
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

 Software ENgineering

A Study of Integrated Document and Connection
Caching in the WWW

Susanne Albers, Rob van Stee

REPORT SEN-E0316 DECEMBER 19, 2003

SEN
Software Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301653577?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2003, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

A Study of Integrated Document and Connection
Caching in the WWW

ABSTRACT
Document caching and connection caching are extensively studied problems. In document
caching, one has to maintain caches containing documents accessible in a network. In
connection caching, one has to maintain a set of open network connections that handle data
transfer. Previous work investigated these two problems separately while in practice the
problems occur together: In order to load a document, one has to establish a connection
between network nodes if the required connection is not already open. In this paper we present
the first study that integrates document and connection caching. We first consider a very basic
model in which all documents have the same size and the cost of loading a document or
establishing a connection is equal to 1. We present deterministic and randomized online
algorithms that achieve nearly optimal competitive ratios unless the size of the connection
cache is extremely small. We then consider general settings where documents have varying
sizes. We investigate a FAULT model in which the loading cost of a document is 1 as well as a
BIT model in which the loading cost is equal to the size of the document.

2000 Mathematics Subject Classification: 68W25;68W40
1998 ACM Computing Classification System: F.2.2
Keywords and Phrases: caching;connection caching; online algorithms
Note: Work supported by the Deutsche Forschungsgemeinschaft, Project AL 464/3-1, and by the European Community,
Projects APPOL and APPOL II.

A Study of Integrated Document and Connection Caching
in the WWW∗

Susanne Albers† Rob van Stee‡

Abstract

Document caching and connection caching are extensively studied problems. In document caching,
one has to maintain caches containing documents accessible in a network. In connection caching, one has
to maintain a set of open network connections that handle data transfer. Previous work investigated these
two problems separately while in practice the problems occur together: In order to load a document, one
has to establish a connection between network nodes if the required connection is not already open.

In this paper we present the first study that integrates document and connection caching. We first
consider a very basic model in which all documents have the same size and the cost of loading a document
or establishing a connection is equal to 1. We present deterministic and randomized online algorithms
that achieve nearly optimal competitive ratios unless the size of the connection cache is extremely small.
We then consider general settings where documents have varying sizes. We investigate a FAULT model
in which the loading cost of a document is 1 as well as a BIT model in which the loading cost is equal to
the size of the document.

1 Introduction

Recently there has been considerable research interest in document caching [5, 7, 8, 9, 10, 11, 12] and
connection caching [2, 3, 4] in networks. In document caching, one has to maintain local caches containing
documents available in the network. In connection caching, one has to maintain a set of open network
connections that handle data transfer. However, previous work investigated these two problems separately,
while in practice they are very closely related.

Consider a computer that is connected to a network. A user working at that computer wishes to access
and download documents from other network sites. A downloaded document can be stored in local cache,
so that it does not have to be retransmitted when the user wishes to access that document again. Serving
requests to documents that are stored locally is much less expensive than transmitting requested documents
over the network. Therefore, the local cache, which is of bounded capacity, should be maintained in a
careful manner. The transmission of documents in a network is performed using protocols such as TCP
(Transmission Control Protocol). If a network node v has to download a document available at node v ′, then
there has to exist an open (TCP) connection between v and v′. If the connection is not already open, it has
to be established at a cost. Most networks, such as the Web, today work with persistent connections, i.e. an
established connection can be kept open and reused later. However, each network node can only maintain a

∗A preliminary version of this paper appeared in Automata, Languages and Programming. 30th International Colloquium
(ICALP 2003), LNCS 2719, pp.653–667. Work supported by the Deutsche Forschungsgemeinschaft, Project AL 464/3-1, and by
the European Community, Projects APPOL and APPOL II.

†Institut für Informatik, Albert-Ludwigs-Universität, Georges-Köhler-Allee, 79110 Freiburg, Germany.
salbers@informatik.uni-freiburg.de.

‡Centre for Mathematics and Computer Science (CWI), Kruislaan 413, NL-1098 SJ Amsterdam, The Netherlands.
Rob.van.Stee@cwi.nl.

1

limited number of open connections and the collection of open connections can be viewed as a connection
cache. The goal is to maintain this cache so that the connection establishment cost is as small as possible.

Clearly, caching decisions made on the document and connection levels heavily affect each other. Evict-
ing a document d from the document cache at node v has a very negative effect if the connection between
node v and node v′, where d is originally stored, is already closed. When d is requested again, one has to
pay the connection establishment cost in addition to the necessary document transmission cost. A similar
overhead occurs if a connection is closed that is frequently needed for data transfers. Therefore document
and connection caching algorithms should coordinate their decisions. This can considerably improve the
system’s performance, i.e. the user perceived latency as well as the network congestion are reduced.

