networks: sets of streams

A set of streams between processes defines a communications network. In a network, all
member streams are simply acting concurrently. A network of which all streams are
broken is broken also. In cases where only some of several streams in a network are broken,
there are two ways of grouping streams into sub-networks:

e pipe-lines are sets of streams such that a pipe-line breaks if at least one of its members
breaks;

e groups are sets of pipe-lines such that a group breaks if all of its members break.

For groups we use an addition-like notation + i.e., for two streams s; and s, 1 + s9. For
pipe-lines, we use a multiplication-like * i.e., for two streams s; and sq, 51 * $9*.

The intuitive reason for the choice of these notations is simply that if a broken stream is
interpreted as 0, then®:

e a group s + 0 = s, which can be interpreted as: one of the members of the group
disappears, but others continue to exist.

e a pipe-line s* 0 = 0: when one member of a pipe-line breaks, then the whole pipe-line
is broken.

The pipe-line operator has a higher priority than the group operator: n; + ny * ng means
ny + (ny % ng). Such an expression is to be interpreted in the context of an application,
and a stream P.p => P’'.p' is 0 if either process P, or process P’ is terminated. Rules for
evaluating such networks are: n +0=0+n=nandn*x0=0x%n = 0.

The syntax for networks defines them as groups of pipe-lines of streams:

(network) = (pipe-line) + (network) | (pipe-line)
(pipe-line) ::= (stream) * (pipe-line) | (stream)

In the case where several streams share the same port as source, as in the network: p ->
P+ p -> p”, illustrated in fig. 3 (a), the units are duplicated to all the streams at ounce.
In the case where several streams share the same port as a sink, as in the network: p’ ->
p + p" => p, illustrated in fig. 3 (b), their outcoming units are accepted by the port and
merged in a non-deterministic order.

We illustrate this in our example, extended with a third process C defined by:

atomic C in inC out outC event e3
A network between these three processes is:
A.outAl -> B.inB1 + C.outC -> A.inAl + B.outBl1l -> C.inC

as illustrated in fig. 4.

*Other notations could be chosen, like different styles of parentheses, as in MaNIFOLD [10, 11]: (...)
and [...].

5 Another way of noting this is to say that, if a breaking stream is interpreted as false, then noting pipe-
lines with a conjunction A and groups with a disjunction V means that: the pipe-line s A false is false i.e.,
terminates; the group sV false is s i.e., behaves like s.

@

Figure 3: The networks: (a): p=>p’ + p=>p", (b): p'=>p + p"->p.

Figure 4: A network.

2.3 Event-driven state change of the network
2.3.1 States: associating networks and events

The MINIFOLD language is about changing states of a data-flow network, in reaction to an
occurrence of an event raised by a source.

A new construct of the language associates a data-flow network expression with one or
several event occurrences, forming a label. It is called a state, and has the following syntax:

(state) ::= (label): (network)
(label) ::= (event-occ) [, (event-occ) [

Here is its intuitive semantics: when the event is raised by an atomic process, the previous
state of the network is preempted, its corresponding network is dismantled, and the new state
is the network associated with the label featuring the event occurrence.

The termination of a state means that this state can not be reached anymore, and its
network can not be installed. This can be defined from its network, and from the event
occurrences in its label. A state terminates when one of the two following is verified:

e the network is broken;

e all sources of event occurrences in the label of the state are terminated processes; this
means that the state is not reachable anymore, even if the network is unbroken.

As long as it is not terminated, a state is maintained up to date during execution of an
application, meaning that events from terminated sources are removed from its label, and
broken pipe-lines are removed from the network.

For example, the network of the previous example, illustrated in fig. 4, can be associated
with the event el, raised by process A, into the state:

el.A : A.outAl -> B.inB1 + C.outC -> A.inAl1 + B.outB1l -> C.inC

A coordinator goes into that state when reacting to the raising of event el by process A.

2.3.2 Coordinator: set of states

A coordinator is a process, that might have input and output ports itself, and consists of
a collection of states. It coordinates the communications between processes, by installing
different configurations of the data-flow network. It is defined following the syntax:

(coordinator) ::= coordinator (process)
(ports in)
(ports out)

{ (state)* }

Its execution consists of the transition to the corresponding state on reception of an
event raised by a process. The states in the body are required to correspond to events in an
exclusive manner, in order to keep the transition to the next state deterministic. In other
terms, the labels have to be disjoint.

In each of these states, the network is built between processes declared in the declarations
of the application. A coordinator can access its own ports in a way different from the
others’ ports: it can use its own input ports as sources in streams, and its output ports as
sinks. These ports of the coordinator processes give a means of structuring the network by
encapsulating sub-networks: in the case of concurrency introduced further, connections to
the coordinator’s ports can be managed by other processes without taking into account how
the coordinator manages its sub-network. This point is illustrated in the example of section
2.4.2,in figs. 5 and 6, where the ports input and output of the coordinator are used this
way.

A coordinator terminates when it has nothing left to coordinate i.e., when all its states are
terminated. This means in particular that the coordinator has nothing to install anymore;
for a coordinator having k states l; : n;., 7 € [1..k], this could be written with the + notation:
>ien.g i = 0. During execution, the set of states is updated by removing terminated
states.

2.4 Single coordinator applications
2.4.1 Applications

An application is made of at least one coordinator process and atomic processes. Its behavior
consists of reacting to events raised by the atomic processes by changing the state of the
data-flow network, following the coordinator.

All processes are started together at the start of the application, and the coordinator has
an initial state featuring an empty network.

Each terminating process disappears from the application. An application terminates
when the coordinator is terminated. If there are remaining unterminated atomic processes,
they are not coordinated any more, thus they do not comprise an application: therefore the
application termination forces their termination.

We can introduce a first approximation of MINIFOLD with a single coordinator. Its syntax
is:

{application) = (atomic)™
(coordinator)

We can now give a first complete example, representing the language in one of its simplest
expressions.

2.4.2 A first complete example

A simple but complete example, featuring the previous partial examples, is shown in table
1.

10

Figure 5: Single-coordinator example: the state ss.

The application is in the state illustrated in fig. 4, and that we will call sq, if the event
el is raised by process A:

el.A : A.outAl1->B.inB1 + C.outC->A.inAl1 + B.outB1->C.inC

If the event e2 is raised by B, the previous state of the network is dismantled, and instead
the new state s,is installed, as shown in fig. 5:

e2.B : A.outAl->B.inB2 + C.outC->B.inB2
+ B.outB1->C.inC + main.input->B.inBl
+ C.outC-> main.output

If the event e3 is raised, by process A or C, the previous state of the network is dismantled,
and instead the new state s3 is installed, as shown in fig. 6:

e3.A , e3.C : A.outAl1->B.inB1 + C.outC->A.inAl
+ A.outA2->C.inC + main.input->A.inAl
+ B.outBl-> main.output

2.5 Concurrent coordinators applications
2.5.1 Applications

The network between the ports of the processes can be structured by dividing it into several
sub-networks, each changing states according to its own rules. These sub-networks need not
be disjoint: they might involve common processes, the same ports of these processes, or even
feature common streams. The global network is defined as the union of the local networks.

The way to specify this is to have several concurrent coordinators, each managing its own
sub-network. They evolve independently, and add up their behaviors to define the evolution
of the global network. The only difference with the single coordinator case is that there are

11

Figure 6: Single-coordinator example: the state s3.

several coordinators, each of them behaving exactly the same way as the one defined earlier.
When an event is raised by a process, they all receive it: this event occurrence is broadcast,
and each coordinator reacts according to its set of states. All coordinators that can react
to an event occurrence, do so simultaneously: the resulting global state of the application is
composed of the states of all individual processes.

