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ABSTRACT
A second order partial differential operator is applied to an image function. To this end we
consider both the Laplacian and a more general elliptic operator. By using a multigrid operator
known from the so-called approximation property, we derive a multiresolution decomposition of
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1. Introduction

In a more or less parallel development the idea of multiresolution has become an important instrument
both in the field of signal processing and in the field of numerical methods for the solution of partial
differential equations (PDEs). With respect to the latter we allude to the multigrid type of method
which solves discretized elliptic, parabolic and hyperbolic PDEs as well as integral equations by
accelerating a basic iterative solution process through adequate coarse grid corrections [5, 10]. A
historical overview of the development including a list of pioneering papers is given by Wesseling [22].

Terzopoulos [19] was the first to apply multigrid for image analysis. More recently, the use of multi-
grid for image processing purposes has been proposed by Acton [1], Kimmel et al. [12], Shapira [16],
Ke Chen et al. [9], Bruhn et al. [6] and others. However, its use is restricted to the efficient solution
of partial differential equations (typically diffusion and Euler-Lagrange equations) which could also
be achieved by other means.

De Zeeuw (this author) started to use multigrid operators are as an intrinsic and indissoluble
part of the so-called multigrid image transform [23]. In this scheme, first a second partial differential
operator is applied to an image function followed by a pyramidal decomposition using typical multigrid
operators. The case of isotropic homogeneous diffusion (Poisson) provides an example that leads to a
linear multiresolution scheme.

In the present paper we consider a general elliptic operator but we focus on the isotropic inhomo-
geneous diffusion operator, with coefficients in the fashion of Perona and Malik [14, 15]. It leads to a
nonlinear multiresolution scheme. A future application of the new scheme might be in image fusion
using a nonlinear multiresolution decomposition implying a multisource segmentation.

The paper is organized as follows. After a recapitulation on multigrid in Section 2 we discuss the
multigrid image transform in Section 3. In particular we consider one that is associated with the
Laplacian (leading to a linear multiresolution scheme) and one that is associated with a more general
elliptic partial differential operator (leading to a nonlinear multiresolution scheme). We show results of
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Figure 1: Example sequence of increasingly coarsened grids used in multigrid (vertex-centered)

the transforms in Section 4 and compare to other multiresolution schemes amongst which a nonlinear
one by Heijmans and Goutsias [11]. We end up with concluding remarks.

2. Recapitulation on Multigrid

A prohibitive problem with the solution of large (non)linear systems of equations is that the number
of arithmetic operations involved is more than linearly proportional to the number of unknowns. For
example, the complexity of the direct solution of large sparse linear systems is still quadratic even
when exploiting the structured sparsity. Also the fill-in demands more than proportional storage.
Such systems arise after the discretization of PDEs on a spatial grid. For special PDEs, e.g. Poisson
problems, considerable efficiency can yet be achieved, for an overview see e.g. Botta et al. [4]. Multi-
grid is a numerical class of methods which tackles the complexity problem head-on by representing
and solving a problem and its derivations on a sequence of increasingly coarser (finer) grids. Nowa-
days extensive literature is available on multigrid. We merely point to Brandt [5], Hackbusch [10],
Wesseling [22] and (more recent) to Trottenberg et al. [20] and Shapira [16].

Here we recapitulate particular items that we need for the multigrid transform to be discussed
from an article by De Zeeuw (this author) on a robust multigrid algorithm for the numerical solution
of (scalar) diffusion and convection-diffusion problems [26]. The algorithm has been implemented
and exists by the name of MGD9V. Tests demonstrate its (optimal) complexity for a wide range of
problems known to be difficult to solve. It employs a set of increasingly coarser grids (vertex-centered):

Ωn ⊃ Ωn−1 ⊃ . . . Ωk ⊃ . . . ⊃ Ω0.

