Towards a design theory for database triggers

A.P.J.M. Siebes, M.H. van der Voort, M.L. Kersten
Computer Science/Department of Algorithmics and Architecture

CS-R9201 1992

https://core.ac.uk/display/301653843?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Towards a Design Theory for Database Triggers

A.P.J.M. Siebes, M.H. van der Voort and M.L. Kersten
CWI, Kruislaan 413, 1098 SJ Amsterdam
{arno, leonie, mk}@cwi.nl

Abstract

Advances in the area of active database management systems require the devel-
opment of a trigger design theory, which guides the user in the definition off well-
behaving trigger based applications. The development of such a theory requires a
formal definition of trigger semantics. This paper describes a framework for such a
formalisation of triggers. That is, the parameters of trigger execution and the op-
tions for setting them are identified and discussed. Furthermore, the development of
a trigger design theory is initiated with the formulation of a sufficient condition for
trigger independence.

Categories and Subject Descriptors: H.2.1[Information Systems]: Logical Design- data
models; H.2.3[Information Systems|: Languages- data description languages(DDL); data
manipulation languages(DML); H.2.4[Information Systems]:Systems- Transaction pro-
cessing

General Terms: Algorithms, Documentation, Management

Additional Key Words and Phrases: Triggers, Active Databases, Rules

1 Introduction

One of the prime challenges to designers of new generation DBMS’s is to construct active
database systems. Active database systems attempt to provide automatic response to
events generated internal or external to the system. That is, a conventional database is
a passive datastore, all activities are initiated by applications whereas an active database
initiates activities itself, without application intervention. This functionality is provided
by triggers, which are also known as rules, demons, actors and assertions [9, 10, 20, 18, 22,
25, 27, 28]. Briefly, triggers are a condition-action pair which automatically execute the
action whenever the condition, which specifies events and/or interesting database states,
holds.

The interest in active databases is twofold. First, active databases satisfy requirements
posed on a database by non-standard application areas like CAD/CAM and CIM systems.
Second, active databases offer a unifying mechanism for common database management
tasks like integrity enforcement and view handling.

One of the requirements of CAD/CAM applications is a flexible constraint mechanism.
Not only because the usual transaction abort upon constraint violation does not suffice for
CAD/CAM systems, but also because the constraint evaluation point should be control-
lable, which conventionally it is not. Consider for example chip design: to prevent interfer-
ence, wires should be placed at a minimum distance from each other. In passive databases,
violation of this distance constraint results in transaction abort. In active databases, how-
ever, this violation can be repaired by calling a wire re-arrangement algorithm. Thereby,
transforming the inconsistent database state into a correct one.

The benefit of application defined constraint evaluation points is illustrated by a CAD ap-
plication. As checking the construction of a new building design is time consuming, it is
beneficial if the architect specifies when to activate integrity enforcement. Unfortunately, in
conventional database systems, the evaluation points are fixed. Active databases however,
allow for constraint dependent evaluation points.

The CIM area shows another use for active databases, viz., statistics. The design of a
production environment is a highly interactive process where a designer is focussed on
finding an optimal solution for product assemblages. Once an initial design is made, ex-
periments are done to find defects and to improve the design. Part of these experiments
is the collection of statistical information about system behaviour. Active databases offer
the capability for automatic gathering of this information.

Taking the requirements from applications into account, the design of an active database
system involves the following issues:

Integration of triggers with usual database activities The examples above indicated
that applications require control over constraint evaluation points. This can be
achieved by a general mechanism for the integration of triggers with database ac-
tivities. The mechanism should allow for triggers to be executed after each database
update and for triggers to be executed at application command. The Hipac project,
as described in [10, 11], introduced several trigger execution modes, which are the
parameters of the integration mechanism. More work on this subject for relational
systems is described in [7, 26] and for object-oriented systems in [5, 12, 15, 20].

