
stichting 

mathematisch 

centrum 

AFDELING MATHEMATISCHE STATISTIEK SW 92/82 
(DEPARTMENT OF MATHEMATICAL STATISTICS) 

H.C.P. BERBEE & R.C. BRADLEY 

A LIMITATION OF MARKOV REPRESENTATION 
FOR STATIONARY PROCESSES 
Preprint 

~ 
MC 

DECEMBER 

kruislaan 413 1098 SJ amsterdam 

l!BUOTHEEK MATHEM,,e,._T!SCM GENTftU!t$ 
AMSi"ERDAM 



PJun.ted at .the Ma,thema,t),c..a£ C ent1r.e, 41 3 K.1U.L.,{,6.f.aan, Am6 .te.Jl.dam. 

The Ma.themtLti..c..ai. Cent1r.e, oounded .the 11-.th oo FeblU.LMy 1946, ,i.,6 a non
pJr.oo,U -ln6.t.,U,u,t.i,on a..i..ming at .the pJr.omo.tlon oo pUJr.e ma.thema,t),C6 and m 
appU.c..a.t-lon6. I.t ,i.,6 -0pon60Jr.ed by .the Ne.their.land& GoveJr.nmen.t .thJr.ough .the 
Ne.thelr.land6 01tgan-lza,V_on ooJr. .the Advanc..emen.t o o PUJr.e Ru ea1r.c..h ( Z .W. 0.) • 

1980 Mathematics subject classification: Primary: 60J10 
Secondary: 60Gl0 



A limitation of Markov representation for stationary processes*) 

by 

~) 
H.C.P. Berbee & R.C. Bradley 

ABSTRACT 

The existence of a representation of a stationary process as an in

stantaneous function of a real, irreducible Markov chain imposes important 

restrictions on the distribution of the process. We construct a countably

valued stationary process with a very strong mixing property for which such 

a representation does not exist. 
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1 . INTRODUCTION 

Suppose one is interested in a certain random stationary phenomenon. 

To study it, one makes a series of measurements and thus obtains a stationary 

sequence F;, := (F;, ) rn• n nE:u.. Then one often models F;, as a functional on an 

underlying Markov chain (or perhaps as a Markov chain itself). This approach 

is of great value; it provides a nice probabilistic structure that can be 

used in the statistical analysis of the phenomenon. However we shall show 

below that there are quite reasonable situations where, in a certain sense, 

such an approach can never be entirely correct. 

Throughout this article we restrict our attention to strictly station

ary processes. 

Let E; := (F;,) 77 be a stationary process and Y := (Y ) 77 a station-
n nEu.. 1 n nEu.. 

ary Markov chain. The process E; is represented as an instantaneous function 

of Y if 

(1 • 1) = f(Y) 
n 

for n E 2Z , 

where f is a measurable function on the state space of Y. We want to consider 

quite general Markov chains, though we have to impose some assumption to 

avoid a trivial representation like 

( 1. 2) y := ( ••• ,E; l'E; ), n n- n 
IC' = f (Y ) , 
"'n n 

with f denoting projection onto the last coordinate. Of course Yin (1.2) 

is a Markov chain. Nevertheless (1.2) does not describe a useful representa

tion because the random variables Y retain all information about the past, . n 
which is impractical. To avoid such representations we impose a well-known 

irreducibility assumption on Y, to be formulated later. Our aim is to 

construct examples of stationary processes l; having some nice properties 

(e.g. very strong mixing properties) that cannot be represented as in (I.I) 

with Y being irreducible. 

Let us now describe the probabilistic structure of our examples. First 

let N be the class of stationary processes which can be represented as an 

instantaneous function of a stationary, finite-state, irreducible, 
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aperiodic Markov chain. Such processes are well known to have very nice 

asymptotic properties, including very strong mixing properties. We shall 

construct a stationary process R := (R) of the form n nE7l 

R : = (X (I ) , X ( 2 ) , ••• ) , 
n n n n E 7l 

where for each k, X(k) := (X(k)) is a process in the class N. We may 
n nE7l 

see R as describing "reality" at time n, and the X-variables as giving 
n 

the various aspects of "reality". The processes X(k) will be independent 

of each other. This simplifies the structure (but is perhaps unrealistic). 

