
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

H. NOOT

STRUCTURED TEXT FORMATTING

Preprint

~
MC

IW 191/82 FEBRUARI

kruislaan 413 1098 SJ amsterdam

Punted a;t the. Ma:the.ma.tic.ai. Ce.n.br.e., 413 Kll.l.l,,{,6laan, Am6teJuiam.

The. Ma.the.ma.:ti..c.al. Ce.n.br.e. , !,ounde.d the. 11-th o!, Fe.blUlalty 1946, iJ.i a non
ptr.o!,li .ln6:t).,tu,tion aiming at the. ptr.omo.t.lon or, pWl.e. ma:the.ma.tie6 and m
appUc.a.t.lon.6. It iJ.i .-.spon6otr.e.d by the. Ne.the.ll.land6 Gove.tr.nme.nt thll.ough the.
Ne.the.ll.land.6 Ongan.lza.tion !,oil. the. Advanc.e.me.nt o!, PU/l.e. Rv.,e.a11.c.h (Z.W.O.).

1982 CR Categories: I.7.2

STRUCTURED TEXT FORMATTINGt

by

H.Noot

ABSTRACT

A Document Formatting system is presented which provides a highly structured user interface.
In particular, the system incorporates an elaborate error detection- and recovery mechanism,
whereas format directives are implemented by the user in a high-level language, instead of in the
rather low-level macro languages generally used for this purpose. Furthermore, a systematic way of
dealing with problems, like the avoidance of 'widows' etc. is discussed, as well as a concatenation
mechanism for 2-dimensional strings. Finally, all major design decisions taken for this system, are
extensively motivated.

KEY WORDS & PHRASES: text formatting, text markup, string concatenation, constraints, error
detection

tThis report will be submitted for publication elsewhere.

AN OVERVIEW

Introduc1tion

In the past decade, a host of computer-based text formatting systems have
emerged. They fall into three broad categories:

I. Systems for use in an office environment. These systems can only be used for
the processing of simple plain text.

2. (Semi) automated systems for use in the publishing industry. These systems,
intended for the production of 'printers quality' documents, require attention
from specialized professionals, and vast quantities of (dedicated) equipment.

3. Layout programs like NROFF 2 and TEX. 3 They are often intended for the pro
cessing of both simple and complicated (e.g. mathematical) texts. These pro
grams, which can run on general purpose computers, are almost exclusively
used in technical or scientific milieus.

This paper deals with systems of the last kind only. A typical organization of
such a layout system is the following: The basic system supports low-level format
directives. On top of this, there is a possibility to define macros, implementing
higher level instructions in terms of those primitives. For instance, the systems
TEX, 3 NROFF, 2 PUB 11 and TEXTURE 7 all have this structure. In such a system, we
can distinguish two types of users:

I. Those which mark up a text with high-level directives and then have that text
formatted.

2. Those that specify and implement high-level directives.

We will call those users end user and layout designer, respectively.
In our view, to day's layout programs are still too difficult to use, because end

user and layout designer must face the following problems:

I. End user problems:

I. The lack of conciseness of the high-level directives, especially for compli
cated (e.g. mathematical) texts.

2. The absence of error detection and recovery.

2. Layout designer problems:

I. The low level of the languages which are provided for the implementation
of high-level directives.

2. The (sometimes extreme) difficulty of describing complicated page formats,
i.e. of defining a page as a composition of arbitrarily placed blocks of vari
ous kinds of text.

It should be noted, that these problem area's do not include things like line
breaking, formula composition or table construction. There are a number of good
programs that can put adjusted text or a formula into a box, but the problems we
discuss are caused by shortcommings of the user interfaces to these programs.

In this paper, we will present an approach to text formatting, which alleviates

2

these difficulties. It takes the form of a proposal for a user interface to the already
existent line-breakers etc. In our system, the end user has at his diposal very concise
format directives and the support of an error handling mechanism. The layout
designer has access to high level tools for the implementation of format directives.
Most (but not all) of the discussed system has been implemented (see the last
chapter). The design presented here takes into account experience gained through
this implementation.

Design objectives

The aim of our formatting system is, to remedy the problems mentioned above.
To satisfy the needs of the end user and the layout designer, the system must meet
some criteria which we will state now.

For the end user we require:

1. Descriptive markup, instead of procedural markup. 5 Ideally, this means that
the end user only has to indicate which input text goes into for instance foot
notes, which into headings etc, while all decisions about the layout are made by
the system.

2. Error detection and whenever possible, recovery.

As far as possible, the end user needs only to mark the beginning and end of
different kinds of text (such as a footnote or numbered list). The number of other
directives (such as font changes or line length specifications) that has to be given
must be kept to the logically possible minimum. To assist with markup, the system
must know about restrictions for the type of text at hand. For instance, a numbered
list as part of a title may be forbidden. In this case, the user must get an elaborate
error message. Furthermore, recovery measures must be taken to generate as much
meaningful output as possible.

For the layout designer we demand:

I. A simple model of the formatting process, i.e. a clear framework in which a
document can be thought of in terms of its constituent parts and operations
thereon.