Trigger behaviour The behaviour of isolated triggers is not as simple as presented above.
On the contrary, several issues have to be dealt with. They can be categorised into
two groups: single trigger semantics and multiple trigger semantics. The former
deals with variable binding within the condition and with data passing between its
condition and action part. The latter deals with execution scheduling of multiple
activated triggers and with trigger interference. The following papers describe trigger

semantics [7, 24, 29]. A formalism for the description of trigger semantics is given in
17, 15]

Trigger design theory The design of a collection of triggers is a complicated matter.
When the number of triggers in a system increases, the chance of unintentional trig-
ger interference increases as well. This trigger interference may have unforeseen and
unpleasant consequences.

As an example, consider a row of adjacent cells on a chip [13]. Except for the end
cells, each cell has two neighbours. A cell must always satisfy the following condi-
tions: first, it should be adjacent to but must not overlap its left neighbour (if any)
and second, it should be adjacent to but must not overlap its right neighbour (if any).
These conditions must be satisfied when a cell is created and when a cell is moved.
When a sequence of cells is moved and, thereby, violate one of these conditions, there
are two options for integrity repair. The first resolves the conflict by moving the right
conflicting cell and the second resolves the conflict by moving the left conflicting cell.
When both are incorporated in the trigger system an endless execution sequence of
repair actions may occur. The repair is started by moving the right conflicting cell,
thereby introducing a new conflict, which could be solved by moving the left con-
flicting cell. This results in the original conflict and the repair could be repeated
(forever).

To prevent this behaviour and to guide the development of well-behaving applica-
tions, a trigger design theory is needed. Although the relevance of a design theory
is recognised [8, 11, 14, 20, 26], little research on this subject has been published.
Work based on the relational model is described in [8, 24, 29] and work based on the
object-oriented model is described in [23].

A pre-requisite for the development of a trigger design theory is a formal description of trig-
ger semantics. Some work on this topic has been done for system based on the relational
model. This article initiates the formalisation of triggers based on an object-oriented data-
model by giving a framework for such a formalisation. That is, the parameters of trigger
execution and the options for setting them are identified and discussed. Furthermore, the
development of a design theory is initiated with the formulation of a sufficient condition
for trigger independence.

The structure of this paper is as follows. In the next section, we briefly describe a database
class hierarchy for the examples in this paper. Moreover, we give an short description of
the abstract datamodel underlying our framework.

In Section 3, we develop an abstract definition of a trigger. This definition does not
depend on a particular object-oriented data model or DBPL. The reason for this abstraction
is twofold. First, the formal introduction of triggers in a DBPL may require language
constructs not foreseen during its design. Hence, an early fixation on a DBPL might
hinder the actual development of the theory. Secondly, our main concern is to obtain
formal semantics of trigger systems. By following Curien’s philosophy of making syntax
akin to semantics, the discussion of the semantics is greatly simplified. Furthermore, the

semantics of a single trigger is given.

In Section 4, execution models for trigger collections are discussed. That is, given a database
state and a collection of (activated) triggers, what is the next state? Furthermore, the
integration of triggers with usual database activities are discussed. Together with the
previous section, this results in rather abstract semantics for trigger systems.

In the following section, several topics of a design theory are discussed and the development
of such a theory is initiated with the definition of independent triggers. Finally, in Section
6, conclusions and directions of future research actions are formulated.

2 Prerequisites and an example database schema

In the first subsection of this section, we give an abstract description of a datamodel
and introduce some notational conventions. In the second subsection, we give an example
database schema. This schema will serve as the basis for the trigger examples in this paper.

2.1 The abstract datamodel

Although we present an abstract framework for the formalisation of triggers, some require-
ments on the accompanying datamodel have to be given. For example, even for an abstract
description of the semantics of trigger applications it is important whether the database
consists of objects or of values.

More specifically, we assume, along the lines of [21, 19, 4], that a database is a set of
objects in the usual OODB sense. These objects belong to one or more classes. Each class
definition consists of a description of the type of it’s objects, the applicable methods and
the constraints to be satisfied.

