
stichting 

mathematisch 

centrum 

AFDELI NG TOEGEPASTE w I si<J.Jl't{ 

P.J. VAN DER HOUWEN 
STABILIZED RUNGE-KUTTA METHODS WITH 
{IMITED STORAGE REQUIREMENTS 

~ 
MC 

TW 124/71 APRIL 

2e boerhaavestraat 49 amsterdam 



PILi.nted a.t :the Ma:thema.tlc.a..t CentJLe, 49, 2e Boelthaavu.:tJLa.a.t, Am!,.teJuiam. 

The Ma:thema.tic.a..t CentJLe, 6ou.nded :the 11-:th 06 FebJr.U.aJr.y 1946, ..U a. non­
pJr.06.U w.:tU:uti..on a.bnlng a.t :the p1r.omo.tion 06 pu.Jr.e ma:thema.tiC6 a.nd .la 
a.ppUc.a.:tlorui. 1.t ..U .6poruio1r.ed by :the Ne:theJL£.and6 Gove1r.nment :th!r.ou.gh :the 
Ne:the/1..ta.nd6 01r.gcuu.za.tlon 601r. :the Adva.nc.ement 06 Pu.Jr.e Ruea.1r.c.h (Z.W.0), 
by :the Mu.ru.ci..pa.Li.:ty 06 kru,.teJr.da.m, by :the Uru.ve1L6.Uy 06 Amli.te!r.da.m, by 
:the F1r.ee Uru.ve/L6.Uy a.t kru,.te1r.dam, a.nd by -i..ndtud1uu. 



Contents 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

Introduction 

Polynomial methods 

Runge-Kutta type schemes 

3.1. 

3.2. 
3.3. 

3.4. 

General structure of the scheme 

Consistency conditions 

Stability conditions 

Conditions for saving storage 

Solution of the consistency and stability 

4. 1. First order exact schemes 

4.2. Second order exact schemes 

4.3. Third order exact schemes 

4.4. Fourth order exact schemes 

An estimate for the local error 

Numerical stability 

Applications 

7.1. Equations with negative eigenvalues 

7.2. Equations with imaginary eigenvalues 

References 

equations 

3 

5 

7 

7 

8 

10 

11 

15 

15 

17 

17 

18 

27 

31 

32 

32 

34 

36 





3 

1. Introduction 

In [1] and [2] explicit one-step methods were investigated for the 

numerical integration of initial value problems for linear equations of 

the type 

( 1. 1) 
dU -= 
dt 

DU+ F, 

where U and Fare (vector) functions of the variable t and Dis a matrix 

with constant coefficients. These methods are based on repeated differen­

tiation with respect tot of the right hand side of (1.1). 

When initial value problems are to be solved for non-linear equations 

of the type 

( 1.2) dU ~ 
dt = H(U,t), 

similar methods can be used, provided that the derivatives of H(U(t),t) with 

respect tot can be expressed in the preceding ones. Locally, the stability 

conditions for equations of type (1.2) are the same as the conditions for 

( 1. 1). 

When the function H(U,t) cannot be easily differentiated one may 

resort to Runge-Kutta type methods which are exclusively based on evalua­

tions of the right hand side of (1.2). In this paper-we shall derive 

n-point Runge-Kutta formulae which have an accuracy of order p, p = 1,2,3,4, 

and a stability polynomial of the type 

+ ••• + _1_ zP + f3 p+1 
p! p+1z + ••• + 

where the coefficients f3p+ 1, .•• , Sn may be chosed arbitrarily. This 

property enables us to apply the stability theory, developed in [1], [2], 

to Runge-Kutta schemes. 

A second feature of the formulae given in this paper are the limited 

storage requirements of the computational scheme, which make them appropri­

ate for integrating large systems of equations such as the systems arising 

from partial differential equations. 
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Finally, by choosing n sufficiently large, formulae are derived which 

approximate the first neglected terms in the Taylor expansion of the local 

analytical solution. These formulae can be used for estimating the local 

error of the method. Furthermore, when variable steps are to be used, one 

may base a step size strategy on monitoring this estimate for the local 

error. In connection with this it may be remarked, that in using standard 

Runge-Kutta formulae, only approximations of the last correction terms are 

available, which is a rather pessimistic starting point for step size pre­

diction (cf [5]). 
This paper is concluded with the explicit formulation of a four-point, 

first order exact and a five-point, second order exact Runge-Kutta formula 

which may be usefull in integrating respectively non linear parabolic and 

non linear hyperbolic differential equations. 
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2. Polynomial methods 

Consider the non-linear initial value problem 

dU ~ 
dt = H( t, U), t ~ 0, 

U = u0 , t = O, 

where u0 is a given initial function. Suppose that H has continuous 

derivatives with respect tot and U of up to order n. Then, in analogy 

to the scheme for linear problems given in [1], formula (2.8 1 ), we may 

define the p-th order exact scheme 

= u.+-rc(1)+ .1,.2c(2)+ + LPc(p)+ 0 .p+1c(p+1)+ 
~+ 1 K k 2 • k • • • p ! • k µp+ 1 k ••• 

(2.2) 

••• + 0 n (n) 
..,n-r ·ck , k = 0,1,2, ••• , 

Here,~ denotes the difference solution at t = tk = k-r. 

