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1 • Introduction 

In this paper the following nonlinear ordinary-dif£erential 

equation, arising in the theory of conduction of heat is discussed. 

( 1. 1) -'2:y d0 = 
ey 

d (D d0) 
ey ey , 

where Dis a f'Wlction of e. 

Some methods for numerical treatment are given. The results are 

compared with those given by Crank [1], where the equation is reduced 

to the integral form 

( 1. 2) e = 1 -

j 
0 
00 

I 

y 

(1/D) exp{- I (2,/D)dt}d~ 

0 
y 

(1/D) exp{- f (2 /D)d,}d~ 

0 0 

which is then solved in an iterative manner. 

Recently, Hays and Curds worked on the same problem. Their method 

employed variational calculus which, however, led to eleborate 

calculations. 

Since Crank as well as Hays and Curds used nume~ical calculations only 

at the final stage of their approach, it seemed attractive to solve 

the problem by a direct numerical treatment. 

In our numerical method we use second-order difference schemes as 

approximations of the differential equation (1.1). 

In section 2 the problem is formulated with a brief indication 

of its backgro'Wl.d. 

In section 3 the differential equation is subjected to some trans­

formations, in order to facilitate the subsequent numerical treatment. 

In sections 4, 5, 6, 7 and 8 various numerical methods are discussed, 

Section 9 contains a discussion of the results. At the end of the 

paper the final numerical results are given and the ALGOL 60 programs 

used are reproduced. 
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2. Statement of the problem. 

When, in diffusionproblems, one deals with variable diffusion­

coefficients it is sometimes possible to transform the partial-diffe­

rential equation 

( 2. 1 ) 
ae a ae 
- = - (D(8) -) at clx ax ' 

into an oralinary-differential equation. 

If the boundary conditions can be written as conditions involving 

the new variable 

(2.2) 

then it can be proved, that the solution of (2.1) is a function of y 

only. 

The introduction of y transforms equation ( 2. 1) into ( see [1] ) : 

(2.3) 2y d8 + d ( D ( 8 ) dd8 ) = 0 • 
dy dy y 

Transformation (2.2) is known the Boltzmann transformation. 

In this paper we consider the special case where Dis a linear function 

of e. 
In particular, we consider the problem 

(2.4) 2y de+.£._ ((1+cre) ddy8 ) = o , cr > o, 
dy dy 

with boundary conditions 

8 = for y = 0 
(2.5) 

8 ➔ 0 for y ➔ 00 

3. Transformations of the differential equation 

By mea.ns of the transformation 

( 3. 1 ) 
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(2.4) and (2.5) get the following, somewhat simpler, form 

lu du - + A(U,y) dy = 0 , 
dy2 

(3,2) 

1 
where A(U,y) = 2y(1+2oU)- 2 

for y = 0 

for y-+ 00 

' 

In order to facilitate the numerical treatment, it is convenient to 

transform the semi-infinite interval O 5...y < 00 into a finite interval, 

e.g. 0 5... z < 1. At the same time it is desirable to eliminate the 

singularity at y = 00 of the equation (3.2). 

Thus we are looking for a transformation 

(3,3) z = f(y) 
' 

which satisfies the following conditions 

a. f(O) = 0 and f( 00 ) = 1 

b. The transformed version of equation (3,2) 

(3.4) 
2 

(f' )2 £y_ + (f' '+Af') dv - 0 
d z2 dz - ' 

where v(z) = U(y(z)) 

has no singularity for O < z < 1, 

A suitable transformation is furnished by 

(3,5) 

y 

. 2 J z = -
\j;' 0 

exp(-,2 )d, = erf y 

It is obvious that condition a is satisfied. 
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By means of (3,5) the problem (3,2) 1S transformed into 

iv -+ 
d z2 

(3,6) 
V = 

V = 0 

where B(U,y) = \{; y 

and V(z) = U{y(z)). 