Moreover, we assume that the set of types, denoted by T'ype, of the datamodel is partially
ordered without a least element. This partial ordering is called the subtyping relationship,
and is denoted by <. Furthermore,, we assume that the subtype relationship is defined
such that for each expression e in the language, and all typesc and 7, e: cAc <7 —e: 7T
holds: Where, as usual, e : o denotes that e is of type o [6].

For convenience, we define the relation bites on types. To types byte if they have a common
specialisation:

Definition 1: Let 0,7 € Type, o and 7 bite iff
Ju e Type: (v<oAv<T)

Finally, we assume that the datamodel has an associated query language, such that each
query Q(zq,---,z,) can be seen as a predicate (with n free variables) on the database state.

4

We end this section with some notational conventions. Firstly, in this paper we will use
DB, or DB;, to denote a database state. That is, DB denotes a set of objects. Given a
state DB, DB* denotes the set of all tuples that can be formed over DB. More formally:

Definition 2: Let DB be a database state,

The elements of DB* of length n are denoted by Z or (z1, -+, x,).
Secondly, for convenience we define the function Set to ‘unpack’ the sets of object tuples:

Definition 3: The function set : DB* — P(DB) is defined by:

set((zy,---,z,)={y|Fel,---,n]:z; =y}
The function Set : P(DB*) — P(DB) is defined by:

Setl{h,-- 70} = Qset(zﬁ-)

Finally, we will use the abbreviation @Q(D B) to denote all object vectors in DB* that satisfy
the query predicate Q(z1,---,z,). That is:

Definition 4: Let Q(xy,---,z,) be a query predicate and DB a database state,

Q(DB) ={7 € DB"| Q(2)}

2.2 An example database schema

To illustrate the discussion in this paper, we will give example triggers based on the database
schema shown in Figure 1. Its syntax is purely illustrative, yet based on trends in object-

oriented modelling and object-oriented database programming languages such as [2, 21, 19,
4].

The UoD described by the schema in Figure 1 has four classes, viz., board, cell, wire
and colour-table. All four class definitions begin with a description of the attributes their
objects have. Only the classes board and cell have methods associated with them directly.
All classes have, by default, methods for creating, querying and updating objects.

class board with extension Board
attributes
cells : set of (c:cell, p:position)
wires : set of (w:wire, Ip:list of position)
methods
replace-wire(wl, w2 : wire)
move-left-conflicting-cell(cl:cell, p1;:position,
c2:cell, p2:position)
move-right-conflicting-cell(c1:cell, pl:position,
c2:cell, p2:position)
end

class colour-table with extension Colour-table
attributes
function : string
colour : string

end
class cell with extension Cell
attributes
type-no : string
pin-no : integer
height : integer
methods
enlarge()
end

class wire with extension Wire
attributes
function : string
colour : string
end

Figure 1: Database schema

3 The definition of triggers

A common definition of triggers, along the line of [10, 14, 20, 28] is On event If condi-
tion Then action. Briefly, upon occurrence of the event, the action is executed when the
condition holds. Clearly, an event is a general condition. A condition may only address
the current database state, whereas an event may also address previous database states.
Therefore, we simplify the syntactic definition of a trigger, similar to [9, 20], to If condi-
tion Then action where the generalised condition may address the current and previous
database states.

Whenever triggers are used for integrity enforcement, the object vectors that satisfy the
condition are of interest to the action. Therefore, all these object vectors should be selected
and processed by the action. As this condition based selection is essentially the same as a
database query, the condition will be represented by a query: Q(Z). Furthermore, the If
Then concept closely resembles the linear implication (—o) from linear logic. Together
with explicit quantification, this leads to the following definition of a trigger:

Definition 5: A trigger is defined syntactically and semantically as follows:

Syntax: A trigger T is defined by a formula over a well formed query expression and action
part of the form: VZ: (Q(Z) —o A(Z))

Semantics: The semantics of trigger applications are defined in two ways:

logical: Consider both Q(Z) and A(Z) as predicates, where the latter asserts the
state of Z after execution of A. Then VZ : (Q(Z) —o A(Z)) denotes a linear logic
formula that states that for each Z in the database we may conclude A(Z) from
Q(Z). After this deduction, we may no longer assume that Q(Z) holds.

operational: Let Trigger be a collection of Triggers and State the collection of
database states. The operational semantics of a single trigger, 7', execution on a
database state, DB, are given by the function E of type Trigger x State — State
as defined by:
E(T,DB)=(DB\ Set(Q(DB))) U Set({A(Z)| Z € Q(DB)})

We will often denote a trigger 7" as T" = @) —o A, especially if the shared variables are
immaterial in the discussion. The following example introduces the trigger syntax used in
the sequel of this paper.

