
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/324521705

Decomposing and Re-Composing Lightweight Compression Schemes - And

Why It Matters

Conference Paper · April 2018

DOI: 10.1109/ICDE.2018.00207

CITATIONS

0
READS

33

1 author:

Some of the authors of this publication are also working on these related projects:

Using GPUs in analytic DBMSes View project

Property Testing of dense combinatorial structures View project

Eyal Rozenberg

Centrum Wiskunde & Informatica

12 PUBLICATIONS 34 CITATIONS

SEE PROFILE

All content following this page was uploaded by Eyal Rozenberg on 19 August 2018.

The user has requested enhancement of the downloaded file.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301653264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.researchgate.net/publication/324521705_Decomposing_and_Re-Composing_Lightweight_Compression_Schemes_-_And_Why_It_Matters?enrichId=rgreq-a3eaeedd8c8e2061df3646dfe2ef4b21-XXX&enrichSource=Y292ZXJQYWdlOzMyNDUyMTcwNTtBUzo2NjE0MjMyMTAzODU0MDhAMTUzNDcwNjk5MDY0OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/324521705_Decomposing_and_Re-Composing_Lightweight_Compression_Schemes_-_And_Why_It_Matters?enrichId=rgreq-a3eaeedd8c8e2061df3646dfe2ef4b21-XXX&enrichSource=Y292ZXJQYWdlOzMyNDUyMTcwNTtBUzo2NjE0MjMyMTAzODU0MDhAMTUzNDcwNjk5MDY0OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Using-GPUs-in-analytic-DBMSes?enrichId=rgreq-a3eaeedd8c8e2061df3646dfe2ef4b21-XXX&enrichSource=Y292ZXJQYWdlOzMyNDUyMTcwNTtBUzo2NjE0MjMyMTAzODU0MDhAMTUzNDcwNjk5MDY0OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Property-Testing-of-dense-combinatorial-structures?enrichId=rgreq-a3eaeedd8c8e2061df3646dfe2ef4b21-XXX&enrichSource=Y292ZXJQYWdlOzMyNDUyMTcwNTtBUzo2NjE0MjMyMTAzODU0MDhAMTUzNDcwNjk5MDY0OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-a3eaeedd8c8e2061df3646dfe2ef4b21-XXX&enrichSource=Y292ZXJQYWdlOzMyNDUyMTcwNTtBUzo2NjE0MjMyMTAzODU0MDhAMTUzNDcwNjk5MDY0OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eyal_Rozenberg?enrichId=rgreq-a3eaeedd8c8e2061df3646dfe2ef4b21-XXX&enrichSource=Y292ZXJQYWdlOzMyNDUyMTcwNTtBUzo2NjE0MjMyMTAzODU0MDhAMTUzNDcwNjk5MDY0OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eyal_Rozenberg?enrichId=rgreq-a3eaeedd8c8e2061df3646dfe2ef4b21-XXX&enrichSource=Y292ZXJQYWdlOzMyNDUyMTcwNTtBUzo2NjE0MjMyMTAzODU0MDhAMTUzNDcwNjk5MDY0OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Centrum_Wiskunde_Informatica?enrichId=rgreq-a3eaeedd8c8e2061df3646dfe2ef4b21-XXX&enrichSource=Y292ZXJQYWdlOzMyNDUyMTcwNTtBUzo2NjE0MjMyMTAzODU0MDhAMTUzNDcwNjk5MDY0OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eyal_Rozenberg?enrichId=rgreq-a3eaeedd8c8e2061df3646dfe2ef4b21-XXX&enrichSource=Y292ZXJQYWdlOzMyNDUyMTcwNTtBUzo2NjE0MjMyMTAzODU0MDhAMTUzNDcwNjk5MDY0OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eyal_Rozenberg?enrichId=rgreq-a3eaeedd8c8e2061df3646dfe2ef4b21-XXX&enrichSource=Y292ZXJQYWdlOzMyNDUyMTcwNTtBUzo2NjE0MjMyMTAzODU0MDhAMTUzNDcwNjk5MDY0OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Decomposing and re-composing lightweight
compression schemes – and why it matters

Eyal Rozenberg #1

DB Architectures Group, CWI
Science Park 123, Amsterdam 1091 CD, The Netherlands

1 E.Rozenberg@cwi.nl

Abstract—We argue for a richer view of the space of
lightweight compression schemes for columnar DBMSes:
We demonstrate how even simple schemes used in DBMSes
decompose into constituent schemes through a columnar
perspective on their decompression. With our concrete
examples, we touch briefly on what follows from these and
other decompositions: Composition of alternative compression
schemes as well as other practical and analytical implications.