B(U,y) dV 0 -= dz , 

+ .l (J 
2 for z = 0 , 

for z = 1 , 
1 

exp(y2 )((1+2aU(y))- 2 
- 1) , 

We shall show that B(U,y) is non singular at y = 00 , or z = 1, by 

using the asymptotic behaviour of U(y) for y + 00 • 

When y + 00 the solution U(y) of (3,2) will be very small. For these 

small values of U(y) the equation (3.2) and the second boundary 

condition become, approximately, 

(3.2a) 

d2U dU --+2y-=O 
d y2 dy 

U + 0 for y + 00 • 

The general solution of this problem is U(y) = a(1 - erf y) = a erfc y, 

where a is an arbitrary constant. Substitution of this result into 

the expression for B(U,y) yields with y + 00 the following limit. 

lim B(U ,y) = lim Vn y exp(y2 )((1+2crU(y))-; - 1) , 
y➔oo y➔oo 

= lim (-\{; y exp(y2 )a U(y)) 
y➔oo 

= lim (-y; a y exp(y2 )a erfc(y)) 
y➔oo 

= -a a 

Hence, 

(3,7) lim B(U,y) = -a a 
y➔oo 

which shows that condition bis satisfied. 
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4. A numerical t~eatment 

For the numerical treatment, the following three methods will be 

used. 

! The two-point boundary-value problem (3,6) is solved by an iterative 

method. 

A procedure for finding a sufficiently accurate initial approximation 

in order to save computation time, will be mentioned, 

B The boundary-value problem (2,4), (2,5) is solved by an iterative 

step-by-step method. 

C The boun~ary-va.l.ue problem (3,2) is solved by the same iterative 

step-by-step method. 

5, Method A 

The boundary-value problem (3,6) will be solved by an iterative 

method. 

A simple difference scheme for (3,6) is given by 

R v( j) _ v(j+1) - 2v(,j) + v(j-1) + b(j) v(j+1) - v(j-1) = o, 
h2 2h 

( 5. 1 ) 
j = 1 . 2, N-1 . 

' 
... , 

' 

v(O) 1 1 = +-a 
' 2 

v(N) = 0 ' 

where v(j) and b(j) are net functions defined in the points z = jh, 

j = O, 1, ••• , N(h = i) , satisfying the relations v(j) = V(jh) and 

b(j) = B(jh). 

N.B. We shall use small letters for net functions and capital letters 

for ordinary functions. 

,., 
Let V(z) be the analytical solution of boundary-value problem (3,6) 
then the error e(j) of the numerical solution, 

(5.2) e(j) = Y(j) - v(j) , 

satisfies the following linear difference scheme: 
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e(j+1) - 2e(,j) + e(j-1) + b(j) 
h2 

e(j+1) - e(j-1) 
2h 

(5,3) + ~(j) e(j) = O(h2 ) J = 1, ... , N-1 ; 

e(O) = e(N) = O. 

The net function i(j) is defined by: 
3 

c(j) =_'(;a y(j) exp(y(j)) 2 (1 + 2cr v'(j))-2 ~2(j) 
z 

where y(j) denotes the value of y that corresponds with z = jh and 

where ~ ( j) represents the derivative of V' at the j th net point. 
z 

Difference scheme (5.3) approximates the boundary-value problem 

d2E . dE N -- + B(V,y) dz+ C(V,y) 2 
(5.4) d z 

E(O) = E(1) = 0 

2 
within an error of order h. 

E = 0 ' 

We shall show that boundary-value problem (5.4) only allows the trivial 

solution E(z) = 0. 

It is easily checked that the function C(V,y) is negative all over the 

interval O ,:_ z ,:_ 1, for all positive values of V. 

Suppose there is a solution E0 (z) of (5.4) with E0(z) $ O, then there 

must be at least one region of the interval O < z < 1 where E0 (z) is 

either positive or negative. 

If E0 (z) assumes positive values, then there must be a point z = z0 , 

0 < z0 < 1, with: 

dE0 
0 

( 5, 5) 
= dz 

zo 

d2E 
0 

< 0 2 ' d z zb 
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which contradicts ( 5. 4). 

Analogously, we can prove that E0 ( z) cannot assume negative values. 