Example 1: To prevent interference, wires placed at a board should have a minimum
distance from each other. The minimum-distance trigger checks this. In case of violation,
the wires are replaced in order to obtain a valid wiring.

trigger minimum-distance
forall b in Boards, el, €2 in b.wires where
distance(el.lp,e2.lp) < min-distance
—o replace-wire(b, el.w, €2.w)

4 Finite collections of triggers

In the previous section, we have defined triggers and their semantics iff there is only one
(activated) trigger in the database. In this section, we study the more general problem of
several triggers activated at the same time, which is basically a problem of interference.

Given a collection of triggers, the intended global semantics are as follows: For a given
database state, determine the set of activated triggers. Choose one to execute and execute
it which results in a new database state. Repeat this until there are no activated triggers
any more’.

To illustrate the interference problem, let 77 = @; —o A; and Ty = ()3 —o Ay be two
triggers, and DB; a database state, such that both @(DB;) # 0 and Q2(DB;) # 0.
Moreover, Let DBy = E(T1, DB;) and DB3 = E(T3, DB;). There is no guarantee that T
is still activated in D Bs, nor that 77 is still activated in D B3 as the execution of 71(73)
might change objects initially subject to T5(77). Moreover, even if they are both activated,
there is no guarantee that E(7y, DBy) = E(T, DBs).

Hence, their combined behavior can only be predicted if their execution order is known in
advance. In other words, if there is a fixed scheduling (trigger selection) mechanism. That
is, if we have a priority function [1, 16] for trigger execution, which is studied in the next
subsection. Furthermore, the integration of triggers with database activities is discussed in
the last subsection.

4.1 Priority functions

In principle there are two ways to define a deterministic priority function:

1. A state independent priority function
That means putting a total order on the set of triggers.

2. A state dependent priority function
That is, for each database state the priority function assigns priorities to triggers.
The priority function may use the database contents to determine these priorities.

'We do not consider parallel executions in this paper.

Some examples of priority functions are:

1. by precondition?, i.e.: Q1(DB) C Q2(DB) — T\ =<pp T»
2. or inversely: @Q1(DB) C Q2(DB) — Ty <pp Th

3. by inheritance relation between types of selected objects: Q1(DB) : 01 A Q2(DB):
o3 N o1 <0y —T1 Zpp 1>

The above given examples of priority functions are quite simple. More complex ones also
take previous assigned priorities in consideration. That is, the priority function possesses
a memory. An example (in process algebra terminology [3]) is:

4 by previous priorities, i.e.: T1; (T + T5;T1)*
Note that this might imply that although two triggers are potentially active (e.g. Ty
and T3) none may be executed as 7; has precedence.

The advantage of state independent over state dependent priority functions is that the
trigger choice does not depend on the actual database state. This simplifies analysis con-
cerning priority functions. However, as the activation of triggers still depends on the actual
database state, this advantage is only marginal. Therefore, as state dependent functions
are the most general, we define a state dependent priority function. It should be noticed
that this definition allows only for priority functions which assign priorities to activated
triggers. Thereby, excluding priority functions as exemplified in example four.

Definition 6: Let Trigger be the collection of triggers and State the collection of
database states.

