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Introduction 

Richardson's method is used to solve iteratively matrix equations 

of the tY])e 

Lu= f, 

where L is a symmetric matrix with positive eigenvalues. In applications 

of this method one needs the values of the lowest eigenvalue ,\ 1 of L and 

the spectral norm o(L) of L. For ill-conditioned matrices L, i.e. 

a(L) >> 71,
1

, the rate of convergence is very slow and an accelerating 

process is highly desirable. In reference [3] Frank described two 

accelerations of Richardson's method. However, when tried on a computer 

the method turned out to be unsatisfactory. 

In this paper a different accelerating procedure is proposed which 

was used successfully on a computer. One advantage over Richardson's 

method is the fact that no apriori knowledge of the first eigenvalue 71 1 

is needed. This eigenvalue is estimated during the first phase of the 

method. Further, one or more negative eigenvalues,\ of Lare also ad­

mitted. 

As a consequence the method can also be used to estimate the smallest 

eigenvalues of symmetric matrices L. 

In the last section the process is adapted to find upper and lower 

bounds for the estimated eigenvalues. 

This paper contains theoretical results only. There will appear 

a second paper in the near future dealing with applications of this 

method to elliptic boundary value problems wherein numerical results 

are given. 
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1. Definition of iterative processes 

In this section we give definitions concerning iterative methods 

for solving the matrix equation 

( 1 .1) Lu= f, 

where Lis a symmetric matrix, u the unknown vector and fa known 

vector. For a detailed discussion of these definitions we refer to the 

literature [?] ( see also the appendix to this paper). 

To (1.1) we associate the following iterative process 

( 1.2) 

where the vectors u0 and u 1 are the beginapproximations of the process. 

When the sequence uk, uk+1 , converges, the limitvector will be the 

solution of (1.1). 

The iterative scheme (1.2) is called of first degree (or order) if 

ak = 1 for all k, and of second degree if. ak ~ 1. We shall consider 

mainly non-stationary or semi-iterative processes i.e. the parameters 

ak and wk depend on k. It is convenient to write 

( 1.3) uk = u + vk, 

where vk can be considered as the error of the approximation~- Then 

vk satisfies the homogeneous recurrence relation 

( 1 • 4) 

If we suppose that v 1 is obtained from v0 as v 1 = (1 - w0L)v0 , i.e. 

by applying to v0 an operator which is linear in L then vk is obtained 

from v0 by applying a polynomial-operator of degree kin L. Thus we 

may write 

( 1.5) 

In connection with this expression one defines the average rate of 

convergence for K iterations of' the iteration process ( 1. 5) as the 

quantity [2] 



( 1. 6) 

3 

ln cr(PK(L)) 
R(K) = - ---K--

where cr(PK(L)) is the spectral norm of the matrix PK(L). 

In the following sections we construct polynomials PK(L) with small 

spectral norms, which can be used to obtain fast converging iterative 

schemes. 

2. Richardson's method 

We shall briefly describe Richardson's method for positive 

definite matrices L. For a more detailed discussion we refer again 

to the literature [2]. 
When in the polynomial operator PK(L) the operator Lis replaced 

by the real variable A, we obtain a real polynomial PK(A) with the 

property PK(O) = 1. The eigenvalues of PK(L) are given by PK(Ai)' 

i = 1, 2, ••• , M, where Ao is an eigenvalue of L. In figure 1 the 
1 

dots on the curve PK(A) correspond to the eigenvalues PK(Ai). In this 

section we assume that O < A1 .::_ A2 .::_ ••• .::_AM= cr(L). 

0 

fig. 1 
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If we know the eigenvalues ,\i, we may take the zeros of PK(,\) to 

coincide with the values,\=,\"' resulting in a zero spectral norm 
J. 

for PK(L). In actual application, however, there exists a large number 

of eigenvalues ,\ .. , thus we must perform many iterations. Moreover in 
J. 

most cases we only have a rough estimate for the first eigenvalue ,\ 1 

and the last eigenvalue ,\M = o(L). 

Another method to keep o(PK(L)) small is to minimize the polynomial 

PK(,\) over the continuous interval [,\ 1, o(L)]. For this we only need 

to know the first and last eigenvalue of L. 