Such an application terminates when all coordinators have terminated.

One atomic process terminates at a time, just like one atomic process raises an event at
a time. In the cases of event exchange, all coordinators that can, do react at the same time;
in the case of termination, the termination of one atomic process can cause the termination
of one or more coordinators at the same time, which can in turn cause the termination of
further processes, in a cascading effect.

The syntax of this concurrent coordinators version is thus simply:

{application) = (atomic)™
{coordinator)™

2.5.2 An example with concurrent coordinators

In table 2, the program is composed of two atomic processes A1l and A2, and of two coordi-
nators: C1 with states s; and so, and C2 with states s, s5 and s5.

Each state of each individual coordinator corresponds to the subnetworks illustrated in
fig. 7. When the coordinators act concurrently, their sub-networks merge into a global
network. The states the application can be in, depend on the way the different coordinators
react to event occurrences. In our example, when event occurrence el.Al is raised, C1 is
in state s; and C2 in state s}: i.e., the application, on the raising of el.A1, will be in a
state “merging” sy and s|: let us call it s;s|. When event occurrence el.A2 is raised, C1 is
necessarily in state s;, and C2 in state s}: the application is in state s,s).

When event occurrence e2.A2 is raised, the coordinator C2 goes into state sj, but C1 is
not affected, because it has no corresponding state. Thus the state of the application can

12

C1 Sq

c2
;o B od I = od ;o X od
C2 | s} S5 83

Cc2

Figure 7: Two-coordinators example: subnetworks for C1 and C2.

be, if the previous state of C1 was s1: s15%; or, if the previous state of C1 was sy: s55. These
states s18, 255, 8185, and sos5, are illustrated in figure 8.

2.6 MINIFOLD and its complete grammar

The features introduced until now already provide us with the basic constructs of MINIFOLD.
Augmenting them with other features is possible: this is discussed in section 5. Also,
notational facilities can be introduced, as we do in section 4 by defining arrays of processes.
However, the basic elements that we wanted to integrate in this language kernel i.e., pro-
cesses, ports, streams, and events, are present, even if they are in their simplest form.
The grammar of the language is given in table 3. As said earlier, the non-terminals
(process), (port) and (event) are identifiers.

3 Formal model of MINIFOLD

In this section, we define the operational semantics of MINIFOLD, using transition systems.
We first give the structures with which to build a model of an application, and to give
its states; we give the rules for the translation of an application into these structures, and
then give the rules describing the transitions from one state to another, for the different
actions that can be taken by an application. We also introduce an alternative representa-
tion of coordinators as automata, and of applications as the synchronized product of these
automata.

13

application with coordinators C1 and C2
i o i

C1

c2 C2

S8}

C1

c2 C2

O ol ’

5185

Figure 8: Two-coordinators example: networks for the application.

3.1 States of an application

In this section we define a formal model of MINIFOLD®. The states of applications will
be defined in terms of the states of their components i.e., ports, atomic and coordinator
processes, and streams.

Atomic processes. They are characterized by:

e a name P,

e a set £ of events e that can be raised by P (occurrences e will have the form e.P).

These aspects are formulated in a tuple: (P,E). The terminal state of an atomic
process is noted L.

Coordinators. They are characterized by:

e their name P,

®We could call it prvroLD (To be read: MUNUFOLD).

14

e their set of states S, each state being of the form (L, N}, where:

— L, is the label of that state i.e., a set of event occurrences,

— N, is a network, i.e. a set of pairs (so,s1), where so and si are the names of the
source port (so) and the sink port (si).

e NN is the current network of the coordinator process, of the form described above.

This is formulated in a tuple: (P,S,N). The terminal state of a coordinator process is
noted L.

The units queues. The sets of units are first-in first-out queues, of unbounded size. They
are written as lists: [ug,...u,]. The empty list is []. Operations on these lists of units are:

o empty =[],

o get([ug,...u,]) = uy,

o put(u,[ug,...u,)) = [ug,... Uy, ul,
o rest([ug, ug, ... uy]) = [ug, ... uyl.

The cases: get([]) and rest([]) are undefined.

Ports. They are defined by
e a name p of the form (port name) i.e., (process).(port),

e contents pc: a set of units. The set of units is defined to have a first-in first-out

behavior.

This is noted as a pair: (p,pc).

Streams. They are defined by:
e the name of their source port so,
e the name of their sink port si,
e the set of names of the coordinators which installed them: si;
e their contents sc: a set of units.

i.e. the tuple: (so,si,sl sc).
A newly installed stream has an empty content: (so,si,{p},[]), where p is the name of

the process installing it.

15

Application state. An application is defined as a tuple (A4,C,P,S) where:

e A is the set of atomic processes,
e C is the set of coordinator processes,
e P is the set of ports,

o S is the set streams.

Terminated components of an applications disappear from the set to which they belong.
The terminal state of an application is noted L.

3.2 Construction of the state of a program

This section describes the translation from MINIFOLD to the formal model.”
An application is translated into a tuple (A,C,P,S), computed on an empty tuple by
the closure of the transition relation:

((application), (0,0,0,0)) —* (A,C,P,S)

An atomic process is translated into a pair (P, FE), featuring its name P and the set of its
raisable events £, which is added to A, while its ports, the input ones as well as the output
ones, are added to P:

((events), 0) —"E, ((portsin), P) —"P', {(ports out), P') —*P"
(atomic (process) (ports in) (ports out) {events) (element)™, (A,C,P,S))
— ((element)t, (AU {{ (process), E)},C,P",S))

The list of events is transformed into a set containing all the event occurrences (we show
here only the general case, leaving the management of the end of the list to the reader’s
imagination):

(event (event),(events) ,E) — (event (events),E U {{event)})

The lists of ports are transformed into a single set containing for each port a pair (p,pc)
where p is the name of the port, and pc is its contents: this latter is initially empty (we
show here also only the general cases, leaving the management of the end of the lists to the
reader’s imagination):

{in (port),(ports),P) — (in (ports),P U {{ (port), empty }})

(out (port),(ports),P)y — (out (ports),P U {{ (port), empty)})

" Actually, the introduction of (element) makes this translation more liberal than MINIFOLD, but as it is
a strict superset of MINIFOLD that is recognized, this does not impair the obtained result.

16

In any case, the empty word ¢ is translated into nothing, leaving a set £ unaffected in
this terminal rule:

(,&y — &

A coordinator process is translated into a tuple (P,S,N), of which P is its name, S is
its set of states, and N is its current network (i.e., in a sense, state): this latter is initially
empty. This tuple is added to the set C. Its processes, the input ones as well as the output
ones, are added to P:

((state)™, B) —*S,

((ports iny, P) —"*P, ((ports outy, P) —*P"
(coordinator (process) (ports in) {ports out) { (state)t } (element)*,
(A,C,P,S))

— { (element)*, { A,CU{((process), S, B)}, P" S)

Each state is translated into a pair (L, N) where L is the set of event occurrences translat-
ing the label, and N is the set of port-pairs (representing the ports of a stream) translating
the network:

((labely, B) — L, ((network), 0) — N
((labely : (network) . (states)*, Sy — ((states)*, SU{(L,N)})

A label is translated into a set of event occurrences:
((event-occ),(event-occsy , By — ((event-occsy, FE U {{event-occ)})
((event-occ) , E) — FE U {{event-occ)}

Each stream of a network expression is translated into a pair (so,si) where so is the name
of its source port, and si is the name of its sink port.

