
stichting

mathematisch

centrum

AFDELING ZUIVERE WISKUNDE

P. VAN EMDE BOAS
GAP AND OPERATOR GAP

~
MC

ZN 42/72 APRIL

2e boerhaavestraat 49 amsterdam

M,-THEMP.,llSGf"
AMSTEIU:>AA

Punted a,;t the Mathe.matieai. Centlte, 49, 2e BoeJLhaaveL>:tJc.a,a,;t 49, Am6:tvul.am.

The Ma:themati.c.a.t Centlte, oounded the 11-th o o Febtc.u.aJty 1946, .u., a. non­
p1Lo 6U -ln1i.tUution a.i..mi..n.g at the pMmo:ti.on. oo pWLe mathemati.CI.> a.nd m
a.pp.Uc.ati.on1i. I:t .u., -0pon.601Led by :the Ne:thelli..a.n.do GoveJin.ment :thlLough the
Ne:thelli..a.n.do O!l-ga.n.-lza.:ti.on. ooJL the Advancement 06 PU/Le Re6eaJLch (Z.W.0.),
by the Mun.-lclpa.U:ty oo Aml.l:teJidam, by :the Un.-lveMUy 06 Aml.l,tvul.am, by
the fJr.ee Un.-lveMUy a.:t Aml.l:teJidam, a.nd by -lndUl.l:tfue-6.

Introduction

This note contains a generalisation of Borodins gap theorem [3] and

Constables operator gap theorem [4]. This generalisation does not only

present these gap phenomena in situations dealing with complexity class~

like resource bound classes of recursive functions (like honesty classes

for example) but also indicates that the gap phenomenon depends only on

the second Blum' axiom [2] (the property of being a measured set), In

fact our result shows that any meas.ured set contains arbitrary large

composition and operator gaps.

We present an axiomatisation of the notion of an "acceptance relation",

This notion can be equivalently translated into the notion of a measured

set but we have introduced it to restrict it in the future by some

further axiom related to the first Blum axiom. As we shall see this

first axiom of Blum plays no part in the proof of gap theorems so we

leave this question open for the present discussion.

The proofs given are derived from proofs by P. Young [11]. The essential

modification is a computation "one stage in advance" in the case of

the operator gap algorithm. This is needed to produce "closed local gap

sections".

As corollaries we have gap and operator gap theorems for several classes

of abstract resource bound classes like honesty classes, complexity

classes modulo a recursive enumerable class of sets of exeptional

points, "summed complexity classes", and the result mentioned above

about measured sets.

Conventions and notations

By a function we mean a partial recursive function. Whenever the func­

tion is defined for all values of the argument we explicitely call it

a total function. The domain under consideration consists of the natural

numbers (with zero). The set {x I a.::_ x .::_ b} is denoted as [a,b].

For total functions the inequality f .::_ g means Vx[f(x)<g(x)J. By an

2

operator we denote a total effective operator (cf. [8]). In working

witb. an operator r we consider r to be some procedure which allows us

to compute r(t)(x) whenever some machine fort is given; moreover

r(t)(x) is total whenever t(x) is total and to compute r(t)(x) we only

use the values oft at some finite set of arguments oft called the

support of (the computation of) r(t)(x); finally the result is in­

dependent of tbe program used fort. We have the following important

observation: whenever r(t)(x) has its support contained within the

interval [a,b] and u is some other (eventually partial) function which

satisfies tj[a,b] = uj[a,b] then r(t)(x) = r(u)(x).

In our discussions we have some complexity measure in our mind which

is denoted by{{~.},{~.}}. (cf. [2,6]).
i i

The reader should be warned that our concept of a complexity class is

distinct from the concept as defined in other papers dealing with this

subject. In the first place we allow partial functions to be contained

in a c0mplexity class, even if the name is total. Furthermore we allow

our names to be partial without putting any restriction on the domains

of the functions contained in the complexity class. Our precise con­

cept will become clear from the sequel.

00

If P(x) is a predicate we write Vx P(x) to express that P(x) holds for

all natural x with at most a finite number of exceptions. Sx P(x)

means that P(x) is true for an infinite number of values x.

In discussions we use a fixed set of pairing and unpairing functions.

<x,y> is the pair index of the pair x,y and TI 1(x), n2 (x) are total

recursive functions computing the first and second coordinate of a

pair.

,,

3

1. Abstract resource bound classes and acceptance relations

1.1. Informal" discussion

The definition of a comple:ll'.ity class Ct can be given as:

<I>. e: C .
1 t

iff
00

V ~- (x) < t(x)
X J. -

In principle the inequality ~.(x) < t(x) is undefined whenever ~.(x)
J. - J.

or t(x) is undefined, In practice one uses the following interpretation:

The value t(x) should be considered to be some test value. If the com­

putation of t(x) fails to converge we have no test value and hence no

test either. This means that in testing the program q,. no test is per-
1

formed on the argument x.

If t(x) converges and yields a value z we remind ourselves that

~. (x) < z stands. for the finite disjunction:
J. -

~. (x) = 0
J.

or ~. (x) =
J.

or ~.(x)=z
J.

which can be tested component wise. In this concept the case ~.(x) < z
J.

with ~-(x) diverging is to be considered false.
1

There is a difference between the case with finite ~.(x) and the case
J.

that ~.{x) diverges.
J.

In the first case ~.(x) < z' will become true for sufficiently
J.

large z' and in the second case it will never become true. The reader

should keep this artificial distinction in mind while reading the dis­

cussion below.

Next we consider a possible definition of a Honesty class.

q,. is R-honest if it satisfies nearly everywhere the R-honesty con-
1

dition "~.(x) < R(x,,i,.(x))".
. J. - 'f'J.

There is a large number of distinct interpretations one could give of

the above assertion "does satisfy the R-honesty condition". ,.

4

Interpretation 1: Enumerate the graph of $.(x) and for each pair
J.

<x,$.(x)> produced compute R(x,cp.(x)).
J. J.