I. INTRODUCTION

Schema data compression features in most leading analytic
DBMSes (among others: [1], [2], [3]). Compression allows for
a larger working set (if not the entire DB) to reside in RAM
rather in secondary storage. It also helps counter the increasing
imbalance between the available processing power and the
bandwidth at which data reaches the processor: Decompres-
sion requires more computational effort per element of data,
but increases the rate at which these elements are effectively
received. This second aspect of the utility of compression
also limits the “strength” of compression schemes in use:
Overly-demanding decompression would slow down the
speed of processing data below what the incoming bandwidth
allows. As maximum compression ratios are not the goal,
the compression schemes in frequent use are ”light-weight”:
Discarding redundant bits (NS; storing the differences from
a reference value (FOR); storing the difference between
elements rather than the actual values (DELTA); encoding
runs of identical values with their respective length (RLE);
using small dictionaries (DICT) and so on.

These compression schemes may obviously be composed to
useful effect. For example: A table holds shipped order details,
with a date column. Data accrues over time, so the dates forms
a monotone-increasing sequence with long runs for the orders
shipped every day. Applying an RLE scheme to the dates, then
applying DELTA to the run values,achieves a much stronger
compression ratio than any single scheme individually.

What is less obvious is the potential for decomposing such
simple schemes. It is not immediately clear how this is even
feasible, or has any meaning. The following examples should
do away with such a perception.

II. DECOMPOSITION EXAMPLES

A. Decomposing Run-Length Encoding (RLE)

The RLE compression scheme is intended for columns
with long sequences of identical elements; each such “run”

is replaced with a pair: The run’s length in elements, and
the uniform value of these elements. In columnar terms,
a single column col of values is compressed into a pair
of corresponding columns, lengths and values, whose
length is the number of runs in col.

This columnar view of the compressed form, stripped bare
of implementation-specific “adornments” we often see in
practice (fixed-length blocks, headers, cache-friendly padding
and so on), lends itself to manipulation by straightforward
columnar operations (see, e.g. [4], [5], [6]). In fact, just very
few of these are already enough to express a decompression
algorithm for RLE: Algorithm 1.

Algorithm 1 RLE decompression

Input: Equal-length columns lengths, values
1: run_positions← PrefixSum(lengths)
2: n← run_positions[|run_positions| − 1]
3: run_positions’← PopBack(run_positions)
4: ones← Constant(1, |run_positions’|)
5: zeros← Constant(1, n)
6: pos_delta← Scatter(ones,run_positions’)
7: positions← PrefixSum(pos_delta)
8: return Gather(values,positions)

Now suppose that rather than a length column, we
were instead to hold run_positions. Clearly, We could
reproduce the uncompressed column by applying Algorithm 1,
sans its first operation; and no ambiguity is introduced. This
constitutes a different compression scheme: Run Position
Encoding, or RPE for short (see [7, §7.2]).

The transition from RLE to RPE requires the integration of
the run lengths — the differences between consecutive values
of run_positions. If we ignore the values column for
a moment, we are left with what is simply the decompression
of a DELTA-compressed form of run_positions. If we
denote by ID the “compression scheme” of not applying any
compression, we have:

RLE ≡ (ID

for values

, DELTA

for run_positions

) ◦ RPE

Lessons learned 1:
• Decompression can often be implemented using the

same columnar operations which show up in query
execution plans, on uncompressed data. Thus,

• There is no clear distinction between decompression and
analytic query execution.

• Partial decompression of the compressed form of one
scheme — when considered in terms of operations
on columns — often itself corresponds to another
compression scheme, which trades away some of the
potential compression ratio of the composite scheme for
ease of decompression.

B. Decomposing Frame-of-Reference (FOR)

The FOR compression scheme relies on compressed data
having limited local variation despite of potentially larger
global variation. It is also geared towards the practice of
breaking up compressed columns into segments, chunks or
blocks. For every such segment, a baseline or frame-of-
reference value is provided, and the rest of the compressed
form are offsets relative to this FOR. Due to the locality
feature, the offsets can be narrower than would be necessary
for representing an arbitrary value in the column (or even
an offset from a global frame-of-reference). Note that it need
not necessarily be the case that the first column element in
the segment is also the frame-of-reference value.

Again, let us conceive of the compressed form as “pure”
columns: For an uncompressed column c of length n, the
FOR-compressed form with segment length ` would be the
value `, a refs column of length dn/`e, and an offsets
column of length n, in which elements i · ` . . . (i+ 1) · `− 1
are the offsets for compressed segment i, corresponding to
refs[i]. Thus, again, the columnar representation allows for
a columnar decompression of FOR: Algorithm 2.