(ports) => (porty) , N) — N U {{(ports),{port)}}
A pipe-line is a set of streams.
((porty)=>(porty)+(pipe-line) , Ny — {((pipe-line), N U {{{porty),(ports))})
A group or network is translated into the set of the pipe-lines translations:

((pipe-liney, B) — N’
((pipe-line) + (network) , Ny — ((network), N U{N'})

3.3 Transitions

For the different possible actions presented informally in previous sections, transition rules
define the changes in the states of the application and of its components.

17

3.3.1 Unit exchange between ports and streams

We first present the exchange of units between ports and streams: this involves the capability
for a stream to receive a unit and to send it out, and the same two capabilities for a port.
From these bases, we can define the passing of a unit from a stream to a port, and from a
port to streams.

Stream receiving a unit. The transition is labeled by (port name)?{unit), where {port
name) is the name of the source port with which the communication is made, namely:
from which the unit is taken in i.e., the port sending the unit. This unit is appended to
the stream’s contents. The condition for this transition to be made, is that the stream is
installed i.e., that its list s/ of names of installer processes is not empty:

sl # 10

(s0,s1,sl,sc) soty (so,s1,sl,append(u,sc))

Stream sending a unit. The transition is labeled by (port name)!{unity, where (port
name) is the name of the sink port with which the communication is made, namely: to
which the unit is sent i.e., the port receiving the unit. This unit is removed from the
stream’s non empty contents, if the stream is installed:

sc#[] sl #0
> si!&)t(sc) <

(so,si,sl,sc s0,si,sl,rest(sc))
Port receiving a unit. The port p can make a transition when it receives a unit u sent
explicitly to him, hence the label p?u; it appends it in its contents:

(p,pc) 2= (p,append(u,pc))

Port sending a unit. The port p can send the first unit w taken from its non empty
contents, and sends it to all the streams connected to it as a source; the label plu carries the
port name:

pe # []
plget(pc)

(p,pc) " —" (p,rest(pc))

Passing a unit from a stream to a port. A unit u passes from a stream S to a port
P ={p,pc) if the stream can make a sending transition for this port and the port can make
a receiving transition. We note £[¢'/e] the set (€ \ {e}) U {€'} i.e., the set & where a new
element e’ replaces element e.

Then, the application is modified in its ports set P and in its streams set S:

ISeS, s s Fpep, pE p
(A,C,P,8) — (A,C,P[P'/P],S[S"/S])

18

The transition is labeled by v = (p, u), in order to mark it with the process p and the
unit u involved in the exchange.

Passing a unit from a port to streams. A unit u passes from a port P =(p,pc) to
streams in § if the port can make a sending transition and some streams in & can make a
receiving transition for this port. Then, the application is modified in its ports set P and in
its streams set S, by the application level transition, labeled by v = (p, u).

For this latter set of streams, we need to write that all the streams that can make a
transition, do it, while the others remain in the same state. Therefore, we introduce a
transition relation between sets, defined in terms of the possible transitions of its elements.
For a set £, the transition &€ — ., means that £’ is the set of elements € resulting from
the application, when possible, of the transition to an element e of £: e— ¢/, or e itself
otherwise®.

plu

EIP € P,Pﬁ? Pl, _>each8l
<-’47C77)7$> L <A7C7P[PI/P]7SI>

3.3.2 Event exchange between atomic and coordinator processes

The exchange of an event occurrence between an atomic process and coordinators involves
the capability of an atomic process to raise an event, the capability of a coordinator to react
to en event, and from the point of view of the data-flow network, the modification to its
global state must be deduced from the modifications to the individual sub-networks, which
are in turn induced by the new state of each coordinator process.

From these bases, we can describe the effects of an event occurrence exchange on the
states of the processes and on the state of the data-flow network.

Atomic process raising an event occurrence. An atomic process P can make a tran-
sition raising an event occurrence e. P (labeled: “le.P”) if e is in the set of raisable events of
P. Its state does not change from the point of view of our model:

ec F
(P.E) =5 (P,E)

Coordinator process reacting to event occurrence. A coordinator process P can
make a transition receiving event occurrence € (labeled “?¢”), which is an event occurrence
of the form e.P, if a state (L, N') belongs to its set of states S such that ¢ € L; the current
network N of the process is then changed into N':

(L,N")e S, ceL
(P,S,Ny =5 (P,S,N'")

81n particular, if the transition from e to e’ is not deterministic, then —,.;, isn’t either, and &£ is one
possible outcome of the transition, with each e’ being one possible transform of some e in £.

19

Modifications to the global network from one local sub-network. FEach coordi-
nator (P,S,N) has a local network of current state N, set of sets of pairs of port names,
corresponding to streams installed by P. The distinction between groups and pipe-lines
is irrelevant to their installation: the set of all streams must be installed. Therefore, we
introduce a flattened network N, the union of N’s elements: V" = Uy, en N,. In' S, we
have the streams (so,si,sl,sc). We have several cases:

o if (s0,s1) is in N, and (so,si,sl,sc) is in S, then P is added to the set of installers:
slU{P}:
s =(so,sty € N, S =(so,st,slsc) €S
(S, N) == (S (so,si,s10{P}.sc) | ST, N\ {s})

e if (so,si) is in N and (so,si,sl,sc) is not in S, then a new stream must be added to S,
with P as installer, and empty contents:

s =(so,s1y € N, (so,si,sl,sc) & S
(S, N) == (SU{(s0,50,{ P}.empty)}, N\ {s})

o if (s0,s1) is not in N and there is a (so,si,sl;sc) in S such that P € sl, then it is a
stream that was removed from the current local network of P, thus P must be removed
from si:

S =(so,si,sl,sc) € S, Pesl (sosi) &N,
(S,NY 25 (S[(s0,si,s\{P},s¢) /] S, N)

At this point, if sl \ {P} = 0, then no units flow through the stream. Its contents are

kept until some coordinator re-installs the stream?.

e finally, this rule terminates the transitions:
(5.0) =8

Modifications to the global network from all the local sub-networks. The global
network is a combination of all the local networks: each coordinator process C' =(P,S,N) of C
contributes its local network N (or more easily its flattened form A = Un,en Np introduced
before), thus modifying S into &', in a transition labeled by the process’ name P. The
following rules accumulate the modifications for all coordinators in C:

¢ :<PJS7N>€ Ca <S,UNPEN Np>i>x8l
(S$,C) — (S,C\{C})
and this rule for termination of the transition:

(S,0) — 8

9In MANIFOLD[1], the stream is said to be in a dormant state, and an alternative specification was chosen:
units are considered to be lost, sc being reset to (). Further versions of MANIFOLD feature both mechanisms.

20

Raising and reaction to an event occurrence. An application makes a transition by
raising and reacting to an event occurrence:

e if some atomic port of A can make the transition for the raising of event ¢,

e and the set of coordinators C can make the transition to C' corresponding to the
transitions of each its elements reacting (or not) to the event occurrence e,

e and the set of streams S makes transitions of modifications according to the new states
of the coordinators.

dA < A7 AL AI, Ci}eachcla <S,C’>—>*Sl
<*Aa Ca Pv S) L> <A[A//A]? CI? 'P’ Sl)

3.3.3 Termination of processes and networks
Termination of applications, coordinators, networks and atomic processes is defined hierar-

chically.

Termination of atomic processes. They can terminate without condition. Their state
is transformed into L:

(AB) — 1

Termination of networks. The transition system —, formalizes the termination of
networks, evaluating the network of non-terminated streams N’ for a network N, in the
context of an application with sets of coordinators C and of atomics .A.