In this paper we present the first study of integrated document and connection caching. Formally, we
consider a network node v. The node has two caches: one for the documents, also called pages, and one
for the open connections currently maintained to other nodes. A sequence of requests must be served.
Each request specifies a document d that the user at our network node wishes to access. If d resides in the
document cache, then the request can be served at 0 cost. Otherwise a fault occurs and the request must be
served by downloading d into the document cache at a cost of cost(d) > 0. Suppose that d is originally
stored at network node v′. To load d into the document cache, an open connection must exist between v and
v′. If the connection is already open, no cost is incurred. Otherwise the connection has to be established at
a cost of cost(v, v′). The goal is to serve the request sequence so that the total cost is as small as possible.

The integrated document and connection caching problem is inherently online in that each request must
be served without knowledge of future requests. We use competitive analysis to analyze the performance of
online algorithms. We denote the cost of an algorithm A on a request sequence σ by A(σ). The optimal
cost to serve this sequence is denoted by OPT(σ). The goal of an online algorithm A is to minimize the
competitive ratio R(A), which is defined as the smallest value R that satisfies A(σ) ≤ R · OPT(σ) + a, for
any request sequence σ and some constant a independent of σ.

We remark here that a problem similar to that defined above arises in distributed databases. There, a
user may have a file/page cache as well as a cache with pointers to files allowing fast access.

Previous work: As mentioned above document and connection caching have separately been the subjects
of extensive research. There is a considerable body of work on document caching problems, see e.g [5, 7,
8, 9, 10, 11, 12]. However, the papers ignore that in a network setting, one may have to open a connection
to load a document. If all documents have the same size and a loading cost of 1, which is the classical
paging problem, the best competitive ratio of deterministic online algorithms is equal to k, where k is the
number of documents that can be stored simultaneously in cache [11]. This competitiveness is achieved by
the popular LRU (Least Recently Used) and FIFO (First-In First-Out) replacement strategies. On a fault, LRU

evicts the page that was requested least recently and FIFO evicts the page that has been in cache longest. Fiat
et al. [7] presented an elegant randomized paging algorithm called MARK that is 2Hk-competitive against
oblivious adversaries, where Hk is the k-th Harmonic number. More complicated algorithms that achieve
an optimal competitiveness of Hk were given in [1, 10]. Irani [9] initiated the algorithmic study of the
document caching problem when documents have different sizes. She considered a FAULT model where the
loading cost of each document is equal to 1 as well as a BIT model, where the loading cost is equal to the
size of the document. She presented randomized O(log2 k)-competitive online algorithms for both settings.
Young [12] gave a deterministic k-competitive online algorithm for a general cost model where the loading
cost is an arbitrary non-negative value. Recently Feder et al. [5] studied a document caching problem where
requests can be reordered. They concentrate on the case that the cache can hold one document. Gopalan
et al. [8] study document caching in the Web when documents have expiration times. They assume all
documents have the same size and a loading cost of 1.

Cohen et al. [3, 4] introduced the connection caching problem. The input of the problem is a sequence

2

of requests for TCP connections that must be established if not already open. Cohen et al. considered a
distributed setting where requests occur at different network nodes. They gave deterministic k-competitive
and randomized O(Hk)-competitive online algorithms if all connections incur the same establishment cost.
Here k is the maximum number of connections that a network node can keep open simultaneously. The case
that connections can have varying establishment costs was considered in [2].

Our contribution: We investigate document and connection caching in an integrated manner. In the
following let k be the number of documents that can be stored in the document cache and k ′ be the number
of connections that can be kept open. We start by studying a basic setting in which all documents have the
same size and a loading cost of 1; the connections have an establishment cost of 1. We present a deterministic
online algorithm that achieves a competitive ratio of k + 4 if k′ ≥ k and a ratio of min{2k − k′ + 4, 2k} if
k′ < k. Our algorithm uses LRU for the document cache and a phase based replacement strategy that tries to
keep connections of documents that may be evicted soon. We develop a lower bound on the performance of
any deterministic online algorithm which implies that our algorithm is nearly optimal if k ′ is not extremely
small. We also consider randomized online algorithms and prove that by replacing LRU by a randomized
Marking strategy we obtain a competitive ratio of 2Hk + min{2Hk, 2(k − k′) + 4}.