2. An implementation of this model. By a somewhat loose analogy, this imple
mentation can be viewed as to realize a microprogrammable format machine,
analogous to a normal microprogrammable computer. The input text mixed
with format directives which goes to the format machine corresponds to a
machine level program plus data for a microprogrammable computer. The for
mat directives are implemented through programs in a special language (see
below); those programs correspond to the microprograms, and their statements
to the microinstructions of the microprogrammable computer. Finally there is
-just as in genuine microprogramming- a strict separation between the levels of
use of format directives (machine instructions) and statements in the language
in which they are implemented (micro instructions).

3

3. A high level programming language for the implementation of format direc
tives. (The languages used in most systems are not of a sufficiently high level.)

4. Special instruments for string analysis and construction.

It should be emphasised, that we presume a system which runs in a working
environment, where end use and layout design are distinct. Hence, definitions of
new formatting directives are not part of the normal textual input to the formatter,
but are made known in a different way.

END USERS VIEW

Document classes

Documents with different purpose can have quite different formats, as is the
case with letters, the plain text of a novel, an article in a technical journal, etc. A
group of documents with a characteristic format, will be called a document class.
To minimize the number and complexity of the format directives to be given by the
end user, the following strategy is used:

1. For every document class there exists a specific set of format directives.

2. The form of similar directives of different classes is as identical as possible (e.g.
the markup of a section heading is the same in a novel and in a technical text).

3. The details of the effect of the directive on the formatted output depends on the
document class. In one class, a footnote reference may be an automatically gen
erated number, while in another class asterixes may be used.

It should be noted that, although conceived independently, this concept of
document classes bears a very close resemblance to ideas incorporated in the
SCRIBE IO system.

Text types

A formatted document is thought of as being composed of blocks of different
kinds of text (such as footnote or title). Those blocks are distinguished according
to:

1. Content, e.g. plain text, illustrations, footnotes, formula's, etc.

2. Positioning with respect to the page (e.g. header at the top, footers at the bot
tom etc.).

4

3. Positioning with respect to each other (see the examples in fig. la and lb).

4. The values of bounds on the sizes of blocks of the type.

I type 1

type 1

type 2
type 2

type 3

I type 1 ~

figure la. figure lb.

Blocks differing in one or more of these characteristics are said to be of
different type. In this context we will use the term 'block type'. At the input side,
text elements can be distinguished according to the type of the block in which they
will be placed upon output. Hence, with every block type there corresponds an input
text type to which we will refer as 'text type'. This type of a piece of input text is
specified by format directives indicating its begin and end (see the next section). We
will call such a piece of text a 'marked text piece', or 'marked text' for short.

As seen from the example of fig. 1 b, blocks of certain types may be embedded
within other blocks. This is reflected in the nesting of the corresponding marked text
pieces in the input. Not every conceivable nesting is allowed, however. It seems
meaningful, for instance, to permit blocks of type 'numbered list' within blocks of
type 'plaintext', but not within blocks of type 'title'.

Now we can define the concept of document class more formally. A document
class is characterized by the specification of the properties of the block types of the
text blocks that may be used to construct a document from the class. This implies,
that every document class has its own set of nesting permissions for marked text
pieces.

5

Markup

In this section we discuss the nature of the format directives an end user may
place in an unformatted document. Directives fall into four different catagories:

1. Character level directives.

2. Text type demarcation directives.

3. Special action directives.

4. Parameter setting directives.

Character level directives serve to put accents over characters, to generate
overprints and so on.

Demarcation directives indicate the start and end of marked text pieces. They
must always occur in pairs, because we do not allow a begin directive to imply an
end directive for a preceding marked text piece.

When the unformatted document is scanned from begin to end 'current text
type' is defined as follows. When a begin marker is encountered, the current text
type becomes the one implied by this marker. When the corresponding end marker
is seen, the current text type is reset to the type of the text surrounding the marker
pair. To make this work, we assume the presence of an implicit pair of outermost
demarcation directives, marking the start and end of the document. Text belonging
to the outermost level is discarded by the system; only explicitly marked up text
filters through into the output.

Action directives are used to generate output not corresponding to textual
input. Obvious examples are 'generate a blank line' and 'jump to the next tab posi
tion'.

Another aspect of actions is that they reduce the amount of redundant markup
that would result from the obligation to mark both the beginning and end of every
marked text piece. For example, in a sequence of paragraphs which all have to start
with say a blank line, we do not need to mark both the beginning and end of every
paragraph. The whole sequence is marked with one pair of directives (e.g. 'begin
plaintext' and 'end plaintext'). Every single paragraph within the sequence is begun
with a 'start paragraph' action, which will generate a blank line. The redundancy is
further reduced through the nesting of text types. Consider a formula embedded in
plaintext. The marker 'end of formula' implies the resumption of plaintext. In a sys
tem where only the beginning of text blocks must be marked, the 'end of formula'
directive would merely be replaced by a 'begin of plaintext' directive. All in all, in
spite of the use of directive pairs, the number of directives needed in our markup
scheme, is close to the logically possible minimum.

Parameter setting directives are used to change the values of numeric or
boolean variables that influence the format process. Examples are 'page size' and
'margin width' (numeric) or 'adjust on' and 'hyphenate on' (boolean). Thefull set of
parameters is duplicated for every text type, hence for instance every text type has
its own margin width. The scope of the effect of a parameter setting is given by the
following rules:

6

I. When a parameter setting directive occurs between the demarcation directives
of a marked text, it only has effect for text of the type of that marked piece.