Richardson (1910) [?J chose the zeros of p K( ,\) to coincide with 

o(L) - ,\ 

,\ ,\ 1 + 
1 

1 ' 2, K, = J. J. .:: 
II; 8 Ill , 

K + 1 

but there is a better operator PK(L), based on the following theorem 

of W. Markoff (cited in [2] ). 

Theorem I. The polynomial 

T ( b + a -
K b - a 

b + a 
TK ( b - a 

2,\) 

cos(K arccos y) = 

f cos (K arccos y) for 

l cosh(K arccosh y) for 

Jy I .:.1 

has, of all the polynomials PK(,\) of degree K in ,\ satisfying 

PK(O) = ·1, a minimal maximum-norm over the interval a ( ,\ b. 

The function TK(y) is the Chebyshef-polynomial of degree K. 

One defines the Richardson method with respect to the operator L bv the 

formulae 

(2 .1) 

For applications we must know the expressions for the parameters ak and 

wk. First we consider the linear Richardson method i.e. a,k = 1, The 

zeros of PK(,\) are given by 
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(2.2) A= 1/wk , k = 0, 1, ••• , K-1, 

and CK(a,b,A) assumes a zero value for the points 

( 2 .3) 
1 1 21+1 

A= 2 (a+ b) + 2 (a - b) cos 72if" n, l=0,1, ••• ,K-1. 

Hence the parameters wk (the so-called relaxation parameters) are given 

by the following values 

( 2 .4) (½(a+ b) +½(a - b) cos (2~;1 n))- 1
, l=0,1,, •• ,K-1, 

where a= A1, b = cr(L) and k is not necessarily equal to 1. 

Next we consider the non-linear process with ak ~ 1. 

The polynomials Pk(A) must satisfy the relation 

(2.5) 

obtained from (1.4) by constituting vk = Pk(L)v0 and replacing L with A. 

On the other hand we derive from the well-known recurrence relation 

(2. 6) Tk+ 1 (y) = 2y Tk(y) - Tk_ 1 (y) , k .:_ 1, 

the following formula for Ck(a,b,A) 

4A Tk(yO) 
= ( 2yo - b _ ) ( ) ck ( a , b , A ) 

a Tk+1 Yo 
( 2 • 7 ) ck+ 1 (a, b , A ) 

where y0 = (b + a)/(b - a) and k > 1. 

If we define fork> 1 

a. = 
k 

the relations (2.5) and (2.7) are exactly the same. Therefore, if 
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we obtain polynomials Pk ( \), which are identical to the polynomials 

Ck(a,b,\) for every k. Putting a= 1c 1 and b = o(L) we get Richardson's 

method of the second degree. 

The linear form of Richardson's method was first used by Young , 7 953 J 

[8]. It hai:3 the advam:.age in being simple and it requires less storage 

space than the second degree iteration scheme. The numerical stability, 

however, depends strongly on the distribution of the relaxation para­

meters wk, particularly when K is large. Young avoids this problem by 
C C I . '. K-l 

repeating the iteration process with relaxation para.meters l wk Jk=O 

for a stable order of k, but this reduces the average rate of conver­

gence (section 3). 

In a forthcoming paper we shall discuss the dependence of the stability 

on the distribution of the relaxation parameters. 

The non-linear case was developed by Varga ( 1 95T) 1J) and tested by 

Frank ( 1960) lsl. This procedure is obviously stable if \. > 0 for ~ l 

all i. Further one needs no apriori knowledge of K as was required in 

the first order process. 

3. The rate of convergence 

According to the definition of the operator CK(a,b,L) we have 

(3 .1) • ( .• ) - (b. +a) .. olCK. a,b,L) < T 
- K b a 

For large K we find (approximately) 

(3.2) T (~) = cosh (Karcosh (b+a)) 
K b-a b-a 

= 1 iK h. (b+a) .. 
2 exp, arcos b-a J, 

thus 

(3,3) 
ln('I'-1 (b+a)) 

R ( K) .:._ - K K b-a b+a) ln 2 = arcosh l-- - --
b-a K 

Putting a= 1c 1 and b = o(L) we obtain a lower bound for the average 

rate of convergence for K iterations of Richardson's method. 