Algorithm 2 FOR decompression

Input: Columns refs, offsets, segment length `

1: ones← Constant(1, |offsets|)
2: id← PrefixSum(|ones|)
3: ells← Constant(`, |offsets|)
4: ref_indices← Elementwise(÷,id,ells)
5: replicated← Gather(refs,ref_indices)
6: return Elementwise(+,replicated,offsets)

When decomposing RLE, we focused on the last steps of
the decompression algorithm; here, let us do the opposite —
keep the initial steps, and ignore the addition. In this case it, is
as though all offsets are 0, and the decompressed data is a step
function — having the constant value refs[i] on the entire
ith segment. A compression scheme of fixed-segment-length
step functions is not very useful as a stand-alone scheme for
use within a DBMS, as it captures a tiny fragment of potential
columns — but it is quite useful conceptually, allowing for
the following formulation of the FOR scheme:

FOR ≡ (STEPFUNCTION + NS)

since the offsets are, indeed, nothing but a narrow column,
which relative to the original column’s width we compress
with NS. In other words, FOR captures all columns which are

L∞-metric-close to the evaluation of a step function (with the
distance determined by the allowed width of the offsets
column, i.e. the width parameter of the NS scheme).

The rough correspondce of the column data to a simple (i.e.
much-less-than-n-dimensional) model can be used to speed
up selections (e.g. range queries) and joins, or in the context
of approximate or gradual-refinement query processing.
One is also tempted to enrich the space of low-dimensional
models, or to replace the L∞ metric with another one:
• For the L0 metric, i.e. d(~x, ~y) = |{i < n | xi 6= yi}|,

we could add patches to the basic model (see [1], [8]);
this would represent columns whose data is “really”
a step function, but with the occasional divergent
arbitrary-value element.

• Let d(x, y) = dlog2|x−y|+1e for x 6= y, i.e. the number
of bits necessary for representing |x−y|. For the product
metric d(~x, ~y) =

∑
i d(xi, yi), we could use a variable-

width encoding for the offsets column (ignoring the
encoding of offset widths for simplicity of presentation).

As for enriching the model, It is appealing to consider
piecewise-linear functions, i.e. keep an offset from a diagonal
line at some slope rather than the offset from a horizontal
“step”; more generally, we would replace step functions
with stepwise low-degree polynomials, or splines. Of course,
this makes compression more of a challenge, as it would
now require non-linear curve fitting rather than taking the
minimum or the middle of the range of values.

Lessons learned 2:
• Some compression schemes separate a simpler, coarser,

inaccurate representation of the data from finer, local,
noise-like complementary features.

• Compression schemes of algebraic element types often
have algebraic aspects themselves.

• The algebraic aspects of (composite) compression
schemes underscore an algebraic view of columns as
tuples, or evaluated functions.

• Generalizing/refining a compression scheme often means
generalizing/refining one or more of its subschemes.

REFERENCES

[1] M. Zukowski, S. Heman, N. Nes, and P. Boncz, “Super-scalar RAM–CPU
cache compression,” in Proc. ICDE. IEEE, 2006, pp. 59–59.

[2] D. J. Abadi, S. R. Madden, and M. Ferreira, “Integrating compression
and execution in column-oriented database systems,” in Proc. SIGMOD.
ACM, 2006, pp. 671–682.

[3] H. Lang, T. Mühlbauer, F. Funke, P. Boncz, T. Neumann, and A. Kemper,
“Data blocks: Hybrid OLTP & OLAP on compressed storage using both
vectorization and compilation,” in Proc. SIGMOD, 2016, pp. 311–326.

[4] W. Fang, B. He, and Q. Luo, “Database compression on graphics
processors,” Proc. VLDB, vol. 3, no. 1-2, pp. 670–680, 2010.

[5] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo, and P. V.
Sander, “Relational query coprocessing on graphics processors,” Trans.
DB Sys., vol. 34, no. 4, pp. 21:1–21:39, Dec. 2009.

[6] H. Pirk, O. Moll, M. Zaharia, and S. Madden, “Voodoo — a vector
algebra for portable database performance on modern hardware,” Proc.
VLDB, vol. 9, no. 14, pp. 1707–1718, 2016.

[7] H. Plattner, A Course in In-Memory Data Management: The Inner
Mechanics of In-Memory Databases. Springer, 2014.

[8] E. Rozenberg and P. A. Boncz, “Faster across the PCIe bus: a GPU library
for lightweight decompression,” in Proc. DaMoN, 2017, pp. 8:1–8:5.

View publication statsView publication stats

https://www.researchgate.net/publication/324521705

	Introduction
	Decomposition examples
	Decomposing Run-Length Encoding (RLE)
	Decomposing Frame-of-Reference (FOR)

	References

