Stochastic scheduling games with Markov decision arrival processes
E. Altman, G. Koole
Department of Operations Reasearch, Statistics, and System Theory

BS-R9231 1992



https://core.ac.uk/display/301653726?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Stochastic Scheduling Games with

Markov Decision Arrival Processes

Eitan Altman
INRIA-Sophia Antipolis
2004 Route des Lucioles

06565 Valbonne Cedex, France

Ger Koole
CWI
P.O. Boz 4079
1009 AB Amsterdam, The Netherlands

Abstract

The dependent arrival processes MDAP were introduced by Hordijk & Koole [1,2] to model special
arrival processes into controlled queueing networks. These were applied to solve control problems
with several controllers having a common objective, where the output from one controlled network
is fed into a second one. In case that objectives of the controllers are different, one may choose a
min-max (worst case) approach where typically a controller tries to obtain the best performance
under the worst possible (unknown) strategies of the other controllers. We use MDAP to model
such situations or situations of control in an unknown environment. We apply this approach to
several scheduling problems, including scheduling of customers and scheduling of servers. We
consider different information patterns including delayed information. For all these models we

obtain several structural results of the optimal policies.
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1. INTRODUCTION

Recently Hordijk & Koole [1,2] introduced the Markov Decision Arrival Process, a Marko-
vian arrival process by which not only independent arrivals can be modeled, but also
arrival processes which depend in a certain way on the system into which the customers
arrive. A typical example is the following tandem model. Customers arrive according to
a Poisson process at m parallel M|M|1l queues. Dynamically the customers have to be
assigned to one of the queues. After being served the customers arrive at a second station,
where we have again m parallel queues to choose from. The question is how to assign the
customers at the second center, when all service parameters are equal. Here we cannot use
the standard results on the optimality of shortest queue routing for independent arrivals,
as the actions in the first center are allowed to depend on the state of the whole system.
Now the arrivals from the first center can be modeled as an MDAP, and for this type of
arrival process it was shown in Hordijk & Koole [1] that shortest queue routing at the
second center is still optimal, for various objective functions. This is done using dynamic
programming, where the action consists of two components, viz. the action in the MDAP
and the assignment to one of the parallel queues (of the second center). This can also be
seen as two controllers, one at the MDAP and one at the queues, who are cooperating.

In this paper we consider the situation where the controllers do not cooperate, and
might have different objectives. If the second controller does not know the objective of the
controller of the MDAP, then he may still try to use a min-max approach, i.e. to design
a control strategy that guarantees the best performance under the worst possible strategy
of the MDAP controller. This naturally leads to a zero-sum stochastic game, where the
MDAP controller plays against the second controller.

Another possible motivation for this model is when there is only one controller of a
queueing system; the arrival process to that system is characterized by some parameters
that may change in time in a way unpredictable by the controller. The controller may
wish to design a control strategy that guarantees the best performance under the worst
possible (time dependent) parameters of the arrival process. Here again, we end up with
a zero-sum game between the MDAP (player 1), that models the arrival process, and the
controller (player 2).



The use of the MDAP in the setting of a zero-sum game allows to obtain structural
results for the optimal strategy of player 2. We illustrate this by two examples where
the optimal min-max strategies of player 2 are in fact explicitly obtained. In the next
section we will show the optimality result for the asymmetric model of [1] for scheduling of
customers, of which the optimality of shortest queue routing (known as SQP) is a special
case. We use a model known as a “stochastic game with switching controller”, for which
deterministic policies exist for both players.

In Section 3 we extend this result to the case of control with delayed information.
More specifically, we first consider the problem where the state of the MDAP reaches the
controller (player 2) after some delay. This results in a model known as a “stochastic game
with complete information”, for which deterministic policies exist for both players. We
then study the case where the information on both the state and the action of the MDAP
is delayed. This results in a standard stochastic game for which the optimal policy for
both players may need randomization.