If this converges (R does not need to be total) test

whether ~.(x) < R(x,$.(x)). The number of violations
J. - J.

has to be finite.

This interpretation is consistent with the notion of honesty as it is

normally used. It is a bad interpretation if one is interested in

defining a bound-function R depending on the behaviour of the qi ••
J.

An interpretation restricted to a single argument xis the following:

Interpretation 2: Compute <f>. (x) and if this converges compute R(x,cp. (x)),
J. J.

If this converges also test whether ~.(x) < R(x,cp.(x)).
. J. - J.

If this is not the case$. is not R-honest at x. <f>.
J. . J.

should not be not-R-honest at x for infinitely many x.

The above interpretation does still not allow to. isolate_the bound

function R from the honesty condition. A local interpretation is the

following:

Interpretation 3: We say that <f>. satisfies the honesty condition with
J.

value z at the argument~pair <x,y> when we have

<f>.(x) = y and ~.(x) < z. We say that <f>. violates the
J. J. - J.

honesty condition with value z at the argument-pair

<x,y> if ~- (x) = y and-~. (x) > z. Otherwise the
J. J.

honesty condition (with value z) does not apply

to <Pi at the argument-pair <x,y>. <f>. should not
J.

violate the honesty condition with value R(x,y) at

infinitely many arguments-pairs <x,y>,

It is natural to have$. not violating a honesty condition (at x) if
J.

qi. does not converge. In interpretation 1 such a point does not appear
J.

in the enumeration; in interpretation 2 the corresponding point xis

never marked as an argument where$. is not R-honest while in the third
J.

case the honesty condition is found to be not applicable at <x,y> for ,_

ally.

5

It is also natural to have~- not violating a honesty condition at x
1

if R(x,y) happens to.be undefined for y = ~i(x). In .the first two inter-

pretations this leads to the non-termination of a computation and

therefore to the non-discovery of a violation while in the third inter­

pretation we have as in the case with complexity classes no test value

and hence no test.

Furthermore we can formulate the following properties of the "three

valued" predicate Hon(i,x,y,z) (where Hon(i,x,y,z) denotes ~i does

respect the honesty condition with value z at <x,y>)

a) If z' > z then Hon(i,x,y,z) holds implies that Hon(i,x,y,z')

holds also.

b) If !!.2£(i,x,y,z) does not apply then for no value of z' Hon(i,x,y,z')

will apply.

c) Hon(i,x,y,z) is violated then there exist a z' > z such that

Hon(i,x,y,z') is true.

d) The quadruples <i,x,y,z> for which Hon(i,x,y,z) holds form a re­

cursive set.

e) The quadruples <i,x,y,z> for which !!££(i,x,y,z) is false form a

recursive enumerable set.

The properties a) .• , e) represent in fact everything we need about the

honesty relation in order to prove an operator gap theorem. They are

axiomatized in the notion of an acceptance relation.

It should be clear that in the case of a honestly class a number of

problems arise which are not present in the case of a complexity class.

We conclude however this introduction by presenting a rather twisted

interpretation which shows that the concept of an acceptance relation

(as suggested above) is applicable in the case of a complexity class

as well.

Let Cpl be a "three valued"-predicate defined by

6

if ¢.(x) < z then true
1

Cpl(i,x,z) = if ¢. (x) < 00 and. ¢. (x) > z then false
1 -- 1

if. ¢i (x) = 00 ~ not applicable.

This three valued predicate has the same properties a) e) as the

predicate Hon above. The difference appears however in the definition

of the complexity class. In order te be in the ·honesty class the program

~- sho~ld. not violate the condition Hon infinitely often which could be
1

called a weak restrictien. However in order to be in the complexity

class the function~- should respect the condition Cpl almost every-
1

where which is a strong restriction. As we shall conclude in the sequel

it is exactly this distinction between weak and strong restriction

which produces a number of relevant differences between honesty- and

complexity classes.

1.2. Formal definitions and. examples

Definition 1 .1. An acceptance relation A is a set theoretical total

function with three natural argumehT~ (say i, x and z)

and values in the three element set {true,false,void}

which satisfies the following axioms.

Al. Monotonicity: If z < z' then

A2.

(A1a)

(A1b)

A(i,x,z) =true~ A(i,x,z') = true

A (i ,x, z) = void ==;, A (i ,x, z') = void

furthermore

(A1c) A(i,x,z) =false==> 3z 1 A(i,x,z') = ~

Computability:

(A2) The predicate A(i,x,z) = true is recursive in 1, x, z. ,,

7

Remarks

1) One should think the arguments i, x and z to play the role of

"index'', '' argument 11
, and "testvalue 11

, We shall have however inter­

pretations where both i and x encode more information than an

index of a program or some argument.

2) For future use one is suggested to introduce a third axiom es­

pressing the fact that A(i ,x ,z) = true forces some computation to

terminate, In this report we do not need such an axiom.

Definition 1.2. Let A be an acceptance relation, and let t be a function

(which might be partial).

Examples

The set of indices strongly A-restricted by t notated

F~(t) is the set

00

{i I Vx [t(x) < 00 ➔ A(i,x,t(x)) = true]}

The set of indices weakly A-restricted by t notated

F~(t) is the set

{i Ji [t(x) < 00 ➔ A(i,x,t(x)) ~ false]}
X

1) Let Cpl (i,x,z) be the acceptance relation defined by

true if qi.(x) < z
1 -

Cpl (i,x,z) = false if z < <ll.(x) < 00

1

void if 41. (x) = co
1

This relation is called the complexity relation, The definition of

a complexity class becomes

if

2)

8

The complexity class Ct is the set of functions having some index

which is in the set strongly Cpl-restriGted by t.