1. The function Actr,igger : State — P(Trigger) assigns to each state the set of triggers
that is activated in that state:
Actrrigger(DB) = {T € Trigger| Qr(DB) # 0}

2. A priority function is a partial function Pryigger : State — Trigger, such that:

(a) dom(Pryigger) = {DB € State| Actryigger(DB) # 0}
(b) VDB € dom(PTMggw) : PTrigger(DB) € ACtT”gger(DB)

In the introduction of this section, we sketched the semantics of a (finite) collection of
triggers over a database schema. We can now formalise this as follows:

2Note, that in this item, as in the next there are some slight technicalities if @; = Q- or if @;(DB) N

Definition 7: Let Trigger be the collection of triggers, State the collection of database
states and Ps a priority function as defined above. For a state DB; we have:

logically: we consider DB; as a predicate giving the state of all of its objects, so we have:
DB; —o DB, = E(PTrigger(DBi)a DBi)
That is, from the database state DB;, we may infer the next database state as
E(Pryigeer(DB;), DB;) (that is, the state that results when we execute Pr,gger (D B;)
on DB;, but after the derivation, DB; no longer holds.

operationally: we execute Pr,igge,(DB;), i.e.
DBH—l = E(PTTigger(DBi)a DBZ)

Note that in both cases we can infer new database states until there are no longer active
triggers.

4.2 Integration

In this subsection, the formalisation of the integration mechanism, which describes the
relation between triggers and usual database activities, is discussed. To formalise the
integration mechanism, it seems easiest to formalise database activities as triggers which
are activated by external causes (i.e. the user). The integration mechanism then, specifies
the relation between triggers, viz. external and internal activated triggers, which is done
with a priority function as defined in section 4. A difficulty arises with the existence of
transactions. As transactions may be spread over several state changes (e.g. user actions
followed by integrity enforcement triggers). This is best attacked by defining the notion of
nested triggers:

Definition 8: The collection of nested triggers N7 is defined inductively by:
1. if T is a trigger, then T € N'T;
2. if @ is a query, A an action and Ty,---,7T, € NT, then (Ty;---;T,;Q —0 A) e NT
The intended semantics are defined by:
E(Ty; ;T Q —0 A, DB) = E(A—o Q, E(T,, E(--- E(Ty, DB) - -+)))
So for nested triggers, subtrigger T; should activate subtrigger 7T;,,; in fact, in general
Q; # 0 for i > 1. The intuition behind the semantics is as follows. 77 makes a copy

of the relevant portion of the database. The following subtriggers work on this copy (i.e.
independent of the global state). If all subtriggers execute correct, the result of the nested

10

trigger is committed. Note, none of the subtriggers changes the global state, hence none of
the other triggers in the system is activated until the nested trigger commits.

With this definition, a transaction can be seen as a nested trigger. Each state change of the
transaction is represented by a subtrigger of the nested trigger. A benefit of this approach
is that it enables a weaker notion of transaction interaction than just serialisability. For,
serialisation is but one scheduling mechanism. However, a detailed discussion of nested
triggers is outside the scope of this paper.

5 Design theory

The design of a well-behaved collection of triggers is a complicated matter. When the
number of triggers in a system increases, the chance of unintentional trigger interference
increases as well. Trigger interference may have unforeseen and unpleasant consequences.
In order to detect such behavior and to guide the development of well-behaved applications,
a trigger design theory is needed. Topics of a design theory are:

fairness An question, raised by the priority assignment is whether all triggers can be
executed. That is, given two activated triggers 77 and 7T, and a priority rule P, are
they both executed or is always 7} and never 75 executed? This is a fairness problem,;
which is a difficult theoretical problem. For example, let T} have priority over 75, it
depends on the actual database state and the precise action semantics of T} whether
T, can be executed or not.

livelock A forever repeating execution of a trigger sequence is a livelock. Usually, such an
execution is caused by mutually activating triggers In order to avoid non-terminating
applications such trigger combinations should be detected.

independence In the section 4.1, we have introduced the notion of a priority function and
we have defined what the semantics of trigger application are with respect to such a
priority function. A special priority function is random choice. More specifically, it is
interesting whether a random choice between the activated triggers does not influence
the predictability of the trigger system.

In the following subsection, a sufficient condition for trigger independence is formulated.