The grids are described as follows:

Ωk ≡ {(xi, yi) | xi = o1 + (i − 1)hk, yi = o2 + (j − 1)hk} (2.1)

where (o1, o2) is the origin and hk−1 = 2hk. See Figure 1 for an example. S(Ωk) denotes the linear
space of real-valued functions on Ωk

S(Ωk) = {gk | gk : Ωk → R} ,

where gk ∈ S(Ωk) is called a grid-function. The algorithm is intended for the solution of linear systems
resulting from the 9-point discretization of the following general linear second-order elliptic partial
differential equation in two dimensions:

Lu ≡ −∇ · (D(x)∇u(x)) + b(x) · ∇u(x) + c(x)u(x) = f(x) (2.2)

on a bounded domain Ω ⊂ R
2 with suitable boundary conditions. D(x) is a positive definite 2 × 2

matrix function and c(x) ≥ 0. We suppose that Ω is a rectangular domain. It is assumed that the
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discretization of (2.2) is performed by a finite element or finite volume technique, leading to

Lnun = fn (2.3)

where

Ln : S(Ωn) → S(Ωn) (2.4)

is the discretization of L and fn ∈ S(Ωn) is the discretization of f . Grid-function un is the solution
that is looked for. The solution algorithm uses sawtooth multigrid cycles, that is, a smoother is applied
after the coarse grid correction (CGC). Let un be an approximation of un. The CGC at level k reads:

rk = fk − Lkuk; (2.5)
rk−1 = Rk−1rk; (2.6)

solve (approximately) Lk−1ek−1 = rk−1; (2.7)
ũk = uk + Pkek−1. (2.8)

It is immediately followed by:

˜̃uk = SMOOTH(fk, Lk, ũk). (2.9)

In MGD9V the particular choice for SMOOTH() is Incomplete Line LU factorization (for a description
see [25] and the references mentioned there). The grid transfer operators are defined as follows.

Rk−1 : S(Ωk) → S(Ωk−1), k = n, . . . , 1 (2.10)

is the restriction operator that transfers the residual from the grid Ωk onto the coarser grid Ωk−1, and

Pk : S(Ωk−1) → S(Ωk), k = 1, . . . , n (2.11)

is the prolongation operator that interpolates and transfers a correction for the solution from the
coarser towards the finer grid. The operator Lk−1 is defined by the sequence of operations

Lk−1 ≡ Rk−1LkPk, k = n, . . . , 1 (2.12)

known as the Galerkin coarse grid approximation. One cycle of sawtooth multigrid is defined by
application of (2.5)–(2.9) for k = n. A recursion enters at stage (2.7). The system of equations at
this stage is approximated by applying again the above cycle, but now at level k− 1. (At level 0 mere
smoothing is performed).

The diagram of Figure 2 illustrates the coherence of the afore mentioned operators. We choose the
restriction to be the transpose of the prolongation

Rk−1 = PT
k , k = n, . . . , 1. (2.13)

Hence, once Pk has been chosen, Rk−1 and Lk−1 follow automatically. One actually computes the
coarse grid matrix of Lk−1. Note that by (2.13) the possible (anti)symmetry of Lk is maintained on
the coarser grid. Further, it has been proved [26] that when Lk is a conservative discretization of L
and Pk interpolates a constant function exactly, then the Galerkin approximation Lk−1 is conservative
as well. In the case of e.g. the Poisson equation and discretization by bilinear finite elements, bilinear
interpolation is the natural choice for Pk. This case is discussed in Section 3.2. In the case of discon-
tinuous diffusion coefficients a far more sophisticated choice is required [26]. This case is discussed in
Section 3.3.
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Figure 2: Diagram of Galerkin approximation

Adiabatic Boundary Conditions At the boundaries of Ω one often assumes vanishing Neumann
boundary conditions. At Ωn we discretize them in a conservative fashion, e.g. by using bilinear finite
elements. The following statements can all be derived from [26]. The boundary conditions inherited
by Lk, 0 ≤ k < n, remain vanishing Neumann ones. All Lk, 0 ≤ k ≤ n have a singular matrix and
therefore the L−1

k do not exist. However, systems of type Lkuk = gk can still be solved, provided that
gk is in the range of Lk. A sufficient and necessary condition for the latter is proved to be that the
sum of elements of gk vanishes. The said discretization warrants this condition for k = n. Further,
it is proved that Rk−1gk inherits the condition. It follows that the multigrid algorithm in [26] is able
to solve the described systems iteratively, even though the matrix Ln is singular. The solution uk is
unique up to a constant (grid-function).