Thus boundary-value problem (5.4) only allows the solution E(z) = O, 

From this we can conclude, that, if (5 ,3) is a stable difference 

scheme, then we have (see [2]) e(j) = O(h2 ). 

A sufficient condition for the stability of ( 5. 3) may be obtained when 

the roots ).. . , i = 1, 2, of the characteristic equation of ( 5. 3) 
l 

satisfy the inequality ( see [2] ) 

(5.6) IA-I< 1+0(h) 
l 

l = 1, 2 , 

The characteristic equation of (3,3) is given by: 

(5.7) (2 + 4 b(j)))..2 - (4 - 2 h2 ;(j))).. + (2 - h b(j)) = 0, 

From (3.,7) it follows that h b(j) = O(h). One can proof that 

h2 c(j) = O(h2 ). 

So the roots of equation (5,7) satisfy inequality (5.6). 

The prec:eding considerations show that a function v( j ) , satisfying the 

difference boundary-value problem ( 5, 1) is a second-order approximation 

to the analytical solution v(z) of boundary-value problem (3.6). 

There remains the construction of the function v(j). We shall use 

the following iterative process: 

(5,8) 1 +-o 
2 

where v O ( j ) is an arbitrary initial approxi. 

paramter, 

J = 1 , 2, ... ' N-1 -

k = O, 1, ,.. 
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If this iterative process converges fork+ 00 , then the limit function 

v (j) obviously satisfies (5,1). 
00 

We now investigate the stability of (5.8). 
Let v0 (j) satisfy the boundary conditions and let vk(j) be, for 

j = 1, ••• , N-1, the components of a vector, then (5.8) may be written 

in matrixform: 

(5,8a) 

where~ is defined by 

1 _ , 0 ,----------- --- -- -----0 --- -
0"-------0 , 2T 1 T ( , ) ) - 2 , 2 2 2+h bk ( J , 0 , • • • 0 

h - h - -- ---... --... 
0, -------------------- --0-, ... 1 

For stability we require that 

(5.9) 

for every k. 

We shall use the maximumnorm for matrices, 

i.e. I IAI I = max l I a.• I . . . 1J 
J 1 

Using this norm for~ we obtain the following stability conditions 

(5. 10) 
1 2 

T < - h 
-2 

(j) 11 is defined as the maximum value of bk(j), j = 1, 2, ••• N-1. max 
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When we choose a positive approximation v0 (j) then the functions vk(j) 

will also be positive, and then, from the definition of bk(j), we 

see that condition (5.11) is certainly satisfied when: 

(5,11a) 
2 

h < exp(-y (N-1) 
- y(N-1) 

N.B. Here y(N-1) denotes the value of yin the (N-1) st lattice point, 

As h = erfc y(N-1), it is easy to see that condition (5. 11a) is no 

real restriction for practical purposes. 

The method, described above, is convergent when the stability con­

ditions are satisfied; however, the rate of convergence is very small, 

Therefore, it is very important to choose a good initial approximation. 

We can find this good approximation with the following procedure. 

In (3.6) we replace the boundary condition v(N) = o, by a second 

initial condition, v(1) =a.The initial value problem, obtained in 

this w~r, can now be solved directly, using difference scheme (5.1). 

The strubility of this scheme is related to the stability of difference­

scheme (5,3) (see [2]), which is stable, as has been proved. 

Of cour:se, the applicatibn of scheme (5. 1), with initial conditions 

v(O) = 1 + i 0, v(1) = a (0 <a< 1+ ½ 0), will, in general, not 

lead to v(N) = 0. But by changing a, we can make lv(N) I as small 

as desired, i.e. for some e: > O, lv(N) I < e:. 

From preceding considerations it follows, that the function v(j) 

obtained. in this wey, approximates within an error of order h2 , the 

solution ~(z) of equation (2.6), with boundary conditions v(O) = 1 + ¾ 0, 

v(1) = i::. 

We now define the initial approximation v O (j) in the following way: 

{
v O ( j) = v( j ) for j = 0, 1 , •. , , N-1 

v0 (N) = o 

with this initial approximation v0 (j) the computation time is 

reduced considerably. 
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A shooting procedure, like this one, can only be used if all solutions 

of the differential equation in consideration are bounded in the re­

levant region. 