Let {y.} be some measured set*) of functions. We define a cor­
. i

responding acceptance relation r

r(i,x,z) =

true if z > y. (x)
- i

false if z < y.(x) < oo
l

void if y. (x) = oo
i

Given some t the indices i strongly restricted by tare precisely

the indices of functions yi which are almost everywhere bounded

by t. The indices i weakly restricted by tare the .indices of

functions y. which are almost everywhere bounded by t when they
i

converge but also are allowed to diverge (also on arguments where

t(x) < oo),

3) Let Hon be the acceptance relation

4)

Hon(i,x,z) -

true if ~i(TI 1(x)) < z and ~i(TI 1(x)) = TI 2 (x)

false if ~i(TI 1(x)) > z and ~i(TI 1(x)) = TI 2 (x)

void otherwise

The honesty class HR is the set of functions having some index

which is weakly .!!2E_-restricted by R.

Let E = {B.}. be a recursive enumerable class of sets of exceptional
J J

points. (cf. [1]). This means that all sets B. are recursive, {B.}.
J J J

is closed under finite unions and contains all finite sets, and

finally W 1 {B.} ..
'I- J J

*) i.~.: A sequence of functions such that the relation y.(x) = y is
i

decidaqle,

9

Let Cplex be the acceptance relation

true if X E B
7f2(i)

or iP c.) ex) < z 'IT i -
1

Cplex(i,x,z) = false if X tl: B
7f2(i)

and z < qi
1r,(i)

< 00

void if X tl: B
7f2(i)

and iP
'IT,(i)

= 00

The complexity class C(t) modulo the class of sets of exceptional

points E is the set of functions f for which there exist a program

index j and a set index k such that the pair <j,k> is strongly

Cplex-restricted by t.

5) Let Scpl be the acceptance relation

true if I
y<x

<P.(y) < z
i -

Scpl(i,x,z) = false if z < <P. (y) < 00

i

void otherwise

The summed complexity class SC(t) is the set of all functions

having an index which is strongly Scpl-restricted by t,

Note that whenever the domain oft is infinite, all functions

within SC(t) are total which is certainly not the case for normal

complexity classes.

It has to be remarked that the set of indices weakly-Cpl restricted by

tis not a natural concept. This represent the class of functions which

are computable within t(x) steps or are divergent. The only inter­

pretation one might give of such a resource bound class is the inter­

pretation from the point of view of the director of a company which

only pays for work which is completed. An employee which has been in­

structed to perform an infinite job is going to be very cheap.

The following lemma ~ives some trivial consequences of the axioms. ,,

10

Lemma 1.3. Supp0se z < z' then we have:

(1.3,a)

(1.3,b)

(1.3,c)

(1.3,d)

(1.3.e)

(1. 3.f)

(1.3,g)

Proof,

A(i,x,z') =false.:::=:> A(i,x,z) = false

A(i,x,z') = ~ ===--> A(i,x,z) = veid

A(i,x,z) =void~ V A(i,x,w) = void
- w --

A (i, x, z) = false and A(i,x,z') =true==;,, z < z'

7 (A(i,x,z) = false and A(i ,x,z') = void) -- ---
~(A(i,x,z) = true and A(i,x,z') = void) ----.- " -
A(i,x,O) = void or µz[A(i,x,z) =true]< oo --- -
the predicate A(i,x,z) = false is recursive enumerable

(1,3,a) By (A1a) A(i,x,z) # true and by (A1b) A(i,x,z) # void

Now (1.3.a) follows by the fact that A is total,

(1.3.b) By (A1a) A(i,x,z) # true. Suppose A(i,x,z) =false.Then

there exists a w such that A(i,x,w) = true.

Now A(i,x, max(w,z')) is~ by (A1a) and void by (A1b) which

gives a contradiction.

(1. 3 . c) By (1 . 3 . b) and (A 1 b) •

(l. 3.d) By (A 1a) we cannot have z > z'.

(1.3.e) Directly from (1.3.c).

(1.3,f) If A(i,x,O) # void then A(i,x,O) = true in which case the

µ-operator yields O or A(i,x,O) = false in which case con­

vergence is guaranteed by (A1c).

(l.3.g) By (Aic) and (1.3.c) we have ,.
A(i,x,z)= false iff A(i,x,z) # true and 3wA(i,x,w) = true

The right side clea?ly is.recursive enumerable.

11

Remark. In general the predicate A(i,x,z) = void will be a rr2-predicate.

If it happens to be also I1 (rec. enumerable) then the whole

A becomes a recursive function.

1.3, Eguivalence of acceptance relations and measured sets

We have seen in example 2) that the notion of a measured set can be

expressed by an acceptance relation. We can also attach to an acceptance

relation a measured set which contains exactly the same information.

Proposition 1.4. There exist a 1.1 correspondence between measured

sets and acceptance relations.

Proof. To the measured set {y.} we let correspond the acceptance
i

relation r as given in example 2:

r(i,x,z) =

true if y. (x) < z
i

false if z < y. (x) < oo
i

void if y.(x)=oo
i

Now let A be an acceptance relation. We define the functions

a.(x) = µz[A(i,x,z) = true].
i

This is a measured set. In order to see whether a.(x) = z we test
i

whether A(i,x,z) = true and (A(i,x,z-1) # true or z = 0).

It is clear that by going back-and-forewards in this correspondence

we get back our old acceptance relation respectively our old measured

set.

It -is possible to give a more formal presentation of prop. 1. 4. An

index for a measured set

the program~~ such that ,, J

{y.} can be thought of to be an index j for
i

~~ is a total 0-1 function which is zero at
J

12

arguments (i,x,z) for which y.(x) = z. Also an index for an acceptance
. i

relation A can be thought of to be an index of the characteristic

function of the predicate A(i,x,z) =~(as all other information can

be derived from this predicate).

Now let M be the collection of indices of measured sets and let N be

the collection of indices of acceptance relations then Mand N are

recursively equivalent.