3. The Multigrid Image Transform

3.1 Introduction
So far, we have recapitulated how a multigrid method solves large linear systems of equations arising
from discretized PDEs in a very efficient manner based on a recursive procedure. However, the current
section is not about multigrid solution methods, but about image transforms involving multigrid
operators. The exploits of Section 2 provide some necessary tools for the transforms to be discussed.
Another tool that we need is the multigrid approximation operator

Ek : S(Ωk) → S(Ωk), k = 1, . . . , n (3.1)

which is defined as:

Ek ≡ L−1
k − PkL−1

k−1Rk−1, k = 1, . . . , n. (3.2)

It is associated with the so-called approximation property. Under a certain regularity of the boundary
value problem (2.2), a discretization (2.3) by (bilinear) finite elements, and Pk is bilinear interpolation,
it can be shown that (see Hackbusch [10, §6.3]):

‖Ek‖2 ≤ Ch2
k (3.3)

where hk is the mesh-size of Ωk and ‖ · ‖2 is the Euclidean norm on S(Ωk). This operator plays
an important role in convergence proofs in multigrid theory. In [23] it has been proposed to let Ek

serve a practical purpose as well. There it is introduced as a high-pass filter in a multiresolution
scheme: the multigrid image transform[23]. The transform reads as follows. Let un be an image,
defined as a grid-function on S(Ωn). Then compute grid-function fn = Lnun, for the definition of Ln

see (2.2) and (2.3). Note that this is contrary to finding a solution un for given fn, which was the
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problem stated in Section 2. An important example for Ln is the discretized Laplacian operator, this
is discussed in Section 3.2. Let

fk ≡ Rkfk+1, k = n − 1, . . . , 0 (3.4)

then we define the multigrid image transform or multigrid image decomposition as follows
{

a0 = L−1
0 f0,

dk = Ekfk, k = 1, . . . , n.
(3.5)

The ak are called approximations and the dk are called details. The reconstruction counterpart reads:

ak = Pkak−1 + dk, k = 1, . . . , n. (3.6)

Regarding (2.3), (2.10)–(2.12), (3.2), (3.4)–(3.6) it follows that

Lkak = fk, k = 0, . . . , n.

which implies that the reconstruction (3.6) with respect to the decomposition (3.5) is a perfect one.
The proof can be found in a previous paper [23].

As with other multiresolution methods, manipulations of the detail coefficients dk may allow for a
better tackling of image processing problems.

Adiabatic Boundary Conditions Revisited Under these boundary conditions Ek is meaningful, even
though it is not defined in the strict sense. It can be proved that if gk is in the range of Lk then
Rk−1gk is in the range of Lk−1 and therefore Ekgk can still be applied. Again, the result is unique up
to a constant (grid-function).

3.2 The Laplacian Multigrid Image Transform
Laplacian Firstly, we consider the case of both isotropic and homogeneous diffusion which boils
down to the use of the Laplacian operator −∆. Let Ln be the discretization on the grid Ωn (uniform
and rectangular). If discretized by means of bilinear finite elements (or volumes) it gives rise to the
3 × 3 stencil (or mask)

Ln ∼

⎡
⎢⎣

− 1 − 1 − 1
− 1 + 8 − 1
− 1 − 1 − 1

⎤
⎥⎦ . (3.7)

Bilinear Prolongation Under the assumption of (2.13), the prolongation must satisfy an accuracy
condition, in order to obtain mesh-size independent rate of multigrid convergence. Such an accuracy
condition is increasingly stringent for higher orders of the PDE, for more details see [5, 10, 22]. Here,
bilinear interpolation satisfies the accuracy condition for the second order PDE. This interpolation
amounts to taking an equal average of solution-values at neighbouring coarse-grid points, see Figure 3
for an illustration. At the grid-points of the fine grid that coincide with the coarse grid we take
identical values. The bilinear prolongation can also be denoted by the stencil

Pk ∼

⎡
⎢⎣

1
4

1
2

1
4

1
2 1 1

2
1
4

1
2

1
4

⎤
⎥⎦ . (3.8)

This stencil shows the non-zero values of the fine-grid function generated by the prolongation of a
coarse-grid function which equals 1 at one point and 0 elsewhere. Because of (2.13), the same stencil
also represents the chosen restriction operator.
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Figure 3: Bilinear prolongation.

Ease of Implementation With the prolongation and restriction thus chosen the Laplacian sten-
cil (3.7) is invariant on the coarser grids. That is, all Lk produced by (2.12) turn out to be repre-
sented by the same stencil on the subsequently coarser grids S(Ωk), 0 ≤ k < n. We assume adiabatic
boundary conditions which are also retained. The proof can be derived from [26].