The (infinite dimensional) random vector R consists of countably many 
n 

random variables. A statistician is interested in much less information. 

Say he observes only 

where g is some countably-valued function. The process ~ := (~ ) = is n nEu... 
stationary. We shall show that there need not exist an irreducible-Markov 

representation for~- In our examples g will have a simple form, such 

that~ depends only on finitely many components of R. Of course the 
n n 

number of components on which~ depends will not be bounded (for otherwise 
n 

we would have~ EN). 

The examples are presented to show that (non-trivial) Markov represen

tations are not always correct in circumstances that seem quite reasonable. 

The few examples that we present do not seem to enable one to get a 

general picture of when Markov representation can or cannot be used. Never

theless results as presented here lead us to emphasize the importance of 

a theory of statistical inference for stationary processes (e.g. central 

limit theory) where no Markov assumptions are present. 

Already earlier studies were concerned with Markov representation. We 

can mention JOHNSON (1974) who discussed representation from a very general 

and only slightly related point of view. ROSENBLATT (1971) surveys litera

ture on representation in terms of finite-state Markov chains and mentions 

a necessary and sufficient condition for such a representation. 

Let us now formulate the assumption we impose on the Markov chains Y 



that we consider in relation to representation (1.1). We assume 

(1.3)(i) Y is a real, stationary Markov chain, and 

(ii) Y is irreducible with respect to the distribution 1r of Y0 • 

3 

The assumption (1 .3)(i) is not very restrictive. Because we are only 

interested in representation, if the state space of a Markov chain Y can be 

imbedded bimeasurably in the real line it is for our purpose real-v~lued, 

For example stationary, positive-recurrent Markov chains with a countable 

state space satisfy in essence our assumptions. 

The assumption (1.3)(ii) means that for every real number x and every 

Borel set B with 1r(B) > 0 one has 

n P (x,B) > 0 for some n 2: 1. 

Here Pn(.,.) denotes then-th iterate of a regular transition probability 

for Y. This assumption is a quite natural generalization of the irreducibil

ity concept for Markov chains with countable state space, and also the well

known limit theorems for transition probabilities carry over (see OREY 

(1971)). In particular, Y satisfies the Harris recurrence property, i.e. 

if x E JR and Bis a Borel set with 1r(B) > 0 then P(Y EB for infinitely 
n 

many n 2: 1 I Y0 = x) = 1; This can be deduced (with a little work) from 

OREY (1971), p.38, Theorem 8.1 and our assumption of stationarity. 

Let us denote by M the class of processes~ that can be represented 

(possibly after extension of the probability space) as an instantaneous 

function of a Markov chain Y satisfying (1.3). 

Though Mis a large class it certainly does not contain all stationary 

processes. It is well known that processes in M satisfy a mixing-type 

property. Our aim is to show that also assumptions of a different nature are 

implicit in the restriction to M. But let us first describe this mixing-type 

property. Assume for the moment that Y satisfies (1.3) and is aperiodic. 

Then using OREY (1971), p.30, Theorem 7.1 it is easily seen that Y is 

strongly mixing, aq.d if (1.1) holds then also~ is strongly mixing. This 

argument can be used to show that in fact Y and~ are absolutely regular. 

Absolute regularity is a lesser known, stronger mixing property, discussed 

e.g. in VOLKONSKII and ROZANOV (1959) and, under the name "weak Bernoulli", 
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in SHIELDS ( 1973). We assumed Y is aperiodic; the argument above is how

ever easily adapted to cover the periodic case too, and we leave the reader 

to formulate which restriction of a similar nature it implies for s EM in 

general. 