We consider the behaviour of R( 00 ) as a function of y 0 = (b+a)/(b-a). 
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R ( oo) 

• 76 - - - - - - - - -
.62 

.45 

1 , 1 1 , 2 1 , 3 

fig. 2 

From figure 2 we see that the asymptotic rate of convergence has the 

largest increase in the neighbourhood of y O = 1. 

If a << b the term ln 2/K decreases the rate of convergence considerably 

in actual computation. Hence K must be as large as possible. This is the 

reason that repeating the iteration process with a lower K is very dis­

advantageous for the average rate of convergence. For example, repeating 

Richardson's process over K/3 iterations three times yields an average 

rate of convergence for K iterations which is given by 

( . (b + a) ln 2 
R K) > arccosh b _ a - 3 K 

4. The elimination method 

In this section we propose a variation of Richardson's method, 

which has a considerably larger asymptotic rate of convergence and 

which is applicable not only to positive matrix equations but also to 

equations where L may have negative eigenvalues as well. 



8 

--+-----t--+i--~-.,,-,.....,......,,.,,:.;:::::,,..,,,...,,.=....,.,.-,.&;;?-"'"""'"' .... -""'~""'"""~i ~ 
o(L)=b 

3 

\ 

fig. 3 

The essence of the method is the reduction of the late eigen­

functions of L corresponding to eigenvalues\ inside the interval 

l§.,b], where a> \ 1 and a> O, followed by the elimination of the 

remaining eigenfunctions of L. This may be achieved by means of an 

operator CK(a,b,L) and an elimination operator EK~L), where the 

eigenvalues \" outside the interval [?., b_] are zeros of EK*(\). 
* J.. 

K is the degree of the operator EK*(L). 

Using (1.6) and (3.2) we derive the average rate of convergence for 

this method 

( 4. 1 ) 

* * K arccosh y0 + ln o(EK"'<") + ln 2 
R(K + K) = arccosh y0 - ...,. 

K + K 

where y0 = (b+a)/(b-a). 

As in Richardson's method, we choose b = o(L). 

We now discuss the value of a for \ 1 > 0 and \ 1 << b: The asymptotic 

rate of convergence fork~ 00 of the elimination method . b 
arccosh (~~:). For Richardson's method it is arccosh (b 

Let a= n\ 1, then we find for not too large values of n 
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arccosh (b + a) 2vf 
(4.2) b a 'F = = b + ,\ 1 

arccosh (b - ,\ ) ~ 2 -1 b 

Thus using instead of a= ,\ 1 the value a= n,\ 1 , we gain a factor\(;' 

in the asymptotic rate of convergence. However, the number of eigen­

functions to be eliminated becomes larger for increasing n. In practice 

the optimal value for n is determined from the distribution of the 

lower eigenvalues of L, bearing in mind that the gainfactor increases 

most rapidly for small values of n. 

Next we consider the elimination of the lower eigenfunctions of L. 

We assume that the eigenvalues of the eigenfunctions to be eliminated 

are known (see the following section). Suppose we wish to eliminate 

the eigenfunction eo with eigenvalue A 0 , This may be done by means 
1 * 1 

of an operator EK*(A,,L) of degree K. in L, satisfying the conditions 
0 1 1 
1 

(4,3) 

In this connection the following is useful. 

Theorem II. The polynomial EK*(,\,,,\) defined by 
0 1 

(4.4) 

EK*(L,,\) 
0 1 
1 

1 

2,\, + b (cos~ - 1) 
1 21\:' 

* 1 a.=-----------
1 IT 

cos -- + .... 
2K. 

1 

satisfies the conditions (4,3). 

Of all polynomials of degree K:- satisfying (4.3), this 
1 

polynomial has the smallest maximum-norm over the interval 

[ci, b] when 
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C, > 0 C, > .\. ' l ' l 1 

( 4. 5) 
' 1 V1 1 ff 1 V1 4 y i ( 1 + 8/y") < co::' -- < - y. ( 1 + + 8/y, ), 

l *-4 l l 

where y. = (b - c, ) / (b - L ) . 
l l 1 

Proof. 