A stream is broken if a process owning one of its ports is terminated i.e., if it belongs
neither to A nor to C:

((P.E)¢ ANP,S,N)¢ C)V ((P",EN¢g AN(P’,S’ NV C)
((P.p,Pp),C, A) —, L

otherwise it is kept as it is:

((P,Eye AV(P,S,N)e C) A ({(P",E")e AV(P’,S’,N)e C)
((P.p,P'p), C, Ay —, (P.pP.p)

A pipe-line being a set of streams, it is broken if one of its streams is broken:

ds € N(s,C, Ay —, L
(N.C,A) —, 0

21

otherwise it is kept as it is:

A group being a set of pipe-lines, terminates when all its members are terminated: if one
of them terminates, it is removed from Nj:

N, € Ny,(N,,C, A)—, 0
<Ng’caA7 Ngl> —n <Ng\{Np 7C7~’47 Nl)

g

otherwise it is kept in its updated form:

NP € N97<NP7C7"4>—>‘” N},ﬂ ng 7é 0
<N9,C,./4, N;> —n <N9 \ {NP}7C7A7 N; U {N]/)}>

This transformation is completed by the following rule:
(0.C,A,N,;) —, N,

Termination of states. As said informally before, the termination of a state can involve
two reasons: reachability or networks.

Unreachable states : The transition —, evaluates the set of states for which the label
is accessible.

A state (L,N) is unreachable with regard to a set of atomic processes A, if noe.P € L
has a source P present in A. It is removed from A:

(LLNY €S, VePelL, (PE)¢gA
(S, A4, 8" — (S\ {{L,M}, A5

otherwise it is kept, with updated label L' featuring only raisable events:

(LNY €S, L' ={ePelLl(PEcA}, L'#£0
(5, A, 8 — (S\ UL M} A STU{(L,N)})

This transformation is completed by the following rule:

(0,AS) —, S

22

Broken network :

A state (L,N) has a broken network with regard to sets A and C of atomic and coor-
dinator processes, if all pipe-lines are broken. It is removed from S:

(L,Nye S, (N,C, A0y —, 0
(S,C, A8 —, (S\{{L,N)},C, A,S")

otherwise, it is kept, its network updated by removal of broken pipe-lines:

(L,N)e S(N,C,A,0) —, N, (N" #0)
(9,C,AS") —n (S\ (LN}, €, AS U (L, N)

This transformation is completed by the following rule:
(0,C, A, Sy —, S

Termination of coordinators. A coordinator terminates if all its states are terminated.
If its transformation by removal of unreachable states and of broken streams results in a
non-empty set of states S, then C' =(P,5,N) is updated into C' =(P, 5" N):

(S, A) —, 5", (5".C,A) —, S, (87 £ 1)
((P,S,N) ,C,A) - (P,S" N)

otherwise it is terminated:

(S, Ay —,. 5, (8", C,LAYy —, L
((P,SNY,C,LA) —— 1

When a coordinator C' terminates, it disappears from the set C, and the whole set is
checked again, as other coordinators might terminate in turn:

Cec (C,cuc, A 1 1
(€, A,Cy L ((CuC)\ {C},4,0)

otherwise it is kept, in its modified form C":

Cec, (c.cuc, A - ¢, (C' # 1)
(€, A,CY - e\ {C}, A,C'u{C')

23

3.3.4 Relation between event level and unit level

On the one hand, there is a transition between two states of the application when an event
occurrence € is exchanged i.e., raised and reacted to:

(A,C,P, 8y — (A.C',P,S)

On the other hand, there is a transition labeled v = (p,u) between two states of the
application when a unit u is passed through port p (in either direction: from the port to
streams, or from a stream to the port). This transition is of the form:

(A,C,P.S) - (A,C, PS8

This transition leaves A and C unaffected: this means that process states in our model are
not changed by changes in the streams and ports.

The event transitions are thus quite independent of the unit transitions, and can be
considered separately. We therefore isolate event-level states, thereby acquiring a higher-
level view on the state of an application. The event-level is detached from the circulation of
units, and concerns only the states of processes in A and C. Furthermore, atomic processes
in A do not really change states, as the transition does not modify them: thus the states of
coordinators C are sufficient to define the state of an application at this level. Finally, it can
be noted that this coordinator state (P,S,N) changes only in N i.e., in its local network.

At this level, one state defined by C (or actually the sub-networks N of the processes in
C) can be seen as the set of all states (A, C,P,S) with the same C. We can recall that there
is an initial state for each coordinator, where its sub-network is empty, before reacting to
the first event occurrence.

Thus, the states of an application correspond to the different possible configurations of
the streams in the network, responding to events arbitrarily raised by the atomic processes.
It seems interesting to study this particular aspect of the behavior of applications with a
specific model. We therefore propose an alternative model based on finite state automata.

3.4 An alternative model: automaton of an application

Formulated in terms of automata, the event-driven behavior of coordinators and applications
corresponds to:

e states, corresponding to the network connection states;

e transitions, leading, for each label, from each state to the state corresponding to that
label.

We do not take termination into account, in order to keep the model simple.
We will define such automata for isolated coordinators first, and then combine these
automata into an automaton for the application.

24

3.4.1 Automaton of a coordinator

A coordinator has n states, ¢ € [l..n], each with a label /; and a network expression n;,

represented as “l; : n;.”. Each “l; : n;.” corresponds to a pair (L;, N;} in the formal model
in section 3.2, that describes a coordinator as:

coordinator (process) in (ports in) out (ports out) { ... l; = n;. ...}
The automaton corresponding to this coordinator is defined by:

e one state s; for each network INV;, and one state sy for the initial state, before any event
occurrence has been raised, and corresponding to an empty network (Ng = 0);

e one transition ¢;j;, @ € [0..n],j € [1.n],k € [1..|L;|] from each state s, to each state
s;, labeled by each event occurrence ¢ in the label L; (of cardinality |L;| = m i.e.,
L; ={e,...,en}) for the destination state s;.

We also define null reflexive transitions on each state, representing the fact that when
there is no event occurrence to be reacted to, the coordinator remains in the same
state, doing nothing. This transition goes from s; to s; for each ¢ € [l..n], and is
labeled by the null event occurrence, noted . In this sense, it is different from the
reflexive transitions &,k > 1,6, € L;. We note the null transitions ;0,7 € [1..n].
Given k = 0, an alternative notation can be ¢ = ¢.

This null event occurrence represents in fact event occurrences for which the coor-
dinator makes no state change: this will be useful when considering asynchronous
concurrent coordinators, reacting differently to event occurrences. It enables us to
represent that some processes do nothing while others advance.

In the following, we will explicitly represent e-transitions only when needed; otherwise,
in discussions, figures and tables of the examples, we leave them out of sight, but they
are implicitly present.

The automata corresponding to the coordinator processes C1 and C2 in the example of
section 2.5.2 are illustrated in figure 9. The states correspond to the networks given in figure
7, and the transitions are labeled with the event occurrences that can lead to them.

More formally, we note an automaton following the notations of Arnold [3, 4], because of
their adequacy for the combination of automata defined further. A labeled transition system
(or automaton) A is a five-tuple (S, 7T, a, \,) where:

e S is a set of states,
e 7' is a set of transitions,

e o and S are applications from 7' in S, associating to each transition ¢ in 7" the two
states «(t) and (3(t), which are respectively the origin and the goal of the transition ¢.

e) is an application from 7" in the labels alphabet A, associating to each transition ¢ its
label A(¢).

25

coordinator C1 coordinator C2

Figure 9: Two-coordinators example: automata for the coordinators C1, C2.

