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ABSTRACT 

Abstract The modeling clip of the PHIGS ISO Standard is mathematically 
analysed. The most important result of this analysis is the fact that the projective 
image of a modeling clip body (that is a not necessarily bounded convex body in 
space) is simply the union of two convex bodies. Furthermore, it will also be 
proved that in some cases one of these two bodies is empty. This fact makes the 
implementation of the modeling clip fairly straightforward and makes it also possi
ble to use all already existing results on clipping against general convex bodies 
without change. 
1983 CR Categories: G.O,l.3.2, /.3.5 
Keywords & Phrases: projective geometry in computer graphics, computer graphics 
standardisation, PHIGS, PHIGSPLUS, clipping. 
Note: the present text is published in: Computer Graphics Forum, 9(1990), No. 2. 

1. Introduction 

The modeling clip as defined in the PHIGS Standard6 has already stirred quite a lot of interest in 
the past years3, 8, 9, 12. The reason is that the way modeling clip is described in the ISO document 
generates a range of algorithmic problems; indeed, the convex body which is used for clipping pur
poses has to be transformed by a projective transformation first and the clipping step itself can be 
done only after having performed this transformation. The reason of this is bound to the way the 
modeling clip is specified in PHIGS; more details about it can be found for example in the paper of 
Herman and Reviczky3. This fact leads however to the problem of determining what exactly the 
image of a modeling clip body will be under the effect of a projective transformation or at least how 
this clipping can be performed without getting into conflict with the official PHIGS specifications. 

In the paper cited above a solution is also proposed to perform this clip. It is based on the 
idea of assigning a hyperspace of the four dimensional Eucledian space to each of the planes 
defining the original clipping body. In some cases, however, it is necessary to perform the clipping 
after the full transformation (that is including the projective division). There exist for example algo
rithms which enable the generation of more complicated output primitives once the projective 
transformation has been performed. Examples are given in the two papers of Herman4, 5. For these 
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methods to work neatly with modeling clip an approach should be necessary which would perform 
this clip after the whole projective transformation. 

A significant step in this direction has been made by Krammer in8. His idea was to introduce 
the so-called "conic sectors", which are areas defined by a pair of planes in the projective space. A 
usual halfspace is also a special case for a conic sector by taking the original boundary plane of the 
halfspace and the ideal plane as generating planes. Krammer has shown that such conic sectors are 
projective invariant, that is that the image of a conic sector remains a conic sector. In his approach, 
the modeling clip is done a series of clips against such conic sectors much in the same way as a 
usual clip is performed as a series of clips against halfspaces. 

Unfortunately, Krammer has not made the last step, that is to try to describe what the inter
section of all these conic sectors will be. As it will be shown in the sequel, this point-set (which is 
therefore the clipping body to be used for modeling clip) is surprisingly simple: it is the union of 
two "traditional" convex bodies; furthermore, both of these bodies can be described very easily. 

2. Notational Conventions and Some General Remarks 

In the sequel, we will denote by R3 and by R4 the set of three and four dimensional vectors respec
tively and by PR4 the set of four dimensional homogeneous vectors. All vectors are considered to be 
column vectors; we will use the notation v 7 for all vectors v E R3 or v E R4 to denote the transpose of 
the vectors (that is row vectors). To make a clear difference, lower case letters will be used for 3-
element vectors (that is elements of R3 ) and capital letters for the homogeneous 4D vectors. If p ER3

, 

we will denote by P ER4 the homogeneous version of this vector (by putting the value of I as last 
coordinate) Matrices will be denoted by bold capital letters like V. 

A general convex body, whether bounded or not, is described as the intersection of a finite set 
of halfspaces. In PHIGS, one defines such a convex body by defining a series of halfspaces in the 
structure store; at structure traversal, an actual set of such halfspaces defines the current modeling 
clip body. 

In PHIGS, each halfspace is described by three data as follows: 

a point of the plane which gives the boundary of the halfspace, 

an interior point of the halfspace and 

a (three dimensional) normal vector pointing toward the demanded halfspace. 