Additionally we investigate the problem that pages have varying sizes. If all documents have a loading
cost of 1, which corresponds to Irani’s FAULT model, we achieve a competitive ratio of (4k+14)/3 if k ′ ≥ k
and of 2k− 2k′/3+ 14/3 if k′ < k. Finally we consider a BIT model where the loading cost of a document
is equal to the size of the document and the connection establishment cost is c, for some constant c. Here
we prove a competitiveness of (k + 5)(c′ + 1)/2 if k′ ≥ k, where c′ = c/s and s is the size of the smallest
document ever requested. If k′ < k, the competitiveness is (2k − k′ + 5)(c′ + 1)/2.

Finally we consider a distributed scenario, where requests can occur at different network nodes. We
show that no deterministic online algorithm can in general be better than 2k-competitive, where k is the
maximum number of documents that can be stored at any network node. A competitive ratio of 2k is easily
achieved by an online algorithm that uses a k-competitive paging algorithm for the document cache and any
replacement strategy for the connection cache.

2 Algorithms for the basic model

In this section we study a very basic scenario where all documents have the same size. Loading a missing
document costs 1 and establishing a connection also costs 1.

2.1 Deterministic algorithms

We present a deterministic online algorithm ALG for our basic setting. ALG works in phases. Each phase
is defined as a maximal subsequence of requests to k distinct pages, which starts after the previous phase
finishes (the first phase starts with the first request). Within each phase ALG works as follows.

At the beginning of each phase, evict all connections that were not used in the previous phase.
On a page fault, use LRU to determine which page to evict from the page cache.
On a connection fault, if there is a free slot in the cache, use it;

otherwise, use MRU (Most Recently Used) to determine which connection to evict.

For ease of exposition, we first consider the case where the size of the connection cache is at least the
same size as the page cache, i.e. k′ ≥ k. We then extend our analysis to the case k′ < k.

Theorem 1 If k′ ≥ k, then R(ALG) ≤ k + 4.

3

Proof. Consider a request sequence σ. We first study the case that k′ = k. Suppose there are N + 1 phases,
numbered 0, 1, . . . , N . For phase i, denote the number of page requests that cause a page fault by fi; the
number of page requests that do not cause a page fault by pi (these pages were requested in the previous
phase by definition of LRU); the number of MRU faults mi, and the number of holes created by hi (i. e. the
number of connections evicted at the start of phase i). Define F =

∑

N

i=1 fi, M =
∑

N

i=1 mi, H =
∑

N

i=2 hi

and P =
∑

N

i=1 pi. (We ignore phase 0.) Note h1 = 0 and fi + pi = k for each phase i.
Each hole that is created, is filled at most once, and this happens on a connection fault. (It is possible

that some holes are never filled.) Thus the number of connection faults that cause holes to be filled is at most
H . Furthermore, the remaining connection faults are exactly the connection faults where MRU is applied;
this happens M times. Thus

ALG(σ) ≤ F + M + H = kN + M + H − P. (1)

Note that our algorithm is defined in such a way that the number of page faults is independent of the
number of connection faults or the decisions as to which connections are evicted. The page cache is simply
maintained by LRU. By definition of LRU, there must be one OPT page fault in each phase. Thus

OPT(σ) ≥ N. (2)

Each phase can be visualized as follows. The connection cache is at all times divided into two sets,
PREVIOUS and CURRENT. Here PREVIOUS contains the connection slots that were not (yet) used in this
phase, while CURRENT contains the connection slots that were used in the current phase. At the start of each
phase, CURRENT is empty and PREVIOUS contains all k slots. Note that some of these slots may contain
holes, in case a connection was evicted that was not used in the previous phase.

For each page fault in a phase, there are two possibilities:

1. No connection fault:

(a) A not yet used connection slot is used for the first time in this phase (this connection was also
used in the previous phase);

(b) A connection slot already used in the current phase is used again (two or more pages are at the
same node).

2. Connection fault occurs:

(a) A hole is filled: a not yet used connection slot is used for the first time in this phase;

(b) A connection slot already used in the current phase is used again by MRU;

(c) (special case) A connection slot not yet used in the current phase is used by MRU.

Case 2.(c) can only occur if the very first page fault in a phase causes a connection fault; for a later page fault
that also causes a connection fault, MRU always uses a slot that was already used in the current phase. From
this list we have that only in cases 1.(a), 2.(a) and 2.(c), a connection slot moves from the set PREVIOUS to
the set CURRENT.

Consider a phase i > 0. Suppose Case 2.(c) does not occur, and there are mi > 0 MRU faults in phase i.
Then at least mi times, a connection slot already in CURRENT is used again. Hence at most fi − mi times
a connection slot moves from PREVIOUS to CURRENT. Therefore, at the end of phase i, there are at least
k − fi + mi connection slots still in PREVIOUS.