It is clear that EK*(L ,O) = 1. 
, l 
l 

2K. 
l 

The second condition of (4.3) follows from the fact that the zeros of 

* ' CK":"(ai,b,.\) are given by 
l 

( 4. 6) 1 * .\ = 2 (b + ai) 

The smallest zero is assumed for n = 0. Substituting (4.4) into (4.6) 

and putting n = 0 gives .\i as the first zero of EK":"(.\i,.\). 
l 

To prove the minimax-property we assume the existence of a polynomial 

SK-:'°(.\) of degree K7 in.\ satisfying (4.3) and the inequality 
l 

I lsK:-(.\) I I < I !cK~(a7,b,.\) I I, 
l l 

where 11 j j means the maximum-norm over the interval [ci, b]. 

Consider the polynomial 

* Q ( .\ ) = SK*( .\ ) - CK*( a , , b , .\ ) • 
, . l 
l l 

Q(),) has positive values for those points of the interval ~.,bl, where 
- l '...I 

* CK*( a., , b, .\ ) 
. l 
l * 

CK*(a. ,b ,.\) 
. l 
l 

is minimal and negative values in the points where 

is maximal. 
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fig. 3a fig. 3b 

CK*( a7', b, ,\) 
• .L 
l 

If CK*(a~,b,,\) has n extrema in the interval [c.,b], then Q(,\) has 
. l l 

at le~stt, (n-1) zeros in the interval [c. , b]. The first extremum is 
.;.;.. l 

assumed for the point ,\ = ai, the second for the point 

(4,7) 1 (b a .. ·) 1 +-. TT 
,\ = + - (b - a. )cos -ex 2 l 2 l * L 

l 

Suppose c, < ,\ , then CK.;.;..(a~,b,,\) has K-:'" extrema in the interval 
:L ex . l l 

[c.,b], hence Q(A) has fK-:'"-1) zeros in rc.,b7. In addition Q(A) has 
l l -l :J 

two other zeros in the points,\= 0 and,\=>,. (see (6.5)), therefore 
l 

Ql A) has (K-:-- + 1) different zeros. On the other hand Q( A) is at most 
l 

of degree K:, implying at most Kz zeros. This contradiction eliminates 

the existence of a polynomial SK7( A), Hence the last part of the 

theorem is proved. 
l 

We now prove that c. < ,\ • Substituting (4.4) into (4,7) and writing 
TT 2 lTT ex 

cos as 2 cos -- - 1 yields * ..,..;... 
K. 2K 

l 2 TT TT 
2(A, - bJcos -- + b cos -- + b 

1 2K~ 2K* 
l l (4,7' J ,\ 

ex =-----------------TT 
cos -- + 

* 2K. 
l 

Using ( 4. 7' ) the inequality c. •, .\ becomes 
i ex 

2(b A .. ) cos 
2 TT 

(b c. )cos - -- - -
l 

2K~ 
l 

l 

TT 
(b -- -..,..... 

2K ... 
l 

From this inequalitv we find the second part of (4,5), 

C" ) -
l ' 0. 
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We shall now investigate condition (4,5) for large values of b (in 

most applications b is very large with respect to I ;L I and c.). 
l l 

If b >;, I A. I and b >> c O we can approximate 
1. l 

y, = 1 -
l 

, c. - A 
= 3 + .'.:_ l i 

3 b 

Substituting this into (4,5) we obtain 

(4.5') 

or equivalently 

(4,5") 

TT 2 Ci - Ai 
< cos -- < 1 - -3 

2 - *- b 2K. 

·* , 
< K < -- i - 4 

l 

TT \ / 3b 
V CO - A, 

l l 

In practice we want the minimax-property to be valid over the interval 

Gi,, b]. The eigenfuncties corresponding to eigenvalues outside the 

interval [a, b] need no reduction, since they may be eliminated success-
.,,.. 

ively. We find for K, the condition 
l 

(4.8) * ✓ 3b K < -4 IT ;\ 
l - a - , 

l 

* In practice the value for K, is determined by stability considerations 
l 

(see section 5) or by the requirement that the average rate of 

conver,a:ence is as large as possible ( section 6). Because of the usually 

large values of' b, (4.8) is satisfied in most cases. If' we use large 

* values for K. the operator EK*(;\ .. , L) st ill eliminates the eiP'.enfunct ion 
l - _.. l 

e,, but the theorem doesn't ifi.dicate if that o:nerator is the "best" 
l 

operator to eliminate the eigenfunction e .• 
l 
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A second stability condition is 

b ~ cr(L). 