A transition ¢ can then noted: a(t)ﬂ B(t).

In our framework, we note (S¢, Te, ac, Ao, Po) the automaton Aq for a coordinator C
modeled by (C,S,N), where:

Sc = {silso =0, i € [1..n] : s, = N; such that (L;, N;)€ S},

TC = {tijk ’ 1 € [On],] S [177],/{3 € [1|L]H} U {t”0|l € [177]},

aC(tijk> = s, such that s; € Sc,

Be(tin) = s;,such that s, € S,

e, if k> 1,such that ¢, € L; of(L;, N;) € S
et ={ & H1E]

i.e., the transitions have the form: ¢, : §; 2 5;.

The formal language recognized by this automaton Ag is that of strings on the alphabet
Ac U {e}, where A¢ is in fact Usep. oy Lo The automaton recognizes the series of event
occurrences to which it reacts and of null transitions.

Such an automaton is deterministic here because of the uniqueness of the state of a
coordinator corresponding to an event occurrence i.e., the fact that labels denote disjoint
sets of event occurrences: Vi,j € [l.n],i # j = L;N L; = (. Hence, when in a state
s;, and making a transition on event occurrence ¢, we never have more than one transition
labeled with €, and thus the new state s; is uniquely defined. Formally, determinism is
defined as: V¢, € T, a(t) = a(t') AX(t) = A(t') = B(t) = B(t'). For t;;, and t; 4, we have
Mtik) = Mtojw) =€ =€ € LyNe € Ly ie, e € LyNLjy. Wesaw that labels L; are disjoint,
thus de€ LN Ly = j=j ie, L; = Ly and s; = s;. Hence finally: 8(t;x) = B(tuyw). O

For n states in the body of a coordinator, each with a label L;,¢ € [L..n], the size in
number of states of the automaton is (n+ 1) (including the initial state s). For the number

26

application with coordinators C1 and C2

Figure 10: Two-coordinators example: automaton for the application.

of transitions, we have n + 1 origins, n goals, for each goal j,j € [1..n], |L;| ways of getting
there and one e-transition t;o for each state s;, 1 € [0..n] 1.6 Yicpo (1 + Zjep.n 1 L5])-

In our example, the coordinators C1 and C2 have the automata (indicated with sizes, not
featuring the e-transitions):

C C1 Cc2
rool o ol
SC’ {80731782} (3) {30731782v33} (4>
t) el Al / . ,e1.A1 / /) ,el.Al /
. el.A2 / . el.A2 / / . ,e1.A2 /
loa 1 So— S2 02 1 S0—— S5 lgg 1 85— S5
. el Al . el A2 ;. e2A2 ,
T t11: 81— 81 (6) 03 80— 83 lyg : 85— S5 (12)
c e el.A2 ;. gelAl ;. yeldAl
. el Al 7 oo el.A2 7 7 . ,e1.A2 1]
log 1 So—— 81 12 8] = 8y lg9 1 83— 8,
oo - el.A2 ;. se2A2 ;. e2A2 ,
22 1 S2—— 82 13-51—7 83 l33:-83— 83

3.4.2 Operations for combining interacting automata

An application is composed of concurrent coordinators. Its behavior is modeled by an
automaton combining the automata of its component coordinators. This combination must
be defined to correspond to the behavior of applications defined earlier.

As an example, the automaton for the application in the example of section 2.5.2 is
illustrated in figure 10. The states correspond to the networks given in figure 8,
and the transitions are labeled with the event occurrences that can lead to them. In particu-
lar, we can notice that making a transition on event occurrence el.A2 from state s;s| leads
to state sss; i.e., the two coordinators C1 and C2 each made a transition simultaneously.
However, from the same state s;s}, a transition on event occurrence e2.A2 leads to state

27

5154, where only the coordinator C2 has actually made a transition. Also, there is no state
5185, because s; is the state accessed in reaction to event occurrence el.A2, and this event
occurrence causes C1 to transit to state sp: thus, when C2 is in state s, C1 can only be in
state s, not in s7, which makes an application state s;s, impossible.

This shows that states of the application automaton are combinations of states of the
individual coordinator automata, and that transitions are also combinations of the transitions
in the coordinator automata. However, this combination is not just the cross product of the
two automata: their interaction is restricted by constraints, that can be used to reduce the
size of the resulting automaton.

Therefore, we introduce first the free product of automata, defined by the cross product
of its components in the absence of constraint (hence free). Then we introduce the means
to express and take into account the interaction constraints.

Free product of automata. Following the definition given by Arnold [4], the free product
A=A x ... x A, of automata A; =(S;, T;, a;, \i, 3;) is defined by:

<Sa T,Oé,)\,ﬁ> = H <S7§7Ti7aia>\i76i>
1€[1..n]
= < H Sz P H TZ) <O[1,...,Oé.n> ’ <)\17"'7An> ’ <ﬁ17"'7/6n>)

1€[1..n] 1€[1..n]

A global state has the form s =(sy, ..., s,,), and it can be changed to the state s’ =(s}, ..., s.,)

by a global transition ¢ =(t1, ..., t,) such that, in each transition system .A;, there is a transi-
tion ¢; : s; — s,. Hence, the origin of a transition ¢ is: a(t) = a({t1, ..., tn)) ={aq(t), ..., a,(t)),
its goal: B(t) = B({t1,....tn)) =(Bi(t), ..., 0u(t)), and, finally, the label of ¢ is: A(t) =
A{t1, ooy tn)) =(A1(2), .oy An(2)).

The transitions ¢ =(t1, ..., t,) represent the simultaneity of transitions ¢;: this makes the
assumption of atomic elementary actions, and is natural for synchronous systems. However,
our coordinators are only loosely coupled: while some of them, in an application, might react
to an event occurrence ¢, others, not having any state featuring € in its label, might remain
inactive, and stay in the same state. For these cases, and for enabling the representation of
an asynchronous behavior, the null transitions, labeled by e, were introduced: Vs € S, s = s.
Then, in the free product, some components can make a transition and change state, while
others will remain in the same state, doing nothing under the form of e.

Synchronized product of automata. The synchronized product is introduced, in order
to represent the fact that the possible existence of global transitions depends on the interac-
tions between processes. It restricts the transitions to a sub-set of those in the free product.
These interactions entail communication and synchronization constraints, which define the
sub-system called a synchronized product.

Such constraints are given in the form of a set SV of possible synchronization vectors,
specifying the allowed actions, i.e. labelings of the transitions. I.e., each automaton being
labeled on an alphabet A;, SV is such that: SV C A; x ... x A,,.

28

The synchronized product of the A; with regard to SV is noted (A;,...A,; SV), and is
the sub-system of the free product that contains only the global transitions ¢t =(ti,...,t,)
such that A(t) is an element of SV i.e., (A1(t),..., \p(t)) € SV.

3.4.3 Automaton of an application

Now that we have these operations at our disposal, we are going to apply them in the
framework of the applications.
For an application A with n coordinators Cg, k € [1..n]:

coordinator C} in (ports in), out (ports oul) { ... lg; * mnp; }

we have an automaton with:

e states being vectors of states of the coordinators automata: s4 =(s1, ..., 8,), for s, € Sj.
The actual set of states S, is a subset of the cross-product of states sets: Sy, C
II Si=51%..x8,.

k€[l..n]

e transitions being vectors of transitions of the coordinators automata, in a way similar
to the states: t4 =(t1,...,t,), for tx € T,. Note that the transitions ¢, can be e-
transitions, and that a global e-transition is labeled (e, ...,e). The actual transitions

set T4 is also a subset of the cross-product of the 7T},: T4 C H T, =T, x..xT,.
ke[l..n]

These sets are restricted in order to respect the constraints on the behavior of the lan-
guage: when an event is raised, it is received and handled by all coordinators that have a
state for it and the others do not change. We will detail this in the remainder of this section.

