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Abstract 

We are interested in implementations of concurrent high level objects from weaker 
lower level objects which are free from the usual control primitives, like mutual exclu
sion, test and set, etc. We give a survey of the most important recent results concerning 
such wait-free implementations of atomic multiwriter, multireader shared registers. We 
present several algorithms for constructing atomic bits from safe bits, atomic multival
ued shared variables from atomic bits, as well as atomic multireader and multiwriter 
shared variables from multivalued single writer, single reader shared variables. We also 
discuss several methods for proving the correctness of concurrent reader concurrent 
writer protocols. 
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1 Introduction 

The parallel execution of programs in multiprocessor environments and computer networks 
requires concurrency control of the various processes involved. If a read process and a write 
process share the same buffer area then precautions need to be taken so that the reader is 
protected from having its data garbled by the writer before completion of its action. By ac
tively serializing concurrent actions using synchronization primitives like. mutual exclusion, 
test and set, lockout, semaphores, etc., the data is effectively protected from such unex
pected disturbances. Several schemes which guarantee exclusive access to a shared resource 
have been proposed both at the software and hardware level. However, an uncritical use 
of synchronization primitives in multiprocessor environments and parallel machines whose 
natural environment is meant to take advantage of the best aspects of parallelism would 
seem rather inappropriate. No doubt, there are several tasks, like access to a peripheral 
device, where exclusiveness is necessary, and therefore it is impossible to implement them 
without resort to the above synchronization primitives. However for other tasks (like airline 
reservation systems) exclusiviness is not so important. For example in the case of a shared 
file all that may matter is to be able to read the most recent correct version of the file. 

Therefore the question arises as to which programming tasks can be implemented with
out resort to waiting mechanisms and how. Part of the answer seems to be that we need to 
discard Von Neumann's concept of centralized architecture and consider instead multipro
cessor architectures with true parallelizable characteristics. Such multiprocessor environ
ments are within the reach of today's technology [Hil85]. However the main problem still 
remains. How can we coordinate the activities of the numerous processors at the software 
level in such a way that on the one hand we take full advantage of the merits of paral
lelism (e.g. increased speed of program executions) and on the other hand we guarantee 
the accurate implementation of the objects (like concurrent reading and concurrent writing) 
concerned? The answer to this question is not obvious. It is the purpose of the present 
paper ·to outline how to develop algorithms that implement "objects" with optimal serializ
ability characteristics via other lower level objects in a wait free environment. Nevertheless, 
one thing seems clear. As has been pointed out by Lamport [Lam86), to implement such 
primitives we need interprocess communication through a shared memory unit, also called 
shared register or shared variable. 

It should also be noted that wait-free protocols are of particular interest not only because 
they are free from the usual control primitives (like, mutual exclusion, test-and-set, etc.) 
but also because they make possible a quantitative appraisal of the complexity of the various 
algorithms considered, e.g. determining the protocol with best running time. 

2 The Concurrent Readers and Writers Problem 

Throughout the present paper, the terms (shared) variable and (shared) register have iden
tical meanings. In very simple terms the CRCW (Concurrent Readers, Concurrent Writers) 
problem can be described as follows. There is a shared variable that is to be distributed and 
replicated among several processors. The distribution problem concerns the implementa
tion of multivalued shared variables from boolean shared variables. The replication problem 
concerns reproducing the shared variable in order to be used by many processors. The re
quired implementation is achieved by providing a protocol or algorithm that the concerned 
processors must follow. The ma.in assumptions regarding the protocol constructions is that 
there should be 
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• no waiting (i.e. a processor should never have to wa.it for another processor to finish 
its action before it executes its own), 

• completely asynchronous, with no synchronization primitives like mutual exclusion, 
semaphores, locking, test and set, etc, 

• no global clock (i.e. the processors do not have acceBS to a global time reference 
system). 

The above assumptions define what the requirements for a proper solution should be. More
over the only solutions to the CRCW problem we will be interested in are protocols that 
satisfy the above conditions. 

We will not attempt to define here rigorously what a wait-free protocol is. Intuitively, 
however, by wait-free implementation of e. concurrent-data object we understand a protocol 
~r algorithm wh.ich can be executed by any processor in the system in a finite number 
of steps which is independent of the execution speeds of the processors involved. Several 
programs for implementing these protocols will be given later. Intuitively they should be 
constructed inductively using "appropriate" initial assignment statements, and program 
statements constructed from these by iterating the two operators if ... then . .. else . .. , 
for i := 1, ... , n do . .. od, where ... is a sequence of program statements at an earlier 
stage of the inductive construction (AG87). 

2.1 The Implementation Problem 

The implementation problem can be described e.s follows. We are given some registers each 
capable of storing words of a fixed length a.nd with certain restrictions on their mode of 
operation, e.g. that only a certain number of processora are allowed to access each one of 
them; also, we assume that these registers satisfy certain serializablity properties (i.e., a 
succession of reads and writes on the registers must, in some degree, be serializable). By us
ing these registers (often called subregisters) as building blocks, we are asked to construct a 
more powerful compound register capable of storing words of (possibly) even longer length, 
with (possibly) more relaxed accessibility restrictions a.nd the same or even stronger seri
lazability properties. The subregisters will be structured according to an architecture (e.g., 
a matrix or a sequence of buffers) and moreover each operation (i.e., read or write) on the 
compound register will consist of a succession of operations on the subregisters executed 
according to a protocol. The architecture together with the protocol will guarantee the 
stronger properties we require from the compound register. The protocol will often utilize 
variables local to each processor. These local variables should, of course, be distinguished 
from the shared variables of the protocol which are none other but the subregisters used by 
the architecture. 