We use the notation PZ for the distribution of a random vector z. If 

a term like a is a subscript or superscript, it is usually written a(n). 
n 

We want to develop necesssary conditions for s EM. Markov chain theo-

ry leads easily to an interesting condition for s EM, as follows. Suppose 

Y satisfies (1.3). From irreducibility we have by OREY (1971), p.7, Theorem 

2.1 that there exists a (positive) measure~/ 0 (meaning ~(lR>O) and an 

integer k > 0 such that 

( I .4) PY(O),Y(k) ~ ~ X ~-

If (I.I) holds then we also have 

( I .5) P~<o),s<t) ~ix i 

~ -1 ~ 
where~ := ~of . Thus in order thats EM there must exist a measure~/ 0 

such that (1.5) holds for some k > 0. In section 3 we discuss a process that 

violates this condition. The reader may verify easily that such processes are 

necessarily uncountably-valued. To remedy for this we derive in section 4 a 

more restrictive necessary condition for~ EM, to be used in our discussion 

of countably-valued processes. 

The examples that we construct are ~-mixing and have an even stronger 

mixing property. Define the i/J*-dependenee between two a-fields of a proba-

bility space by 

* P(AnB) 
(1.6) 1/J (A,B) = sup P(A)P(B) 

A E A, B E B, P(A) > O, P(B) > o. 

Obviously * 1/J (A,B) ~ and equality holds if and only if A and Bare in-

dep·endent a-fields. A stationary process E; will be called * i/J -mixing if its 

past and future are asymptotically independent in the sense that 
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as n -+ 00 • 

Here the notation B(~k,kEK) means the Borel a-field of events generated by 

the family of r.v.'s (~,kEK), K being any set of integers. To avoid 

ambiguity when other stationary sequences are present, we sometimes write 

~*(~) instead of~*. 
n n 

Our main result is stated as follows: 

THEOREM I • I • There exists a stationary countab Zy-vaZued process ~ such that 

(i) ~ I. M, so ~ cannot be represented as an instantaneous function of a ~: 

Markov chain satisfying ( I • 3) 

* (ii)~ - 1-+ 0 with exponential rate as n-+ 00 • 
n 

We shall discuss three examples of ~tationary ~*-mixing processes that 

do not belong to the class M. The first and simplest one, which we shall 

call X, has the structure of the process R mentioned above. It has exponen

tial mixing rate (as in Theorem I.I(ii)) but is uncountably-valued. Its pur

pose is to help clarify the second and third examples. The process X will 

be constructed at the end of this section and is discussed in sections 2 and 

3. 

The second example is the process~ of Theorem I.I. It will be con

structed and studied in section 5. Section 4 develops a criterion that will 

be used to show~ I. M. 
The third example, discussed in section 6, will also be countably-valued 

and will have finite entropy; its mixing rate will be slower than exponen

tial. 

CONSTRUCTION OF THE PROCESS X: 

As "building blocks" we shall use a class of simple finite-state 

Markov chains. For each m ~ 3 let S(m) denote the distribution of a station

ary Markov chain W := (W) = with state space {I,2, .•• ,m}, with invariant n nEu.. 
marginal distribution (I/m, .•• ,I/m), and with one-step transition probabili-

ties given by 
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( 1 • 7) p .. = 0 if i = J 
iJ 

1 h . = --1 ot erwise. m-

Such a process has small and rapidly decreasing $*-mixing coefficients, 

especially if mis large (Lemma 2.1). Also note that w0 'f w1 a.s. 

Let us specify the integers 

( 1 .8) 

For each k ~ 1 let X(k) := (X(k)) be a process such that the subsequence 
n nEZl 

(X(k)) 
nk 7l has the distribution S(m.) and is independent of the family of 

nE (k) K. 
r.v.'s (X : n t O mod k) outside of thi~ subsequence; we also require that 

n 
X(k) be stationary, and thus its distribution is completely determined. 

(1) (2) 
Also we assume that X ,X , .•. are independent processes. 

( 1 • 9) 

The process X := (X) 7l is defined by n nE 

X := (il) ,x< 2) , ..• ) 'v'n E Zl. 
n n n 

Of course Xis not countably-valued. The random variable xO is of course 

dependent on the "past", ( ... ,x_2,x_ 1). Note however that the k-th component 

xak) depends on the past only via x~\_) and in particular xik) 'f X~~) a.s. 