Of course, schemes of this type only are of practical value when 

the derivatives of H can be obtained easily. 

As in the linear case, the stability of (2.2) is investigated by 

considering the generating polynomial 

(2.3) = 1 + z + -½z 2 + ••• + 1 p + 0 p+1 
p!z '"'p+1z + ••• + 

This is suggested by locally linearizing equation (2.1). In doing so 

we obtain 

(2.4) 



where 

and Dk is the matrix (d .. ) with 
l.J 

6 

d .. = ~~·) H(i)(tk,U(tk)). 
1.J au J 

In this expression U{j) and H(i) respectively denote the j-th and i-th 

component of the (vector)functions U and H. 

By applying the linear stability theory to equation (2.4) we arrive at 

polynomial (2.3) as the polynomial which governs the local stability. 

Although representation (2.4) is only approximate and, therefore, sta­

bility considerations based on (2.4) are not rigorous, the stability 

conditions obtained in this way are quite satisfactory in actual appli­

cations. For a discussion of the problem how to choose the polynomial 

P (z) for a particular equation we re£er to references [1] and [2]. n 
It may be remarked that, centrary to the linear case~ the stability 

condition associated to non-linear problems will depend on tk since the 

eigenvalue spectrum of Dk may change with tk. 



7 

3. Runge-Kutta type schemes 

In many cases the function H(t,U) is a complicated one and deri­

vatives of Hare not easily obtained. To overcome this difficulty Runge 

[4] proposed a computational scheme which only requires the evaluation 

of the function Hat, say n, points per timestep. 

3.1. General structure of the scheme 

The general n-point formula is of the form [4] 

( 3. 1) 

l\.+1 = 

(0) 
rk = 

( 1 ) 
rk = 

(n-1) 
rk 

~ + 8 r(O) 
0 k + ... + 8 (n-1) 

n-1rk ' 

TH(tk,~), 

(0) 
TH(tk+µ1T,~+A10rk ), 

This scheme can be characterized by the matrix 

µ1 A10 0 

µ2 A20 A21 

(3.2) R = 

µn-1 A 
n-10 A 

n-11 

80 81 82 

k = 0,1,2, ..• , 

0 

0 

A 
n-1n-2 

8 
n-1 
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In the following subsections we shall derive consistency and local 

stability conditions. These conditions will lead to relations between 

the entries of the matrix R. The final values of the parameters are 

determined by considerations of simplicity and storage requirements. 

3.2. Consistency conditions 

(j} . 0 1 1 The vectors rk , J = , , ••• ,n-, 

section are functions of the step•· By 

introduced in the preceding sub­

expanding these vectors in a 

Taylor series with respect to T (it is assumed that H has derivatives 

of sufficiently high order) we can set up the polynomial approximation 

in T of '\.+1• By identifying the first p+1 terms of this polynomial with 

the Taylor series in T of '\.+1 we obtain the consistency conditions for 

p-th order accuracy. In carrying out this program one usually makes the 

assumptions (cf. [5]} 

(3.3) 
j-1 
L L 1 = µJ., .J = 1,2, ••• ,n-1. 

l=O J· 

In this paper we always assume that these conditions are satisfied. 

A straightforward calculation yields 

(0) 
rk = T ( 1 ) 

ck , 

( 1) 
= TC( 1) + µ .2/2) + 1 2 3( (3) D (2)) + ••• , rk k 1 k 2µ1T ck - kck 

(2) 
rk = T (1) 

ck + µ .2c(2) + lµ2T3(c(3)_D c(2)) + 
2 k 2 2 k k k 

(3.4) 3 (2) 
+ µl21• Dkck + .•• , 

r(j) = T (1) + µjT2C~2) + lµ~. 3(c( 3 )_D c( 2 ))· + 
k ck 2 J k k k 

j-1 
3 D (2) + r µlAjlT kck + ••• , 

1=1 

In these expressions the vectors c~j) are the same as in formula (2.2). 
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Substituting the Taylor series for r~j) into formula (3.1) we find 

an expression of the form 

(3.5) 

("1) 
Here, the vectors ckJ can be expressed in the partial derivatives of 

the function H(t,U) (see [5]). For instance 

(30) = D c(2) 
ck k k ' 