In section 4 we consider the model of [2] where one or more servers are to be assigned
to customers of different classes. Here the results for player two are different than in the

case of cooperation between the players, but in the same spirit.

2. RESULTS ON THE CUSTOMER ASSIGNMENT MODEL

We start by formulating the model of the stochastic game for the uniformized model.

We consider a state space given by a product of two spaces: the state of the MDAP

M
i=1

X, assumed to be finite, times the state of the queueing system L = [[._; L; where
L; = {0,1,...,L;}, and L; > 0 is the size of queue j (which may be either finite or
infinite). Let L = (Lq,...,L;) be the vector of queue lengths. A typical element of the
state space is denoted by (z,¢), with z € X and 7 = (¢1,...,%n) € L the number of
customers in the m queues including the ones in service. Let e; denote a m dimensional
vector with all entries zero except for the ¢th entry, which is one.

The probability of a successful service in queue j is p;. Without loss of generality we

assume that p; > ... > pp,.
The finite space of actions of the MDAP (player 1) is A (different actions may be
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available in different states). A,y is the probability that the MDAP moves from z to y
if action a was chosen, and ¢4y is the probability that a customer arrives if the arrival
process moves from z to y using action a. We assume without loss of generality that for
any (z,1), Ey Azay + E;nzl p; = 1.

The finite space of actions available to the second player (controller) is B = {1,...,m}.
An action b € B has the meaning of assigning a customer to queue b. However, we assume
that if a queue is full then a customer cannot be assigned to it. If all queues are full then
the customer is lost. We assume in this section that player 2 takes an action immediately
after an arrival occurs, (hence after a transition in the MDAP occurs) already knowing the
new state of the MDAP.

A precise description of the decision process (transition probabilities, and the state
space) is given in [3] Section 5.1. (The state should in fact include a mark of whether
an arrival just occurred. Only at such states can player 2 take actions, whereas player 1
can take actions in the remaining states. The resulting game is then seen to be in fact a
“switching controller” game. It is known that for these games there exist optimal policies
which do not require randomizations). In our model it will however suffice to construct
the dynamic programming equation.

Let U be the set of policies for player 1 and W the set of policies for player 2. Let
(X(s),1(s)),A(s),B(s),s =0,...,n denote the state and action processes.

The cost for a horizon of length n, for an initial state (z,7) and policies u,w is denoted
by v"™(z,i,u,w). We assume that there is a terminal cost v%(z,i) = v%(z,i,u,w) that

satisfies the following equations (where n=0):
v(nz,i—l—eh) < v?w,i+ej2) if ij S 1y, J1 S J2, 0+ €5 €, S L (1)
v&nz,i) < vzzz,i—l—ej) if 7 + €j <L (2)

ij ifj%jhj% . .
. o S max(1j, ,15,) < max(Lj,, Lj, ),
Viai) S V(pamy 1 = 15, 7 =751, . o (3)
S 15, > 15, and j1 < ja.
25, if J =172
In particular, we may choose v°(z,i) = v*(z,4,u,w) = Z;nzl 5. v™(z,1,u,w) is given by

vz, 1, u,w) = E&’Z.’)vo(X(n), I(n)).



The objective of the controller (player 2) is (P0): find a policy w* that achieves

sup v"(z,t,u,w) > sup v"(z,t,u,w*) =: V(i) Yw € W.
uwelU uelU

It is well known that 'v("gc o= sup, ¢y infyew v™(2,%,u, w), and moreover, there is a pair of
policies (u*,w*) for the two players such that

zjlel}f/vvn(%i’u:kaw) =v"™(z,i,u",w") = v(nzai)'

A policy for player 2 is called Shorter Queue Faster Server Policy (SQFSP) if it satisfies
the following property: if ¢;, < i;, and 71 < j2 (and ¢ + €j, + €, < L) then an arriving
customer will not be assigned to queue j». In particular, if the fastest queue has the
smallest number of customers then w* sends an arriving customer to it. This gives the

optimality of the SQP in the symmetric case.
Theorem 1: The optimal policy w* for player 2 is SQFSP.