The pages requested in phase i can be divided into four groups:

1. pages that did not cause a page fault (pi);

4

2. pages that caused a page fault, but no connection fault;

3. pages that caused a hole in the connection cache to be filled;

4. pages that caused a connection slot to be used again by MRU (mi).

Every connection slot that at some point in phase i contains a connection to a page in group 2 or 3 (note
that this may change later in the phase due to the use of MRU), is in CURRENT at the end of the phase.
The other connection slots contain connections to pages that were either not requested in phase i (but were
requested in phase i − 1, or they would have been evicted before), or that did not cause a fault. This last
possibility occurs pi times, so there are at least k − fi + mi − pi = mi pages that are not requested again.
This implies there are at least k +mi distinct pages requested in phase i and phase i− 1. Therefore OPT has
at least mi faults in phases i − 1 and i.

If Case 2.(c) does occur, then there were no holes at the start of phase i. Then the connections to the
pages requested in phase i − 1 must all be distinct, mi−1 = 0 and hi = 0. At the start of phase i, a
connection slot moves from PREVIOUS to CURRENT using MRU. Case 2.(c) does not occur in the rest of
the phase. Thus at the end of phase i, we have that there are at least k − fi + mi − 1 connection slots still in
PREVIOUS. These slots correspond to connections that were used in the previous phase but not in this one,
implying k − fi + mi − pi − 1 = mi − 1 pages that were requested in phase i − 1 but not in i. Then OPT

has at least mi − 1 faults in phases i − 1 and i. Moreover, it has at least one fault in phases i − 2 and i − 1,
and 1 = mi−1 + 1. By amortizing the cost, we find that OPT has at least mi faults for every pair of phases
i − 1 and i.

Thus OPT(σ) ≥
∑

i odd mi, and OPT(σ) ≥
∑

i even mi. This implies that

OPT(σ) ≥
1

2

∑

i>0

mi =
M

2
. (3)

The connections still in PREVIOUS at the end of phase i are evicted and become hi+1 holes. At most
pi of them lead to pages that were requested without a fault. Thus there are at least k + hi+1 − pi distinct
pages requested in phases i and i − 1. This gives another bound for the cost of OPT:

OPT(σ) ≥
1

2

∑

i>0

(hi+1 − pi) ≥
H − P

2
(4)

Combining (1), (2), (3) and (4) gives

ALG(σ) ≤ kN + M + H − P ≤ k · OPT(σ) + 2OPT(σ) + 2OPT(σ) = (k + 4)OPT(σ).

This proves the ratio. It can be seen that the proof also holds for k′ > k. �

Theorem 2 If k′ < k, then R(ALG) ≤ min(k + 4 + (k − k′), 2k).

Proof. Clearly, R(ALG) ≤ 2k since ALG has at most 2k faults per phase (k connection faults and k page
faults). We still have (2) and (4) by the exact same reasoning as in the proof of Theorem 1.

For mi, we have again that each time that MRU is applied, no connection moves from PREVIOUS to
CURRENT (unless Case 2.(c) occurs). So at most fi − mi times a connection moves from PREVIOUS to
CURRENT. Therefore, at the end of the phase, at least k′ − fi + mi connections are still in PREVIOUS. At
most pi of them refer to pages requested without a fault in phase i, so at least k′−fi +mi−pi = k′−k+mi

pages are requested in phase i − 1 but not in phase i. Therefore there are at least mi + k′ distinct pages
requested in these two phases, and OPT has at least mi − (k − k′) faults.

5

If Case 2.(c) occurs, there are only at least k′− (fi − (mi − 1)) = mi − (k− k′)− 1 connections still in
PREVIOUS at the end. However, in that case we have mi−1 ≤ k − k′ since there were no holes. Therefore
mi−1 − (k − k′) ≤ 0 and we can amortize as before.

We therefore find

OPT(σ) ≥
M − (k − k′)N

2
. (5)

Using (2), this implies M ≤ 2OPT(σ) + (k − k′)N ≤ (k − k′ + 2)OPT(σ). Therefore in this case

ALG(σ) ≤ ((k + 2) + (k − k′ + 2))OPT(σ) ≤ (2k − k′ + 4)OPT(σ).

This proves the lemma. �

2.2 Randomized algorithms

For the standard paging problem, the randomized algorithm MARK is 2Hk-competitive, where Hk is the
k-th Harmonic number [7]. Moreover, no randomized algorithm can have a competitive ratio less than Hk.
The MARK algorithm processes a request sequence in phases. At the beginning of each phase, all pages in
the memory system are unmarked. Whenever a page is requested, it is marked. On a fault, a page is chosen
uniformly at random from among the unmarked pages in cache, and that page is evicted. A phase ends when
all pages in cache are marked and a page fault occurs. Then, all marks are erased and a new phase is started.