The para.meters Sjl are defined as 

n-1 

(3.6) 

s1 = I e., 
j=O J 

n-1 
s = I 8.µ., 2 j=1 J J 

n-1 j-1 
s = I e. I 3 j=2 J 1=1 

n-1 j-1 
S4 = I e. I 

j=3 J 1=2 

Ajlµl' 

l-1 

\1 I 
i=1 

n-1 2 e. µ., = I 
j=1 J J 

n-1 j-1 
>..1iµi' S41 = I 8 · I. >...1µ~, 

j=2 J 1=1 J 

n-1 j-1 
S42 = I e.µ. I >..J•1ll1, 

j=2 J J 1=1 

n-1 
S43 = jt ejµJ, 

On the other hand, we have for the local analytical solution U', 

i.e. the integral curve through the point (tk,~), the Taylor expansion 

(cf. [ 5 J) : 
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(3.7) ~ (1) + 1 2 (2) + 1 3 (30) + 1 3 (31) + 
Uk+ 1 = ~ + -r ck ~ ck ~ ck b -r ck 

1 4 (4o) + 1 4 (41) + 1 4 (42) + 1 4 (43) + o(~5). 
+ W ck 24 t ck 1f ck 24 t ck • 

By identifying the coefficients of corresponding terms the consistency 

conditions can be derived. We find 

Table 3.1. Consistency conditions for p = 1,2,3,4. 

p 61 62 63 631 64 641 642 643 

1 1 

2 1 1/2 

3 1 1/2 1/6 1/3 

4 1 1/2 1/6 1/3 1/24 1/12 1/8 1/4 

3.3. Stability conditions 

In order to investigate the local stability properties of Runge­

Kutta type schemes we apply the scheme to the locally linear represen­

tation (2.4) of the differential equation (compare section 2). It is 

easily verified that scheme (3.1) reduces to 

u. = u. + e r(o) + 
K+1 K O k ' 0 0 

. . . , 

or more compactly 

(3.6) 

where P (z} is the polynomial n 

+ e r(n-1) 
n-1 k ' 
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(3.7) 

The coefficients 8. are expressed in the Runge-Kutta para.meters by (3.5). 

The vector g~n) isJdetermined by the vectors Fk(tt+µjt). We observe that 

g~n) is not identical to the inhomogeneous term g~n) which is obtained 

when the polynomial method described in [1] is applied to equation (2.4). 

It can be proved that they differ by a term O(.P), p being the order of 

accuracy of the scheme (compare [1], section 3), 

Having established the polynomial which governs the local stability 

of the scheme we can set up the stability conditions by applying the 

linear theory as presented in [1] and [2]. For future reference we give 

in tabel 3.2 some important examples of stability polynomials which in 

the linear case generate a first, second, third and again a second order 

exact scheme, respectively. 

Table 3.2. Coefficients of some stability polynomials 

n 81 82 83 84 85 stability condition 

4 1 5/32 1/128 1/8192 0 real, T ~ 32/cr(Dk) 

4 1 1/2 .078 .0036 0 real, T ~ 12/cr(Dk) 

4 1 1/2 1/6 · .0185 0 real, T < 6/cr(Dk) -
5 1 1/2 3/16 1/32 1/128 0 imaginary, T ~ 4/cr(Dk). 

Comparing this table of 8j values with table 3.1 we see that the 

order of accuracy in the non-linear case is the same as in the linear 

case. 

3.4. Conditions for saving storage 

Finally, conditions are given to limit the storage needed to 

accomplish the calculations. This is important when dealing with sets 

of equations arising from partial differential equations. In such cases 

the number of equations equals the number of grid points used to discre­

tize the space derivatives. This number may be very large (1000 or more). 
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Consider the following computation scheme for l.\.+ 1: 
( 

I -( o) 
rk = 

(0) 
l.\.+1 = 

(3.8) 
(1) + '13 r<2) 

l.\.+1 2 k ' 

Here, e., A., v. andµ. are free parameters. 
J J J J 

Obviously, this scheme requires storage of only three and in cases where 

the coupling of the differential equations is weak two arrays. Also, 

when Aj = O, only two arrays are necessary. 

We shall try to write t'our Runge-Kutt a formulae in th.is form. For 

instance, for n = 3 scheme 1 (3'.8) is equivalent with scheme (3.1) generated 

by the matrix 

µ1 80+A1 0 

R = µ2 e0+e 1v1+A 2v1 

eo+e1v,+e2v1v2 0,+82v2 

A straighforward calculation yields the following expressions for the 

parameters e., A. and v. in terms of the Runge-Kutta parameters e., Ajl J J J J 

A20-e0 
v1 = 

A21-61 

(3,9) '9 = eo - e1v1, e1 = 61 - e2v2, 02 = e2, 0 

A 1 = A ij A = A - '9 10 O' 2 21 1 • 
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The para.meter v 2 may be arbitrarily chosen. 