Through this foreknowledge the multigrid method can be simplified greatly with respect to its
implementation. It is not necessary to perform (2.12) explicitly as we already know the outcome both
in the interior and at the boundaries. Another simplification lies in the choice of the basic iterative
method (also known as smoother or relaxation method). With the above Laplacian stencil one can
resort to simple and vectorizable smoothers like e.g. damped Jacobi. Moreover, the method becomes
economical with computer memory as storage of matrices and their decompositions is not required.

3.3 The Elliptic Multigrid Image Transform
Matrix-dependent Prolongations and Restrictions We recall the elliptic operator (2.2) defined in
Section 2. We add that the positive definite tensor D is allowed to be discontinuous across an interface
Γ in the interior of Ω. Obviously, definitions of coefficients in the fashion of Perona and Malik allow for
this to happen. Let Ln be the discretization on Ωn (uniform and rectangular grid) by means of bilinear
finite elements (or volumes). When D is strongly discontinuous, multigrid with bilinear prolongation
becomes excruciatingly slow: the number of iterative cycles necessary to obtain a fixed reduction of rn

becomes prohibitively large. The explanation is as follows. Let n = n(x) be the normal at Γ. Then,
as has been argued by Alcouffe et al. [2], continuity of n · (D∇u) instead of continuity of ∇u should be
the underlying assumption for interpolation. This leads to jump conditions that need to be satisfied
across interfaces. Only in the (special) case that the diffusion coefficient D is continuous, it follows
that ∇u is continuous as well and the use of bilinear interpolation is justified. For an illustrative
one-dimension example on interface problems see Hackbusch [10, §10.3.1]. The right assumption that
n · (D∇u) is continuous leads to the remedy of operator-dependent prolongations (and restrictions).
Figure 4 provides an in situ illustration of a biased prolongation, satisfying a jump condition for the
case that the diffusion coefficient is negligible in the shaded region. One notes the obvious differences
with Figure 3.

In [26] a matrix-dependent prolongation operator has been proposed, able to handle both the case
of (dominant) advection and interface problems at the same time. Here we give a brief outline of the
method. At each level k the (black box) multigrid algorithm derives the necessary information on the
operator coefficients from the matrix Lk (this explains the adjective “matrix-dependent”). The grid
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Figure 4: Example of biased prolongation.

Ωk is split into four disjoint sub-grids as follows:

Ωk,(0,0) ≡ Ωk−1,

Ωk,(1,0) ≡ {(x + hk, y) ∈ Ωk | (x, y) ∈ Ωk−1},
Ωk,(0,1) ≡ {(x, y + hk) ∈ Ωk | (x, y) ∈ Ωk−1},
Ωk,(1,1) ≡ {(x + hk, y + hk) ∈ Ωk | (x, y) ∈ Ωk−1},

where hk is the mesh-size of grid Ωk. We proceed as follows.

1. At the fine-grid points in Ωk,(0,0), we simply adopt the values on Ωk−1.

2. Let ξ ∈ Ωk,(1,0) be a point where we have to interpolate a coarse grid correction. It is by
definition located on a horizontal grid-line between two neighbouring points at Ωk−1. Locally,
we decompose the matrix Lk in its symmetric and antisymmetric part. The symmetric part
is presumed to correspond with diffusion and the zeroth order term, the antisymmetric part
with convection. We reconstruct the various operator coefficients at ξ and apply essentially
one-dimensional interpolation. The interpolation coefficients are stored.

3. Let ξ ∈ Ωk,(0,1) be a point where we have to interpolate a coarse grid correction. We interpolate
as above, but now on a vertical grid-line of Ωk−1.

4. At the fine-grid points in Ωk,(1,1), we solve the homogeneous equation (with respect to Lk) to
obtain the correction.

5. Now that Pk has been defined (and therefore Rk−1 as well) we compute Lk−1 according to (2.12)
at the next coarser grid and we repeat the whole process above for level k − 1 (k > 0).