In our case this means that all solutions of 

(5.11) dv B(U,y) - = 0, 
dz 

must be bounded in the interval O < z < 1 . 

But B(U,y) is non-singular in O .::_ z .::_ 1, as was proved previously. 

Thus (5.11) is an equation, defined on a bounded region, with bounded 

coefficients and with constant coefficient for the derivative of 

highest degree. 

Hence all solutions of (5.11) are bounded. 

6. Method B 

We now discuss method B for solving the problem numerically. 

Consider the original boundary-value problem (2.4), (2.5). 
We will use the following consistent difference approximation 

( 6. 1 ) 

2y(j) (e(j+1) - e(j-1)) 
2h + a 

(e(j+1) - e(j-1)) 2 
2h 

+ (1+·-0 e(j)) (e(j+1) - 2e(j) + e(j-1)) 
h2 

= 0 ' 

e ( o) = 

8(00) = 0 

Now the boundary condition at infinity is replaced by an additional 

condition at y = 0 (analogously to the method used to reduce the 

computation time in section 5), 

From analytical considerations we know that in a suitably chosen finite 

uoint, e.g. y = c, the value of IBI and the value of the derivative 

t ddy8i , • • • for the anlytical solution are bo~h very small, i.e. for some 

< E: 
2 
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Now our computation procedure is as follows: 

We start the computation with 0(0) = 1 and 0(1) = a (0 <a< 1); 

we calculate the solution over the interval @, c] ; then at y = c 

we check the values of 101 and 1:1; if either 101 or 1:;1 

is not sufficiently small, we change a and repeat the computation. 

In practice we discontinue the computation and increase a, as soon as 

0 becomes negative (see the ALGOL 60 programm at the end of the paper). 

In order to apply this method successfully, the difference scheme (6.1) 

has to be stable. This stability is related to the stability of the 

first variation of ( 6. 1) ( see [2] ) • 

I.e., if we replace 0(j) in (6.1) by 0(j) + e(j), then we obtain the 

following linear difference scheme for e(j). 

2 ;y:{j) (e(j+1} - e{,j-1) + cr e{j) (0(j+1} - 20(j} + 0(,j-1) 
2h h2 

(6.2) ( 1 + cr 0(j U (eLj+1) - 2e( j) + e(j-1}} + 
h2 

+ 2 0 ( 0(j+1) - 0(j-1)) ( e(j+1) - e(j-1)) = O(h2) 
2h 2h 

stability of (6.2) is guaranteed if the roots A., i = 1, 2, of the 
1 

characteristic equation satisfy the inequality: 

IA- I < 1 + 0(h) , 
1 

i = 1, 2. 

The characteristic equation is given by: 

(y(j)h + 1 + cr 0(j) + ½ cr 0(j+1) - ½ cr 0(j-1))A2 

+ (cr 0(j+1) - 2 cr 0(j) + cr 0(j-1) - 2 - 2 cr 0(j))A 

+ (- y(j)h + 1 + cr 0(j) - ¾ cr 0(j+1) + i cr 0(j-1)) = o 

which can be written as 

(1 + cr 0(j) + 0(h))A2 - 2(1 + cr 0(j) + O(h))A 

+ {1 + cr 0(j) + 0(h)) = o. 
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This implies that 

J>..j < 1 + O(h) 
J. 

i = 1, 2 

Hence, difference scheme (3,9) is stable. 

Using a conjecture of J. van Neumann (see [2]). We conclude that (3.8) 

is also stable. 

7. Method G 

Exactly the same line of working as was used in Method B, may 

be applied in order to solve boundary-value problem (3,2). 