In our algorithm ALG we substitute MARK for LRU to get a randomized algorithm. However, in this
case it is also necessary to evict connections less greedily to get a good performance. In particular, at the
start of a phase we will not evict any connections that are associated with pages requested in the previous
phase. Note that some of these connections may not have been used in that phase, because the relevant page
might not have caused a page fault.

Theorem 3 For the randomized version of ALG and k′ ≥ k, we have R(ALG) ≤ 2Hk + 4. For k′ < k, we
have. R(ALG) ≤ 2Hk + min(2Hk, 4 + 2(k − k′)).

Proof. We analyze this algorithm very similarly to the original analysis of MARK [7] and to the analysis in
Section 2.1. We define qi as the number of new pages requested in phase i. A page is new if it is not in the
cache at the start of the phase. We define hi, mi, H and M as before and write Q =

∑

qi. Then by [7],

ALG(σ) ≤ HkQ + H + M.

Moreover, OPT(σ) ≥ Q/2.
Following the proof of the deterministic case, we now have that every connection slot that at some point

in phase i contains a connection to a page in group 1, 2 or 3 (note that this may change later in the phase
due to the use of MRU), is in CURRENT at the end of the phase. Therefore any connections that are still
in PREVIOUS at that time (which get evicted and form holes) must be to pages not requested in the phase.
Therefore OPT(σ) ≥ H/2.

Suppose k′ ≥ k. Due to the randomization, we do not know whether or not Case 2.(c) occurs in a phase.
However, as observed in the proof of the deterministic algorithm, we can amortize the offline faults if 2.(c)
occurs to get the bound OPT(σ) ≥ M/2. Therefore analogously to in the proof of Theorem 1, we have

R(ALG) ≤ 2Hk + 4.

We now consider the case k′ < k. The only change is that the bound OPT(σ) ≥ M/2 is replaced by

OPT(σ) ≥
M − (k − k′)N

2
≥

M − (k − k′)Q

2
,

6

Figure 1: The upper and lower bound: x-axis is k′/k, y-axis is R/k

where we have used Q ≥ N , which follows from the fact that there must be at least one new page in every
new phase by definition of the phases. This gives us

R(ALG) ≤
HkQ + H + M

OPT(σ)
≤ 2Hk + 4 + 2(k − k′).

However, since the number of connection faults, H + M , is also upper bounded by the number of page
faults HkQ, we find

R(ALG) ≤ 2Hk + min(2Hk, 4 + 2(k − k′)).

�

3 Lower bounds

We present a lower bound on the performance of any deterministic online algorithm. The lower bound of
Theorem 4 implies that if k′ is not too small, our deterministic algorithm given in the last section is nearly
optimal. Figure 1 depicts the lower as well as the upper bound.

Theorem 4 Suppose k′ ≥ 2 and let α = k′/k. Then for any online algorithm A, we have

R(A) ≥ (k + 1)

(

αk − 1

αk
+

1 − α

2 − α + 3/k

)

.

Proof. We construct a lower bound as follows. We make use of k + 1 pages that are stored at k + 1 distinct
nodes. Consider an online algorithm A. Each page request in the sequence is to the (unique) page that
A does not have in its cache. The sequence is divided into phases. In each phase, we count the number of
distinct pages that have been requested in that phase; the first request to the k+1st distinct page is defined to
be the start of the next phase. Since the connection cache has size k′, A must have at least k−k′ connection
faults in each phase. We define α = k′/k, so that k′ = αk. We will write the average length of a phase as
pk, where p ≥ 1. The offline algorithm uses one of the following strategies depending on p.

7

Strategy 1. (For large p.) The first strategy is to always use LFD for the requested pages. We then count
the number of offline page faults for each of the k + 1 pages, and put k′ − 1 connections to pages on which
the most offline faults occur, in the connection cache. This part of the connection cache is fixed during
the entire processing of the request sequence. The last slot is used for connection faults on the remaining
k + 1 − (k′ − 1) = k − k′ + 2 pages.

Consider k + 1 phases. There are at most k + 1 offline faults, and on average at most k − k ′ + 2 of
them are on pages of which the connections are not in the connection cache at all times. Thus there are on
average at most 2k − k′ + 3 offline faults on k + 1 phases.

Strategy 2. (For small p.) The second strategy begins by counting the number of requests to each page
over the entire request sequence. Then, the k − k′ + 1 pages that are requested the most often, are put in the
page cache at the beginning, and the k′ connections to the remaining pages are put in the connection cache.
The entire connection cache is fixed throughout the sequence. The offline algorithm now uses LFD on the
k′ pages for which the connections are in the connection cache, and only uses the k ′ − 1 slots in the page
cache that do not contain the k − k′ + 1 most often requested pages. It has no connection faults at all.