* Prop. 1 • 4 . M - N

Proof;

Let g(k) be an index of the program

3 (·) . 3(.) 0 (3(.)) <l>g(k) i,x,z = if <l>k i,x,z = and z=O £E_ <pk i,x,z--1 =1 then 0

elsf <t>~(i,x,z) = 1 and z>O and <ji~(i,x,z~1)=O then O

elsf <ji~(i,x,z) > then 2

fi

3 .
Now <l>g(k) is partial whenever

3 . 3 . .
<pk is and <l>g(k) will fail to be a

characteristic function if <l>k does.

If qi~ is .a characteristic function then <l>~(k) will be the characteristic

function of all those triples (i,x,z) for which <jik(i,x,z) = 0 and z = 0

or <jik(i,x,z) ~ <jik(i,x,z-1).

For fixed i and x <l>g(k)(i,x,z) will be zero at all those z where the

value of <jik(i,x,z) changes. If ·<l>g(k)(i,x,z) = 0 should hold for at most

one z then there should be at most one change of value. If this is

however a change of Oto 1 the <l>g(k)(i,x,z) will be zero also for

z = o.

13

This shows g(k) is index for a measured set iff k is index for an

acceptance relation.

Hence we have N < M by g.
-m

Conversely let h(k) be an index for the program

<j>~(k/i,x,'z) = if_ =ly .::_ z <j>~(i,x,y) = 00 ~ undefined

elsf 3y .::_ z <j>~(i,x,y) > 1 then 2

llif 3y
1

,y
2

< z <j>~(i,x,y
1

) = 0 and cp~(i,x,y
2

) = 0

and y
1

-:/: y
2

then 1

elsf 3y .::_ z <j>~(i,x,y) = 0 then 0

fi

· ~3 . . 1 h ~3 . Al ~3 . h . t' Again '+'h(k) is part1a w enever '+'k is. so '+'h(k) is a c aracter1s 1c

function iff <j>~ is. Further if so then <j>~(k) is the characteristic

function of the set (i,x,z) for which there is exactly one y .::_ z such

<j>~(i,x,y) = O.

From this one has M < N by h.
-m

By the normal padding technique*) one concludes

M < N
-1

and whence M = N.

This proposition shows that the theory of acceptance relations is

equivalent to the theory of measured sets. The possibility of intro­

ducing a third axiom in the future prevents the author from rejecting

the notion of an acceptance relation as being useless.

*) A technique to make hand g 1-1. Cf. Rogers [9] or Mccreight [7].

14

2. The ga~ theorems

2. 1 . Informal discussion

In this section we prove the following generalisation of the gap

theorems of Borodin [3] and Constable [4]. Let A be an acceptance

relation and l~t G be a recursive total function in two variables and

let A be a total effective operator. Furthermore we suppose G(x,y) .:.Y·
and r(t)(:X:) ,:::.. t(x). Then there are arbitrary large total functions t

such that the class of indices strongly (weakly) A-restricted by tis

equal to the class of indices strongly (weakly) A-restricted by

A G(x,t(x)) respectively r(t).
X

This statement contains four gap-theorems, three of which are proved

by a straightforward translation of the known proofs for the complexity

class case. On~y the proof of the operator-gap theorem for weakly­

A-restricted classes of functions presents difficulties which are over­

come by co~puting one stage in advance in the construction as described

by P. Young [11].

The result is based on a construction of a total function t for which

the following holds: whenever for infinitely many x we have

A(i,x,t(x)) = false and A(i,x,r(t)(x)) = true then we have for in­

finitely many x A(i,x,r(t)(x)) =false.This is a stronger condition

than the condition which results from the construction in the proof of

P. Young where we have:

3 A(i,x,t(x)) ,f: true==:;> 3 A(i,x,r(t)(x)) ,f: true,
X - X --

To understand the difference we briefly describe Young's construction

cf. [11 J.

Lett be defined up to a certain point (say y
0

) at the beginning of

stage.x. Now perform the following computations:

1) Generate x+1 programs for functions tj extending tj[o,y0J such that

~- > r(t.) on [yo+1 , 00
).

J+1 J

2)

15

Generate x+1 integers zj > y
0

such that for

r(t.)(v) can be computed from the values of J .
are computed for J = x, x-1 , ... ,0).

V € [y0,zj+1].

t . on [0 , z .] , (The z .
J J J

3) For each i < x,O 2-_ j 2-_ x test whether there exist a point

4)

5)

z e: [y
0

+1 ,zj] such that A(i,z,tj(z)) ~true.If so we say that 1

transgress~s the extension t ..

If i transgresses the extension t. and does not transgress the
J

extension tj+1 we declare the gap section <tj,tj+1> unsafe for i,

Note that each index i has at most one gap-section which is de­

clared unsafe for it. As we have x gapsections and x-1 functions

considered we safely may execute 5)

Select a gap section t. which is not declared unsafe for any index.
J

Extend t by t. and put y
0

= z. and proceed to the next stage.
J . J

One easily verifies that the function t constructed in this way satisfies

the condition

~ A(i,x,t(x)) #true==!> 3 A(i,x,r(t)(x)) # true.
X -- X · --

and the operator gap theorem for strong-restriction is a straightforward

result.

In weak restriction the problem is that we must accept the case

A(i,x,t(x)) = void and reject the case A(i,x,t(x)) =false.The only

mechanism which allows v. to discriminate between those cases is the J .
finding of a value z > t(x) such that A(i,x,z) = true.

The following diagram shows the behaviour of a single index i at

different points of an open local gap section t.,t.
1

. The vertical lines
J J+

represent the set of points (x,y) where A(i,x,y) #true.Note that an

unbounded vertical line represents points (x,y) with A(i,x,y) = void

and that a bounded line represents points with A(i,x,y) = false.

,.

16

t. 1 J+

both A(i,y,tj(x)) and A(i,x,tj+1(x) are true, no problem,

A(i,x,t.(x)) 'f' true and A(i,x,t.
1
(x)) = true, hence

J -- J+ --

A(i ,x, t. (x)) = false and we have that i spoils the gap section
J

<tj,tj+l> at x2 .

