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ABSTRACT
A second order partial differential operator is applied to an image function. By using a multigrid
operator known from the so-called approximation property, we derive a new type of
multiresolution decomposition of the image. As an example, the Poisson case is treated in-
depth. Using the new transform we devise an algorithm for image fusion. The actual
recombination is performed on the imagefunctions on which the partial differential operator has
been applied first. A fusion example is elaborated upon. Other applications can be envisaged as
well.
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1. Introduction

We seek to integrate multigrid methods [4] for the numerical solution of partial differential equations
(PDEs) with image processing methods. Modeling by PDEs emerges as a powerful approach to the
formulation of image processing problems. An example is the level set method [12] originating from
computational physics which was transferred to image analysis [15] in the mid 90s. It found important
applications like restoration of degraded images and image segmentation.

There exists a repository of modern methods in numerical mathematics from which image pro-
cessing can benefit [2, 22]. In particular we allude to multigrid methods for the solution of PDEs,
hereby involving a multiresolution approach. This method, which exists for a few decades, accelerates
a basic iterative technique by means of coarse grid corrections, resolving the low-frequent components
on coarser grids with increasing mesh-size (see Figure 2). If well-designed, this method holds out
the prospect of optimal computational complexity. It has found applications in the computation-
ally highly demanding computational fluid dynamics. One observes that in a parallel development,
multiresolution has become an important ingredient for image processing as well.

We devise and investigate a new image processing method which involves the concepts of image
transforms, PDEs and multiresolution all in one. Instead of the more traditional multiresolution
transforms, we propose to transform by means of discretized partial differential operators on a sequence
of increasingly coarsened grids.

Terzopoulos [19] was the first to apply multigrid for image analysis. More recently, the use of
multigrid for image processing purposes has been proposed by Acton [1], Kimmel et al. [9], Shapira [16]
and others. However, its use was restricted to the efficient solution of partial differential equations
(typically diffusion and Euler-Lagrange equations) which could also be achieved by other means.

In this paper multigrid operators are used as an intrinsic and indissoluble part of the transform.
Here and now the transform is applied to image fusion but it may have future implications for image
segmentation and edge detection. The paper is organized as follows. After preliminaries in Section 2
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Figure 1: MR image fusion scheme. Left: MR transform Ψ of the sources; middle: combination in
the transform domain; right: inverse MR transform Ψ−1 of the composite representation

we are ready for the introduction of the multigrid image transform in Section 3 and the multigrid
fusion algorithm in Section 4. We end up with concluding remarks.

2. Recapitulation and preliminaries

Image fusion seeks to combine images in such a way that all the salient information is put together
into (usually) one image suitable for human perception or further processing. It is hard to overrate
the practical importance of image fusion. For example, for the purpose of surveillance one and the
same scene is recorded by cameras operating for different bands of light and needs to be displayed
onto one screen, preferably in real-time. Similar applications exist in the fields of defense, geoscience,
robotics and medical imaging.

The multigrid method solves discretized elliptic, parabolic and hyperbolic PDEs as well as integral
equations by accelerating a basic iterative solution process through adequate coarse grid corrections. If
well designed and implemented, multigrid algorithms offer the possibility of computational complexity
and storage which are linearly proportional to the number of grid-points. For a historical overview
of the development see Wesseling [23]. Today, it continues to evolve from an advanced numerical
technique towards an established method. Nowadays extensive literature is available on multigrid.
Here we merely point to Brandt [4], Hackbusch [8], Wesseling [23] and (more recent) to Trottenberg
et al. [21] and Shapira [16].

Firstly, we discuss the multiresolution approach to image fusion. Secondly, we briefly discuss mul-
tiresolution transforms. Thirdly, we recapitulate on multigrid.

2.1 Multiresolution image fusion
There exist various categories of techniques for image fusion, but we merely consider methods by means
of the multiresolution (MR) approach. The basic idea is demonstrated by Figure 1 (cf. [14, Figure 6.6]).
At the decomposition stage the input images (iA, iB, iC , . . . ) are transformed into multiresolution
representations (mA, mB, mC , . . . ). The transform is symbolized by Ψ. At the combination stage
(C) the transformed data are fused. In the context of wavelets, Li et al. [10] proposed to apply the
maximum selection rule for the detail coefficients as fusion rule. For instance, in the case of three
input images, we select from each triplet of geometrically corresponding detail coefficients the one that
is largest in absolute value. From the composite multiresolution representation mF thus obtained,
the fused image iF is derived by application of the backtransform Ψ−1. Many far more sophisticated
fusion rules have been invented by now, e.g. one that is based on maximizing luminance contrast [20].
For an overview see Piella [13, 14].
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Ω2 Ω1 Ω0

Figure 2: Example sequence of increasingly coarsened grids used in multigrid (vertex-centered)

2.2 Transform and backtransform
What schemes like Laplacian pyramids [5], gradient pyramids [6], steerable pyramids [17], wavelets [11]),
and the lifting scheme [18] have in common is that they involve filters for the decomposition and the re-
construction, down- and upsampling towards and from scales and storage of approximation coefficients
and detail coefficients collected in so-called bands.