One might say that the process is built such that it "learns" not to attain 

certain values in certain situations. This viewpoint suggests a fommulation 

of the process as a learning model as discussed in IOSIFESCU and THEODORESCU 

(1969). 

In sections 2 and 3 we show that Xis exponentially $*-mixing. A quite 

simple argument based on the fact (noted above) that 

(1. 10) 'v'j E 7l 

will be used to disprove (I .5) and thus show that Xi M; this is done in 

Lemma 3.2. 

The countably-valued process~ of section 5 (our second example) will 

be obtained from X as follows: 
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~ = (A X (A(n))) 
n n' n ' n E 'll. 

Here A := (A) is a certain i.i.d. sequence, independent of X and with 
n nE7l 

values in the positive integers. With a little work the reader will be able 

to show that this process has the form 

n E 'll, 

where (R) is a process having precisely the structure described earlier 
n 

and~ = g(R) depends only on a finite (random) number of components of R. 
n n n 

The third example, given in section 6, will have a quite similar structure. 

* 2. ijJ -'-MIXING 

First we study the mixing rates of the finite-state Markov chains with 

the distributions S(m), m 2 3, for which the transition probabilities are 

given in (I. 7) • 

LEMMA 2 .1. If m 2 3 then a Markov chain W := (W ) 'll with the distribution n IlE 

S(m) is exponentially iµ*-mixing, such that 

\fn 2 1. 

This inequality is crude but simple; 1.n fact we shall use it only for 

m 2 9 (the smallest~ in (1.8)). 

PROOF. The transition probability matrix lP 

as 

lP = [m/(m-l)]J - [1/(m-l)]I 
m m 

:= (p .. ) 
1.J 

in (1.7) can be written 

where I is them x m identity matrix and J 1.s them x m matrix with all 
m m 2 

entries equal to 1/m. Using induction and the fact that J = J, we have 
m m 

that 

\fn 2 1 • 
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For each n the diagonal elements of 1Pn are equal to some common valued and the 
n 

off-diagonal elements are equal to some common value c • For each none can show 
n 

that 

* * $ (W) = $ (B(W0), B(W )) 
n n 

= 

The first equality here follows from the Markov property, the second can be 

proved with an elementary argument, and the third is trivial. 

Since m ~ 3 (by assumption) we have that for odd n ~ I, 

d < c = (I /m) • (I+[ I/ (m-1) Jn) 
n n 

and for even n ~ 2, 

c < d = (I /m) • (I+ (m-1) • [I/ (m-1) ]n) 
n n 

::; (1/m) • (l+m•[2/m]n) 

* Hence$ (W) - I • 0 at the 
n 

n general rate [l/(m-1)] , and we also have 

$*(w) ::; (I + [2/m112 Jn) Vn ~ 1, 
n 

which implies log $*(w) ::; (2/m112)n. D 
n 

The next step is to use Lemma 2.1 to get bounds on the mixing rate for 

each of the processes X(k), k ~ I (see (I .9)); this will be done in Section 

3. Because these processes X(k), k ~ I, are independent we have 

(2. I) Vn 

by Lemma 2.2 below, and (2.1) will be used in Section 3 to get an exponen

tial bound on the mixing rate for the process X. 

LEMMA 2.2. Suppose A and B, n = 1,2, ... are a-fields. If the a-fieZd,s n n 
A v B, n = 1,2, ..• are independent then 

n n 
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* * w (VA, VB)= TT w (A ,B ). 
>l n >l n >l n n n- n- n_ 

The proof is elementary and is sketched in BRADLEY (1981), Lemna 1. 

3. THE PROPERTIES OF THE EXAMPLE X. 

Two properties of the (uncountably-valued) process X defined by (1.9) 

are given here. 