Now the following difference approximation can be used: 

( 7. 1 ) u (j + 1 ) - :~ ( j ) + u ( j - 1 ) + a ( u ( j ) , j ) u ( j + 1 ) 2~ u ( j - 1 ) = 0 • 

To investigate stability, again we replace u(j) by u(j) + e(j), 

obtaining a linear difference scheme for e(j) 

(7.2) e(j+1) - 2e(j) + e(j-1) + a(u(j).j) (e(j+1) - e(j-1)) 
h2 2h 

where 

(7,3) p( j) 

+ p(j) e(j) = O, 

3 
= -2y(j)cr (u(j+l) - u(j- 1)) (1 + 2cr u(j))2 

2h 

The characteristic equation of (7,2) is 

(1 + ½ a(u(j),j)h)>-~ - 2(1 - p(j)h2 )>- + (1 - ½ a(u(j),j)h) = 0 

or 

(1+0(h))J\2 

Thus J A. I < 
J. 

2(1 + O(h))>- + (1 + O(h)) = 0. 

+ O(h), i = 1, 2. 

Therefore scheme (7.2) is stable. 
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8. Comparison of Method B and Method C 

It :i.s interesting to compare the difference schemes (6.1) and 

( 7. 1 ) , which were used in Method B and Method C, respectively. 

For reasons of convenience we shall introduce the following notations. 

We denote the original differential equation (2.4) by 

( 8. 1 ) ~ P e = o , 

differenee scheme (6.1) by 

R1 e(j) = O, 

and difference scheme (7.1) by 

(8,3) R2 u(j) = 0, 

According to formula ( 3. 1) we replace in ( 7. 1) u by e + ¾ cr e2 , 

yielding 

e(j+1) +¾a e2(j+1) - 2e(j) - a e2(j) + e(j-1) +.la e2 (j-1) 
2 

2y 
+ 1+CJ e ( .IT 

e(j+1) +.la e2(j+1) - e(j-1) 
2 . 

2h 

or after some rearrangements 

1 
- - a 

2 
e2(j-1) 

= 0 ' 

(1 + a e(j)) (e(j+1) - 2e(j) + e(j-1)) 
h2 

+ 2y(j) (e(j+1) - e(j-1)) 
2h 

+ a 

( ') p(e2 (.i+1) - e2 (j-1)) 
+ y J 2h 

1 cr(e(j+1) - e(j-1)) 2 - 4e2(j)) 
+ 4 h2 

which formula will be denoted by 

(8.5) 

= 0 



14 

Now, we investigate the operators R1 and R3 by expanding them into 

Taylor series. 

R1 then leads to 

( 8.6) 
2 

R 0 = 2y d0 + 0 ( d0) 
1 dy dy 

R3 gives in the same manner, 

. 2 
R 0 = cr 0{2y dS + cr(d8 ) 

3 dy dy 
(8.7) 

From (8.6) we see that (8.2) is a second-order difference approximation 

to (8.1), with truncation error d 1, defined by 

(8.8) 

From (8.6) and (8.7) it follows that (8.3) is a second-order approxim­

ation to 

( 8. 9) (1 + cr S)P 6 = 0, 

with truncation error d2., defined by 
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(8.10) +f(1+cr8) 
d28 2 

+ £. (-) 
dy2 3 

d8 d28 + a d48 + (J y dy-2 12 8 4} 
dy dy 

+ (J 

(y + (J 
d8) 8 
dy 

+ O(h3 ) . 

4 
8 ) d 8 

dy4 

d38 

dy3 

From ( 8, 9) we see that the accuracy of difference scheme ( 7. 1) will 

decrease when (1 + cr 8) tends to zero. However, we are only interested 

in positive values of 8, and therefore (1 + a 8) > 1, cr being a 

positive parameter. 

9, The results 

For several values of the parameter a, calculations have been 

perf'ormed with the three methods described in the preceding sections. 

At the end of the paper some results of the used methods are given, 

they are plotted by the CALCOMP plotter coupled to the Electrologica X1 

Computer of the Mathematical Centre, Amsterdam. 

The results obtained applying Method B and Method C, were 1.n very 

good agreement with the values given by Crank. 

Using Method A, the accuracy of the results was satisfactory for small 

values of cr, but got worse for. increasing cr. The reason for this 

behaviour may be made clear by the following considerations. 