Part of the new transform that we propose here involves the discretized version of −∇ · (D∇u)
(where D(x, y) is a positive definite 2×2 matrix function, for the time being assumed to be a constant
times the identity matrix) that is applied to the image. One observes that hereby the outcome
vanishes at smooth regions of an image but becomes substantial where edges occur. The transforms
are applied with respect to a sequence of increasingly coarsened grids, see Figure 2. At a certain stage
the (back)transform involves the solution of large linear systems of equations as it needs to invert the
said discrete operators again. However, the costs of solution of such systems need not to be prohibitive
anymore, e.g. see [3]. The procedure is explained in much detail in Section 3 after a recapitulation of
a particular multigrid algorithm.

2.3 Multigrid algorithm
De Zeeuw (this author) published a paper on a robust multigrid algorithm for the numerical solution
of diffusion and convection-diffusion problems [24]. The algorithm has been implemented and exists
by the name of MGD9V. This paper is here of particular importance and we recapitulate particular
items that we need. For the multigrid method to be discussed we consider a set of increasingly coarser
grids (vertex-centered):

Ωn ⊃ Ωn−1 ⊃ . . . Ωk ⊃ . . . ⊃ Ω0.

The grids are described as follows:

Ωk ≡ {(xi, yi) | xi = o1 + (i − 1)hk, yi = o2 + (j − 1)hk} (2.1)

where (o1, o2) is the origin and hk−1 = 2hk. See Figure 2 for an example. S(Ωk) denotes the linear
space of real-valued functions on Ωk

S(Ωk) = {gk | gk : Ωk → R} ,

where gk ∈ S(Ωk) is called a grid-function. The algorithm is intended for the solution of linear
systems. Its scope is the solution of linear systems resulting from the 9-point discretization of the
following general linear second-order elliptic partial differential equation in two dimensions:

Lu ≡ −∇ · (D(x)∇u(x)) + b(x) · ∇u(x) + c(x)u(x) = f(x) (2.2)
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on a bounded domain Ω ⊂ R
2 with suitable boundary conditions. D(x) is a positive definite 2 × 2

matrix function and c(x) ≥ 0. We suppose that Ω is a rectangular domain. It is assumed that the
discretization of (2.2) is performed by a finite element or finite volume technique, leading to

Lnun = fn (2.3)

where un and fn are grid-functions defined on the grid Ωn. The discretization on the finest grid Ωn

evokes the linear system (2.3). The grids need to be neither uniform nor rectangular, problem (2.3)
may be discretized on a curvilinear grid.

The code performs only for the scalar case and within the constraints of a regular domain and a
structured grid. Incomplete line LU-factorization is used as basic iterative method. Like for other
basic iterative methods, the convergence is slow for low-frequent components in the residual. It is
accelerated by coarse grid corrections, resolving the low-frequent components on coarser grids with
increasing mesh-size. The algorithm of MGD9V is therefore an example of a multigrid method. Let
un be an approximation of un, the coarse grid correction (CGC) then reads:

rn−1 = Rn−1(fn − Lnun); (2.4)
solve Ln−1en−1 = rn−1; (2.5)

ũn = un + Pnen−1. (2.6)

Where

Rk−1 : S(Ωk) → S(Ωk−1), k = n, . . . , 1 (2.7)

is the restriction operator that transfers the residual from the grid Ωk onto the coarser grid Ωk−1, and

Pk : S(Ωk−1) → S(Ωk), k = n, . . . , 1 (2.8)

is the prolongation operator that interpolates and transfers a correction for the solution from the
coarser towards the finer grid. The operator Lk−1 is defined by the sequence of operations

Lk−1 ≡ Rk−1LkPk, k = n, . . . , 1. (2.9)

known as the Galerkin coarse grid approximation. The diagram of Figure 3 illustrates the coherence
of the above mentioned operators. We choose the restriction to be the transpose of the prolongation

Rk−1 = PT
k , k = n, . . . , 1. (2.10)

Hence, once Pk has been chosen, Rk−1 and Lk−1 follow automatically. The code actually computes
the coarse grid matrix of Lk−1. Note that by (2.10) the possible (anti)symmetry of Lk is maintained
on the coarser grid. Further, it has been proved [24] that when Lk is a conservative discretization of L
and Pk interpolates a constant function exactly, then the Galerkin approximation Lk−1 is conservative
as well. In the case of e.g. the Poisson equation and discretization by bilinear finite elements, bilinear
interpolation is the natural choice for Pk. In the case of discontinuous diffusion coefficients a far more
sophisticated choice is required [24].