By using homogeneous vectors instead of Eucledian ones, the half space can be described by 
one single vector as well; indeed, a four dimensional vector E can be given so that the set 

3 

{pER3 : "'2,E;p; + £4;;;.. 0} (2.1) 
i = l 

is exactly the demanded halfspace. It is quite straightforward how the vector E can be calculated out 
of the original data. By taking P instead of p (that is putting I as the last coordinate value), the rela
tionship above can also be written by putting: 

{ PEPR4
: E 7 P;;;.. 0} (2.2) 

The very same E vector can be used to describe the points of the (boundary) plane itself: 
indeed, instead of the inequalities in (2.1) and (2.2) we have to use equalities. The following state
ment can be proved easily and can also be found in a number linear algebra textbooks as well as in 
some papers like the technical note of Zachrisen12 : 

If E describes a plane in R3 and V is a regular projective transformation (that is a 
transformation described by an invertible 4 X 4 matrix), the image of the plane is 
described by the vector 

(2.3) 

If two vectors E I and E 2 are given, we will use the notation { £ i, E 2 } to denote the intersection 
of the half spaces generated by E I and E 2 respectively. By recursion, { £ 1 , ••• , £"} will denote the 



convex area defined by the vectors E 1, • •• , E". 

3. The Image of a Halfspace 
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The first question we have to ask ourselves is: what will be the image of a halfspace under the effect 
of a projective transformation? In the paper of Herman and Reviczky3 it has already been shown 
that this image can be distorted in the course of a transformation; in most of the cases it will not be 
a halfspace again. 

Let us take a regular projective transformation V and a half space defined by the vector E E R4 

(using formulae (2.1)/(2.2)). Let P' ER4 be the four dimensional vector which is the result of the 
matrix vector multiplication and by p' E R3 the vector derived from P' by the projective division. 
Clearly, p' is the image of p under the full projective transformation. We will denote by v;,1 the ele
ments of the matrix representation of V with i,J = 1,2,3,4. 

Let us suppose that the projective division can be done, that is, P 4 =/=-0. (In his already cited 
paper Krammer has shown how to get rid of such singular points before the projective transforma
tion; this supposition can therefore be done). In this case equation (2.3), which is equivalent to: 

4 

E'T p = ~ E'-P'~ I I 

i = I 

can be rewritten in the form: 
4 

E'Tp = P'4 ~E';(P';IP1
4) 

i = ] 

We can change the second multiplicative term of (3.2) to: 
3 

~E';p'; + £'4 
i = I 

(3.1) 

(3.2) 

(3.3) 

What we get is as follows: the point p ER3 is a point of the half space defined by£ if and only if 
3 

P'4(~E';p'; + £'4) ;;;,, 0 (3.4) 
i = I 

holds. In the second term of (3.4) we may recognise the same formula as in (2.1 ); indeed, it refers to 
the half space described by £'. Let us also remark that the plane defined by £' is just the image of 
the plane defined by £. 

To get a clearer formula we have to concentrate on the first term of (3.4). Clearly, we are not 
interested in the actual value of this term but only in its sign; what we will do is to give an 
equivalent formulation for sign(P'4 ). 

We have already used the fact that by choosing an appropriate vector E ER4 we can describe a 
plane. In fact, the very same formulation works if we want to describe the ideal plane as well: 
indeed 

(3.5) 

describes al] ideal points. Furthermore, formula (2.3) remains also valid to describe the image of the 
ideal plane. This image may be ideal again (which means that the transformation is affine, like for 
example a parallel projection) or it will be a "normal" affine plane. The reader may find additional 
details about ideal points, lines and other elements of projective geometry in the book of Penna and 
Patterson 10 or any other traditional textbook or tutorial of projective geometry. 

Let us come back to our original problem. The following is true: 

Pi 
T P2 I= £ 0 p3 

I 

(3.6) 
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that is 

(3.7) 

The first two terms give (according to (2.3)) E 0 'r , that is the vector representing the image of the 
ideal plane. We can multiply the second term with P'4 (1 / P'4 ). According to the definition of p ' we 
get: 

p' , 
P'2 

I = P'4Eo'r 
p'3 
1 

In other words: 

sign(P'4) = sign(E0'Tp') 

By combining the formulae (3.4) and (3.9) we arrive to the following statement. 