The truncation error, d3, of difference scheme (5.1) which is used 

in Method A, is, as can easily be derived, 

( 9. 1 ) 
4 3 

d3 = h2{ -1 4 + _l b(j) d v} + O(h3) 
12 dz~ 6 dz3 

From thi:s we see that difference approj_mation ( 5. 1) will be 
. . f d . . d3v d d v inaccurate 1. the er1.vat1. ves 3 an --4 are large. 

dz dz 
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Now, we consider transformation (3.5) 

(3,5) z = 2 j 
y;; 0 

exp(--/)d, _ erfy 

If one chooses, in the interval O .:_ z .:_ 1 , a steplength h = • 01 ( the 

steplength used in actual computation), then the last interior point, 

z = • 99, of the lattice corresponds to y = 1. 821. Thus all values 

1,821 < y < 00 are mapped by (3,5) on the z-interval ,99 < z < 1. 
• rJ 

If the analytical solution v of the problem, is not close to zero at 

z = ,99, then, of course, in the interval .99 < z < 1 large values for 

the first derivative~:, and therefore also for the higher derivatives, 

must occur. This results in a large truncation error d3, The lesser 

accuracy of the numerical solution with increasing cr, thus is a result 

of the fac:t that the analytical solution tends slower to zero when 

cr is large. For large values of cr transformation (3,5) is not a 

suitable tool for solving the problem. 

All difference schemes used in the preceding methods of calculation 

are only second-order approximations. In order to check the obtained 

results, we have solved boundary-value problem (2.4), (2.5) and 

boundary-value problem (3.2) numerically, applying a fifth-order 

Runge-Kutt a procedure, due to Zonneveld ( see [3] ) . 

The bounda,ry-value problems were solved with the iterative step-by­

step method, described in section 5. In both cases the results were in 

very good agreement with the values given by Crank and those obtained 

applying Method Band C. 
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IZo/J-o 
METHOD A 

begin 

BEGIN: 

AGAIN: 

cormnent R1593, GJF 010167/XIIIc. 
Iterative solution of the differential 
ut 1 + 2xy/((1+2><sigmaxU),i-1/2)xu 1 = o 
as two point boundary value problem 
including a procedure for finding an 
initial approximation; 

equation 

integer 
N:= READ; 

N ; 

begin integer i, k, m; 
real a, yO, sigma, eps, eps1 , dt, spi, max, 

Zl , z2 , h ; 
array y, u[O:N] ; 
procedure INPUT; 
begin h:= 1/N; m:= READ; sigma:= READ; dt:= READ; 

z1:= READ; z2:= READ; eps:= READ; eps1:= READ; 
spi:= sqrt(3.14159265359) ; 
NLCR; PRINTTEXT(i output gjf 010167/xiiic i); 
NLCR; PRINTTEXT(~ number of netpoints N =::}); 
ABSFIXT( 3,0,N); 
NLCR; PRINTTEXT(~ parameter sigma =:t) ; 
ABSFIXT( 2,3,sigma) ; 
NLCR; PRINTTEXT(i relaxation parameter dt =::}); 
ABSFIXT( 2,4,dt) ; NLCR; NLCR; 

end INPUT; 

procedure INITIAL APPROX; 
begin real 1 , u2, u3, zeta, y1 ; 

u1:= 1+.5Xsigma; zeta:= (z1+z2)/2 NLCR; NLCR; 
u2:= u1+hXzeta; 
for i:= 1 step 1 until N-1 do 
begin yO:= y[i] ; -

end ; 

a:= .5XspiXhXy0Xexp(y0XyO)x(1/sqrt(1+2Xsigmaxu2)-1) ; 
u3:= (2xu2+(a-1)Xu1)/(a+1) ; 
if u3 < 0 then 
begin z1:= (z1+z2)/2; goto AGAIN end; 
ABSFIXT( 2,3,yO); FLOT( 3,2,u3) ; SPACE(3); 
u1:= u2; u2:= u3 