In general we cannot choose b = cr(L) without violating (5.4). For large 

values of cr(L) this condition reduces to 

( 5, 5) K* > 1 fiicr(L) 
• ~ TI ' • 1 - '+ -/\. 

1 

( Compare the derivation of ( 4. 5 ")), 

Evidently inequality (4.8) cannot be satisfied. 

6, Optimal elimination operators 

In this section we define the average rate of convergence with 

respect to the interval ~,b], i.e. 

ln( Max CK(a,b,.\i)) 
a<.\.<b 

- 1-

K 

This expression has the lower bound 

( 6. 1 ) 
ln I I CK( a, b, .\) 11 

r(O) = - K , 

where 11 11 means the maximum-norm over the interval [a,b]. 

After application of the elimination operators EK*(.\. ,L), we have the 
. 1 

lower bound 

(6.2) * r(K) 
* K + K 

1 

This expression is also a lower bound for the average rate of conver­

gence as defined in section 1, thus we want (6.2) to be as large as 

possible. 
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5. Stable elimination operators with respect to the interval [a,b] 

The danger of applying elimination operators (EK.,...(Ao,L)) of small 
-- . l. 

l. 

degree is that they have large spectral-norms (cr(EK--:(Ai,L))). This nulli-

fies the effect of the minimizing operator CK(a,b,L~. We can avoid this 

by requiring that the elimination operators are stable, i.e. 

A. > 0 
-i--

cr(EK~(Ai'L)) < 1, 
l. 

The stability condition is simply 

* a. > 0. 

From (4.4) we obtain for A, << b 
l. 

l. 

( 5 .1) 
* 1 -1 A. 1 \/b 

Ki .:_ 2 Tr arccos ( 1 - 2 b 1 ) ; 4 Tr V T."" , 

The smallest admissable value for K: is given by 

(5.2) * . (1 ,(b') Ki= entier 4 Trv I; + 1. 
l. 

(4.8) is satisfied for large values of b, if 

(5.3) 

A, < 0 
-l.--

The stability condition is 

From (4.7 1 ) we find the relation 

A = 0. ex 

2 cos 
7f 

* 2K. 
( 5. 4) 

b = _________ i __ _ 

2 7f 
2 cos -- -

* 
cos 

7f -- -
* 2K. 2K. 

l. l. 

l. 



15 

We suppose that the eigenfunctions e 1 , e 2 , ••• , ei_1 are success­

ively eliminated by the operators EK;>.. 1 ,L), EK;< >.. 2 ,L), , , , , EK7_, ( >..i_ 1 ,L) • 

The average rate of convergence with respect to the interval [a,b] is 

bounded below by 

(6,3) * r(Si_ 1 ) 

ln I I CK 11 + ln I I EK*I I + .. • + ln I I EK-:'°" 11 
1 1-1 ----------------------* K + So 1 1-

* 0 * * where So is defined by K1 + , •• + K0 for 1 = 1, 2, 
1 1 

The optimal value for the degree of the next elimination operator 

EK-:'°(>..i,L), with the'only knowledge of the preceding K7, ••• , K7_ 1, 

1 * 
is apparently the value which maximizes the expression r(Si). In this 

way the average rate of convergence with respect to jjt,b] remains as good 

as possible during the elimination process. 

* Theorem III. The values of Ko, i = 1, 2, ••• , which maximize the 
1 

* expressions r(So) are defined by the inequalities 
1 

11 EK*( A O ' A ) 11 
* 0 1 * 

r(Si+1) < lnTiEK~+1(>..i,>..)jj < r(Si). 

-Proof. Suppose Ki is -increase of K. by one 
1 

(6.4) 

1 

* the value of K. we are looking for, then an 
1 

* yields a smaller value for r(S.), thus 
1 

r(S~ + 1) < r(s;). 
1 1 

p 
Let us write r(s-:-) 

1 
= - and r(S~+ 1) 

1 

p + 1) 
= --- , where Q + q Q 

p = ln TIEK-:'°+1 I J 

q = ,. 

1 

From (6.4) we obtain 

p _p 
- > Q q 

which proves the right member of the inequalities of the theorem. 