Proof: We formulate the dynamic programming equation. If the system is not full then

vl = max{ Z Azay (qﬂmy min{vfy i)} + (1 = gaay )0, z)) } Z i¥(a(i—e)t)  (4)

When the system is full then we have for all three problems:

n+1 __ n n
Vi) = max{ Z Amy"’(y,i)} + Z PV (5 (i—ep))-
y b=1

We show by induction on n that v™ satisfies (1), (2) and (3). The optimality of SQFSP
follows from (1) and is seen to be independent of the action in the MDAP.

The terms in (4) corresponding to the departures, E;nzl :“J'v?z,(i—ej)ﬂ satisfy the
properties following the same arguments as in the proof of theorem 3.1 [1]. We show how
the proof for the other term, corresponding to the arrivals, deviates from the the proof of

theorem 3.1 [1]. We begin with (1). Introduce the following notation:

£li) = 3 Mooy (@roy min{ofy e} + (1= gea)ofy )

Y



It is shown in [1] that f(i + ej,,a) < f(i + €j,,a) for all a and suitable j; and j,. If a* is
the minimizing action for the MDAP in state (z,7 + ej,) (note that in [1] both the MDAP

and the controller minimize) then the proof in [1] proceeds as follows:
mlnf(l + ejwa') < f(l + ej17a*) < f(l + 6]'2,0,*) = mlnf(z + 6]'2,&)

This can easily be adapted to the current setting. Let a¢* be maximizing action of the

MDAP (player 1) in (z,7 + €j,). Then
maxf(i + ejwa') = f(l + ej17a*) < f(l + 6]'2,0,*) < maxf(i + ejzaa“)a

which establishes (1). The remaining proofs of (2) and (3) are similar. ]

3. CUSTOMER ASSIGNMENT MODEL WITH DELAYED INFORMATION

We consider the same model as in the previous section with one exception. Player 2 takes
an action immediately after an arrival occurs; however, due to information delay, it does
not have the knowledge of the new state of the MDAP. As a result, we may consider this
action to have been taken already prior to the arrival (since no new information is obtained
by player 2 in the arrival epoch).

We shall thus assume that the decision instants for the players are the same; each
time a transition occurs (departure, or a transition in the MDAP), both players take a
decision. The decision of player 2 should be interpreted however as the action to be taken
when there will be a future arrival.

We further consider two versions of that game, depending on whether or not the

information on the action of player 1 is delayed too.

(P1) When a customer arrives then player 2 already has the information on the last action
of player 1. Hence, at each decision epoch, player 1 takes a decision first and only then

player 2 takes a decision, knowing the decision of player 1.

(P2) When a customer arrives then player 2 does not yet have the information on the
last action of player 1. Hence, at each decision epoch, the players take their actions

independently.



To summerize, the information available to each player at a given decision epoch
consists of all previous states and actions of both players, as well as the current state
of the system. Moreover, in (P1), at any time n, player 2 has the information on the
decision of player 1 at time n. Problem (P1) is known as a stochastic game with full
information. It is known that for these games there exist optimal policies which do not
require randomizations (for both players), whereas in (P2) randomized policies are usually
needed to obtain optimality. Since the action of player 2 is interpreted as the decision to
be taken when a future arrival occurs, the knowledge of the current state indeed grasps
the fact that information is delayed, and thus when that arrival will occur and the MDAP
will change its state, the new state will not be available to player 2.

Since the amount of information that player 2 possesses in (P1) when making a decision
is less than in (P2), and that is less of the information he has in (P0) (of the previous

section), the value v™ will satisfy

v(po) < V(p1) < U(p2)-
The transition probabilities (for all three scenarios) are given by:

)\:ca.yq:cay lf k = ’L —|— €p,

Azay(1 _Qzay)+2#j1{ij =0,y==z} if k=1,
Pz,iy,ab,(y,k) = j=1
Hi ify:m7k:i_ej7ij>07

0 otherwise.