At x
3

,x4 A(i,x,tj(x) 'f' true and A(i,x,tj+l(x)) 'f' true (at x3 (x4) both

are false (void)). The gap is unspoiled. However the behaviour at x
3

makes the gap section <tj,tj+1> safe again for i and the

behaviour at x does not so. Note that it is not possible with

the information about tj and tj+1 to discriminate whether we

have behaviour as in point x
3

or x4 .

A(i,x,t.(x)) = true
J --

tj+l(x) is undefined, No problem,

and x
7

A(i,x,tj(x)) 'f' true tj+1(x) is undefined. Now

A(i,xt,tj(x6)) = false and A(i,x
7

,tj(x7)) =void.As no upper

bound for r(t)(x) is given for x = x6 and x = x
7

it might happen

that i will spoil the gap at x6 after all, but at~ this will

never happen.

Again we cannot discriminate whether we have a situation like

in point x6 or in point x
7

.

17

Suppose now that we are given a trick to extend tj+ 1 over the domain

oft .• This way we may forget about the behaviour like in the points
J

x
5

, x6 and x
7

. Now the only remaining case where a gapsection is

spoiled is in the situation as shown by x
2

. But this situation is

decidable. Thus it becomes possible to decide whether a closed gap

section is spoiled by some index or not,

The other advantage is the following. Suppose that we have detected

that i spoils the ~ap section <tj+1 ,tj+2>. Then we have decided at the

same moment that for a certain point x with respect to the gap section

<tj,tj~1> the situation is like in x
3

and not like in x4. (see the

diagram below). Hence an index i spoiling a gap section <tj,tj+l> will

be safe for all lower gap sections. This property makes it again to

define a safety condition in such a manner that any index will be

declared unsafe for at most one gap section. After this the proof goes

on as before.

t.
J

18

To generate an upperbound for r(t) over the domain oft. we use the
J

following observation: The only reason that t. 1 is not yet ·extended
J+

over the domain oft. is that we have not fixed the values oft out~
J

side the domain oft. (which mates it impossible to evaluate r(t) for
J

all the points where we need its value).

By selecting t. we restrict ourselves however in the possible extensions
J

oft. Fort shall be one of the x+2, extensions u .. oft. generated
1J J

during stage x+1. We may assume that all extensions u .. shall be defined
1J

over a domain sufficiently large to define r(u ..)(z) for all z in t'he ' 1J '
domain oft .. So in order to generate an upperbound for r(t) on the

J
domain oft.

J
just have to

based on the assumption that tj is selected at stage x we

compute one stage in advance the x+2 extensions u .. and
1J

to cqmpute the r(u ..)(z) for the z in the domain oft .• This way we . 1J J
produce closed local gap sections and we are safe. (See the diagram

below).

,,

t

r(u ..)
1J

19

The above informal discussion contains all essential ideas behind the

operator-gap ~heorem for weakly-restricted classes of indices. We

present below an informal description of the program together with a

proof that it yields the operator-gap we intended to prove. (In §3

the reader will find a formal definition of the program which looks like

an ALGOL 68 program (although it is in fact not one) which might answer

all questions raised by the vagueness of the informal description.)

2.2. Proof of the theorems

Lemma 2.1. Let A be an acceptance relation and let r be a total

effective operator such that r(t) > t. Finally let a be a

total recursive function. Then there exist a total function

t > a such that for all i we have

3 [A(i,x,t(x)) # true A A(i,x,r(t)(x)) = true]
X -

implies

00

3x [A(i,x,r(t)(x)) = false}.

Proof.

At the beginning of stage k we suppose that t(x) is already defined

over the interval [O,y
0
J. Further we have k+1 programs of functions

t
0

, ••• ,tk which satisfy:

i) ti(x) = t(x) for x .:_ y
0

•

ii)

iii)

iv)

t . (x) > r (t .)(x) for x > Yo , 0 .:_ i < k.
1 - 1

t.(x) .::_ a(x) for all x, 0 .:_ i .::_ k.
1

t.(x) is (monotoneous) non-decreasing in x.
1

Further we have k+1 pointers z. (0 < i .:_ k) which satisfy:
1

20

v) z > y +1; z. > z. for O < j < k.
k - 0 J - J+1 -

vi) the support of r(tk) on [O,y
0

+1] is contained in [O,zk]

vii) for O =:_ j < k the support of r(tj) on [O,zj+1J is contained in

[O,z.J.
J

Note that the above situation is e4uivalent to the results of the

computations of 1) and 2) in the algorithm of Young.

The computations of stage k can be described as follows:

1)

2)

For O =:_ j =:_ k we construct k+2 next-stage extensions u.
1 J ,

1 = 0,1, ... ,k+1, which are defined by

i) u.
0

(x) = if x < z. then t.(x)
J, - J - J

else max {a(x),t.(x-1)}.
---- J

and for 1 > O.

ii) u.
1

(x) = if x < z. then t.(x)
J, - - J -- J

else~ {a(x),u.
1

(x-1),u.
1

_ 1(x),r(u.
1 1

)(x)}.
J, J, J,-

For O =:_ j =:_ k, 0 < 1 < k+1 we construct a pointer v.
1

which
J '

satisfies:

iii) The support of r(uj,k+1) on [O,zj+1] is contained within

[O,vj,k+1].

iv) For O < 1 < k the support of r(u.
1

) on [O,v.
1 1

] is con-
J ' J ' +

tained within [O,v. 1 J.
J,

Comment. Note that these computations again are the equivalent of 1)

and 2) in the algorithm of Young;

3) For j = O, ••. ,k we compute a function segment g. defined on the
J

interval [y
0
+1,zj] which is defined by

21

g. (z) = if z ¢ [y
0

+1 ,z. J then skip
J - J --

els e if z < z.+ 1 then t.+ 1(z)
--- - J -- J
else~ {r(uj,1)(z) I 1 = o,1, ... ,k+1} fi fi;

Comment. Note that by 2) the support of r(u.
1

) on [y
0

+1 ,z.J is con-
J, J

4)

5)

tained in [O,v.
1

]. Further by assumption r(t.)(z) =
J, J

= r (u. ·
1

)(z) < t .
1

(z) for z < z . + 1 ; J, - J+ - J

For j = O, ... ,k and i = O, •.. ,k-1 we check whether it occurs that

for some z € [y0+1,z.] we have A(i,z,t.(z)) I true and
. J J --

A(i,z,g.(z)) =true.If so we say that index i enters the j-th
J -- -

local gap section.