In the same way the other inequality can be proved. 
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* We investigate the values of K0 defined by the theorem for large 
]. 

* values of K. In the same way as we derived (4.1) we find for r(S,) the 
]. 

expression 

* Si arccosh y0 + ln 2 + lnl IEK":°I j+ ••• +lnl jEK:-1 I 
* ]. ]. ( 6. 5) 

r(S1 ) = arccosh y0 - _____________ * _________ _ 
K + So 

]. 

* If K >> So only the first term remains i.e. 
]. 

.;,(,.. 

From the foregoing theorem we obtain for K, the relation 
]. 

(6.6) 

We recall that I I EK:-1 I is g1. ven by 
]. 

* b+a, 
(6.7) I IEK:-i I -1 (-;:) = T* Ko 

]. ]. b-a" 
]. 

T-J._ = Ko 
]. 

7. Evaluation of the eigenvalues of L 

b 7T 
A, cos --+ 

* ]. 
2K, 

]. 
) . 

b - Ao 
]. 

In this section we give some methods to find the dominating eigen­

values of L during the iteration process. 

In actual computation the iterates'-\ are known. They are related 

to the errors vk by the relation 

Forming the difference '-\+ 1 - '-\ we can eliminate the unknown function u: 

Fork= K >> 1 and 11. <awe have 



(7.2) 

:\ 
where y 1(\) = y0 - 2 b-a. 

17 

cash (K ln(y 1+ Vy~ - 1)) 
=-

Y1 + VY~ - 1 K 
= ( --:::..-=---- ) 

+,/2_, 
Yo VYo 

We compare CK(a,b,\ 1 ) with CK(a,b,A2 ). From (7.2) we obtain 

(7.3) 

If :\ 1 < A2 the term between brackets is> 1, therefore, by choosing 

K large enough, CK(a,b,A 1) is strongly dominating. In that case we 

have fork in the neighbourhood of K 

where\ is the dominating eigenvalue with eigenfunction e. 

Forming the quotient 

(7.4) 

where 11 11 denotes an arbitrary norm, we obtain the following f'unda-

mental formula 

(7.5) 

In the first order Richardson process we have 
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Substituting this into (7.5) yields the estimate 

( 7 .6) 

~ 

In the second order Richardson process we have for every k,Pk(A) = 

= Ck(a,b,A). Substituting (7.2) into (7.5) results in the relation 

Solving this for A gives the estimate 

(7.7) 
~ 1 

A = 2 (b-a)(y0 
, • q~., (yo • Vy; - ,·) 2 ). 

2qk+1(y0 + ~) 

Using the formula 

(7.8) 

we obtain in terms of a and b 

(7.7') 
<, 1 

A = - (b + a -
2 

b-a 

2 2 tr ,D4 
(b-a) + qk+1(va + Vb) 

2qk+1 ( ra + ~)2 

There is another independent method to estimate dominating eigen­

values, which uses the relation Lu= f. 

We define the quantities 

(7.8) 
I !Luk - fl I 

= ........ -----11~+1 uk Ir · 
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As qk+l the quantities rk+ 1 and sk+l can be calculated during the 

iteration process. For sufficiently large k we have two more fundamental 

relations 

(7.9) 
= I ,\Pk (A) I 

sk+ 1 7 pk+ 1 ( ,\) - pk ( ,\ ) I ' 

where,\ is again the dominating eigenvalue. 

For the first order Richardson process we obtain from the first 

relation of (7.9) 

(7.10) 
1 

,\ = wk - r k+ 1. 

The second relation of (7.9) results in an identity. 

In the second order case we obtain the formulae 

If we substitute y 1 ( ,\) = 

= ( 1 - >c/sk+1 ;(yo + ~). 

2 Yo - >c, we find the estimates 
b-a 

,\ = 

b + a - ___ b_-=a== 

Yo + ✓y~ - 1 

- 2r 
k+ 

b - a ----=== + 4rk+1 +1/c._7 
Yo VYo 

(b - a)('~+ y )-4s VYa- 1 o k+1 

In terms of a and b we have finally 
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(7.11a) >.. 4rk+1 
,v;;;'- rk+1 

= 
( y-;: - \[t;J2 + 4rk+1 

and 

(7.11b) >.. 4sk+1 
·F'- sk+1 

= . 
(ya+ \jb)2 - 4sk+1 

We remark that the estimates (7.6), (7.7), (7.10) and (7.11) 

hold for positive as well as for negative eigenvalues>... 