2. This effect is carried over from the marked text in which the setting took place
to subsequent marked text pieces of the same type.

3. When a parameter setting occurs outside an outermost demarcated text block, it
is valid for all text types.

4. For every parameter, there is a (text type- and document class dependent)
default value with which we start off.

5. There is a 'reset' directive, which resets all parameters to their default values.
Just as with the parameter setting directives, reset can either have a global, or a
local effect.

The most common use of parameter setting directives is to temporarily switch
off hyphenation or change the typefont, but it is also possible to change, for
instance, the line length in footnotes.

Parameter settings are so-called procedural directives. 5 It is a trend in current
formatting systems to eliminate them as much as possible. (In the SCRIBE 10 system,
they are eliminated altogether.) In our system there is a tradeoff between the
number of document classes and text types to be dealt with and the frequency of use
of parameter setting directives. As will be seen below, it is up to the layout designer
to decide what balance he will strike between the two extremes possible.

Error handling

The markup of a document is subject to the following (class dependent) restric
tions:

I. The range of permissible parameter values is constrained.

2. The amount of text in a marked text piece may be limited.

3. Proper nesting of marked texts is required.

4. Only certain text types and actions may be nested within a given other text
type.

When the system detects a violation of these restrictions, the user will be
notified. Whenever meaningful, the error message will contain a suggestion for a
remedy. In that case, the system proceeds as if the suggestion has been followed. In
that way, the amount of meaningful output per run is maximized.

Enforcing these restrictions has turned out worthwile. Without introducing
redundant markup, a lot of missing or misplaced directives are spotted by the sys
tem. (Unfortunately, we have no statistics on this subject.)

In the remainder of this section we will discuss the restrictions in more detail.
Ad I. The domain of values of an individual parameter is restricted. For instance,
an indentation depth larger than the maximal width of the physical output device is
considered. an error. Furthermore, parameters can have conflicting values; consider
an indentation depth bigger than the line length.

7

Ad 2. Whiile for instance a paragraph might be arbitrarily long, more than one page
of text in a single footnote may seem undesirable.
Ad 3. Nesting of chunks of text could be accomplished by giving every text type its
own begin marker and providing one common end marker. Providing private end
markers for every text type gives more redundancy, however. In that way some of
the cases in which the user has lost track of the nesting are detected. In the strategy
we have adopted, it is checked whether an end marker is in accordance with the
current text type.
Ad 4. With every document class goes an internal system table which describes
allowed nestings of directives and actions. It is shown in fig. 2.

encountered directive

type 1 ... type n action I . .. action m
current type 1 0 or I ... 0 or I 0 or 1 0 or I

text

type type n 0 or 1 ... 0 or 1 0 or 1 ... 0 or 1

figure 2.

The rows of the table correspond with the text types of the document class, the
columns with the text types and actions. Suppose, there are n types and m actions.
When entry (i ,}), 1 ~i ~n, 1 ~j ~n contains a 'l', text type j may be nested in text
type i. When entry (i ,}), I ~i ~n, n <j ~n +m contains a '1', action j -n may be
used when text type i is the current one. All other nestings are forbidden.

Furthermore, there is an additional table that tells which text types may occur
at the outhermost level. (Example: a footnote as the outermost text type makes no
sense.)

LAYOUT DESIGNERS VIEW

What does a layout designer do?

It is lthe task of a layout designer to specify a document class and to implement
the format directives pertinent to it. This task encompasses the following:

I. Specification of how the text from a marked text piece is to be placed in a
block.

8

2. Specifications of the effect of actions.

3. Specification of the denotation for the format directives.

4. Specification of the nesting permissions.

5. Specification of how the text blocks are to be placed on a page.

6. Implementation of the specifications, i.e. 'microprogramming' the format
machine. This includes:

I. Writing procedures for text types and actions.

2. Writing procedures for the assembling of a page from already formatted
blocks of text.

3. Adding these procedures to the formatter.

4. Notifying the formatter of nesting permissions.

The last two of these tasks are accomplished by specifying entries in various
system tables.

Again we mention that these activities are above the level where lines are broken or
a formula is formatted.

Language tools

In this section we discuss requirements to be imposed on the programming
language used for the implementation of format directives.

In general, the language should be of a much higher level than the (macro)
languages often used in text formatting systems. In spite of its prime importance,
we will not attempt to go into this subject any further. We will only discuss those
language aspects, which are of specific importance to text formatting.