5.1 Independence

We start by introducing the notion of independence. Two triggers are independent if their
order of execution is immaterial. Clearly, this notion depends on the actual database state,

11

that is, triggers 7} and 75 might be independent with respect to a database state DBy,
while they are dependent with respect to a database state D B,.

Definition 9: Let 7} and 75 be two triggers and DB a database state. Independence of
T, and Ts with respect to DB, denoted by 77 Lpp 15, is defined by:

Ty Lpg To & E(T\,E(Ty,DB)) = E(Ty, E(T1, DB))

To analyse this notion of independence, we give a sufficient condition for independence.
For simplicity, we assume the action to be query free. This means, the action does not
query the database but only accesses objects from the selected object vector.
Furthermore, we introduce the following notation:

Definition 10: Let T = VZ : (Q(Z) —o A(Z)) be a trigger and DB a database state.
The write set of T" with respect to DB is the set:

W(DB) = Set({A(Z)| Z € Q(DB)})
The read set of T with respect to DB is the set:
R(DB) = Set(Q(DB))

Thus, the result of the application of trigger 7" on DB is given by: E(T,DB) = (DB '\
R(DB))uU W(DB) Consider two triggers 17 = Q1 —o A; and Ty = @3 —o Ay which are
both activated on state DB. Define DBy, = E(T;,DB) and DBy = E(1,DB). The
triggers are independent if E(T5, DB;) = E(T1,DB;y). Now, assume the following four
equations:

o
&
-]
=
I
&
S
&=

Then we have:

E(T3, DBy) = ((DB\ Ri(DB))UWi(DB))\ Ry(DB1)) U Wo(DBi)

((DB\ Ry(DB))UWy(DB))\ Ry(DB)) U Wy(DB)

((DB\ Ri(DB))\ Ry(DB))U (Wy(DB)\ Ry(DB)) U Wy(DB)
(DB \ (Ri(DB) U Ry(DB)) U W, (DB)U W,(DB)

== E(Tl, DBQ)

So, T1 and T, are independent with respect to DB if:

12

Lemma 1: Let 77 and 75 be triggers and DB a database state, such that the conditions
(1-4) made above hold, then 77 Lpg Ts.
Proof: See above.

Clearly, this lemma is not conclusive, that is, 77 Lpg 75 might hold while the condition
of the theorem is violated. Moreover, the two trigger execution orders still have to be
executed before independence can be concluded. However, it allows us to develop a static
check for static independence.

First we define static independence as follows:
Definition 11:

Let T} and T5 be triggers and DB a database state variable. 7} and 75 are called statically
independent, denoted by T7 L Ty, if

Tl L T2 <~ (\VIDB : Tl J—DB Tg)
From a computational perspective, static independence is not much better than indepen-
dence with regard to a given database state. In fact, it is worse, as all database states have

to be checked. However, by typing the trigger, or better by typing its query and its action
part, a static check can be given.

The query type is inferred from the variables in its specification. More specifically, for
a query @, the set Vg is the collection of all variables in ¢). Note, that for the trigger
Vi (Q(Z) —o A(Z)), the set Vj includes at least all variables in Z, and maybe more. The
type of @ is then defined as follows:
Definition 12: Let @ be a query, its type 7 is defined by:

T={m|z €V}
where 7, denotes the type of z in Q.

The set type in the definition above is simply an unlabeled variant type. So, for subtyping
we have:

{r,- 1} <o, o) <= 3f {1 n} — {1---m} (injective) : 7; < 04

All other subtyping rules of the datamodel, such as e.g. those in [6], remain in effect.

Essentially, actions can be seen as methods, hence, they are of a functional type defined in
the usual way. The type of a trigger is then defined as follows:

13

Definition 13: Let =@ —0 A, with Q : 0 and A : v — 7, with v > o, then

T:0—o0vUT

Note, v appears on the right-hand side of the type because of the semantics of a trigger.