* LEMMA 3.1. w (X) - 1 + 0 exponentially as n + 00 • 
n 

PROOF. For each fixed k ~ the process X(k) can be split up into subse
(k) 

quences (X.k+'). ~ for i = 1,2, ••• ,k. These subsequences are independent 
J l J Eu.. 

and have the distribution S(~). Let W by any process with the distribution 

S(~). If n is any positive integer, then it can be written as n = jk + i 

where 1 ~ i ~ k and j ~ 0, and we have 

(3. 1) log w:(x(k)) ~ log w;k+l(X(k)) 

= k log w;+l (W) ~ k • [2/mi!_/2Jj+l 

= k • (2/3k)j+l ~ (2/3)max(n,k). 

Here the first inequality is trivial. The first equality follows from 

Lemma 2.2 and the structure of X(k). The second inequality holds by Lemma 

2.1 (see also (1.8)). The last inequality holds by the definition of j in 

terms of n. 

By (2.1) we may conclude 

log w*(x) ~ l 
n k~l 

(2/ 3)max(n,k) 

= (n+2) • (2/3) 0 = a((3/4) 0 ) as n + 00 

and Lemma 3.1 follows. 0 
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LEMMA 3.2. Xi M. 

PROOF. The process X has its values in a spacer of sequences of integers. 

As we mentioned in the first section, it suffices to show that there cannot 

exist a positive integer k and measure¢ f O on r such that (1.5) holds. 

Suppose such a k and i exist. Partition r as r = u.r. where r. consists 
1.1.~ 1. 

of all sequences in r with i as their kth coordinate. Then cp(r.) > 0 for some 1. 
i, and so by (1.5), 

P(xo(k)=x!k)=1.0 ) P(X r X. r) --k = OE i ,--kE i 

2-: cJ> x ¢ (r. xr.) > o 1. 1. 

This contradicts the fact X6k) # ~k) a.s. which holds by (1.10). Hence 

Lemma 3.2 holds. D 

We have verified that X satisfies (i) and (ii) of Theorem I.I. To prove 

' ' M, where ' is the countably-valued process to be constructed in section 

5 (for Theorem 1 • I ) , the argument in Lennna 3.2 cannot be used, as we noted 

earlier, because the existence of such a k and ¢ is automatic in the count-

able-state case. So in the next section we give another criterion which is 

similar to but stronger than (1.5). 

4. MARKOV-CHAINS 

Suppose Y satisfies (1.3). Because of (1.3)(ii) there exists by Orey 

(1971), p. 7, Theorem 2.1 a C-set, i.e. a Borel set C with1r(C) > 0, an, 

integer m > 0 and a number c > 0 such that 

(4. I) Vx EC VA C C. 

Here Pm(.,.) denotes them-step transition probability of Y as before, and 

it is understood that A is restricted to the class of Borel sets. Obviously 

(4.1) implies (1.4). The existence of a C-set has strong consequences for 

the distribution of a Markov process. In Orey ( 1971) and also Nummelin 
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(1978) such sets play a central role in the study of the limit behavior of 

Y. We shall use another consequence of the existence of a C-set. 

LEMMA 4.1: Suppose Y is a Markov chain satisfying (1.3), and let p denote 

its period. Then there exists a number y > 0 and integers m > O and n0 > O 

such that pJm and for all n ~ n0 with p[n there exists a measure ¢non 
JR n+ 1 with ¢ (IR n+ 1) = y such that 

n 

(4.2) p 
Y(-n),Y(-n+1), ..• ,Y(O),Y(m),Y(m+1), ••• ,Y(m+n) ~ ¢n x ¢n• 

Of course the restriction pl'n is superfluous for aperiodic Markov chains. 

The existence of a period p(=1 if Y is aperiodic) is a well known property 

of stationary irreducible Markov chains; see Orey (1971), p. 13, Theorem 3.1 •. 