if u3 > eps1 then 
begin z2:= (z2+z1)/2; goto AGAIN end; 
NLCR; NLCR; PRINTTEXTT°rinitialapproximation::}) ; NLCR 
u[O]:= ul:= 1+~5Xsigma; u[1]:= u2:= u1+hXzeta; 
SPACE(5) ; ABSFIXT( 2,3,0) ; SPACE(3) ; 
FLOT( 3,2,(-1+sqrt(1+2Xsigmaxu1) )/sigma) ; 
SPACE(5); ABSFIXT( 2,3,y[1] ) ; SPACE(3) ; 
FLOT( 3,2,(-1+sqrt(1+2Xsigmaxu2))/sigma); 
for i:= 1 step 1 until N-1 do 
begin yO:= y[i] ; y1:= y[IT1] ; 

a:= .,5XhXspiXyOXexp(yOXyO)x(1/sqrt(1+2Xsigmaxu2)-1) ; 



end; 

u[ i+1] := u3:= (2Xu2+(a-1 )xu1 )/(a+1) ; 
SE'_ACE(5) ; ABSFIXT( 2,3,y1 ) ; SPACE(3) ; 
FLOT( 3,2,(-1+s4rt(1+2Xsigmaxu3))/sigma) ; 
if (i:3)X3 = i then NLCR; 
uf:= u2 ; u2:= u3 

u[N]:= 0; NLCR; NLCR; NLCR 
end INI'J~IAL APPROX ; 
procedure ITERATE ; 
begin real vO, v1 , v2, ui, Riv; 

ITER: vO:= u[O] ; v1:= u(1] ; max:= 0; k:= k+1 ; 
PRINTTEXT({ iteration started*) ; NLCR; NLCR; 
for i:= 1 step 1 until N-1 do 
begin yO:= y[i] ; v2:= u[r+1] ; 

end ; 

a:= .5XbXspiXyOXexp(y0XyO)x(1/s4rt(1+2Xsigmaxv1)-1); 
Riv:= (a+1)Xv2-2Xv1-(a-1 )xvo; 
if max< abs(Riv) then max:= abs(Riv) ; 
mi] := ui:= v1+dt><Riv; vO:= v1 ; v1:= v2; 
if (k:5)X5 = k then 
begin- SPACE(4T;ABSFIXT( 2,3,yO); SPACE(2) ; 

FLOT( 3,2,(-1+s4rt(1+2Xsigmaxui))/sigrna); 
SPACE(2); FLOT( 3,2,Riv) ; 
if (i:3)X3 = i then NLCR 

end ; NL'C°R ; NLCR ; 

if max> eps then goto ITER; 
PRINTTEXT( { final results gjf 010167 /xiiic with sigma =i,) ; · 
ABSFIXT( 2,3,sigma) ; NLCR; NLCR; 
for i:= 0 step 1 until N do 
begin SPJmE{"5); ABSFIXT(° 2,3,y[i] ) ; SPACE(3) ; 

FLOT( J,2,(-1+s4rt(1+2xsigmaxu(i]))/sigma); 
if (i~3)X3 = i then NLCR 

end 
end ITER:ATE ; 

for i:= 0 step 1 until N do y[i]:= READ; k:= 0; 
PROGRAM: NEWPAGE ; INPUT ; INITIALA.PPROX ; ITERATE ; 

if m = 0 then goto BEGIN; 
· if m = 1 then goto PROGRAM 

end 
end 



METHOD B 

begin comment R1593, GJF010167/XIIIe. 
u'' = (-sigrnax(u 1 ),1\2-2Xu'><y)/(l+sigrnaxu) , as initial value 
problem ; 

integer n,m,Y; 
real sigma,h,y,thetal,theta2,theta3,zl,z2,zeta,epsl,eps2; 
procedure SCHEME; 

begin real B, C; 

end ; 

B:= (l+sigrnaxtheta2-.5Xsigrnaxthetal+y><h); 
C:= -2xsigmaxtheta2xtheta2+theta2X(sigrnaxthetal-2) 

+(1-yXh+.25Xsigrnaxthetal)Xthetal ; 
y:= y+h ; theta3:= 2x(-.B+sq_rt(B,t..2-sigrnaxC)) /sigma ; 
thetal:= theta2; theta2:= theta3 