From (3,9) we conclude that a 3-point Runge-Kutta type scheme can always 

be written in from (3.8) provided that 

(3.10) 

.An important special case of scheme (3.8) arises when 

(3.11) V • = 0, j = 1 , .•. , n-1 , 
J 

In this case the analysis of consistency and stability simplifies 

considerably. The corresponding matrix R reduces to 

µ1 "1+80 0 0 

µ2 00 "2+0, 0 

µ3 00 81 "3+82 

(3. 12) R = 

µ 00 81 e 11. +8 
n-2 n-4 n-2 n-3 

µ "0 81 0 n-4 0 
n-1 0 n-3 

00 81 82 0 
n-3 

0 
n-2 

Evidently, we have 

( 

e. = 
J 

0 j , J = 0 , 1 , ... , n-1 , 

(3,11 1 ) 

0. 1' J = 1, 2, ..• , n-1. 
J-

0 

0 

0 

11. +0 n-1 n-2 

0 
n-1 

Furthermore, the Runge-Kutta parameters "jl have to satisfy the 

constraints 
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(3.12) 

In many cases we may further simplify the scheme by putting 

(3.13) e. = o, J = 1, 2, ••• , n-2. 
J 
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4. Solution of the consistency and stability equations 

In this section we try to solve the equations which arise when the 

parameters 8- and 8.1 , defined in formula (3,5), are given fixed values, 
J J 

for instance the values listed in tables 3. 1 and 3. 2. 

4.1. First order exact schemes 

Let u:s start with the class of first order exact schemes and let us 

try to find a solution of the consistency and stability equations under 

the constraints (3.12) and (3.13). First we give the expression for the 

parameters 8- when these storage saving conditions are introduced into 
J 

(3.5). We find 

( 
81 = eo + e n-1' 

82 = e (eo+:\n-1n-2), n-1 

83 = 8 :\ (eo+:\n-2n-3), n-1 n-1n-2 

( 4. 1 ) 
n-1 

8. = e II :\ (eo+:\ · 1 .), 
J n-1 l=n-j+2 11-1 n-J+ n-J 

n-1 
8n = e II :\ 

n-1 1=1 11-1 

These equations are easily solved for e0 and A. . 1 JJ-



(4.2) 

El o = S 1 - 8 n-1 ' 

s2 
A = -8-- 0 
n-1n-2 O' n-1 

/l 
n-2n-3 = e A 

n-1 n-1n-2 

16 

/l • • 
JJ-1 

s . 
n-J+1 8 = -------- - 0, n-1 

8 II A 
n-1 11-1 j+1 

s 
n 

= n-1 
8 II A 
n-1 2 11-1 

Next we consider the conditions for a first order, s.tabilized scheme. 

From the preceding section it follows that these conditions are 

µ1 = ;>..10' 

p. = 80 + A. . 1 , J = 2, . .. , n-1, 
J JJ-

(4.3) 
B1 = 1 , 

B. has a prescribed value, J = 2, ... , n. 
J 

Obviously, these conditions can be satisfied and the Runge-Kutta para­

metersµ.,;>.. .. 1 and 00 are completely determined by (4.2) and (4.3), 
J JJ-

provided that 

(4.4) B n-1 ~ 0, A j j-1 ~ 0, J = 2, ..• , n-1 . 

Note that Bn_1 may assume every non-zero value. We may take advantage 
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of this free parameter to simplify the difference scheme. For instance, 

let us take en_1 = 81• Then the Runge-Kutta parameters can be expressed 

in terms of the parameters 8- alone and we arrive at the generating 
J 

matrix 

8 8 
n n 0 -s--- -s--- 0 

n-1 n-1 
8 8 
n-1 0 

n-1 
~ -s---

n-2 n-2 
0 

(4.5) R = 

0 0 0 

0 0 0 

0 0 0 0 

4.2. Second order exact schemes 

When, in addition to (4.3), we impose on the difference scheme the 

condition (see table 3.1). 

(4.6) 

we obtain the class of second order, stabilized schemes. The consider­

ations of the preceding subsection also apply to the second order case 

since we only require that the prescribed value of 82 in (4.3) is just 

21• In particular, the generating matrix (4.5) can be used with 8 = 1 
1 1 

82 = 2· 

4.3. Third order exact schemes 

For third order accuracy we have to reqUJ.re (see table 3.1} 
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(4.7) 

We have from (3.5) and (4.3) that 

(4.8) 2 8 = 6 (6 +A ) • 
31 n-1 0 n-1n-2 

Substituting the expression for 60 and An-ln-2 as given in (4.2) we 

find 

(4.9) 6 - 3 - ,.. n-1 LI-

Thus, the relations (4.2), (4.3) and (4.9) with 82 =!and 83 = i 
completely determine the para.meters of the class of third order, stabi­

lized Runge-Kutta type schemes. 