If E defines a halfspace in R3 and V is a regular projective transformation, the image of 
the halfspace is the union of two convex areas, namely {£0 ',E ' } and {-£0 ', - E'} 

(3.8) 

(3.9) 

This fact is nothing else then a more "analytic" version of the conic sectors described by 
Krammer. Let us also note that if V is affine, E' will be (0,0,0,X? (where X is a non-zero number); in 
this case the one of the two terms automatically leads to an empty set (if A is positive, the second 
term will be empty, the first otherwise). 

The great advantage of this analytical description is that it is very easy to extend via induction 
to a general convex body. Indeed, the following is true: 

If C = { E 1, ••• , Ek} is a convex body in R3 and V is a regular projective transformation, 
then the image of C will be the union of two convex bodies C' and C" namely: 

and 

C' = {-E0',-E 1' , • • • ,-E/} 

(3.10) 

(3.11) 

As a result of this formulation the modeling clip has definitely lost its "frightening" nature: it 
can be performed after the projective transformation without problems. The only additional 
difficulty is that instead of one convex body two should be considered; however, both can be 
described easily with well known formulae. 

When effectively performing the modeling clip against these convex bodies, what has to be 
done in a program is not much different of what Krammer has done in his description : in both 
cases, a series of halfspace clips should be done. However, the fact the whole clipping body can be 
described in one step as in (3.10)/(3.11) may have a great significance when some optimalisations 
are sought for clipping more complicated objects. We have already referred to the primitives 
described in the papers of Herman4,5. As a very different example let us refer to the problem of 
performing a modeling clip of a NURB (Non Uniform Rational B-Spline) surface or a NURB 
curve. Clipping these surfaces or curves is a significant algorithmic problem; however, very useful 
optimalisations can be achieved if we make use of the fact that the curve and/ or the surface is in 
the convex hull of the NURB control points (see for example Farin2 or Barsky et al 1 for more 
details). It is therefore a natural idea to compare these control points first to the whole clipping 
body to see whether something is visible at all and/ or the overall clipping process of the NURB can 
be scaled down to some subarea of the NURB. We should not forget that NURB-s are basic primi
tives for example in the PHIGS PLUS specification7 and, consequently, the modeling clip of 
NURB-s has become a very actual problem indeed! 
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Another advantage we can cite is the fact that it becomes straightforward to apply the filtering 
technique of O'Bara et al9 for the construction of more complicated clipping bodies. Following 
their approach, it becomes possible to apply a clip against a more general point set in space, which 
are the result of some Boolean-like operations on convex bodies. Such operations are referred to in 
the PHIGS document although their implementation is not mandatory. However, because of the 
practical use such operations may have, it is appealing to have the possibility to implement them. 

However, the most important consequence of our formulation is the fact that in some cases it 
is possible to reduce the number of clipping bodies from two to one. If this is the case, all possible 
complication with modeling clip can be forgotten : modeling clip can be done after having per
formed the projective transformation and it is just a normal clip against a well defined convex body. 
This is what we will do in what follows. 

4. Reducing the Number of Oipping Bodies 

The previous description of the modeling clipping body is surprisingly simple at a first glance. It is 
therefore worthwhile to make a little detour and to give a more intuitive picture of this description. 
On figure l the usual approach of presenting the effects of a projective transformation is shown; 
instead of projective space we have to show what happens in a projective plane but this is enough to 
help our intuition. 

Figure l 

The plane II is the original plane we start from; it is embedded into R3 by setting the last 
coordinate value to I. The first effect of V is to transform via a linear mapping this plane onto 
another one in R3 ; this is denoted by II'. 