NLCR; PRINTTEXT (~ Results GJF010167/XIIIe *); NLCR; 
NEW: m:= READ; sigma:= READ; h:= READ; zl:= READ; z2:= READ; 

Y:= READ; epsl:= READ; eps2:= READ; ABSFIXT(2,3,sigma) ; 
AGAIN: NLCR; NLCR; y:= h; thetal:= 1 ; zeta:= (zl+z2)/2; 

theta2:= thetal+bXzeta; 
for n:= 1 step 1 until Y do 
begin SC~ ; ABSFIXT(2,°3,y) ; FLDT(3,2,theta2) ; 

if theta2 < 0 then begin zl:= (zl+z2)/2; goto AGAIN end 
end ; 
zeta:= (theta2-thetal)/h; 
if abs(zeta) < eps2 A theta2 < epsl ~ goto OUT; 
z2:= (zl+z2)/2; goto AGAIN; 

OUT: NLCR; NLCR; PRIN'TT°EXT 

end 

(f final results GJF010167/XIIIe with sigma= i); 
PRINT(sigma) ; y:= h; thetal:= 1 ; zeta:= (zl+z2)/2; 
theta2:= theta1+zeta><h; 
NLCR; ABSFIXT(2,3,y); FLDT(3,2,theta2) ; FLOT(3,2,zeta) ; 
for n:= 1 step 1 until Y do 
'E'egin SCHE~ NLCR ; ABSITXT(2,3,y) ; FLOT(3,2,theta2) end ; 
if m = 0 then begin NEWPAGE; goto NEW~ 



METHOD C 

begin 

NEW: 

AGAIN: 

OUT: 

end 

comment R1593, GJF010167/XIIIg. 
U'' + 2y/((1+2sU)tf-,-1/2)U' = O, as initial value 
:problem ; 

integer n,m,Y ; 
real sigma,h,y,theta1,theta2,theta3,z1,z2,zeta,e:ps1,e:ps2; 
procedure SCHEME; 
begin real A; 

end ; 

A:= hXy/sqrt(1+2xsigma><theta2) ; 
theta3:= (2xtheta2+(A-1 )Xtheta1)/(A+1); 
y:= y+h; theta1:= theta2; theta2:= theta3 

N"LcR; PRINTTEXT ( i Results GJF010167/XIIIg i); NLCR; 
m:= READ; sigma:= READ; h:= READ; z1:= READ; z2:= READ; 
Y:= REAn; e:ps1:=-READ; e:ps2:= READ; ABSFIXT( 2,3,sigma); 
NLCR; NLCR; y:= h; theta1:= 1+.5Xsigma j zeta:= (z1+z2)/2; 
theta2:= theta1+hXzeta; 
for n:= 1 step 1 until Y do 
begin SCHEME ; AJ3SFI:xT(2,3,y) ; FLDT(3,2,theta2) ; 

end ; 
if theta2 < 0 then begin z1:= (zl+z2)/2; goto AGAIN~ 

zeta:= (theta2-theta1)/h; 
if abs(zeta) < e:ps2 A theta2 < e:psl then goto OUT; 
z2:= (z1+z2)/2; goto AGAIN; - -
NLCR; NLCR; PRINTTEXT 
( i Final results GJF010167/XIIIg with sigma= i); 

PRINT (sigma); y:= h; theta1:= 1+.5Xsigma; 
zeta:= (z1+z2)/2; theta2:= theta1+zetaXh; NLCR; 
ABSFIX'I'(2, 3 ,y) ; FLOT( 3 ,2, (-1 +sqrt( 1 +2Xsigma><theta2)) /sigma) 
FLOT(3,2,zeta); · 
for n:= 1 step 1 until Y do 
begin ElCHEME ; NLCR ; ABSF'IXT(2,3,y) ; 

FLDT(3,2,(-1+sqrt(1+2Xsigmaxtheta3))/sigma) 
end ; 
if m = 0 then begin NEWPAGE; goto NEW~ 
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