In the first place, we need string manipulation facilities of the following kind:

I. A string construction mechanism.

2. Operators or functions returning the dimensions of constructed strings.

3. A string analysis mechanism.

We will discuss these elements one by one.
The string construction mechanism has the aim of providing a tool with which

one can assemble blocks of text into bigger blocks. As an example, think of the
construction of a newspaper page, build up from headlines, columns etc. Hence, the
language must provide a data type 'string' with much more powerful properties than
those of the conventional one-dimensional string. As usual, a string is made up of
characters, but different characters can have different sizes and can belong to
different typographic fonts. A character is an n-tuple of the form (fontnr, charnr,
typographic data). Typographic data include at least character width, height, the
height of ascenders or descenders and a measure for slantedness. Furthermore,
there is one special character which behaves as a two-dimensional rubber band. It
starts out with zero dimensions, but can stretch and shrink with uniform elasticity in
the horizontal and vertical directions. This character is a generalization of the

9

rubber bands discussed by Gimpel, 4 but a restricted form of Knuth's glue. 3 For a
character to be part of a string, its position in a two dimensional quarter plane (the
string plane) must be specified. A string is any set of characters distributed across
such a plane. How this distribution comes about will be discussed below. (In this
discussion, we assume that the string plane is the lower righthand quarter plane,
with the positive y-axis pointing downward.)

A general string construction mechanism for '2-D' strings could be realized by
two dedicated language constructs: a string labeling-, and a concatenation construct.
The labeling construct is used to mark positions in the string-plane. In an impro
vised notation, it could look like:

LABEL stringl WITH {
labl AT posl,
/ab2 AT pos2,

/abn AT posn
};

figure 3a.

Here, string] is a string identifier, /abl, ... ,lab2 are label identifiers and posl, ... ,posn
denote expressions indicating a position in the string plane. A concatenation con
struct is used to paste together two labeled strings, i.e. a new string plane is gen
erated, containing images of the original strings. An image arizes through scaling
and translation.
Concatenation could look like:

CONCATENATE string] AND string2 PLACING {
stringl.labi ON string2.labj,
stringl./abk ON string2./abl,

};

figure 3b.

Here, the points in string], labeled /abi and /abk, are placed in the new string plane
in the same position as the points lab} and lab/ of string2. The upper left-hand
corner of string] is placed at the origin. When the strings do not contain rubber
band characters, one label in each string will do, otherwise more labels can be used.
It should be noted that this type of concatenation may fail. It is quite possible to
specify sets of points in both strings, all of which cannot be brought to coincide
pairwise.

Although quite general, this mechanism is much to cumbersome for frequent
use. We would probably want to use notions like 'upper left-hand corner' to take

the place of explicit labels. Furthermore we would want different compact notations
(e.g. operator notations) for concatenating two strings in the various ways suggested
in the diagram below:

s 1 s 1 s 1 s 1 e t C.

figure 4a.

There are infinitely many of these concatenation configurations. A way out would be
a language in which a user can declare his own operators. He would then construct
concatenation operators for his favorite string constructions, using the general
mechanism outlined above. An operator definition for the second concatenation
diagrammc~d in fig. 4, could look something like:

STRING OPERATOR conc2 (sl, s2)
STRING sl, s2; {

LABEL sl WITH Lsl AT (width(sl), 0);
LABEL s2 WITH Ls2 AT (0, 0);
CONCATENATE sl AND s2 PLACING sl.Lsl ON s2.Ls2

};

figure 4b.

In this example, width() is a function returning the width of its string argument. So,
(width(sl), 0) stands for the coordinates of the upper righthand corner of string sl.
As a complement to the construction operators, we need a string decomposition dev
ice. It must be possible to specify a window in a string plane and to perform an
operation which returns the characters of the string that can be viewed through this
window.

The dimension returning functions are quite trivial. An instance of their use can
be seen in the example of an operator definition. We only need the functions width
and height which take a string as argument. They return the x and y coordinate,
respectively, of the lower right-hand corner of the smallest rectangle whose upper
left-hand corner lies at the origin and which contains the characters in the string
plane. (The sides of the rectangle are parallel to the coordinate axis.)

Though it may come as a surprise, the string analysis functions we have in

11

mind only deal with conventional one-dimensional strings. They are mainly used
for analysis of the unformatted input. Although most of this work is automatically
done by the system on a level below the one where the advanced user operates (see
the subsection on input fetching), the availability of a string pattern matching
mechanism is nevertheless of great value. The demands made on the mechanism are
not so specific. Pattern matchers as diverse as those in SNOBOL4, 13 SPRING 1 and its
successor SUMMER 14 are suited for the task. ·

Finally, a question related to the programming language used, is whether there
is a compiler for that language supporting incremental compilation. This would
come in handy, because the layout designer is supposed to add pieces of code to the
already existing formatter code. A detailed treatment of this subject for an applica
tion comparable to ours can be found in the discussion of the extensible text editor
EMACS. 6

A model for text formatting

Let us view formatting as the mapping of marked up unformatted input to for
matted output, where the mapping is restricted by constraints.
Examples of constraints are:

1. A text of a certain type must fit in a block of 2 by 5 inch.

2. A page must start with text of type 'header'.

3. The last two lines of a paragraph should not be placed at the top of a page (i.e.
'widows' should be avoided).

We distinguish between static- and dynamic formulation. of constraints: The
examples above are formulated in a static way. A dynamic formulation of the third
constraint would be:
'When a page is about to be ended, check if there are at most two lines of the
current paragraph left. If so, postpone the termination of the page until the remain
ing lines are included.'