4.4. Fourth order exact schemes 

Since we have to satisfy three additional conditions in the case 

of fourth order accuracy (cf. table 2.1) we temporaly drop the storage 

saving conditions. Consider the standard fourth order Runge-Kutta formula 

which is characterized by the matrix (cf. [4]) 

1 1 0 0 2 2 

1 0 1 0 2 2 
(4.10) R = 

1 0 0 1 

1 1 1 1 
i 3 3 6 

This formula suggests to consider n-point formulae characterized by 

matrices of the type 



1 1 
2 2 

1 
2 

0 

µ A 
3 30 

µ4 A 
40 

(4.11) R = 

µ A 
n-2 n-20 

1 0 

1 1 
6 3 

19 

0 0 

1 
0 

2 

A A 
31 32 

\1 "42 

A A 
n-21 n-22 

0 0 

1 0 
3 

0 0 

0 0 

0 0 

"43 0 

A 
n-2n-3 

0 

0 

0 

0 

0 

0 

0 

1 
6 

A simple calculation leads to the following expression for the coefficients 

Sj and Sjl as defined by formula (3.5): 

(4.12) 

S1 = 1, 

1 
s31= 3' 

n-3 
S4 = "t .l 

J=1 
A 2 .µ., 
n- J J 
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The consistency conditions for fourth order accuracy are given by 

(3.3) and table 3.1. These conditions lead to the equations 

µ. = 
,J 

j-1 
I AJ.l' 

1=0 

1 1 1 

J = 

1:2 + 6 µn-2 = 6' 

1 n-3 1 
7 I A 2.µ. = 24' o . 1 n- J J 

J= 

1 1 1 --+-µ --21-1- 6 n-2 - 8' 

1, 2, ... , n-1, 

From this it easily follows that the parameters Ajl have to satisfy the 

relations 

n•-3 1 I A 
n-2j = 2' 

(4.13) 
j:=0 

n-3 j-1 1 I A 
n-2j I Ajl = 4· 

j:=1 l=0 

To these equations we have to add the stability conditions, 1..e. 

(4.14) 8- has a prescribed value for J = 5, 6, ... , n. 
,J 

First, we solve (4.13) and (4.14) for n = 5 and n = 6. Then, when we 

have obtained enough information about the structure of the equations 

to be solved, a general solution will be given. 

Five-point formula 

For n := 5 we find 

(4.15) 

Giving s5 the value prescribed by the stability polynomial to be used, 

we obtain from (4.13) and (4.15) the equations 
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These equations are solved by 

(4.16) 

which leads to the generating matrix 

1 1 0 0 0 2 2 

1 
0 

1 
0 0 2 2 

(4.17) 
1 1 24s5 R = 0 - -24S 0 
2 2 5 

1 0 0 0 1 

1 1 1 
0 

1 
6 3 3 6 

Six-12oint formula 

For n = 6 we have 

(4.18) 

Consisteney and stability conditions together lead to the following set 

of equations for the para.meters Ajl: 
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A.40 + A.41 + A.42 + A.43 =l 
2' 

A.41 + A.42 + 2A.43 (>..30+).31+>..32) 
1 

= 2' 
(4.19) 

A.42 + 2A.43 (>..31+>..32> = 2465, 

>..43>..32 = 2466. 

Putting 

(4.20) A.30 = A.40 = A.42 = O 

we arrive at the solution 

1 66 
A.31 = 2 - a , 

5 
66 

A.32 = a , 
(4.21) 5 

1 
A.41 = 2 - 2465' 

A.43 = 2465. 

The generating matrix is given by 

1 1 0 0 0 0 
2 2 

1 0 1 0 0 0 2 2 

(4.22) R = 1 0 1 66 66 
0 0 2 2 - s;- 65 

1 
0 

1 
2465 2 - -246 0 0 2 5 

1 0 0 0 0 1 

1 1 1 
0 

1 
6 3 3 

0 6 
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The structure of the generating matrices given by {4.17) and {4.22) 