PROOF: Let C be a C-set, and let m and c be as in (4.1~,Also define the 

measure TIC(.) := TI(.nC). We have pjm because p 1s the period of Y. If n > 2m 

and if A and Bare Borel sets then 

PY(O) ,Y(n) (AxB) ~ f f f 
m n-2m m P (z,B)P (y,dz)P (x,dy)TI(dx) 

A C C 

~ f f f 
A C C 

2 
= c TIC x TIC(AxB)P(Y EC,Y EC). m n-m 

2 
Orey (1971), p. 30, Theorem 7.1 implies that P(Y EC,Y EC)+ p[TI(C)] as m n-m 
n ->- 00 under the restriction p j n. Hence there exists c' > 0 and n0 > 0 such 

that if n ~ n0 and pin then PY(O),Y(n) ~ c'1rc x TIC. Using this fact twice 

(with stationarity) a similar argument will show that there exists c" > 0 

such that if n.~ n0 and p[n then 

(4. 3) 

]R. n+1 
For each n define the measure¢ on by n 



12 

4> (B) n x, Yn = Y) 

dire x ,rc(x,y) 

for Borel sets B c IR n+l. Then for y := (c") 112 [ ,r(C) J2 we have that 

4> (IR.n+l) = y Vn, and using the Markov property and (4.3) one proves (4.2). 
n 

• 
REMARK. 4.2: Suppose~ is a stationary process satisfying (I.I). We noted 

earlier that (1.4) for Y implies (1.5) for~- Similarly the property of Yin 

Lennna 4.1 transfers to~. with the measures <f> replaced by the obvious re-
n 

lated measures <f> • (Thus a process~ which fails to have this property n 
cannot be in M.) 

REMARK. 4.3: ¢-mixing is a property stronger than ¢*-mixing and is discussed 

in e.g. BLUM, HANSON, and KOOPMANS (1963). A stationary ¢-mixing process has 

the properties referred to in the above remark, and it is an open question 

whether there are such processes outside M. 

5. PROOF OF THEOREM l • I . 

To construct the process~ for Theorem I.I we consider again the 

process X defined by (1.9). Suppose A :=(A) ..,., is an i.i.d. sequence n nEu., 
which takes its values on the set of positive integers and which is inde-

(1) (2) 
pendent of X and so independent of the processes X , X , .... The sta-

tionary process ~ := (~ ) ..,,, defined by n nE:u., 

(5. I) ~ := (A ~ (A(n))) 
n n' n 

Vn E 2'l 

is countably-valued. By (1.10) we have 

(5.2) Vn E 2'l 

Below we shall specify the distribution of A0 • Property (5.2) will then be 

used along with Lennna 4.1 and Remark 4.2 in order to show that~ cannot be

long to M. 



But first let us quickly show that Theorem 1.l(ii) holds (regardless 

of the distribution of A0). Defining the process Z := (Z) 'lZ by 
n nE 

Z : = ( A , X ) Vn E ?l , we have 
n n n 

(5. 3) * * * * 1/1 (E;) S 1/1 (Z) = 1/1 (A) • 1/1 (X) • n n n n 

13 

The first inequality holds because s is Z -measurable (for each fixed n), n n 
and the latter equality holds by Lennna 2.2. Because A is i.i.d., 1/J*(A) = I 

n 
and usirig Lennna 3.1 we obtain Theorem l.l(ii). 

To prove Theorem l.l(i) we impose the following restrictions on the 

r.v. AO and on a set K: 

(5. 4) (i) 

(5.4) (ii) 

(5. 4) (iii) 

P (AO r/. K) = 0 • 

Vk E K • 

( l pk = I • ) 
kEK 

kpk • 00 ask • 00 along K. 

K is a set of positive integers such that for each integer 

p > 0 the set K contains arbitrarily large multiples of p. 

For example one could take 

2 2 2 K := {I ,2 ,3 , ..• } 

pk:= n-l/ 2 - (n+l)-l/ 2 for n2 = k EK 

Withs defined by (5.1) and A such that (5.4) holds we have: 

LEMMA 5 • 1. s r/. M • 

2 PROOF. The sequences has its values in 'lZ • Supposes has the form (I.I) 

with Ya Markov chain satisfying (1.3) with period p. By Lennna 4.1 and 

Remark 4. 2, there exist y > 0 and integers m, n0 > 0 such that p Im and for 
~ 2 n+I . 

all n ~ n0 with pin there exists a measure tn on (?l ) with total mass 

y such that 
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~ ~ (5.5) p~(-n), ••• ,~(O),~(m), ••• ,~(m+n) ~ ~n x ~n• 