(We assume that the rates are already normalised so that for any (z,:) we have

Za,b P(z,i),a,b,(y,k) = 1.) If all queues are full then

Aeay if k=1,
Pz,iysann,(y,k) = § K ify=z,k=1—e¢;,
0 otherwise.

For a set I, let M(II) be the set of probability measure over II. For a function (matrix)
f:AxBand a€ M(A), € M(B), we denote

Flayb) == /A f(a,b)o(da)
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- /B #(a, b)(db)
- /B /A #(a,b)a(da)B(db)

Let valf denote the value of the matrix game f, which is given by

valf = su inf a, ).
f= aeMI()A)ﬁEM(B)f( P)

valf is known to satisfy

valf = inf sup f(e,fB).
BEM(B) o M(A)

Moreover, there exists a pair (a*,3*), a* € M(A),3* € M(B), such that

valf = inf  f(a™,8)= sup f(e,f7)=f(a",57).

BEM(B) aEM(A)
(a*,B*) are said to be optimal for the matrix game f.

Theorem 2: Consider problems (P1) and (P2). The optimal policy w* for player 2 is
SQFSP.

Proof: We formulate the dynamic programming equation for the three problems. If the

system is not full then

(P1) o) = maxmin { 3 Aoay (92000} ivey) + (1 = Goa0fy) | + Z”Jv(fc,(z &)ty

Y

(P2): v, = Val{ 2 Aeay (qﬂcay”(ny,web) + (1 = gzay)vgy, >>} Z”J%,(z ei)t)”

Y

When the system is full then we have for all three problems:

n—l—l _ n
U(e,i) = max{ Z Aeay?(y, z>} + D (i)
b=1

We show by induction on n that v™ satisfies (1), (2) and (3). Property (1) will then
enable us to obtain the optimality of SQFSP.
The terms for (P1) and (P2) corresponding to the departures, E;n:l iV (imei) )

satisfy the properties following the same arguments as in the proof of theorem 3.1 [1].
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We show that the arrival terms in the expression for v™*! of (P1) satisfy (1). Let

£Gy0) = min { > Naay (@2ay00y ipen) + (1~ doar)olsn) |-
Yy

Let b* be the minimizing action for f(z + €;,,a). We show that f(¢ +e€;,,a) < f(i + ¢€j,,a)
for all a and suitable j; and j, (as specified by equation (1)). First consider the case
b* = 71. Then

i+ €j1, @ Z zay <q$ay(v&ny,i—|—eh—|—ej2) + (]‘ %ay)”(y,z+e,1)> f( + €jz, @ )
Y

the last inequality follows by (1). If b* # 71, j2 then
f(’l, + €1 a’) S Z A.’cay <qzay‘v&ny,i+ej1+eb*) + (]‘ qzay)‘v(y,z—kejl)) f( + €5y, a )
y

the last inequality follows again by (1). By (1) we know that b* # j,. This establishes that
f(i +ej,,a) < f(i + ej,,a) for all a and suitable j; and j,. Using the same arguments as
in the proof of Theorem 1 we conclude that (1) holds for the arrival term in the expression

for v™ 11,

Now consider problem (P2). Define, for a € M(A),
fGi,0) = mﬁin { zb: B(1) Y ala) Y Asay (qmy"’?y,web) +(1 - qmy)”(ny,i)) } =
a y
min { 32 (@) 3 Ay (@l ) + (1 gemn)il0) )
a y

Similarly to the previous case, we can show that f(z +ej,,a) < f(z + €j,,a), and therefore
(1) holds for the arrival term in the expression for v™*!.
It can be shown similarly that (2) and (3) also hold for both models (P1) and (P2).
For problem (P1), the optimality of SQFSP follows immediately from (1) and is seen to
be independent of the action in the MDAP. Consider (P2) and choose 3 € M(B). Suppose
B(j2) > 0, while there is a j; such that j; and j» satisfy the conditions of equation (1).