Consider (k + 1)(k′ − 1) phases. These contain on average (k + 1)(k′ − 1)pk requests by definition
of p. Thus, each page is requested on average (k′ − 1)pk times. The k′ pages that are requested the least
overall, must then be requested at most k′(k′ − 1)pk times on average at most. Since the offline algorithm
has at most one fault every k′ − 1 requests to this subset of pages, there are k′pk offline faults.

Solving for p, we find that these two strategies have the same number of faults if

p =
αk − 1

αk

(

2 − α +
3

k

)

. (6)

As long as this value is at least 1, we can use the first offline strategy if p is greater than the threshold, and
the second strategy otherwise. The number of on-line faults in one phase must be at least pk + (k − k ′) on
average. This implies a competitive ratio of at least

(pk + k − k′)(k + 1)(αk − 1)

k′pk
= (k + 1)

(

αk − 1

αk
+

1 − α

2 − α + 3/k

)

.

Note that the threshold in (6) is greater than 1 for k ≥ k′ ≥ 2. �

We can show that the analysis of our algorithm ALG is asymptotically tight for k ′ = 1. Note that ALG

behaves exactly like LRU in this case. This implies that even for k′ = 1 it is nontrivial to find an algorithm
with competitive ratio close to k.

Lemma 1 For k′ = 1, we have R(ALG) ≥ 2k − 2.

Proof. We use a set of pages numbered 1, 2, . . . , k + 1 and request them cyclically. All the odd pages are at
some node v1 while the even pages are at another node v2. It can be seen that our algorithm has a connection
fault on every request, thus it has 2k faults per phase.

We now describe an off-line algorithm to serve this sequence. This algorithm only faults on pages in v1,
and each time evicts the page from that node that will be requested the furthest in the future. All pages in v2

are in the cache at all times. Suppose k is even, then there are k/2 slots available in the cache for k/2 + 1
pages. Thus this off-line algorithm has a fault once every k/2 requests to pages in v1.

Consider k+1 phases. It contains k(k+1) requests, exactly k per page. Thus there are 2(k/2+1) = k+2
offline faults in total, giving a competitive ratio of

2k(k + 1)

k + 2
= 2k −

2k

k + 2
≥ 2k − 2.

8

For odd k, there is one off-line fault per (k−1)/2 requests to pages in v1. In k−1 phases there are k(k−1)
requests, thus k(k − 1)/2 requests to pages in v1 and in total k offline faults. This gives a ratio of exactly
2k − 2. �

4 Generalized models

In this section we study generalized problem settings in which the documents can have different sizes. For
the standard multi-sized paging problem, the algorithm LRU is (k + 1)-competitive in both the BIT and the
FAULT model [6]. Here k is defined as the maximum number of pages that can fit in the cache, i.e. k = K/s
where K is the size of the cache (in bits) and s is the size of the smallest possible page. It is nontrivial to
extend the analysis of our algorithm to these models.

In both models, a phase is now defined as a maximal subsequence of requests to a minimal volume of
distinct pages that is larger than K. Thus there are at most k + 1 page faults in a phase.

4.1 The Fault Model

For the FAULT model, we need to consider the number of pages requested in each phase, which can be less
than k.

Theorem 5 In the FAULT model, R(ALG) ≤ (4k + 14)/3 for k′ ≥ k and R(ALG) ≤ 2k − 2
3k′ + 14

3 for
k′ < k.

Proof. Suppose k′ = k. Denote the number of pages requested in phase i by Φi. Write ∆i = Φi − Φi−1.
If there are mi connection faults where MRU is applied, then mi times a connection slot remains in

CURRENT. Thus at most k + 1 − mi times a connection slot moves from PREVIOUS to CURRENT, and at
least mi − 1 connection slots are still in PREVIOUS at the end of the phase. These connections lead to at
least mi − 1 pages that were requested in phase i − 1 but not in phase i.

Denote the set of pages requested in phase i − 1 but not in phase i by F . Denote the set of pages
requested in phase i by S. We partition F in two sets: F1 contains the pages that OPT faults on, F2 contains
the rest. Consider the set F2. OPT does not fault on these pages and thus has them in its cache at the start of
phase i − 1. This means that some pages in S are not yet in its cache and need to be loaded later.