suggests to try matrices of the type 

1 1 0 0 
2 2 

1 
0 

1 0 2 2 

µ3 0 ;i.31 ;i.32 0 

µ4 0 \1 0 ;i.43 0 

µ5 0 0 0 0 ;i.54 0 
{4.23) R = 

µ 
n-2 0 0 0 0 A 

n-2n-3 

1 0 0 0 0 

1 1 1 
0 0 6 3 3 

For this type of matrices we have the following expressions for the 

coefficients a . : 
J 

1 n-2 
an = 24 II A. . 1, n ~ 7, 

j=3 JJ-

1 n-2 
6n-1 =- II A.. 1 {;i.31+;\32), n ~ 7, 12 j=4 JJ-

1 n-2 1 {4.24 6n-2 = 6 II A.. 1 (2;i.41+A43(A31+;i.32)), n ~ 7, 
j=5 JJ-

1 n-2 
a = 6 II A . . 1 (;i.41+A43), n ~ 8, n-3 j=5 JJ-

1 n-2 
a. = 6 II All-1' j = 5, 6, n-4, n ~ 9. ... , 

J l=n-j+1 

0 

0 

0 

0 

0 

0 

1 

1 
6 
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The consistency conditions (4.13) reduce to 

n = 7 , 

(4.25) 
1 

>.. = -n-2n-3 2 
n > 8 

1 
>.. >.. = -4 n-2n-3 n-3n-4 

Giving the parameters 8j in (4.24) the values of the corresponding 

coefficients of the stability polynomial P (z) the equations (4.24) and . n 
(4.25) become the relations which determine a stabilized, fourth order 

exact n-point Runge-Kutta scheme. In solving these equations we distin­

guish the cases n = 7 and n > 8. 

Seven-point formula 

A straightforward calculation yields 

(4.26) 

= 48 1-48(85-286) ' 

8 . 

= 96 1-48(85-286 ) ' 

The parameters µ • follow from ( 3. 3) •. 
J 
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n-point formula (n>8) 

First, we define the number 

(4.27) 
n-2 

Ln = II L. 1 • 
JJ -j=5 

From (4.24) and (4.25) it is easily derived that 

t , n = 8 

(4.27') Ln = 

68 4 , n ~ 9 n-

Next we solve A31 , A32 , A41 and A43 from the first four equations of 

(4.2) to obtain 

8n_,-28n 
= 2 ---------8 3-28 2+48 1 ' n- n- n-

8 
A 4 n 

32 = 8 3-28 2+48 1 ' n- n- n-
(4.28) 

, 

Furthermore, we have from (4.25) 

1 
A - -n-2n-3 - 2' 

(4.29) 
1 A - -n-3n-4 - 2 · 

When n = 8 formulae (4.28), (4.29) determine the generating matrix 

completely. When n ~ 9 we deduce from the last equation of (4.24) 

and (4.29) 



(4.30) 

A 4 5 = 2485, n .:_ 9, n- n-

26 

B. 1 
, - ~ J. = 5 6 ... , n-5, n > 10. /\ .. 1 - Q , , , 
JJ- µ. 

J 
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5. An estimate for the local error 

In reference [1] it was shown that in the lineai: case the discreti­

zation error ek, i.e. the difference between the analytical and difference 

solution satisfies difference scheme 

( 5. 1) 

where Pn(z) is the generating polynomial of the scheme and pk is the 

local error defined by 

(5.2) 

~+1~being the numerical result when the scheme is applied at the point 

(tk,Uk). 

In the non-linear case we have by first linearizing the differential 

equation a similar relation for £k which, however, only holds approxi­

mately. Let P (z} be the stability polynomial (3.7} then we have n 

(5.1 1 ) 

This approximation is bett'er as T and ek are smaller. 

In order to control the total or global discretization error ek 

one should require that I !Pk! I is less than same quantity nk. In actual 
~ computation, however, we cannot compute pk since Uk+ 1 is not known. 

Therefore, one controls the difference 

(5.3} ~ 
Pk= uk+1 - '\.+1' 

~ where U' is the local analytical solution (cf. the discussion given in 

[2]; section 2.2). 

We now discuss the estimation of pk in terms of the vectors 

r~j), j = O, 1, ••• , n-1. From (3.5) and (3.7} we have 
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(5.3 1 ) pk= (1-8 1)Tc~1) +(½ -82)T2c~2 ) +(~ -83)T 3c~3o) + ~(~ -831 )T3c~31 ) + 

1 4 ( 40) 1 1 4 ( 4 1 ) 1 4 ( 42) 
+ (24 -84)T ck + 2(12 -841)T ck +(-g - 842)T ck + 

+ 1(1 _8 )T4C(43) + 0(T5) 
6 4 43 k • 

Furthermore, we consider a linear combination ek of the first n' vectors 
r (j) 1· e k , • • 

(5.4) 

By substituting Taylor expansions of the vectors r(j) into (5.4) we 
k 

obtain (compare section 3.2) 

(5.4 1 ) e = 
k 

o1TC(1) + o,T2C(2) + ol 3 (30) + lo, T3C(31) + 
µ1 k µ2 k µ3T ck 2µ31 k 

+ 0 I 4 ( 40) + lo I 4 ( 41 ) + 0 I 4 ( 42) + .J.s t 4 ( 4 3) + 0 ( T 5) t 
µ4T ck 2µ41T ck µ42T ck b-43T ck 

where the coefficients 8j and 8jl are defined by formulae (3.6) when ej 

and n are replaced by ej and n1, respectively. 