For 1 = O, ... ,k-1 select the largest j such that index i enters

the j-th local gap section. If such a J exist (say j.) we
1

declare the j.-th local gap section unsafe for i.
1

6) Select some (the lowest) j such that the j-th local gap section

7)

is not declared unsafe for any 1, 0 < i < k-1. Such a j* exists

as we have k+1 local gap sections and only k indices 1 each having

at most one local gap section declared unsafe for i.

Extend t by the values of t.* on [y0+1,zj*J; put y
0

eg_ual to z ·*; J J
put t. equal to u.* for J = 0, •.. ,k+ 1 ; put z. equal to v.* J J ,J J J ,J
for j = O, ... ,k+1;

8) Proceed to stage k+1.

Note that after 7) the assumptions made about the situation

before the entering of stage know are satisfied before entering

stage k+h

We still have to explain how the program is initiated. This is performed

by having step 1) and 2) executed once with k = 0 working on the empty

function. This yields two programs t
0

and t 1 .::_ a and two pointers z
0

'

and z4 such that t
0

and t 1 are monotoneous non-decreasing t 1 .::_ r(t 0),

22

the support of r(t 1)(0) is contained within [o,z 1J and the support of

r(t
0

) on [o,z
1
J is contained within [o,z0J. Put y

0
= -1. These functions

and pointers satisfy the assumptions assumed·to hold before entering

stage 1,

This completes the informal description of the program. It remains to

show that the Gonstructed function t has indeed the property that for

all i

00

3x [A(i,x,t(x)) -:/:true~ A(i,x,r(t)(x)) = ~]

implies

00

3x [A(i,x,r(t)(x)) = false].

First it should be clear from the description that at any stage after

a finite computation tis extended by a finite segment. Hence we can

restrict ourselves to the infinitely many values x for which t(x) is

defined during stages k with k > i.

Now let t(x) be defined at stage k and let A(i,x,t(x)) ~ true and

A(i,x,r(t)(x)) = true.

By abuse of notations we give y
0

, zi,

they: had during execution of stage k,

t., u .. , v .. and g. the meaning
i iJ iJ i

Hence we know that on [O,z J is
"*

equal to t_*(x) for a ·* J such that ·* . J the J -th local gap section was
J not declared unsafe for index i.

From this fact we derive that either the index i did not enter the

j*-th local gap section or otherwise i did enter the j-th local gap

section for some j > j*.

The first possibility yields:

Y [+1 J [,(A(i,z,t *(z))-:/,true and A{i,z,g *(z)) = true)].
Z€ y Z • -- -- • --0 , ·* .,J J

J

. . . * This ~s however not possible: For some 1 2. k+1 we have

23

Furthermore we have that the support of r(u.* *) on [O,z.*J
J ,1 J

tained within [O,v.* *] hence
J ,1

So A(i,x,t.*(x)) ~ true and A(i,x,g.*(x)) = true.

contradiction. J J
This is a

We have therefore the case that the index i enters also the j-th local
~ * gap section for some j > j . This means that for some z E [y O +1 ,z,.) we

have J

A(i,z,t~(z)) = false.
J

As however r(t)(z) = r(t.*)(z) < t * (z) < t (z).
J - j +1 - J

We conclude A(i,z,r(t)(z)) = false ~ for some z > y
O

.

Our conclusion is that for each stage k where values t(x) are defined

in such a wa;y that A(i,x,t(x)) ~ true and A(i,x,r(t)(x)) = true there

are also values t(z) defined for which A(i,z,r(t)(z)) = false.

Again using the fact that only finitely many values oft are defined

at a single stage we conclude that

00

3x [A(i,x,t(x)) ~ true and A(i,x,r(t)(x)) = ~]

implies

00

3x [A(i,x,r(t)(x)) = false]

which completes the proof.

It is not hard to prove from the lemma both operator-gap theorems. ,,

24

Theorem 2.2. [operator-gap for weak restriction]: Let A be an acceptance

relation, r a total effective operator with r(t) .::_ t

and a a total function. Then there exist a total func-
A A

tion t > a such that FW(t) = FW(r(t)).

Proof,

Lett be constructed as in the lemma. As r(t) ::._ t the inclusion

F~(t) ::_ F~((t)) is trivial. Now suppose i ¢ F~(t) and i € F~(r(t)).

Then we have

00

3x [A(i,x,r(t)(x)) = true and A(i,x,t(x)) = false]

but now by the lemma we have

so J.

3 [A(i,x,r(t)(x)) = false]
X

Contradiction.

Theorem 2.3. [Operator-gap for strong restriction]: Let A be an

acceptance relation, r a total effective operator with

r(t) ,:::._ t and a a total function. Then there exist a
A A total function t > a such that F
3

(t) = F3(r(t)).

Proof.

First we have to remark that both Constable and Young have given a

proof which yields the above theorem after a suitable translation. It

is also an easy consequence of our lemma 2.1.

A A Lett be constructed as in the lemma. Again the inclusion F
3

(t).:.. FS(r(t))

is trivial. Next suppose

i.e.
00

3x A(i,x,t(x)) ':/: true.

If there are infinitely many x such that A(i ,x,t(x)) = void we have

A(i,x,,r(t)(x)) void for the same x and we conclude i ¢ F~(r(t)). So

25

we may assume tha~ A(i,x,t(x)) = false for infinitely many x. Now

suppose that A(i,x,r(t)(x)) = false for only finitely many x. Then we

have again

3 [A(i,x,r(t,)(x)) = true and A(i,x,t(x)) # true]
X ---- ---

which by Lemma 2.1 yields

3 [A(i,x,r(t)(x)) = false].
X

A contradiction.