_ The modeling clip body (here a triangle) is transformed into another triangle of II', denoted by 
C on the figure. As a second step, this polygon is projected back onto II using a central projection 
via the origin; this corresponds to the projective division. In our case, the re~ult of this projection is 
the image of the original clipping body. It is now clear that as the polygon C is cut into two by the 
w = O plane, the result of the projection will effectively be the union of two convex bodies; this is 
exactly what our previous result states in a more precise and analytical form. 

One would think that by having two concatenated transformations the number of convex 
bodies might be doubled at each step (if we were to transform the original clipping body through 
the concatenated matrices). Figure l also shows why this cannot happen: concatenation of two pro
jective transformations can also be described by taking the product of the two corresponding 
matrices. However, this would just mean that the plane II' should be transformed again into a 
second plane II"; as the projective division has to be made after all matrix-vector multiplications 
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only, there is no danger of having a higher number of convex bodies at the end. 

If _we look now at figure 2, we can remark that C is now not cut by w = O. In this case, by pro
jecting C back onto II, we get only one body instead of two! In other words, in such cases either C' 
or C" is empty. It is clearly important to find out when this situation effectively happens. This is 
done more precisely in what follows. 

Figure 2 

First of all we have to remind what the vanishing plane of V is. By definition, the vanishing 
plane is the plane which is mapped onto the ideal plane by V. A vectorial representation of this 
plane can be given easily; indeed 

Ev = 

V4, I 

v4.2 

V4_3 

v4.4 

(4.1) 

(that is the elements of the last row in the matrix) will do. This can be seen easily: for each P EPR4, 
the following holds: 

(4.2) 

that is this value is zero (in other words P' is ideal) if and only if P (more exactly the corresponding 
p ER3 ) is on the plane defined by Ev and this is exactly the definition of the vanishing plane. Set
ting (eventually) the negative of this vector we can also use it to describe a given halfspace of the 
vanishing plane. We have to remark that the vanishing plane of an affine transformation (like the 
parallel projection) is the ideal plane. 

With this definition at hand, we can state the following: 

If the modeling clip body C is fully in one of the halfspaces of the vanishing plane of V, 
either C' or C" is empty. 

Indeed, we can set the value of Ev so that it would define the halfspace containing C. If C is 
defined by {E 1,E2 , ••• ,Ed, then clearly: 

(4.3) 

According to our previous theorem we have: 

(4.4) 

and 
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C' = { - E0 ',-E 1', ••• , -Ek',- Ev'} (4.5) 

However, either Ev' or - Ev' represents the ideal plane, consequently the last coordinate value of 
either Ev' or - Ev' will be negative (the other three being O); clearly, such a vector defines an empty 
set in R3

. 

The previous proof gives us also the method to handle such situation: an appropriate Ev 
should be chosen and then the last coordinate value of Ev' should be examined; the result of this 
step will decide whether C' or C" is the empty set. 

5. Simple Projective Transformations 

It is not easy to use the previous theorem in practice. Indeed, deciding whether a (not necessarily 
bounded) convex body is contained in a given halfspace is not a simple question; a general solution 
to handle it leads to a typical linear programming problem. There is, however, a special class of pro
jective transformations where this question becomes easier to cope with; as this class has a number 
of additional nice properties as well, it is worthwile to make a little detour in this direction. 

Let us define a simple projective transformation to be a regular projective transformation V for 
which the following property holds: 

There exists a real number J=/=-0 so that 

VJ. I = /V4.I 

V3_2 = /V4.2 (5.1) 

This class is fairly general. Indeed, it can easily be proved that the product of an affine and a 
simple projective transformation is a simple projective transformation again. This also means that 
the transformations defined by the utility functions for viewing defined eg in PHIGS, which realise 
the synthetic camera model, are in fact simple projective transformations. Indeed, the view orienta
tion matrix produced by this utility is always affine while the view mapping matrix has its last row 
of the form v 3• 1 = v 3_2 = v 4• 1 = v 4•2 = 0 ( see eg Singleton 11 or the book of Penna and Patterson 10 for 
details) ; the final viewing matrix to be used by PHIGS is the product of these two. The fact that a 
set of conditions of the form (5.1) can be given is of a great importance; indeed, in PHIGS (as well 
as in GKS-3D) the user calculates the viewing matrices independently of the function which actually 
sets them for the system. In other words, a proper implementation should be prepared to handle all 
kinds of projective transformations, even those which are not the realisations of the synthetic camera 
model. It becomes therefore of a great importance that a class of transformation would be found for 
which the decision whether a given transformation belongs to this class or not can be made solely 
by inspecting the matrix itself. 