Comparison of ( 5. 3' ) and ( 5. 4') suggests to choose the para.meters 

0!, j = 0, 1, .•• , n' in such a way that the first terms in these series 
J 

coincide. In table 5.1 several situations are listed. 

Table 5.1. Conditions for approximation of pk 

p' k 8' 1 8' 2 8' 3 831 
8 I 

4 841 8\2 843 

2 ek+0(T ) 1-8, 

ek+0(T3) 1-81 
1 - -8 2 2 

4 1 1 1 
ek+0(T ) 1-81 2 -82 - -8 3 -831 6 3 

ek+o(T5) 1-81 
1 
2 -82 

1 
6 -83 

1 
3 -831 

1 
24 - 84 

1 
12 -841 

1 
'B" - 842 

1 
4 - 843 
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Suppose we have a Runge-Kutta formula which is second order exact, 

i.e. pk= O(T 3 ). Then we wish a third order exact approximation of pk' 
for instance the approximation ek + 0(T4). From table 5.1 it follows 

that four conditions have to be satisfied. Hence, at least four para­

meters 6! are necessary, i.e. n' > 4. We shall discuss the cases listed 
J 

in table '.5. 1 in greater detail. 

Clearly, the conditions are satisfied by 

(5.5) n' = 1 6 1 = ' 0 1 - S1. 

From table 5.1 we have 

e0 + e1 + •.• + e~ 1 _ 1 = 1 - s 1, 

These equations are solved by 

(5.6) n' = 2 6 1 = 
' 0 

We have four conditions to satisfy. Let us try n' = 4, i.e. 

e• + 
0 

61µ1 

6 I 2 
1 µ 1 

+ 

+ 

62"21 µ1 

+ 63µ3 
1 

- S2, ... = -2 

. • . + 6 I 2 1 
s31' 3µ3 = 3 

+ e' (>.31µ1+)..32µ2) 
1 

S3. 3 =b-
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A straightf'orward calculation yields: 

'8' = 
3 

1 
83 - (µ1A31+µ2A32)'83 

,S I 
6 -

= , 
2 µ1A21 

(5.7) 1 
,SI 2 - B2 - µ2'82 - µ3 63 

= 1 µ1 
, 

'8' = 1 - B - (6 1 +6 1+6 1 ) 
0 1 1 2 3 ' 

These expressions give the weights 6 ! , provided that 
J 

(5.7') 

In this way we can find still higher order approximations of pk. 
A f'ourth order exact representation requires the solution.of' 8 linear 

equations (see table 5,1), a f'if'th order exact representation 17 equa­

tions, and so on. In an actual application it is most convenient to 

solve these equations numerically for the particular values of B- used. 
J 
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6. Numerical stability 

As observed in [1], section 2.3, where linear differential equations 
* were discussed, we have besides the error pk a numerical error pk which 

is due to round-off errors in each step of the integration. In order to 

control this error we require that the scheme is numerically stable, that 

is round-off errors shall not accumulate during the performance of one 

step.·This feature is important when large values of n are used. 

Consider a Runge-Kutta formula which can be written in form (3.8). 
For stability considerations we linearize the function H(t,U) to obtain 

formulae of the type 

-(j+1) 
Aj+1.Dk + "· 1 TDk 

-(j) 
rk J+ rk 

( 6. 1) = 
-(j+1) 
~ 0 j+l (Aj+l T·Dk +v j+l) 1 + 0j+1•Dk 

_(j) 
~ 

where Dk is the Jacobian matrix of.the set of differential equations. 

For numerical stability we require that the eigenval~es 6 of the 

matrix in (6.1) are on or within the unit circle. Leto be an eigen­

value of Dk then we have two eigenvalues 6 given by 

(6.2) 

In this way all eigenvalues 6 van be calculated and conditions can be 

derived to force & within the unit circle. 

, 
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7. Applica.tions 

We no~' are in a position to give explicitly difference schemes with 

prescribed accuracy and stability properties. The examples presented 

below are chosen from references [1] and [2]. 

We shall derive the generating matrix R, the stability conditions and 

the formula for the local error pk. 