Product of coordinator automata: case of the example. In our framework of appli-
cations of coordinator processes, the constraint is that, as a consequence of the specifications
given in section 3.3, one event occurrence is exchanged at a time, and all coordinators that
can react to it, do so in the same reaction, the others staying in the same state!®.

In the example of section 2.5.2, the synchronization constraint is that the transitions
must be labeled by one the following:

o (el.A1, el.A1) (that we will note el.Al for a shorthand): when reacting to event
occurrence el.Al, both coordinators C1 and C2 must make a transition together;

o (el.A2, el.A2) (that we will note el.A2 for a shorthand): when reacting to event
occurrence el.A2, in the same way, both coordinators must make a transition together;

10This corresponds to the transition on the set C of coordinators: — ..., defined in section 3.3.

29

e (g, €2.A2) (that we will note e2.A2 for a shorthand): only C2 can react to this event
occurrence, C1 is unaffected by it: thus C2 makes a transition to react to it, while C1
does nothing i.e., €.

The synchronized product is obtained by keeping transitions and states from the free
product only when they respect the synchronization constraint and are accessible from the
initial state (sg, sh). We obtain:

el Al el.Al el Al

sosh T s8] 818 T s1sh sash o sish
e1.42 e1.42 e1.42
I 8282 — 8282 — 8282
2.2 e2.42 2.A2
— 5054 — 5155 == 5954
el.Al e1.A1 e1.A1

S0Sh o 818y s1sh T 88 sash T s8]
e1.A2 e1.42 e1.A2
— 5954 — 555} — 598)
e2.42 €242 e2.82
— 5054 — 5184 — 5984

Compared to the free product Ay,.c = Ac1 X Agq of the automata of C1 (Agy: 3 states, 6
transitions) and C2 (Aga: 4 states, 12 transitions), which would have had 3 x 4 = 12 states
and 6 x 12 = 72 transitions, the synchronized product A, has 6 states and 18 transitions.
The automaton is illustrated in fig. 10.

Product of coordinator automata: general case. In general, an application is com-
posed of coordinators Cq, ..., C,; they each have a corresponding automaton

'Acqj :<SC“ TC“ ag;, AC“,BCJ

The global transitions will be labeled by the synchronization vectors of the form: v =(vy, ..., v,).
For i € [1..n], each v; will be the label A¢,(¢;) of some transition ¢; € Tg,.

The constraint for these synchronization vectors is that all processes that can react to
one event occurrence € do so, while the others do nothing (i.e., a e-transition). In other
terms, the global transition is made on event occurrence e iff, for all processes C; such that
3t € Tg,, Ac,(t) = € # €, we have: v; = ¢, and for the others C;: v; = . We add the vector
(e, ...,€) of e-transitions, that provides a global e-transition. More formally:

SV ={ v={v1,...,u) |1 € [L.n],t; € T;,,v; = A¢,(t;) = € # ¢,
jel n]yam:{e if 3t; € To,, Ao, (1)) = ¢
b) b j

¢ otherwise pULle)}
This definition ensures that: Vi € [1.n],v; # € = v; = eA At € T, Ac, () = € i.e., only
the processes that cannot react don’t, and make the e-transition instead.
We can also note that: Vi, j € [1..n],v; = v;Vv; = eVu; = ¢, which means that transitions
can be distinguished by a label €, as a shorthand of (vq, ..., v,) where € is the only significant
value. In the case of (e, ...,), the global e-transition can be labeled by e.

30

_J

Figure 11: Fibonacci series example: the network of processes.

4 Examples

In this section we treat two classical academic examples for the illustration of the use of
programming languages: the computation of the Fibonacci series, and the sieves of Eratos-
thenes.

4.1 The Fibonacci series

The Fibonacci series consists of the calculation of the numbers f(n), for each positive integer
n, such that:

1
7(1) =1
[(n) = [= 1)+ f(n —2)

In terms of a data-flow between processes, this involves essentially an addition process,
an input-output interaction process, and a sufficient management so that units to be added
are given in the right order.

A new solution to this specific problem is not our primary interest; we get inspiration
from that presented by Boussinot [5], and express it our language as presented in table 5,
which results in the network illustrated by fig. 11.

The input-output process io raises an event start when the application must start to
produce the Fibonacci series, and takes in the numbers of the series through its input port
i. The addition process add has two input ports i1 and i2, and when it has one unit on
each of them, it calculates the sum of their values, and outputs it on its port o.

The problem here is to insure that units will be presented at these input ports in an
order such that the series of outputs coming out of o is the Fibonacci series. For this, we
can note that the third equation in the system above defines f(n) as f(n—1)+ f(n—2) i.e.,
in the general case (n > 2), the unit on port i1 of add must be the unit output by add two

~

—~
]

S—r
I

31

additions earlier, and on the input i1 it must be the result of the former addition; hence,
the output of add must be reconnected to its inputs.

For the initialization cases (n = 0 and n = 1), a different management is needed. When
n = 0, neither n — 1 nor n — 2 are defined; thus the result 1 is given directly to process io,
from the output of the process const1, defined to deliver the integer constant 1 on its output
port o. When n = 1, the previous value f(n — 1) = f(0) = 1, but n — 2 is still undefined:
nevertheless, f(1) is the result of the addition of f(n—1) = f(0) and 0. Hence, the operator
add is fed on its input i1 with the integer value 0 output by the process const0O, and on its
input 12, with the previous value of the series i.e., the value that was put out by const1.

Thus, expressed form the point of view of the series of output values, which is what we
are interested in, the results given as input to the input-output process io are, first, the
output of the process constl, followed by the results of the addition, from port add.o. The
inputs of the addition process add are, on its port i2: the previous results of the addition
(i.e., for the calculation of the ny, value of the series, n > 1, 12 receives the value of rank
n — 1), and on its input port i1: first the output of constant const0, followed by the same
that 12 received (i.e., for the calculation of the ny, value of the series, n > 2, 11 receives the
value that i2 received on the previous operation i.e., the value of rank n — 2).

In order to program this in MINIFOLD, we must define an operator for the expression
“followed by” that we used above. What was meant is that a first element of a series was
taken from one source, and all the others from another source. We have two instances foll
and fol2 of such a process, each of them with input ports i1 and i2, and an output port
o. The first unit output on o comes from i1, and the subsequent ones come from i2. The
application calculating the Fibonacci series can be depicted as in fig. 11.

The coordinator process fol; encoding the “followed by” functionality can be defined
with use of atomic processes p;, with one input port i and one output port o, and raising an
event u as soon as the first unit arrives in their input port!!. After having raised the event,
the process passes the unit to its output port, as well as all the following units coming on
its input. The coordinator fol; begins by installing a stream between one of its inputs i1
and the input of p;. This happens when the interaction process io raises the start event.
On reception of the event occurrence u.p;, meaning that the first unit from i1 has been
received, it changes state, breaking the stream from i1 to p;.1, and installing a stream from
fol;.1i2 to p;.1i, while the stream from p;.o to fol;.o remains. The states of this behavior
are illustrated by fig. 12.

Compared to the solution presented by Boussinot [5], this one does not feature a notion
of Pre operator, giving the previous value of a series: this aspect of the problem is taken
into account here by the first-in first-out behavior of streams.