Let k = n + m where n ~ n0 , k EK, k and n are both multiples of p, 

and k is sufficiently large, such that 

(5.6) P( ' k f < ' :,; 0) -- I - (I - P('o -- k))n+l A,= or some -n - J A 
J 

2 
> I - y • 

This is possible because by (5.4), 

(n+l) P(>-.0=k) = (k-m+l)pk • 00 

ask • 00 along k EK. 
2 n+l With k and n fixed as above, let A be a subset of (ZZ ) such that 

the following equality of events holds: 

(5. 7) {>-.. = k for some -n:,; j:,; O} = {(~ , .•• ,~0) EA} 
J -n 

Because by (5.6) and (5.5) 

2 P((t" t" ) J A) ~ -;: (Ac x (2Z 2)n+l) = Y -;: (Ac) Y > S , • • • , SQ ~ J\ ~ ~ X 'I' H 'I' H -n n n n 

~ C ~ we have ~n(A) < y, and so ~n has positive mass on the (countable) set A. 

Take y EA with; ({y}) > O. By (5.5) the event 
n 

{(~ , ••• ,~O) = Y, (~ , ••• ,t; +) = y} -n m m n 

~ . 2 
has probability at least [~n({y})J > 0. On this event ~j = ~j+k for all 

-n:,; j :,; 0 and moreover because y EA there is by (5.7) such a j with 

k = >-..(=>-..+m ). Hence for this j with positive probability 
J J +n 

~- = ~. k and>-..= 
J J+ J 

= k 
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which contradicts (5.2) Sol; IM. D 

Thus we have proved Theorem I.I. 

6. A FINITE ENTROPY EXAMPLE. 

The entropy H(Z) of a countably-valued random variable Z is defined as 

H(Z) := l q .• 21og(l/q.) 
1. 1. 

where q. = P(Z=i) and i runs over the values in the range of Z with q. > O. 
1. 1. 

We construct a t*-mixing stationary process l; with H(l;.0) < 00 that does 

not belong to M. This process has the form (5.1) except that we choose in~ 
I . 

tegers ~' k ~ I, different from (1.8). The distribution of AO satisfying 

(5.4) will also be chosen more carefully. 

Because AO is l;. 0-measurable we have by a familiar rule for entropy 

(see SMORODINSKY (1971), Theorem 4.12a) that 

H(E;0) = H(A0) + I H(E;0 1A0=k) • P(A0=k) 
kEK 

where H(l; 0 !A0=k) denotes the entropy of l;. 0 under the conditional probability 

P(· !A0=k). By (5.1) and because l;6k) is independent of the event {A0=k} and 

attains~ values, each with the same probability, we have H(l; 0 !A0=k) = 
2 

= log~ and so 

(6. I) 

Obviously an exponential choice for~ (as in (1.8)) would make H(l;.0) = 00 

by (5.4)(ii). But let us choose 

n 
K := {n, n ~ 3} 

n-1 n 
pk:= c/n for n = k EK 

for some normalizing constant c > 0. Then we have (5.4) and we can take~ 
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quite large such that ask+ 00 along K, 

2 n-3 n log ~ ~ n for n = k E K 

and then one concludes easily that H(s0) < 00 using (6.1). By Lennna 5.1 (whose 

proof holds verbatim in this new context) we haves i M. Using (5.3) and an 

argument like Lennna 3. 1 one can prove that s is 1/J * - mixing, i.e. 1/J * (s) -
n 

- 1 + O, but with a rate that is slightly slower than exponential. 
I 

REMARK 6.1. It seems clear that one can construct a two-state stationary 

process s i M that still satisfies the absolute regularity condition. A 

binary coding of an example like the one above, of course with entropy less 

than 1, might achieve this. Because of the technical complications this will 

not be investigated here. A stronger mixi~g property like ~-mixing or ip*

mixing might be attainable. However this is complicated by the fact that the 

coding of a singles-value may affect a long stretch of time extending far 

into both the negative and positive indices. 
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