7.1. Equations with negative eigenvalues 

In cas:es where the Jacobian Dk has negative eigenvalues of which 

the spectral radius a(Dk) is large, it is recommended to identify the 

stability polynomial P (z) with the shifted Chebyshev polynomial n 
T (1+n-2z) (compare [1], section 4.1). Here, we apply the theory of 

n 
the preceding sections to the case n = 4. 

The stability polynomial is given by 

( 7. 1) ( z) + --2. 2 1 3 + _1_ 
T4 1+ 16 = 1 + z 32 z + 128 z 8192 

4 
z • 

This polynomial is compatible with the class of four-point Runge-Kutta 

schemes of first order and, therefore, a generating matrix of type 

(4.5) may be used. Substitution of 81 = 1, 82 = 5/32, 83 = 1/128 and 

84 = 1/8192 leads to the matrix. 

(7.2) 

(7.3) 

1 1 0 0 64 64 

1 0 1 
0 20 20 

H = 
--2. 0 0 --2. 
32 32 

0 0 0 1 

The stability condition becomes (see [1], p. 20) 

32 
T .::_ a(D ) • 

k 
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Since the scheme is first order exact a representation of Pk is 

necessary which is at least second order exact. From formula (5.6) it 

follows that 

(7.4) 

A third order exact representation can be obtained by applying formula 

(5.7). We find 

(7.5) 
I _ 1 (0) 

pk - 921 [355046rk 

Finally, we consider the numerical stability of the difference 

scheme. The generating matrix satisfies the storage conditions (3. 11) -

(3.13), or more precisely 

\) 1 = \) = \)3 = o, 80 = 81 = 82 = o, 83 = 1 , 
2 

;~ 1 
1 

>..2 
1 

>..3 =-2. 
= 64' = 20' 32· 

Substituting these values into (6.2) yields 

~·-2 - (1+ lir~)- + -2.-~ = 0 J. - 2 
U 32 U 32 LU , - o 

The condition Ill < 1 for J = 0, 1, 2 leads, respectively, to the in­

equalities: 

(7.6) 
64 

T ~ o(D ) 
k 

' T 
< 20 32 
- o(D ) ' T ~ 21o(D ) • 

k k 

Thus, when calculations are made with T = 32/o(Dk) as allowed by (7.3), 

we have an amplification of round-off errors in the calculation of r~2 ) 

and r~3). l~or this relatively low value of n this is not dangerous in 

an actual computation since only a few instable evaluations are made in 

succession .. When a great number instable evaluations are made in succes-
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sion the results will be seriously influenced by round-off errors 

(compare a similar situation in the theory of iterative processes for 

symmetric matrix equations [3]). 

7.2. Equations with imaginary eigenvalues 

In solving symmetric hyperbolic differential equations we are faced 

with systems of ordinary differential equations which have Jacobian 

matrices with purely imaginary eigenvalues. When a Runge-Kutta type 

difference scheme is used to solve this system of equations it is conve­

nient to identify the stability polynomial P (z) with the class of poly-n 
nomials given in [1], section 5.1. We shall analyse the case n = 5. The 

stability polynomial is then given by (compare also table 3.2) 

(7.7) P (z) 
n 

1 2 3 3 1 4 1 5 
= 1 + z + ~ + W + 32z + 128z • 

This polynomial is compatible with a second order exact scheme, so that 

a generating matrix of type (4.5) with s1 = 1, s2 = 1/2 may be used, 

i.e. 

(7.8) 

(7.9) 

t-
I 1 1 

0 0 4 4 

1 
0 

. 1 
0 6 6 

R = 3 0 0 3 
8 8 

1 
0 0 0 2 

0 0 0 0 

The stability condition becomes 

4 
T ~ a(D ) • 

k 

0 

0 

0 

1 
2 

1 

For stepsize control we need a third order exact representation 

of pk. Solving equations (5.7) we arrive at the error formula 
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(7.10) 

The numerical stability of this scheme is governed by the eigen­

value equations 

and 

-2 
0 

1 1 3 = o, Aj = 4' b' 8 

62 - ( 1+ "¥ )6 + 1 TO = o. 

The first equation leads to the sufficient conditions 

(7.11) 
4 

T ~ o(D ) 
k 

, T , T < 8 
- 3o(D ) ' k 

the second equation to the necessary condition (16162 1 ~ 1) 

(7.11 1 ) 
2 

T ~ o(D ) • 
k 

This means that, integrating with the maximal step T = 4/o(Dk) as pre­

scribed by (7.9), numerical errors introduced in the last two function 

evaluations of a Runge-Kutta step are not damped out. Thus three stable 

evaluations are followed by two instable evaluations. In practice, how­

ever, this will not be dangerous, because every complete step is a 

stable one by virtue of condition (7.9). 
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