Two properties of simple projective projections may be of a general interest. If we calculate 
the image of a point p ER3

, we get the following formulae: 

Let us define a = -JV4,4 + V3,4 • Then: 

P/ =JP/+ a (5.2) 

and 

p/ = P/IP/ = a!P/+J (5.3) 

Asp/ corresponds to the z (that is depth) value of the image coordinate system, the second 
equation says that all planes which are parallel to the vanishing plane are mapped onto planes 
parallel to the xy plane. Indeed, all planes parallel to the vanishing plane can be characterised by 
the fact that their points have the same P / value. It is therefore much faster to compute p 3' using 
(5.3) than to perform the full matrix-vector multiplication for all coordinates. Furthermore, if we use 
the value of p/ to perform Hidden Line/Hidden Surface calculations only (which is usually the 
case}, it is enough to set 
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(5.4) 

or 

p/ = 1 IP/ if a;;;;.O (5.5) 

Krammer has described in8 a way of getting rid of singular points of a projective transforma
tion. His approach is roughly as follows. Out of the view volume defined in PHIGS (which is essen
tially a rectangular box) one has to construct two planes (denoted by U' and W') in R3 which are 1) 
parallel to the image of the ideal plane and 2) which contain the whole view volume (see figure 3). 
These planes have to be transformed by v- 1 to get U and W; it can be proved that they will still be 
parallel planes and, furthermore, they will be parallel to the vanishing plane of V. 

In case the image of the ideal plane is not contained in the stripe defined by U' and W' (like 
on figure 3) it can also be proved that both U and W will be on the same side of the vanishing plane 
of V and, furthermore, by performing a clip against the stripe defined by U and W one gets rid of all 
those points which might lead to singularities without loosing any primitives (all primitives are to be 
clipped against the view volume anyway). 

image of the ideal plane 

U' 

W' 

Figure 3 

Clearly, in case of a simple projective transformation it is enough to use the planes zmin and 
Zmax of the view volume to get the U' and W' planes. In most cases (eg for a synthetic camera 
model!) the image of the ideal plane will be outside the view volume as well; and this fact can 
always be decided fairly easily (the image of the ideal plane will be parallel to U' and W' and, there
fore, this fact can be decided by a simple comparison against the z values). Consequently, by per
forming a clip against U and W we will not loose any output primitives and we will get rid of the 
possibly singular points. 

Coming back to our modeling clip this also means that we might add to our modeling clip 
body definition the halfspaces defining the stripe between U and W. In this case, the resulting clip
ping body will effectively be on one side of the vanishing plane; that is, the image of the modeling 
clip body will still be one side only (by applying our theorem of the previous section). In other 
words, by adding these two planes to the modeling clip body, we can reduce the modeling clip step 
to a clip against one single convex body. Taking into account that the special case which has led to 
this optimalisation possibility encapsulates such important cases as the realisation of the synthetic 
camera model for viewing, this fact is of a great practical importance indeed. 
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6. Conclusion 

In the sequel we have proved that the image of a convex body (that is a modelling clip volume) 
under the effect of a projective transformation is very simple to describe: indeed, it is the union of 
two, well describable convex volumes. In other words, the modelling clip of PRIGS can be per
formed once the whole transformation of the output pipeline, (that is essentially viewing), is com
pleted and this can be done by using traditional clipping algorithms. Furthermore, we have also 
proved that in case of some very important special cases (for example when the synthetic camera 
model is used for viewing) the image of the modelling clip volume will be one volume again (that is 
one of the volumes cited above will be empty), and it is also computationally easy to find out which 
of the two volumes will be the empty one. 
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