The typing yields an abstraction of the read and write sets:

Theorem 1: Let 77 : 0y —o 7 and 75 : 09 —o 75 be triggers, such that both o, and
and o9 and 7; do not bite, then 77 L T5

Proof: Let DB be a database state such that both 77 and 75, are activated. Execution
of T results in DB, and execution of 75 results in DB;y. The no-bite requirement ensures
that the requirements of lemma 1 are fulfilled. Hence, 77 Lpg T5.

Example 2: As the pins of a chip have a fixed size, the number of pins determines a
minimum chip size. This is achieved by the pin-check trigger.

To facilitate the chip designer, wires can be coloured. Coupling of function with colour
is administered in the colour table. The conformance of a wire’s colour to its function is
checked by the wire-colour trigger.

As these triggers read and write different type of objects, they are mutual independent,
which can be checked at compile time.

trigger pin-check
forall c in Cell where
2 * clength / c.pin-no < pin-size
—o c.enlarge()

trigger wire-colour
forall w in Wire A ct in Colour-table where
w.function = ct.function A w.colour # ct.colour
—o w.colour := ct.colour

However, if the update-board trigger (example three) is added, the trigger collection is no
longer independent. For, the pin-check trigger writes objects read by the update-board
trigger.

Example 3: The update-board trigger checks for overlapping cells and resolves conflicts
by moving the left conflicting cell.

trigger update-board
forall b in Board, el, €2 in b.cell where
overlap(el, e2)
—o b.move-left-conflicting-cell(el, e2)

14

Clearly, typing triggers results only in a crude approximation of the read and write sets of a
trigger. Given a specific DBPL better approximations are feasible. Areas for improvement
are:

o Taking projection into account: If Ty only inspects the cells of boards while T, is only
concerned with their weires, 77 and T5 are clearly independent.

o Tuke selection into account: If T} is only concerned with red wires while T5 is only
concerned with green wires, they are again independent.

The first item leads to the notion of an essential type, while the second (combined with
the first) leads to the notion of an essential class. The independence of triggers could then
be decided on the basis of their essential class. The formal introduction of these notions,
together with the analysis of their properties with regard to independence is, however,
outside the scope of this paper.

6 Conclusions

In this paper, we have presented a framework for the formalisation of database triggers.
That is, the parameters of trigger execution and the options for their setting are identified
and discussed. This includes the execution of a single trigger, the execution of multi-
ple triggers (priority functions) and the integration of triggers with transactions (nested
triggers).

This formalisation framework is a step towards the development of a firmly based trig-
ger design theory. Such a theory is needed to guide the development of well-behaving
applications. Especially, applications in the area of CAD/CAM and CIM benefit from a
design theory as these applications give rise to complex trigger collections and the trigger
functionality can not be dismissed.

Furthermore, we have laid the foundation of the design theory with the formulation of a
sufficient condition for trigger independence. The typing of triggers provides a mechanism
for the static detection of trigger independencies.

Development of a complete design theory requires solutions to issues not covered yet, such as
fairness and livelock. Furthermore, a thorough study on nested triggers and their semantics
is needed to fully formalise the integration of triggers with user initiated actions.

15

References

[1]

2]

[12]

[13]
[14]
[15]

[16]

R. Agrawal, R. Cochrane, and B. Lindsay. On maintaining priorities an a production

rul7e system. In Proceedings of the 3th International Workshop on DBPL, pages 479
487, 1991.

A. Albano, L. Cardelli, and R. Orsini. Galileo: a strongly typed, interactive conceptual
language. In The ACM transactions on database systems, volume 10, 1985.

J.C.M. Baeten and P. Weyland. Process algebra. Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1991.

H. Balsters, R.A. de By, and R. Zicari. Sets and constraints in an object-oriented data
model. In Technical Report INF90-75 Unwersity Twente, The Netherlands, 1990.

C. Beeri and T. Milo. A model for active object oriented database. In Proceedings of
the 17th International Conference on VLDB, pages 337-349, 1991.