Definition Summarizing, the elliptic multigrid image transform is defined by (3.4)–(3.5), through
the elliptic operator L and its discretization Ln (see (2.2) and (2.3)), through the matrix-dependent
Pk and (2.12)–(2.13). The Laplacian multigrid image transform of Section 3.2 is a particular example
of this transform.
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Implementation The implementation of the actual computation of Lk−1 according to (2.12) with
the above matrix-dependent Pk is far from trivial. The implementation of a highly robust smoother
like e.g. incomplete line LU factorization is also not a trivial matter, but it is what the multigrid
method wants due to the discontinuous diffusion coefficients. For these reasons, the general elliptic
multigrid image transform is more intricate than the Laplacian one. Nevertheless, the necessary work
is of low and linear complexity. (The stencils Lk do not grow on the coarser grids but remain 3 × 3
just like Ln.)

4. Comparative Results

Perona and Malik Type Diffusivity For experiments with the elliptic multigrid transforms we limit
ourselves to the case of no convection and no zeroth order term. With respect to the diffusivity we
consider diffusion which is again isotropic but inhomogeneous. It boils down to the use of the operator
−∇·(D∇u) where D is scalar-valued, not a tensor (several possibilities exist for D as tensor as pointed
out by Weickert [21]). Perona and Malik [14, 15] have reasoned that intra-region smoothing should
occur preferentially over inter-region smoothing. The diffusion is chosen locally as a function of the
magnitude of the gradient of the image function

D(x) = g(|∇u(x)|2). (4.1)

With respect to the function g we opt here for the following:

g(s) =
1√

(1 + s)
(4.2)

see Aubert et al. [3, §3.3.1] for a full motivation. In the context of the Perona-Malik model this gives
better smoothing in the tangential direction than in the normal direction.

Discretized, this diffusivity expresses the coupling that exists between points in the image. By means
of (2.12) this coupling is transferred to coarser grids. The matrix-dependent grid transfer operators
secure that weak (strong) couplings remain weak (strong). Therefore, as with time integration, the
diffusivity helps to preserve edges (but now on coarsened grids).

Experiments We apply both the Laplacian and the elliptic multigrid transform with the above
diffusion operator, both with adiabatic boundary conditions, to the grayscale image at the top of
Figure 5. We compare with the results of well-known linear multiresolution schemes as wavelets [13]
(see Figure 5) and Laplacian pyramids [7], gradient pyramids [8] and steerable pyramids [17] (see
Figure 6). Further, in Figure 7, we compare with the results of what we refer to as the “maxmin-
lifting scheme”. This scheme is a nonlinear version of the lifting scheme [18] involving quincunx
grids. It is defined by intertwined use of the nonlinear max- and min-lifting schemes by Heijmans and
Goutsias [11]. The max-lifting scheme has the property that it preserves local maxima over several
scales. The min-lifting scheme has a similar property with respect to local minima. An implementation
of the maxmin-lifting scheme can be found through [24]. Clearly, Figure 7 depicts the least blurring
of edges on subsequently coarsened grids.

5. Concluding Remarks

New multiresolution schemes have been investigated, based on an image transform by a discretized
elliptic partial differential operator and use of a multigrid operator, leading to pyramidal representa-
tions. Depending on the differential operator, the scheme is linear or nonlinear. The linear scheme
(Laplacian multigrid image transform) is easy to implement, rapidly converging and economical with
storage. An example of the nonlinear scheme (elliptic multigrid image transform) based on Perona
and Malik type diffusivity has been developed. Though more intricate than the linear scheme, the
complexity remains low and linear. A comparison with several well-known and established linear
multiresolution schemes has been made, but also with a nonlinear lifting scheme. The latter scheme
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Figure 5: Top: original image. Middle and bottom row show approximations on subsequently coars-
ened grids (from left to right). Middle row: Haar wavelet decomposition. Bottom row: wavelet
decomposition by Daubechies 4.
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Figure 6: Approximations on subsequently coarsened grids (from left to right). Top row: Laplacian
pyramid. Middle row: gradient pyramid. Bottom row: steerable pyramid (6 bands).
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Figure 7: Approximations on subsequently coarsened grids (from left to right). Top row: Laplacian
multigrid image transform. Middle row: elliptic multigrid image transform. Bottom row: maxmin-
lifting scheme.
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and both multigrid image transforms appear to be in the same league with respect to preservation of
edges at coarser grids. The elliptic multigrid image transform appears to have a slight edge over the
nonlinear lifting scheme.

So far, we have considered mere scalar diffusion. A diffusion tensor leading to anisotropic (tensor)
diffusion filters [21] with special spatial regularization properties could be a topic for future research.
Another future topic could be image fusion, as the elliptic multigrid image transform appears to relate
to segmentation.
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