The composition-gap theorems could be considered to be special cases

of the more powerful operator gap theorems. It has however to be re­

marked that the old proof of Boredin [3] is correct for both the strong

and the wel:lk case. Also the constructive versions of this proof remain

true for both cases [5,11]. This results from the fact that in the

composition gap construction a "local gap section" is defined over a

domain consisting of a single point and is therefore automatically

closed.

For completeness sake we give a proof:

Theorem 2.4. [Composition gap theorem]: Let A be an acceptance relation,

let G be a total function satisfying G(x,y) .:_ y and let

Proof

a be a total recursive function. Then there exist a

function t > a such that both F~(t) = F~(AxG(x,t(x)) and

Define t(x,k) = if k=O then a(x) else G(x,t(x,k-1))+1. - -- --
Next define

t(x) = t(x,µk[Y [A(i,x,t(x,k)) = true or A(i,x,t(x,k+1)) # true]])
• i<x -- - --

26

Note that the values {t(x,k)}k form an increasing sequence for any

fixed x. Furthermore for every i there is at most one k such that

A(i,x,t(x,k) # true and A(i,x,t(x,k+1)) =true.Hence the µ-operator - . --
applied on this predicate yields a value k .::_ x. Now we can prove

about this function t(x) the strong assertion:

for all x > i+1 we have A(i,x,t(x)) = A(i,x,G(x,t(x))).

The theorem follows straightforwards.

As a corollary we have gap and operator gap theorems for all the

acceptance relations treated in the examples in §1. Taking in particular

the acceptance relation Cpl we have the old theorems back. Taking the

acceptance relation Hon yields the gap theorems for honesty classes.

27

3, Formal description of algorithm

Readers unfamiliar with the programming language ALGOL 68 are advised

to skip this section.

Consider the following ALGOL 68 particular program.

begin proc twist= (proc (int,int) int p) proc (int,int) int:

end

((int x,y) int: p{y,x));

proc (int,int) int sum= (int x,y) int: (x+y)

proc (int,int) int mus; mus:= twist (sum) ;

print (mus(2,2))

At first glance it seems that the programmer wants to verify in a

stupid way that 2+2.= 4. In fact the program can be shown to yield an

undefined eleboration. The undefinedness results from the fact that by

the scope conditions inherent in ALGOL 68 it is nearly impossible to

write a routine which has some formal parameter and which yields as

value a routine which is dependent of the value of the parameter. In

the above example the identifier twist possesses as value the routine:

(proc(int,int) int p=~; proc(int,int) int: ((int x, int y) int: p(y,x)))

and consequently the call twist(sum) is elaborated by elaborating the

closed clause.

Elaboration of this closed clause gives as value the routine possessed

by the routine denotation ((int x,int y) int: p(y,x)) which is the

routine
(int x =~,int y =~;int: p(y,x)). - -- --

Now the scope of this routine is bounded by the scope of the identifier

p (cf. [10], 2.2.4.2.b). As the scope of the name possessed by mus is

the whole particular program, the assignation mus:= twist(sum) yields

an elaboration which is undefined (cf. [19], 8,3,1.2.c). ,

28

The reader of the program should keep in mind that the elaboration of

the program is undefined in the semantics of ALGOL 68 as defined in

[10]. There are however reasons to assume that this trouble is going

to be solved in some way in a future revision of the definition of the

language [12, p.25],

To understand ~he program one should change the semantics of the

procedure call in such a manner that in the above example the result

of the call twist(sum) should yield the routine

(proc(int,int)_ int p=sum; int x = ~; int y = ~; int: p(y,x))

i.e. the formal parameters are transformed into identity declarations

defining the formal parameters to be equal to the actual para.meters and

transferred in this way to the delivered routine.

Although the above discussion is far from complete the author hopes

that it is sufficient to explain the meaning of the program for the

operator-gap-construction.

The program describes an algorithm which does not terminate. During the

infinite computation controlled by the simple do loop do stage(sn+:=1,dp)

the computed values oft are loaded into the infinite vector computed

value; Although the program is no procedure denotation we have accepted

the analogy to represent the values which control the program (the

operator, acceptance relation and lowerbound which has to be surpassed

by the function which is to be computed) by skip-symbols. The unimaginable

user should insert at this place his own values.

The program rather strictly follows the informal description given in

§2.2. It is the opinion of the author that it should be possible to

present formal definitions of algorithms described in recursion theory

using modern high-level programming languages in order to prevent

ambiguities and errors which might arise from the informal descriptions

which are commonly given. The informal description should explain the

algorithm but not define it.

begin

29

mode fun = proc (int) int ;

~operator= proc(fun) fun;

~ acrel = proc(int,int,int) bool;

4 As explained before it is hard to produce some non-trivial

value of the mode operator in regular ALGOL 68 4

fun lowerbound =

operator gamma=

acrel acceptance=

[0:1 flex] int locub, computed value;

[0:1 flex] fun local extension;

int sn, dp;

4 locub, local extension, sn .and dp play the role of (zj), (tj),

k and yO in the informal description 4

priority A:= = 1;

~ A:= = (ref bool a, bool b) ref bool: a:= aAb;

4 readers unwilling to accept A:= as an indicant should consider

this declaration to be part of the standard prelude [12.p.49] 4

~ ~ = ([J int ar) int :

begin int 1 = Lar, u = far;

(1 > u I O I: 1 = u I ar[l]j

int k = ar[l], kk = ~ ar[l+1 :u];

(kk < k I k I kk)

30

proc extend= (int x, low, fun t, ref[O: J fun tj):

begin int ub = 1tj; (ub < x I goto incorrect);

tj[O]:= (inti) int: if i .::_ low then t(i)

for j to x do

tj [j J: = (int i) int:

end· __ ,

else ~ (t(i-1), lowerbound (i)+1)

fi;

if i < low then t(i) - - --
else max (tj[j](i-1),tj[j-1](i),

gamma(tj [j-1 J)(i))

fi

¢ The above procedure is the bad animal in this program; its
.