Then the value can be decreased, for each policy a of player 1, by using B, with B(]) = B(j)
if j # ju, 2, B(j1) = B(j1) + B(s2) and B(52) = 0. u
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Remark 1: In general in (P2), both players need to randomize, but player 2 does not
use (w.p.1) actions which are not optimal according to the SQFSP policy. However, in
some states (in some models like the symmetric, in all states) player 2 uses one action with
probability 1. In these states player 1 does not randomize either.

Remark 2: In [1] model (P0) was analyzed in an MDP framework, i.e. both players
cooperate in order to minimize the (common) cost. (P1) and (P2) could also be considered
in such a framework and would yield the optimality of the SQFSP policy by the same
technique as we used in this section. Note however that in the MDP case, (P1) and (P2)
have the same optimal values and optimal (deterministic) policies. Indeed, since in the
MDP case an optimal deterministic policy is known to exist, the controllers need not be
told the information on the actions of each other in order to know them accurately, since

these actions can be deduced directly from the state of the system.

4. RESULTS ON THE SERVER ASSIGNMENT MODEL

In [2] both multiple and single server systems are studied. We start with the single server
model. Customers arrive according to an MDAP (again with transition probabilities Azqy)
in m queues, where qiay is the probability of an arrival in queue j. Customers in queue j
have an exponential service time distribution with parameter p;. In this model, there is a
single server, and player 2 has to decide to which queue the server will be assigned.

We shall use the same notation as in Sections 2 and 3; the only difference is that this
time the meaning of an action b € B of player 2 is to assign the server to queue b. Each
player takes decisions based on the history of previous states and actions as well as the

current state. We get the following dynamic programming equation:

n+l __ ] n j n
v(zai) - m:tx{ Z)‘zay ( Z q;ayv(y,i—I—ej) + (1 - Z qi“?/),v(yai)) }—I_
y J=1 Jj=1
min { 0% iy + (1 — 1), }-
Note that the dynamic programming equation resembles the one for (P1) or (P2) in

the previous section rather than (P0). This is related to the fact that in (P0) in Section 2
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player 2 could take an action only immediately after an arrival occured (and a transition
in the state of the MDAP).

For independent arrivals and linear costs, i.e. v?z’i) = Ej ¢jij, the pe-rule is known to
be optimal. Reorder the queues such that pi¢; > -+ > ppepm. For arrivals according to
an MDAP the extra condition g3 < --- p,, was needed in [2]. In the present setting, where
maximizing actions are chosen in the MDAP, we have to assume p; > --- > pu, instead.
Indeed, under this assumption we can rewrite the following basic inequality for the proof

of optimality
:U/jlvzz:c,i—ejl) + (lu’ — Hj )v?:c,i) < /‘l’jz‘vzz:c,i—ejz) + (:u’ — Hj2 )(v&nz,i) for jl < j2
as
/“l']'l‘v&nz,i—ejl) < szvzzz,i—ej,‘,) + (#’]1 — Hj2 )v?z,i) for jl < jZ-

Similarly as in the previous section, if we write

$tis) = min { 3" Aoy (3 thaytiinep + (1 2 o))}
y j=1 7=1

and if a¢* is the maximizing action in (z,? — e;, ), then
Hjq mf,Xf(l - ej17a) = /j“j1f(i - ej17a*) < /j“j2f(i - 6]‘2,(1*) + (/j“j1 - /sz)f(i7a'*) <
pip max f(i —ej,50) + (pj, — pj,) max (i, a),

proving the optimality of the pec-rule if g3 > --- > p,,,. For the multiple server case,

p1 < --- <l is also required for proving the inequality for the terms concerning service
of customers. Thus in this case the pc-rule is only optimal if 3 = --- = pp,.
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