In this view, the central ~roblem is how constraints are presented to the for
matter. In a system as NROFF, both static and dynamic constraints are used; exam
ples are the specification of line length and the setting of a trap, respectively. These
constraints are given as part of the unformatted input. In TEX, 3 there is a special
form of static constraints which arize through penalties associated with, for instance,
potential line breaking points. Certain penalties are preset by the system, additional
ones can be specified by the user as part of the unformatted input. We feel that an
ideal system should:

1. Strictly separate constraint specification from textual input.

2. Employ a static formulation of constraints.

3. Provide a more natural way to formulate constraints than through the sole use
of penalties.

Unfortunately, this is too far fetched, because:

12

1. Some tasks must be left to the end user; otherwise the number of document
classes and text types would explode.

2. We would need a powerful formalism for specifying predicates on text types.

The last problem can be alleviated by using dynamic constraints; they can be stated
in existing algorithmic languages. Hence we settle for a hybrid approach; some con
straints are: formulated statically, others dynamically. We will discuss these in the
following two sections.

Static aspeds

The source code of the formatter consists of three sections:

1. The fixed code of the format machine.

2. A collection of tables, whose entries are supplied by the layout designer.

3. Code for the 'microprograms', again supplied by the layout designer.

Form of the layout directives

The first thing a layout designer must do, is to specify the text types and actions
needed in the document class for which he is about to 'microprogram' the formatter.
Next, he must decide what the begin- and end directives and action directives,
respectively, will look like. Their denotations will serve as keys in the formatter
tables.

Text types and buffers

When text is formatted, certain text blocks can only be positioned long after
they have 1been constructed (e.g. footnotes), while the position of others with respect
to surrounding blocks is immediately known (e.g. a numbered list). So, for the first
kind we need temporary storage space. For the second, we can use the private
storage of the first surrounding text type which has such storage. When a text type
needs a priivate buffer, this buffer must be declared. This is done by making an entry
in a formatter table. The key in the table is the denotation for the begin marker for
the text type. When the text block is to be limited in size, the size restrictions are
specified in the same table.

Buffers have a formatted text part and an unfinished text part. The formatted
text part contains text that has been brought in its final form, the unfinished text
part is a tiemporary storage area for text elements which still need further process
ing.

13

Filling of text buffers

For every text type, the layout designer must supply a procedure (which we will
call a text type procedure), which places text of that type in the appropriate buffer.
These procedures take as input unformatted text, or the content of buffers filled by
other text type procedures. Their names are entered in a table having as keys the
begin marker of the type. Often text type procedures are easy to construct. The sys
tem provid,:!s built-in routines, which can do most of the work. Examples are:
addword(wrtl bf), addline(bj), plaintext (wrd, bf).

Procedlllre plaintext is the built-in line breaker. Whenever it is called, it stores
the text-word argument wrd (a word from the input or from the text part of another
buffer), in the unfinished text part of the plaintext buffer. From time to time the
line breaker decides to add the words stored sofar to the formatted text of the
buffer. Whether this proceeds line wise, or for instance paragraph wise, is imma
terial at this level of use. When the layout designer needs explicit control at the line
level, he can use procedure addword to put a word in the unfinished text part. From
time to time, he may call addline to construct a line from those words and to
append it to the text part of the buffer.

Actions

Actions are implemented through procedures, supplied by the layout designer.
A procedure is invoked when the corresponding action directive is encountered in
the unformatted input. As usual, this is done through a table. Actions manipulate,
or contribute, to the text in the buffer in which the current text type procedure
places its ollltput. Again, there are some built-in procedures to assist in action writ
ing.

Nesting

Anothe:r table to be filled by the layout designer is the nesting permission table
(see fig. 2). There is one complication to be aware of here. Text types which own a
private text buffer cannot be invoked recursively, because the buffers are allocated
statically. This must be reflected in the nesting permission table. _This restriction
may seem quite severe, but we are not aware of practical situations where it really
causes problems. Meanwhile, the restriction greatly simplifies the format machine,
and more important, the model of text formatting is kept straightforward.

* It turns out, that text types which must be used recursively, (notably numbered lists), can do without
private buffers.

14

Page construction

At certain moments, a page must be constructed. When this is the case, pro
cedure buildpage is invoked. This procedure is supplied by the layout designer. It
describes what the page will look like in terms of its constituent text blocks. The
invocation moments are determined by dynamic constraints to be discussed later.
Example: Suppose a document class contains the text types header, footer, footnote,
plaintext and title. All text types, except title, have a private buffer. Title puts its
output text in the plaintext buffer. We will denote the text types by HR, FR, FN,
PT and TI. The (text parts of) buffers are denoted by buff{HRJ etc. A page is built
up from a header at the top, followed by plaintext, followed by footnotes if any are
present, and is terminate~ by a footer at the bottom. In a crude form, procedure
buildpage looks as shown in fig. 5.

PROC buildpage {

}

"generate page number, make it part of the header";
print(lpile(buff{HRJ, vspace, buff{PTJ, vspace,

)
);

IF height(buff{FN] > 0 THEN
buff[FNJ, vspace, buff[FRJ

ELSE
buff{FR]

FI

buff{PT]:=buff[FN]:=empty

figure S.