The importance of the CGC can be seen as follows (for pointers to a more rigorous analysis see the
earlier listed references). For the sake of argument suppose that the system of stage (2.5) has been
solved exactly. By (2.9) it follows that after such an ideal coarse grid correction the restriction of the
residual vanishes

Rk−1(fk − Lkũk) = 0k−1. (2.11)

This means that at each coarse grid point a weighted average (with non-negative weights) of the fine-
grid residual is zero, which implies that the residual consists of short wavelength components only.
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Figure 3: Diagram of Galerkin approximation

Such components can be reduced efficiently by a subsequent smoothing (relaxation) step. In practice,
the system of stage (2.5) is not solved exactly. Instead, the algorithm is applied in a recursive manner
with respect to the solution of (2.5). This completes one so-called multigrid cycle.

In general, the multigrid method holds out the prospect of a computational complexity which is
directly proportional to the number of unknowns. The algorithm of MGD9V comes up to these
expectations.

3. The multigrid image transform

We introduce the multigrid image transform and discuss some of its properties.

3.1 Definition and properties
We define the multigrid approximation operator: Ek : S(Ωk) → S(Ωk) as follows:

Ek ≡ L−1
k − PkL−1

k−1Rk−1, k = 1, . . . , n. (3.1)

This operator plays an important role in convergence proofs in multigrid theory. It is associated with
the so-called approximation property. Under a certain regularity of the boundary value problem (2.2),
a discretization (2.3) by (bilinear) finite elements, and Pk is bilinear interpolation, it can be shown
that (see Hackbusch [8, §6.3]):

‖Ek‖2 ≤ Ch2
k (3.2)
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where hk is the mesh-size of Ωk and ‖ · ‖2 is the Euclidean norm on S(Ωk).
Let un be an image, defined as a grid-function on S(Ωn). Then compute grid-function fn = Lnun,

for the definition of Ln see (2.2) and (2.3). An important example for L is the Poisson operator, this
is discussed in Section 4.2. Let

fk ≡ Rkfk+1, k = n − 1, . . . , 0 (3.3)

then we define the multigrid image transform or multigrid image decomposition as follows
{

a0 = L−1
0 f0,

dk = Ekfk, k = 1, . . . , n.
(3.4)

The ak are called approximations and the dk are called details. The reconstruction counterpart reads:

ak = Pkak−1 + dk, k = 1, . . . , n. (3.5)

Proposition 3.1.1 Regarding (2.3), (2.7)–(2.9), (3.1), (3.3)–(3.5) it follows that

Lkak = fk, k = 0, . . . , n.

Proof. By definition, the statement holds for k = 0. From decomposition (3.4) it follows that

Lkdk = LkEkfk = (Ik − LkPkL−1
k−1Rk−1)fk, k = 1, . . . , n

where Ik is the identity operator on S(Ωk). Then multiplying (3.5) by Lk leads to

Lkak = LkPkak−1 + (Ik − LkPkL−1
k−1Rk−1)fk = fk − LkPk(ak−1 − L−1

k−1Rk−1fk).

But then, through induction, the proof can be completed at once. �

Hence, the reconstruction (3.5) with respect to the decomposition (3.4) is a perfect one.

4. The multigrid fusion algorithm

Firstly we describe fusion algorithms by means of the above transform. Secondly we address the
important topic of boundary conditions. Thirdly we elaborate on an example case using the Poisson
operator.

We assume to have a set of m multiple input images {i1,n, . . . , im,n} ∈ S(Ωn) that need to be fused.
The decomposition (3.4)–(3.5) suggests several options for image fusion. The most basic one is to
select from each set of m geometrically corresponding details on each level k the one that is largest
in absolute value. This line of research is not pursued in this paper. Instead, we opt here for fusion
in the space of right-hand side grid-functions. For that we proceed as follows. Firstly, we compute
fj,n = Lnij,n for 1 ≤ j ≤ m. Secondly, we compute fj,k = Rkfj,k+1 for 1 ≤ j ≤ m and k = n−1, . . . , 0.
At each level k we apply a recombination Ck : S(Ωk) × . . . × S(Ωk → S(Ωk) on fj,k:

fk = Ck (f1,k, . . . , fm,k) . (4.1)

We discuss one particular and generic example of such Ck below in Section 4.2. Now we compute:
{

a0 = L−1
0 f0,

ak = Pkak−1 + Ekfk, k = 1, . . . , n.
(4.2)

In the case of just one input image (m = 1) the construction (4.2) reduces to (3.5).
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Figure 4: Edge profile (left) with second derivative (right)