elaboration in Regular ALGOL 68 yields undefined results whenever

called with actual para.meters¢

proc support= (int x, fun f, operator g) int:

begin int ub:= O;

end· __ ,

fun fstar =(inti) int: ((i > ub I ub:= i); f(i));

g(fstar) (x);

ub

¢ As assumed the operator g works by issuing calls of the function

it works on, the result being independent of the actual computation

it invokes but only dependent of the delivered value¢

proc suponint = (int x, y, fun f, operator g) int:

begin (x > y I goto incorrect);

int out:= y+1;

end· _,

for z from x to y do

(int p = support (z,f,g); (p > out I out:= p));

out

31

proc domains= (int low, [O: J fun tj) [J int:

begin int up= rtj; [O:up] int yj; int lastyj:= low+ 1;

for j from up ~ -1 to O do

lastyj:= yj[j]:= suponint(O,lastyj,tj[j],gamma);

YJ

end· __ ,
¢ domains is the procedure which computes the pointers vj,l in part 2

of the algorithm¢

proc entergap = (int nof, low, up, fun bottom, roof) bool:

begin bool safe:= true

end· __ ,

for z from low+ 1 to up while safe do

safe A:= acceptance (nof,z,bottom(z)) = acceptance(nof,z,roof(z));

safe

¢ entergap tests whether the index nof enters the local gap section

determined by bottom and roof over the interval [low+1,up]. Note

that the gap section is closed¢

proc unsafegap = (int nof, k, low, [O:] int up, [O:] f:!:ill. bottom, roof) int:

begin (k > rup V k > rbottom V k > rroof I goto incorrect);

bool untouched:= true; int p:~ k;

end· __ ,
for j from k EX. -1 to O while untouched do

(untouched A:= entergap(nof,low,up[j],bottom[j],roof[jJ)Jp-:=1);

p

¢ unsafe gap seeks the highest entered gap section; if not present

it yields value -1 ¢

32

proc stage= (int stagenumber, last .defined):

begin int st= stagenumber, ld_= last defined;

[O:st,O:st+1] int next stage locub;

[0: st, 0: st+1] fun next stage extension;

[O:st] fun giant;

~ j from O to st £Q_

begin extend (st+1 ,locub j,local extension[j],

nextstage extension[j]);

end· __ ,

4 informal description 1) ¢

nextstage locub[j]:= domains(locub[j],.

4 informal description 2) ¢

giant[j]:= (inti) int:

nextstage extension[j]);

if i .::._ ld Vi> locub[j] then skip

~ int great;

((j=st I goto upperunknown);

(i > locub[j+1] I goto upperunknown);

great:= local extension[j+1](i) .

upperunknown: great:= local extension[j](i)+1;

fi

for k from O to st+1 do

(int p = gamma(nextstage extension[j,k])(i);

(p > great I great:= p)

great

4 informal description 3) 4

[O:st] bool safegap;

for j from Oto st do safegap[j]:= true;

for nof from O to st-1 do

(int k = unsafegap(nof,st,ld,locub,local extension,

giant.);

(k .::._ 0 safegap[k]:= false)

) ;

4 informal description 4) and 5) ¢

33

int select:= O;

while, safegap[select] do select+:= 1;

¢ informal description 6) ¢

dp:= locub select ;

[O:dp] int xx; for j from Oto ld do

xx[j]:= computed value[j];

for j ~. ld+1 to dp do

xx[j]:= local extension[select](j);

computed value:= xx;

local extension:= nextstage extension[select];

locub:= nextstage locub[select]

¢ informal description 7) ¢

end; 4 end of procedure stage; informal description 8) 4

sn:= O; dp:= -1;

extend(1,-1,(int i) int: O, local extension);

locub:= domains(-1,local extension);

4 these instructions perform the initialisation as

described in the informal description 4

do stage(sn+:=1,dp);

¢ the program loops forever unless halted when it

enters one of the few illegal situations which are

tested for 4

incorrect: skip

34

References

[1] L. Bass, P. Young, Hierarchies based on computational complexity

and irregularities of class determining measured sets.

Report CSD TR 58. (July 71), Purdue University.

(also presented at 2nd ACM Symp. on the theory of computing,

May· 1970, Northampton Mass. See also the thesis of L. Bass

at Purdue University).

[2] M. Blum. A machine independent theory of .the complexity of re­

cursive functions. JACM .1.!±. ("1967), 322-336.

[3] A .. Borodin. Computational complexity and the existence of complexity

gaps. JACM ..l2. (1972), 158-174.

[4] R.L. Constable. The Operator Gap. JACM ..l2. (1972), 175-183.

[5] P. van Emde Boas. A note on the Mccreight-Meyer naming theorem in

the theory of computational complexity. Report ZW 7/71

(August 71), Math. Centre, Amsterdam,

[6] J. Hartmanis, J.E. Hopcroft: An overview of the theory of

computational complexity. JACM .1§. (1971), 444-475,

[7] E.M. Mccreight. Classes of computable functions defined by bounds

on computations. Thesis (1969), Carnegy Mellon Univ.

Pittsburg, Penn.

[8] H. Rogers Jr. Theory of recursive functions and effective

computability. McGraw-Hill, New York (1967).

[9] H. Rogers Jr. Godel numbering of partial recursive functions.

Jour. Symb. Logic. 23 (1958) 331-341.

[10] A. van Wijngaarden ed., B.J. Mailloux, J.E.L. Peck and C.H,A, Koster.

Report on the Algorithmic Language ALGOL 68. Numerische

Mathematik .1.!±. (1969) 79-218,

[11] P. Young. Easy constructions in complexity theory: Speed up and

gap theorems. Report CSD TR 57, (July 71) Purdue University.

[12] JU,GOL Bulletin 33 (March 72).