L. Cardelli. A semantics of multiple inheritance. In Semantics of datatypes, LNCS
173, 1984.

S. Ceri and J. Widom. Deriving production rules for constraint maintenance. In
Proceedings of the 16th VLDB conference, pages 566-577, 1990.

S. Ceri and J. Widom. Deriving production rules for incremental view maintenance.
In Proceedings of the 17th International Conference on VLDB, pages 577-589, 1991.

D. Cohen. Compiling complex database transition triggers. In SIGMOD RECORD,
volume 18, pages 225-234, 1989.

U. Dayal, B. Blaustein, A. Buchmann, U.Chakravarthy, M. Hsu, R. Ledin, D.R. Mc-
Carthy, A. Rosenthal, S. Sarin, M.J. Carey, M. Livny, and R. Jauhari. The hipac
project: Combining active databases and timing constraints. In SIGMOD RECORD,
volume 17, pages 51-71, 1988.

U. Dayal, A. Buchmann, and D.R. McCarthy. Rules are object too: a knowledge
model for an active object oriented dbms. In Proceedings of the Second International
Workshop on Object-Oriented Database Systems, pages 129-143, 1988.

O. Diaz, N. Paton, and P. Gray. Rule management in object oriented databases a
uniform approach. In Proceedings of the 17th International Conference on VLDB,
pages 317-326, 1991.

N. Gehani and H.V. Jagadish. Ode as an active database: Constraints and triggers.
In Proceedings of the 17th International Conference on VLDB, pages 327-336, 1991.

E.N. Hanson. An initial report on the design of ariel: A dbms with an integrated
production rule system. In SIGMOD RECORD, volume 18, pages 12-19, 1989.

R. Hull and D. Jacobs. Language constructs for programming active databases. In
Proceedings of the 17th International Conference on VLDB, pages 455-467, 1991.

Y.E. Ioannidis and T.K. Sellis. Conflict resolution of rules assigning values to virtual
attributes. In SIGMOD RECORD, volume 18, pages 205214, 1989.

16

[17]
[18]
[19]
[20]
[21]

[22]

23]
[24]
[25]

[26]

[27]
[28]

[29]

D. Jacobs and R. Hull. Database programming with delayed updates. In Proceedings
of the 3th International Workshop on DBPL, pages 359-371, 1991.

K.M. Kahn and V.A. Saraswat. Actors a special case of concurrent constraint pro-
gramming. In OOPSLA 90, 1990.

M.L. Kersten. Goblin a dbpl designed for advanced database applications. In DEXA
91, 1991.

A .M. Kotz, K.R. Dittrich, and J.A. Mulle. Supporting semantics rules by a generalized
event/trigger mechanism. In EDBT 90, pages 76-91, 1990.

C. Lecluse and P. Richard. The 02 database programming language. In Proceedings
of the 15th VLDB conference, pages 411-422, 1989.

B. Nixon, L. Chung, D. Lauzon, A. Borgida, J. MYlopoulos, and M. Stanley. Im-
plementation of a compiler for a semantic data model: Experiences with taxis. In
Proceedings of the SIGMOD, pages 118-131, 1987.

A.P.J.M. Siebes, M.H. van der Voort, and C.J.E. Thieme. Independence. Technical
report, CWI technical report, 1992.

E. Simon and C. deMaindreville. Deciding whether a production rule is relational
computable. In ICDT 88, 1988.

M. Stonebraker, E. Hanson, and C.H. Hong. The design of the postgres rule system.
In Readings in Database Systems, pages 556—-565, 1988.

M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos. On rules procedures, caching

and views in database systems. In Proceedings of the ACM SIGMOD conference, pages
281-290, 1990.

M.H. van der Voort and M.L. Kersten. Facets of database triggers. Technical report,
CWI technical report: CS-R9122, 1991.

J. Widom and S.J. Finkelstein. Set-oriented production rules in relational database
systems. In Proceedings of the ACM Sigmod conference, pages 259-270, 1990.

Y. Zhou and M. Hsu. A theory for rule triggering systems. In Advances in Database
Technology: EDBT 90, pages 407-422, 1990.

17