4.2 The sieves of Eratosthenes

In the previous section, when presenting informally the coordinator fol;, we used an in-
dexed notation that does not belong to the language as it is. We want to introduce here

11 As such, it is reminiscent of the guard pseudo-process in MANIFOLD [1, 10].

32

fol fol

on event occurrence start.io | on event occurrence u.p;

Figure 12: Fibonacci series example: states of the fol; coordinator.

the possibility to define arrays (uni-dimensional vectors or multi-dimensional matrices) of
processes.

4.2.1 Arrays of processes

In the case of fol; and p;, we might have written:
atomic [1..2] p in i out o event u
coordinator [1..2] fol in 11, i2 out o
{ start.io : self.il -> p[il.i * p[il.o -> self.o
u.pli] : self.i2 -> p[i].i * p[il.o -> self.o

For an atomic process p, this notation means that there are 2 instances, named p[1] and
p[2], with ports and events of the same name. These will be distinguished by their absolute
names: (event).p[i] for events, and p[i].{port) for ports.

For a coordinator process, it means basically the same thing; for references to indexed
processes in its states, the index used is that of the coordinator itself: in the example above,
each fol[i] coordinates the network around one process p[i], where i is the same for fol
and p.

Multi-dimensional arrays of processes follow the same principles: for P of 3 dimensions
of respective ranges [1..5], [0..10] and [7..9] we note: P[1..5,0..10,7..9]. This is just a
syntactic augmentation to MINIFOLD, as it can be translated into programs in the previous
language by simple extension. It is however an extension to it. The definition of an array or
matrix of processes can be multi-dimensional, with one index per dimension.

It follows the syntax:

(range) = [(d-range) [, (d-range) []
(d-range) = (lower bound) .. (upper bound)
(a-array) == atomic (range) (process) [(index)]
(ports in) (ports out) (events)
(c-array) = coordinator (range) (process) [(indez)]
(ports in) (ports out) { (state)t }
{application) = [(atomic) | (a-array) [t [{coordinator) | {c-array)y |

33

s[1] S [N]

Figure 13: The sieves of Eratosthenes example: the network.

s[i]

Figure 14: Eratosthenes sieves example: one sieve.

where (indez) is an identifier (e.g., 1), and {lower bound) and (upper bound) are integers.

It is straightforward to translate each array into as much single processes as necessary;
thus the semantics need not be extended. Also, in network expressions, indexes of processes
are easily interpretable.

4.2.2 The example of the sieves of Eratosthenes

An example suited to this extension is the program calculating the n first prime numbers,
following the method of the sieves of Eratosthenes.

A number of processes will share the task of filtering away the integers that are multiples
of some already known prime number. For each number passing through this filter, a new
filter is given. The program encoding this is given in table 5.

If we name each of these processes s[1i], then the application looks like the illustration in
fig. 13. A process int gives all integers n > 2 on its output port o. The interaction process
io takes the results in its input port i. Each of the sieves S[i] takes a series of integers in
its input i1, outputs those that are not filtered in o1, takes in results from further sieves in
i2, and outputs results in 02.

The sieve process S[i] itself is illustrated in fig. 14. It coordinates two sub-processes:
fol; is like the one previously described, and allows to output first the prime number for the
sieve itself, then those coming from further sieves. The process filter[i] is atomic, and,
taking integers through its input port, gives out only those that are not a multiple of the

34

first received (i.e., for the k'* unit wuy, it is output if u, mod u; # 0).

The termination of this example can be obtained as follows: when having received N units
on its input port, the process io raises an event terminate, and outputs a special unit .
The coordinator main has a state:

terminate.io : [1..N] (io.o -> S[i].i2)

The atomic process p[i] terminates when receiving u.

When each S[i] receives u; on i2, it is given through to p[i], which terminates, causing
foll[i] to terminate, causing S[i] to terminate, which, when all of them are terminated,
causes main to terminate, which causes the application to terminate, thereby causing the
termination of io, int and all the filter[i].

5 Miscellaneous ideas and open problems

Controlling state transitions. In the automata shown in section 3.4 for the examples,
there exist transitions between all of their states, namely from any state of the application
to the state s; (corresponding to [; : n;.), labeled with events of the label ;. The multitude
of these transitions makes the automata complex, and compromises the overview on the
behavior of a process. Restricting these transitions means controlling the execution path of
the program through all the possible transitions.

Ways to moderate this explosion of transitions consist of giving rules restricting which
events might cause a transition from a state to an other one. Such rules can define the
selection criteria as a function of the current state e.g., restricting transitions to events
for which the source is involved in the network of that state: in MANIFOLD this is called
preemplivity [1, 10].

Coordinators raising events. This possibility could enable coordinators to change state
with an internal cause (i.e., with a local event raising), or also interaction between coordi-
nators.

However, even if the coordinators are provided with this possibility, the ultimate source
of a state change is still always an atomic process. Indeed, if a coordinator can raise an
event (be it locally or externally), it is from one of its state; in order to arrive in this state,
the coordinator had to react to an event occurrence. Thus, a coordinator can raise an event
only in reaction to another event occurrence, coming either form a coordinator, or from an
atomic process. Thus, the cause of a transition will eventually be an event occurrence from
an atomic process.

In this sense, the fact that MINIFOLD coordinators do not raise events is a simplification
without being a real impoverishment.

Furthermore, the possibility that, in a reaction, several events can be raised and reacted
to, possibly by raising other events, implies that one coordinator might receive several event
occurrences to which it has to react. A coordinator can be in only one state at a time:
these event occurrences must be treated one at a time. The consequence of this is that an

35

event memory is needed, and that the uncoupling between event reception and treatment
introduces asynchrony. Also, the order in which event occurrences are treated must be fixed;
in MANIFOLD, this is done non-deterministically.

Network expressions. Networks are graphs, and in MINIFOLD, they are described by the
enumeration of their arcs i.e., streams. This is sufficient to describe any graph.

However, having more elaborate constructs would ease the specification of networks. A
full graphical language with branching, joining, looping operators could be useful.

From the point of view of the operators ->, + and * that we already introduced, it can
also mean the definition of distributivity rules, like:

P1 =2 P2 > Pp3 = P1 ~> D2 * P2 —> D3

p1 => (p2 + p3) = p1 => py + p1 > p3

p1 => (p2 * p3) = p1 => py * p1 > p3

(ng + ng) * ng = (ng * ng) + (ng * ny)
ny + (ng * n3z) = (ng + ng) * (ng + ng)

Producing and using the automata The description of applications in terms of au-
tomata in section 3.4 was done in informal accordance with the transition system of the
semantics in section 3. Termination states and transitions were left out for simplicity, and
unit exchange states and transitions were ignored because of a clear difference of level be-
tween the two aspects of the language; for the rest, the event occurrence exchange transitions
and the automata describe the same behaviors.

It would be interesting to have rules for the translation of a source program into an
automaton (i.e. a compilation into an automaton), following the semantics.

The automata-based model could be useful for a deep and complete analysis of programs.
For example, detecting the problematic states or parts of the automaton: unreachable states,
states with no outcoming transition, states from which terminal states are unreachable, can
be done by simple operations on graphs and automata.

Further, the analysis of applications could benefit from existing results in the area of
formal specification and verification of concurrent systems, namely using techniques and
concepts as bi-simulation equivalences.

A problem, general to any analysis of an application in MANIFOLD-like languages, is that
the semantics of the language does not reflect the behavior of the atomic processes, because
they are outside the scope of the language; however it is necessary to know their behavior
in order to know the behavior of a whole application. To this end, it should be possible to
give partial specifications of their behavior, abstracted to the raising of events and the input
and output of units.