Here, !pile is a concatenation function with a variable number of arguments. It
returns a string, constructed form its arguments, by placing them above each other
(the first argument comes at the top), with their left sides alligned. The variable
vspace denotes a string of blank space and empty denotes the emf tY string.

The text blocks used here resemble the ones in TEXTURE and bear a resem
blance to the objects from which galley-beds are constructed in JANUS. 9 They are
quite different from the boxes in TEX. 3 The use of TEX's boxes ranges from encom
passing single characters till whole pages.

* In this and the following program examples, we use the language SPRING 1, apart from the fact that
we represent keywords in capitals.

15

Dynamic aspects

The purpose of this section is, to discuss dynamic constraints in greater depth.
To this end we must describe the flow of control in the format machine and some of
the fixed (not microprogrammable) tasks it performs. This is the subject of the fol
lowing thre:e subsections. Thereafter, dynamic constraints themselves will be dis
cussed.

The formatting process

The operation of the format machine is sketched in figure 6. The format pro
cess has the form of a loop. On every iteration a piece of input is fetched and
returned by procedure getinp. It is a self-contained unit which is either a format
directive, or a piece of text. If it is a piece of text it either is a chunck of input text
(preprocess,ed by getinp) or it is a block of text which is already formatted, but
which must be incorporated in another block (see the next subsection).

WHILE input:=getinp(flag) "not equal end of input" DO

OD;

IF input "is a begin of text type directive" THEN (1)
"check nesting permission";
"do text type switching'';
dynconst3[oldtype} [curtype]() (2)

ELIF input "is an end of text type directive" THEN

ELIF input "is a parameter setting directive" THEN
"check parameter value";
"set parameter";

ELIF input "is an action directive" THEN (3)
"check nesting permission";
dynconstl[inputj(); (4)
result:=acctable [input J (); (5)
dynconst2[inputj [result](); (6)

ELIF input "is a textual unit" THEN
report:=texttypetable [curtype }(input); (7)
dynconst6[curtype} [report}(); (8)

FI

figure 6.

When the unit is a textual unit, it is passed to the routine for the current text
type. The name of this routine is found in table texttypetable, (see statement 7 from
fig. 6) using the key curtype. The routine itself must have been supplied by the lay
out designer.

16

When the input is a format directive, further processing depends on whether it
is demarcation directive which denotes the begin or end of a text type, an action, or
a parameter setting directive. If it concerns a demarcation directive, (statement I)
text type switching (see below) occurs. If it concerns an action, (statement 3) a pro
cedure supplied by the layout designer from the table acttable (statement 5) is
invoked. In all these cases, checks are made to see whether the required operation
is allowed. Aspects which have not yet been discussed are: input fetching, text type
switching, and dynamic constraint specification. We will tum to these matters in the
next sections.

Input fetching

Procedure getinp delivers input units to the main formatter loop. They can be
fetched from two different sources: from the unformatted text or from the private
buffer for a text type. In the last case, such a unit is a block containing fully for
matted graphical material. We will discuss this case first.

Suppose that, during formatting of plaintext, an equation must be processed.
'Equation' will probably be a text type with a private buffer. The formatted equa
tion will be put in this buffer. When the processing of plaintext is resumed, the first
thing that must be done is to pick up the equation from the equation buffer and to
place it in the plaintext buffer. This fetching is done by getinp, the placement by the
normal plaintext routine. This mode of operation is not standard; a formatted foot
note must be left in its buffer until a page is constructed and must not be further
processed by the plaintext routine. There is a table (given by the layout designer)
which tells which text type procedures generate output that must still be processed
by the procedure dealing with the surrounding text type. Output from the other text
type routines is left untouched until the page is constructed.

The other (and more common) mode of operation of getinp is when units of
input from the unformatted document are fetched. What constitutes a unit is deter
mined by the value of flag, which is passed as a parameter to getunit. It is intended
that flag is set to the appropriate value by the text type procedures. A unit can be:

I. The next word from the input, i.e. a string of characters not containing blanks
or newlines.

2. The next input line, unless this line contains the end marker for the current text
type. In that case, the string preceding the marker (if any) is returned first fol
lowed by the marker itself.

3. All input until, but not including, the end marker of the current text type.
Thereafter the end marker itself is returned.

Case I is the most common one and it is intended for plaintext. Case 2 is needed
when, for instance, lines from the unformatted input must be copied literaly to the
formatted output. Case 3 will, among other things, be used by a formula processing
routine because it needs the whole formula before its layout can be determined.
When the second or third modes of operation are used, it is possible that layout
directives hidden in the input units returned by getinp are not automatically recog
nized by the formatter. So these modes must be used with care. The end marker of

17

the current text type is always returned as a separate unit and hence is always recog
nized.

Finally, getinp performs operations on the character level like accenting or over
printing. This is a built-in facility not to be tampered with by the layout designer.

Text type switching

In this section, we outline what happens when a text type is superceded by
another one. Part of the process sketched in fig. 6, is shown in more detail in fig. 7.

IF input "is a begin of text type directive" THEN

FI;

"check nesting permission"; (1)
newtype:="type of text, about to begin";
report:=texttypeinitl [newtype](); (2)
dynconst6[newtype][report](); (3)
IF "curtype may be called recursively" THEN (4)

stack(stackedstorage [curtype])
Fl;
stack(curtype); (5)
curtype:=newtype; (6)
IF" curtype may be called recursively" THEN (7)

stackedstorage [curtype] :=default[curtype]
FI;
"set parameters";
report:=textypeinit2 [curtype J ();
dynconst6[curtype] [report]()

figure 7.