8. Upper and lower bounds for the eigenvalues of L 

The second order Richardson method may be used to compute upper 

and lower bounds for the first eigenvalue of L. 

Suppose I 1 is an estimate for the eigenvalue >.. 1 of Land vis a 

function in which the eigenfunction e 1 corresponding to >.. 1 is strongly 

dominating. Such a situation can be obtained by the method described 

in the preceding sect ions. We try to eliminate the eigenfucntion e 1 

from v by applying to v the operator CK*<a7, b ,L), with 
1 

( 8. 1 ) 

TT 
2>.. 1 + b(cos --.;: - 1) 

2K1 * a1 = _____ TI ____ _ 

cos -- + 
* 2K1 

b = cr(L). 

Using the second order process, the first zero of the polynomial 

* Pk(>..)= Ck(a1 ,b,>..) is given by 

hence substituting (8.1) yields 
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( 8. 2) 

'"f 1 ( 1 + Cos ;k ) + b ( co S TT 

2K~ 

1 + cos 
TT 

n 
cos 2k) 

We consider the difference D.A = A0 (k1 ) - A0 (k2 ) i.e. the distance 

between the first zeros of the polynomial Ck(a~,b,A) after k 1 and k 2 

iterations. From (8.2) we obtain 

( 8. 3) D.A = 2(b 

. ~l1 1 1 ··J ['I ( 1 ·1 '""1 sin - TTl- + -) - sin~4- n - - -) 4 k 1 k 2 k2 k 1 -

1 + cos 
n-

When the zero AO "passes" the eigenvalue >s 1 an estimate of the dominat-ing 

eigenvalue, such as given in section 'T, will show a maximum, for at that 

moment A2 is dominating. Suppose that this maximwn is assumed between 
th . th ( . th , , h · the k 1 and k2 = k 1 + 2) iteration, ten we have 

(8.4) 

where >s 0 (k 1 + 2) and A0 (k 1 ) follow from (8.2). 

From (8.3) we can derive an estimate for D.A = >, 0 (k1 ) - >s 0 (k1 + 2) if 

k >> 1. We obtain 
1 

(8.5) 

..... 
If A 1 is a reasonable estimate we have K1 = k 1 , hence 

(8.5 1 ) 

Therefore if we desire a certain accuracy D.A, we must choose 

b - A 1 /3 
K*1 ,,;, _21 ( 1 Tl 2 ) 

[',)\_ 
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;\ 

fig. 4 

If one desires to determine also higher eigenvalues, one has to 

calculate >i. 1 with great accuracy to accomplish a reasonable exact 

elimination of the first eigenfunction. 
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Appendix 

In the preceding sections we have assumed that the matrix L was 

symmetric. Then the opera,:,or PK(L) was also symmetric, hence 

where 11 11 denotes the inner-product norm of the matrix PKlL). 

The Euclidean norm of the error vk satisfies the inequality 

Therefore it was important to construct polynomials PK(LJ with small 

spectral norms (compare section 7). 

In our method we used two properties of L, namely that L had real 

eigenvalue:3 and a complete set of eigenfunctions. Hence our method is 

applicable not only to symmetric matrices L, but also to non-syrrm1etric 

matrices with the two properties mentioned above. 

Let us now consider matrices L, which have positive eigenvalues 

(and possibly one or two negative eigenvalues), and which have not 

necessarily a complete set of eigenfunctions. We may again construct 

an operator PK(L) with a small spectral norm, however this doesn't 

guarantee that the inner-product norm (or another norm) is small. 

Let us apply the operator PK(L) n times to v0 to get 

so that 

It is well-known that [ [P~(L) i I converges to zero for n c,, 00 if and only 

if o(PK(L)) < 1. Hence by repeating the operator PK(L) we may solve 

matrix equations Lu= f, where Lis only required to have positive and 

some negative eigenvalues. (We remark that in this case it is not 

always possible to estimate the dominating eigenvalues during the first 

phase of our method.) 
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