Write the number of OPT faults in these two phases as mi − 1 − x. If x ≤ 0, we are done. Otherwise,
F2 contains z ≥ x > 0 pages. OPT has exactly z − x faults on the set S, that is, z − x pages are loaded to
come “in the place of” the z pages in F2 (OPT does not necessarily replace exactly these pages in the cache).
Since at most k + 1 pages were requested in phase i − 1, the set S then contains at most k + 1 − x pages,
i.e. our algorithm has at most k + 1 − x page faults in phase i + 1.

That is, if OPT has x faults less than mi − 1 in phases i − 1 and i, then our algorithm has (at least) x
faults less than k + 1 in phase i. Writing the number of OPT faults as mi − 1 − xi in all cases where it is
less than mi − 1, this gives

OPT(σ) ≥
M − N − X

2
,

where X =
∑

xi. (That is, all values xi are positive.)
We can treat the holes that are created in the same way to find

OPT(σ) ≥
H − P − X

2
.

Finally we also still have OPT ≥ N . We have

ALG(σ) ≤ (k + 1)N − X + M + H − P and ALG ≤ 2((k + 1)N − X),

9

where the second inequality follows since ALG has at most one connection fault for each page fault.
Thus if X ≥ kN−4

3 , we find that the competitive ratio is at most 4k/3 + 14/3. On the other hand, if
X < kN−4

3 , then

ALG(σ) ≤ (k + 1)OPT(σ) + 4OPT(σ) + X ≤ (k + 5 + k/3 − 4/3)OPT(σ) =
4k + 14

3
OPT(σ).

This analysis can easily be extended to the case k′ < k as before.
Similarly to in Theorem 2, we find that in this case there are at least k′ − k + mi − 1 pages requested in

phase i− 1 but not in phase i. Writing the number of OPT faults as k′ − k + mi − 1− x and distinguishing
cases, we now find

OPT(σ) ≥
M − (k − k′ + 1)N − X

2
.

The other bounds do not change, giving R(ALG) ≤ 2k − 2
3k′ + 14

3 . �

4.2 The BIT model

In this section we investigate a BIT model in which the cost of loading a document is equal to the size of the
document. We also assume that the cost of establishing a connection is equal to c, for some constant c > 0.

Theorem 6 In the BIT model, R(ALG) ≤ k+5
2 (c′+1) for k′ ≥ k, where c′ = c/s is the cost of a connection

fault divided by the size of the smallest possible page. For k′ < k, R(ALG) ≤ 2k+5−k′

2 (c′ + 1).

Proof. Denote the average phase length by K +δ for some δ > 0. Denote the average number of MRU faults
in a phase by m and the average number of bits worth of old pages that are implied by m′, then m′ ≥ ms.
Denote the average number of pages on which there is no fault in a phase by p and the average number of bits
that are requested without fault by p′, then p′ ≥ ps. Finally, denote the average number of holes created in a
phase by h. Denote the cost of a single connection fault by c and write c′ = c/s. Similarly to in the previous
section, it can be seen that for the average cost in a phase we have ALG/s ≤ k + δ/s + (m + h)c/s − p′/s
and OPT/s ≥ max (max(1, δ/s),m/2, h − p/2). Here the first maximum in the second equation follows
from

∑

i
max(δi, s)/Ns ≥ max(Ns,Nδ)/Ns = max (1, δ/s) , where K + δi is the amount of bits from

distinct requests requested in phase i.
Since the number of connection faults in a phase is bounded from above by the number of page faults,

we have

m + h ≤
K + δ − p′

s
⇒ h ≤ k +

δ

s
− p − m ≤ (k + 1)

OPT

s
− p − m. (7)

We also have h ≤ 2 OPT
s

+ p. Note that 2 OPT
s

+ p = (k + 1) OPT
s

− p − m ⇒ 2p = (k − 1)OPT/s − m.
Suppose p ≤ ((k − 1)OPT/s − m)/2. (The other case is handled similarly.) Then

ALG

s
≤ (k + 1)

OPT

s
+ mc′ + hc′ − p ≤ (k + 1)

OPT

s
+ mc′ + 2

OPT

s
c′ + p(c′ − 1)

≤ (k + 1)
OPT

s
+ mc′ + 2

OPT

s
c′ + (c′ − 1)((k − 1)

OPT

s
− m)/2

≤ (k + 1)
OPT

s
+ (c′ + 1)m/2 + 2

OPT

s
c′ + (c′ − 1)(k − 1)

OPT

2s

≤ (k + c′ + 2 + 2c′ +
(c′ − 1)(k − 1)

2
)

OPT

s
=

(k + 5)(c′ + 1)

2
·

OPT

s
.