(8)
(9)
(10)

The crucial statement is statement 6. After it is executed, the current text type
is the one whose begin directive has just been recognized. Before its execution, the
type of the more global marked text piece is still current.

Before and after the text type switch, initialization routines are invoked (see
lines 2 and 9). These routines are addressed through tables texttypeinitl and
texttypeinit2, respectively. The first operates in the environment (buffer, parameter
values) valid before, and the second in the environment valid after the text type
switch. An example of their use is the following: Suppose a footnote text is encoun
tered in the middle of plaintext. Through texttypeinitl a routine will be invoked
which puts a reference to the footnote in the private buffer for plaintext. A routine
from texttypeinit2 will attach a corresponding label to the footnote text, this time in
the footnote buffer.

Now, we tum to statements 4 and 7. Certain text types can be nested recur
sively. Hence, storage space for variables may be needed, which is properly initial
ized, stacked and unstacked. The address of the storage area for text of type curtype
is found in the table element stackedstorage[curtype]. It is put there by the layout

18

designer. The storage area itself is declared by the layout designer as part of the
'microprogram section' of the formatter. In statement 4, the storage area (if any) of
the more global text type gets copied to the stack. In statement 7, the storage for the
text type that has just been made current, is initialized.

In statement 5, the designation for the more global text type is stacked, while in
statement 9, the parameters are set to values pertinent for the new text type. State
ments 3 and 10 will be discussed in the next section. Finally we remark that, when
the end marker of a text type occurs, an analogous sequence of steps is taken. The
main difference is, that text type identification and storage contents, are restored
from the stack.

Dynamic constraints

The :aim of dynamic constraints is, to provide the layout designer with the tools
to make the formatter react as desired when certain conditions pertinent to the
document layout become true. Again, this must be done through 'microprogram
ming' of lthe formatter, without modifying jts fixed code.

First we observe that the kind of conditions we have in mind can only change
at very specific moments during the format process. We call those moments syn
chronization points. They are:

1. Just before the invocation of an action procedure.

2. Just after the invocation of an action procedure.

3. When the begin delimiter for a text type is encountered.

4. When the end delimiter is recognized.

5. When a text type is made current again, after the termination of a type nested
within it.

6. When a text type routine or its initialization or termination routines may have
put text in a text type buffer.

Furthermore, a routine which may put text in a buffer must return a report
describing what it has done. Possible reports are:

1. Word added (to the unfinished text of the buffer).

2. Line added (to the bottom of the text part of the buffer).

3. Block added (to the bottom of the text part of the buffer).

4. Buffer full (i.e. last added text element filled up the buffer).

5. Error.

These standard reports are believed to be sufficient but, if needed, the layout
designer can extend the list.

With every synchronization point, a different table of functions is associated
from which a function is invoked whenever that point is reached. The functions are
supplied by the layout designer. Which function is chosen from the table depends
on the most recent demarcation- or action directive and may further depend on the
last report returned by a text type- or action procedure. By way of an example, see
statements 3 and 10 from figure 7, or statements 2, 4, 6, and 8 from fig. 6.

19

More precicely, the six tables containing contraint routines are indexed as follows:

tabel indices
type

1 action designation, result-report
2 ,,
3 type of text about to begin
4 type of terminated text
5 type of terminated text , type of

text about to resume activity
6 current text type, result-report

figure 8.

It should be noted that through the introduction of fixed synchronization points
and standard reports, a mechanism is provided to partially specify the conditions
pertinent to dynamic constraints in a systematic way. When a dynamic constraint
procedure is invoked, it is guaranteed that certain conditions belonging to a fixed,
limited, set are met. (For instance, a line has been added to a buffer by an action
procedure.) In general, the procedure will perform additional tests of course.

Example: We extend the example of fig. 5 and sketch two dynamic constraint
routines (se:e fig. 9b). The first, PT!ineadded, is invoked whenever the plaintext rou
tine reports that a line has been added to buff PT]. It is a routine from the sixth
constraint table. The other, Tlstart, checks, before a title is added to buff[PTJ, if
there is enough space left on the current page for the title plus three text lines. If
not, a page is constructed first, and the title will be placed at the top of the next
one. Tlstart is a routine from the third constraint table.

PROC texth {
return(height(bujf[HR})+height(buff[FRJ)+height(buff[PT})+

height(buff[FNJ+2*height(vspace)+

)
};

IF height(buff[FN}) > 0 THEN
height(vspace)

ELSE
0

FI;

figure 9a.

In the example, pageh (see fig. 9b) stands for the height of a page and texth (see
fig. 9a) is an auxiliary function provided by the layout designer. It returns the
height the page would have if it were constructed from the contents of the text
buffers as they are at this moment.

20

PROCEDURE PT!ineadded {
IF texth = pageh THEN buildpage FI

};

PROCEDURE Tistart {

};

IF pageh - texth < "space for title+ 3 lines" THEN
buildpage

FI

figure 9b.