4.1 Boundary conditions
At the boundaries of Ω we assume homogeneous Neumann boundary conditions which we discretize
in a conservative fashion at Ωn, e.g. by using bilinear finite elements. The following statements can
all be derived from [24]. The boundary conditions inherited by Lk, 0 ≤ k < n, remain homogeneous
Neumann ones. All Lk, 0 ≤ k ≤ n have a singular matrix and therefore the L−1

k do not exist. However,
systems of type Lkuk = gk can still be solved, provided that gk is in the range of Lk. A sufficient and
necessary condition for the latter is proved to be that the sum of elements of gk vanishes. The said
discretization warrants this condition for k = n. Further, it is proved that for k < n the fk defined
by (3.3) inherit the condition. If the condition is satisfied then the algorithm MGD9V [24] is able to
solve such singular linear systems iteratively (by multigrid, as explained in Section 2.3). The solution
uk is unique up to a constant (grid-function).

4.2 The Poisson case
Motivation in 1D Approximation of second order derivatives of an image grid-function is a popular
component of edge detection methods, e.g. Canny [7]. Figure 4 shows an example of an edge profile in
one space dimension together with its second derivative. We observe how this edge gives rise to local
sources and sinks in the second derivative. This observation provides the basic idea for our fusion
method where, loosely formulated, the recombination will be based on choosing the values (+ or −)
with highest amplitude at geometrically corresponding pixels from a set of input image functions upon
which the second derivative operator has been applied. We perform this at each level k and then apply
the construction (4.2). The resulting image combines the edges as observed at all scales of all input
images.

Generalization We now have to generalize to two space dimensions. We let Ln be the operator
stemming from a discretization by the bilinear finite element method of the Poisson operator −∆. It
can be represented by the 3 × 3 stencil (or mask)

Ln ∼




− 1 − 1 − 1
− 1 + 8 − 1
− 1 − 1 − 1


 . (4.3)

Both the original operator −∆ and its above approximation are invariant to rotation. If Pk, k =
1, . . . , n are prolongations by means of bilinear interpolation then at the coarser grids all Lk produced
by (2.9) turn out to be represented by the stencil (4.3) as well (but associated with subsequently
coarser grids S(Ωk), 0 ≤ k < n), see [24].
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Figure 5: Cell Cijk ⊂ Ωk with vertices

Fusion and finite elements Considering the definition (3.1) of Ek we have to ensure that at each
level k the fk resulting from the recombination (4.1) remains in the range of Lk or else Ekfk cannot be
applied. We achieve this by composing fk in a finite element manner. The horizontal diffusion operator
and vertical diffusion operator are treated separately. Only the contribution of the horizontal operator
is described, the contribution of the vertical operator is the analogue. Consider the cell Cijk ⊂ Ωk

defined by four indices as indicated in Figure 5. This cell yields contributions to the stencils of Lk at
the four corners, e.g. at gridpoints (i, j) and (i + 1, j) it contributes the respective stencils

dijk
1
6




0 1 − 1
0 2 − 2
0 0 0


 and dijk

1
6




− 1 1 0
− 2 2 0

0 0 0




where dijk ∈ R is the diffusion coefficient located at the center of the cell (for now dijk = 1). Such
stencils, together with their horizontally mirrored counterparts, add up to stencil (4.3). When the
above stencils are applied on an image grid-function we observe that the contributions at the pixels
(i, j) and (i + 1, j) have the same amplitude but opposite sign, hence their sum vanishes.

When fusing a set of m images, for each image grid-function we compute per cell Cijk the contribu-
tion, then choose the one from the set of m that is largest in absolute value and add this value to the
value at pixel (i, j) and the same value but with opposite sign to the value at pixel (i + 1, j). After
scanning all cells, the resulting recombined fk has the desired property.

4.3 Example fusion problem
We apply the fusion algorithm of Section 4.2 to two out-of-focus input images, see the top row of
Figure 6, the result is to be seen at the bottom row. The quality matches the one obtained by use of
the Laplacian pyramid [5] as multiresolution scheme (result not shown).

5. Concluding Remarks

A new multiresolution scheme has been proposed, based on an image transform by a discretized elliptic
partial differential operator and use of a multigrid operator, leading to a pyramidal representation.
It is shown how this scheme can be applied for image fusion. A single experiment has been added
to demonstrate its usefulness. More experiments and an comparison with established methods are in
preparation.

The Poisson case as described is just a special case. The framework of the multigrid image transform
and multigrid fusion algorithm remains valid if we use the Laplace operator with varying diffusion
coefficients instead. An application thereof can be envisaged if we involve segmentation. This is a
topic for future research.
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Figure 6: Top: out-of-focus input images with focus on the right-hand side (left), and with focus on
the left-hand side (right). Bottom: fusion of out-of-focus images (left), detail (right).
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