For k′ < k, similarly to all previous cases we now find OPT(σ)/s ≥ (m − (k − k′))/2 and R(ALG) ≤
(2k−k′+5)(c′+1)

2 . �

Hence the competitive ratio grows linearly with k and with c (c′). The reason for this is that we cannot
identify connection faults by OPT; it is conceivable that OPT never has a connection fault.

10

5 The distributed setting

We finally study the distributed problem setting where requests can occur at various network nodes. Again,
each node has a document cache and a connection cache. Here, a request is specified by a pair (v, d),
indicating that document d is requested by the user at node v. The cost of serving requests is the same as
before. The crucial difference is in the usage of connections. An open connection between nodes v and v ′

can be used for downloading documents from v to v′ as well as from v′ to v. However, if one of the nodes of
the connection decides to close the connection, then the connection cannot be used by the other node either.
Hence, the connection cache configurations affect each other.

Theorem 7 In the distributed problem setting, no deterministic online algorithm can achieve a competitive
ratio smaller than 2k/(1 + 1/k′), where k is the size of the largest document cache and k′ is the maximum
number of connections that a network node can keep open.

Proof. Consider a node v at which k + 1 documents are stored. Additionally we have k ′ + 1 nodes
vi, 1 ≤ i ≤ k′ + 1, Each node in the network has a document cache of size k and a connection cache
of size k′. Requests are generated as follows. At any time one of the connections (v, vi) is closed in the
configuration of an online algorithm A because v kan only maintain k′ open connections and a connection
is open only if it is cached by both of its endpoints. An adversary generates a request at this node vi for the
document that is currently not stored in A’s document cache at vi. Suppose that a request sequence consists
of m requests and that mi requests were generated at vi, 1 ≤ i ≤ k′ + 1. The online cost is equal to 2m.
An optimal offline algorithm has at most dmi

k
e document faults at vi and hence no more than m

k
+ k′ + 1

document faults in total. Furthermore an optimal algorithm can maintain the connection cache at v in such
a way that at most d(m

k
+ k′ + 1)/k′e connection faults occur. Thus as m → ∞, the ratio of the online to

offline cost tends to 2/(1
k

+ 1
kk′) = 2k(1 + 1/k′). �

Note that a competitive ratio of 2k is achieved by any caching algorithm that uses a k-competitive paging
strategy for the document cache and any replacement rule for the connection cache.

6 Conclusions

In this paper we studied integrated document and connection caching in a variety of problem settings. An
open question left by our work is to find a better algorithm for the case where the connection cache is very
small (relative to k). We conjecture that the true competitive ratio for this problem should be close to k.

References

[1] D. Achlioptas, M. Chrobak, and J. Noga. Competitive analysis of randomized paging algorithms.
Theoretical Computer Science, 234:203–218, 2000.

[2] S. Albers. Generalized connection caching. In Proceedings of the Twelfth ACM Symposium on Parallel
Algorithms and Architectures, pages 70–78. ACM, 2000.

[3] E. Cohen, H. Kaplan, and U. Zwick. Connection caching. In Proceedings of the 31st ACM Symposium
on the Theory of Computing, pages 612–621. ACM, 1999.

[4] E. Cohen, H. Kaplan, and U. Zwick. Connection caching under various models of communication. In
Proceedings of the Twelfth ACM Symposium on Parallel Algorithms and Architectures, pages 54–63.
ACM, 2000.

11

[5] T. Feder, R. Motwani, R. Panigraphy, and A. Zhu. Web caching with request reordering. In Proceedings
13th ACM-SIAM Symposium on Discrete Algorithms, pages 104–105, 2002.

[6] A. Feldman, R. Karp, M. Luby, and L. A. McGeoch. Personal communication cited in [9].

[7] A. Fiat, R.M. Karp, M. Luby, L.A. McGeoch, D.D. Sleator, and N.E. Young. Competitive paging
algorithms. Journal of Algorithms, 12(4):685–699, Dec 1991.

[8] P. Gopalan, H. Karloff, A. Mehta, M. Mihail, and N. Vishnoi. Caching with expiration times. In
Proceedings 13th ACM-SIAM Symposium on Discrete Algorithms, pages 540–547, 2002.

[9] S. Irani. Page replacement with multi-size pages and applications to web caching. In Proceedings 29th
ACM Symposium on Theory of Computing, pages 701–710, 1997.

[10] L. McGeoch and D. Sleator. A strongly competitive randomized paging algorithm. J. Algorithms,
6:816–825, 1991.

[11] D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules. Communications of
the ACM, 28:202–208, 1985.

[12] N. Young. On-line file caching. In Proceedings 9th ACM-SIAM Symposium on Discrete Algorithms,
pages 82–86, 1998.

12