At this point, a comparison with traps, as occuring in NROFF, 2 is in place. In
that system, traps are used to implement what we have called dynamic constraints.
A trap is set to indicate that at specific moments during the format process, specific
macros must be invoked. These moments can be:

1. When line N of the current page is reached.

2. When line N of the current diversion is reached. (Text that cannot immediately
be placed on the current page, for instance footnote text, is temporarily diverted
to a buffer, called a diversion.)

3. When line N from the input is reached.

The main difference between this mechanism and our one is that in the latter
we differentiate between much more synchronization moments. In particular, infor
mation about the nesting of text types and actions at a specific synchronization
moment is implicitely provided, a feature absent in NROFF. This information is
needed for instance, if we want to decide whether an action which normally gen
erates a blank line, will really place a blank line in the output, or cause a new page
to be started. (Note that a blank line near the bottom of a page should be avoided
in plaintext, but not in a footnote.)

AN IMPLEMENTATION

A large subset of the system discussed in the previous chapters has been imple
mented and has been in use for about two years. The system that is proposed here
is in some aspects an improvement on the implemented system. Experience gained
through the implementation has been taken into account. The differences are not
modifications of the original design; they have the nature of extensions.
The most important are:

1. The string construction mechanism is much more powerful than the one imple
mented.

21

2. Procedure getinp, which analyses the unformatted input, is slightly more power-
ful than the one implemented.

3. The 'reset' directive was absent in the initial design.

Apart from these modifications, the implementation realizes a s~bset of the original
design in that:

1. The implementation only deals with fixed size characters (i.e. typewriter fonts).

2. Only a simple line-breaker and no mathematics formatting primitives have been
provided.

The system has been implemented on a PDPl 1/45 under the UNIX 12 operating
system. The language used is SPRING. 1 The format machine is implemented in this
language; it is also the language to be used by the layout designer. The choice of
SPRING brings about a string construction mechanism less poweful than the one
desired and precludes the use of variable sized characters. . The choice ot this
language is nevertheless considered fortunate. It meets our other requirements and,
on top of that, a data type 'table' is available.

The most important problems encountered were those of memory requirements
and speed of execution. The SPRING compiler generates code that is interpreted.
On the PDPl 1/45 the code of the interpreter plus the interpreted formatter code
does not leave much space for data. The result is that the system spend most of its
time doing garbage collection, especially when large pages are formatted (which are
wholly kept in core). The execution time does critically rise with page size. For a
page of seventy lines, a formatting time of up to thirty seconds may well result.

In spite of these severe restrictions, the system provides a working environment,
which was up to the expectations.

22

REFERENCES

I. P. Klint, From SPRING to SUMMER: Design, defintion and implementation of pro
gramming languages for string manipulation and pattern matching, Stichting
Mathematisch Centrum, Amsterdam, (1982)

2. J.F. Ossanna, NROFF/TROFF User's Manual, Bell Laboratories Computing Sci-
ence Technical Report 54, 1976

3. D.E. Knuth, TEX and METAFONT, Digital Press, 1979

4. J.F. Gimpel, Algorithms in SNOBOL4, John Wiley & Sons, New York 1976

5. C.F. Goldfarb, A Generalized Approach to Document Markup, Proceedings of the
ACM SIGPLAN SIGOA Symposium on Text Manipulation, 68-73 (1981)

6. R.M. Stallman, EMACS, the extensible, customizable self-documenting display edi
tor, Proceedings of the ACM SIGPLAN SIGOA Symposium on Text Manipu-
lation, 147-156 (1981) ·

7. M. Gorlick, V. Manis, T. Rushworth, P. van den Bosch, T. Venema, Texture, A
document Processor, Department of Computer Science, University of Britisch
Columbia Vancouver B.C, Technical Report 76-1 (1976)

8. J.O. Achugbue, On the line breaking problem in text formatting, Proceedings of
the ACM SIGPLAN SIGOA Symposium on Text Manipulation, 117-122 (1981)

9. D.D. Chamberlin, J.C. King, D.R. Slute, S.J.P. Todd, B.W. Wade, JANUS: an
interactive system for document composition, Proceedings of the ACM SIGPLAN
SIGOA Symposium on Text Manipulation, 82-99 (1981)

10. B.K. Reid, A High-Level Approach to Computer Document Formatting, Confer
ence Record of the Seventh Annual ACM Symposium on Principles of Pro
gramming Languages, Las Vegas, 24-3 I (1980)

11. L. Tesler, PUB The Document Compiler, Stanford Artificial Intellige~ce Project,
Operating Note 70, (1973)

12. D.M. Ritchie and K. Thomson, The UNIX Time-Sharing System, CACM, 17,
No7, 365-375, (July 1974)

13. R.E. Griswold, J.F. Poage, J.P. Polonsky, The SNOBOL4 Programming Language,
Second Edition, Prentice-Hall, Englewood Cliffs, N.J, (1971)

14. P. Klint, An Overview of the SUMMER Programming Language, Conference
Record of the Seventh Annual ACM Symposium on Principles of Programming
Languages, Las Vegas, 47-55 (1980)

ONTVANGEN O 1 APR. 1982·