Practically, the use of an environment generating tool like ASF+SDF [9] would enable
to experiment with the specification of MINIFOLDitself, and to have a whole environment
for testing each of its versions by running example programs, and incrementally modify the
specification.

36

6 Conclusion

We have presented MINIFOLD, a kernel for a coordination language, following the MANIFOLD
model. We introduced it constructively, illustrated it by examples, and provided it with an
operational semantics, as well as a model based on automata. Various extensions are possible,
in order to augment the possibilities of the language. The models deserve more attention,
in particular automata and the existing concepts in the area of the modeling of concurrent
systems might lead to the possibility of formally analyzing the behavior of applications.

The purpose of the study of this very simplified instance of the MANIFOLD concept is
to explore models of its behavior, and to give a formalization of its bare essentials. It is in-
tended that the MANIFOLD language can take advantage of this, as guidelines for formalisms
underlying practical tools for programs analysis, clarification of its structure and as a basis
for the comparison of MANIFOLD with other models.

References

[1] F. Arbab. Specification of MANIFOLD. CWI Report, Interactive Systems Dept., CS-R
9220, 1992.

[2] F. Arbab, I. Herman, P. Spilling. An overview of MANIFOLD and its implementation.
CWI Report, Interactive Systems Dept., CS-R 9142, 1991.

[3] A. Arnold. Transition systems and concurrent processes. In Mathematical problems in
Computation theory (Banach Center Publications, vol. 21), 9 — 20, 1988.

[4] A. Arnold. Systemes de transitions finis et sémantique des processus communicants.
T.S.1. Technique et Science Informatiques, vol. 9, no. 3, 1990. (in French)

[5] F. Boussinot. Réseaux de Processus Réactifs. Rapport de Recherche, INRIA, Sophia-
Antipolis, n® 1588, Janvier 1992. (in French)

[6] N. Carriero, D. Gelernter. LINDA in context. Comm. of the ACM, April 1989, vol. 32,
no. 4.

[7] D. Gelernter, N. Carriero. Coordination languages and their significance. Comm. of the
ACM, February 1992, vol. 35, no. 2.

[8] G. Kahn, D. MacQueen. Coroutines and networks of parallel processes. In Proceedings
of IFIP "77 (A. Finlay, ed.), pp. 993-998, 1977.

[9] P. Klint. A meta-environment for generating programming environments. CWI Report,
Dept. of Software Technology, to appear, 1992.

[10] E.P.B.M. Rutten, F. Arbab, I. Herman. Formal Specification of MANIFOLD: a Prelim-
mary Study. CWI Report, Interactive Systems Dept., CS-R 9215, 1992.

37

[11] E.P.B.M. Rutten, S. Thiébaux. Formal Semantics of MANIFOLD: Specification in
ASF+SDF and extensions. CWI Report, Interactive Systems Dept., to appear, 1992.

List of Figures

O 00 =1 O U i~ W N =

[S —
o = O

— =
> oo

An atomic process.
The stream: A.outAl -> B.inB1
The networks: (a): p=>p' + p=>p", (b): p'=>p + p"=>p.
Amnetwork.
Single-coordinator example: the state so.
Single-coordinator example: the state s3.o
Two-coordinators example: subnetworks for C1 and C2.
Two-coordinators example: networks for the application.
Two-coordinators example: automata for the coordinators C1, C2.
Two-coordinators example: automaton for the application.
Fibonacci series example: the network of processes.
Fibonacci series example: states of the fol; coordinator.
The sieves of Eratosthenes example: the network.
Eratosthenes sieves example: one sieve.

List of Tables

U W N =

Single-coordinator example: the application.
Two-coordinators example: the application.
The grammar of MINIFOLD.
Fibonacci series example: the application.
Eratosthenes sieves example: the application.

38

atomic A in inAl out outAl, outA2 event el, e3

atomic B in inB1l, inB2 out outBl event e2, e3

atomic C in inC out outC event e3

coordinator main
in input
out output

{

el.A : A.outAl1->B.inB1

+ C.outC->A.inA1l

+ B.outB1->C.inC

e2.B : A.outAl1->B.inB2 + C.outC->B.inB2
+ B.outB1->C.inC + main.input->B.inB1

+ C.outC-> main.output

e3.A , e3.C : A.outA1->B.inB1 + C.outC->A.inAl
+ A.outA2->C.inC + main.input->A.inAl

Table 1: Single-coordinator example: the application.

+ B.outBl-> main.output

atomic Al in 1 out o event el

atomic A2 in i out o event el, e2

coordinator C1 in

{

el Al
el A2 :

}

coordinator C2 in

{

el.Al : A2.0->C2.0

el A2 :

}

i

i

out o

Cl.i->A1.1 + Al.o—>A2.1
A2.0->A1.1 + Al.o -> Cl.o .

out o

C2.1 -> A2.1 + A2.0 -> C2.0
e2.A2 : A2.0 > A2.1 .

Table 2: Two-coordinators example: the application.

39

S1
52

{atomic) = atomic (process) (ports in) (ports out) {events)
(ports in) = in (port) [, (port)]" | ¢

{(ports out) = out (port) [, (port)] |

{events) = event (event) [, (event)]' | ¢

(port name) = (process).(port)

(event-occ) = (event).(process)

(stream) := (port name) -> (port name)

(pipe-line) = (stream) x (pipe-line) | (stream)

(network) = (pipe-line) + (network) | (pipe-line)

{label) = (event-occ) [, {event-occ) [

(state) = (label) : (network) .

(coordinator) ::= coordinator (process) (ports in) (ports out) { (state)™
{application) = {atomic)t {coordinator)*

Table 3: The grammar of MINIFOLD.

atomic constO out o

atomic constl out o

atomic add in i1, i2 out o
atomic io in i1 event start
atomic pl in 1 out o event u

atomic p2 in i out o event u

coordinator foll in i1, i2 out o

{ start.io : foll.il -> pl.i * pl.o -> foll.o .
u.pl : foll.i2 -> pl.i * pl.o -> foll.o . }

coordinator fol2 in i1, i2 out o

{ start.io : fol2.il -> p2.i * p2.0 -> fol2.o0 .
u.p2 : fol2.i2 -> p2.i * p2.0o -> fol2.0 . }

coordinator main

{ start.io : const0.o0 -> f0l2.il * foll.o -> fol2.i2
* fol2.0 -> add.il * foll.o —-> add.i2
* constl.o -> foll.il * add.o -> foll.i2
* foll.o -> io.i . }

Table 4: Fibonacci series example: the application.

40

}

atomic int out o

atomic io in i event start terminate

atomic [1 .. N] pl[i] in i out o event u

atomic [1 .. N] filter[i] in 1 out o

coordinator [1..N] foll[i] in i1, i2 out o

{ start.io : fol[i].il -> p[il.i * p[il.o -> fol[il.o .
u.pli]l : follil.i2 -> plil.i * plil.o -> follil.o . }

coordinator [1 .. NJ] S[il] in 11, i2 out ol, o2

{ start.io : S[il.il -> filter[i].i * filter[il.o -> S[il.ol
* S[i].i1 -> foll[i].il * S[i].i2 -> folli].i2
* foll[il.o -> S[i].o2 .
coordinator main
{ start.io : int.o -> S[1].il1l * S[1].02 -> io.i
* [1..N-1] (S[i].o1 -> S[i+1].i1
* S[i+1].02 -> S[il.i2)
terminate.io : [1..N] (io.o -> S[i].i2)

Table 5: Eratosthenes sieves example: the application.

41