In general, according to the strength of the serializability conditions they satisfy, we 
distinguish the following four types of registers: safe, normal, regular, and atomic. A 
register is called safe (respectively, normal, regular, atomic) if any system execution on the 
register (i.e., any succession of operation executions) is safe (respectively, normal, regular, 
atomic). For single writer registers, a system execution is safe if every read that does not 
overlap a write returns the most recent value, otherwise it may return an a.rbitrary value 
(with the restriction th.at it is within the set of values the register is allowed to assume). A 
system execution is normal if every read returns the value of a write that either precedes 
this read or is concurrent with it. A system execution is regular if it is normal and moreover 
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no read returns a value that at the time this read begins has been already overwritten by 
another value. 

Finally, a system execution is atomic if reads and writes behave as if they were linearly 
ordered. (This intuitive definition of atomicity is alao valid for multiwriter registers, see 
section 5.2.) More formally, a system execution is atomic if 

1. There exists a total (i.e., linear) order extending the natural order in which the op
eration executions on the compound register have taken place (external consistency). 
This order, in some sense, represents the succession these operations seemingly follow. 

2. There is no second write placed by this linear order between a read and the write it 
reads (internal consistency). 

If we assume that there is a global time-reference system (i.e. that an observer could cor
rectly time the beginning and end of all actions by all the subregisters) and if all subactions 
of an operation execution on the compound register precede in time all the subactions of 
a second operation execution on the compound regiater, then, by property (1) above, this 
order must place the second operation execution after the first one. In general, the natu
ral order of the operation executions referred to at property (1) above, is imposed by the 
problem (e.g., it may be an acyclic relation that tells us if a.n operation execution can have 
an influence on another). 

For simplicity we will use the following notations and abbreviations. By mW nRbB 
register we abbreviate an m-writer, n-reader, b-bit register. This means that the shared 
variable can hold values which are b bits long, can be written by m processors (the writers) 
and read by n processors (the readers). If we want to stress the fact that the register assumes 
the values {O, 1, ... , v-1} (i.e. it is v-valued) then we write mWnRvV. Clearly, mWnRbB 
is equivalent to mWnR2bV. A safe (normal, regular, atomic) lWlRlB register is also 
called safe (normal, regular, atomic) bit. Safe bits are alao known as "flip-fiops" (see 2.3) 
to indicate their resemblance to the bistable component& used in computer manufacturing. 
Regular bits are also called ''flickering" bits to indicate the filckering behavior of the shared 
variable over the duration of a write. 

To facilitate our understanding the replication and distribution problems are conve
niently split into the following easier constructions (however, this does not rule out the 
possibility of bypassing one or more of the steps below): 

• flickering bits from flip-flops, 

• atomic bits from flickering bits, 

• atomic, single-processor, multi-bit registers from atomic bits, 

• atomic, single-writer, multi-reader, multi-bit registers from atomic, single-writer, single
reader, multi-bit registers, and 

• atomic, multi-processor, multi-bit registers from atomic, single-writer, multi-reader, 
multi-bit registers. 

Thus the ultimate goal is the efficient construction of atomic, multiprocessor, multibit 
variables via flip-fiops. 
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2.2 A Brief History 

The difficulty of implementating correctly concurrent transactions had already been rec
ognized in the ALGOL68 report [vWMPK69), where it is explicitely stated that "in view 
of the none-to-advanced state of the art" only facilities ''restricted to their essentials" are 
introduced for "collateral" (a weak form of concurrent) ''programming". It was to overcome 
such problems that synchronization primitives like semaphores, mutual exclusion, test and 
set, etc., were introduced by [Dij68) and [Hoa78) (see [Ben82} for a very eloquent description 
of these primitives). The problem of concurrency control with readers and writers was also 
considered by [CHP71), which offers two solutions to a restricted version of the CRCW 
problem. In their first solution they demand that "no reader should be kept waiting unless 
a writer has already obtained permission to use the shared resource". In the second solu
tion they demand that not only "the writers must have exclusive access while readers may 
share", but that in addition "once a writer is ready to write it perfoms its write as soon 
as possible". Clearly, neither of these solutions provide satisfactory answers to the CRCW 
problem posed here because they impose waiting on the processors. 

The first to isolate and pose the problem of atomic, wait-free implementation of concur
rent objects in its present "single writer" form were L. Lamport [Lam86) and G. Peterson 
[Pet83). Lamport discusses in (Lam86) extensively the hierarchical nature of system execu
tions, proposes protocols for distributing the value of a shared variable among two proces
sors, one writing and the other reading, and classifies registers in three types according to 
increasing serializability characteristics: safe, regular and atomic. At the same time G. Pe
terson [Pet83) considers the problem of distributing a shared variable among many readers, 
although at the time it was not known how to construct such shared variables from even 
simpler (non-atomic) ones. The multiwriter multireader problem remained dormant for a 
few years (and it almost looked ~ if it would turn out to be impossible to solve) till it was 
explicitely posed by N. Lynch in her MIT seminar series. Its most recent revival is due to 
P. Vitanyi and B. Awerbuch (VA86] who attempted to implement wait-free multiprocessor 
protocols from the most basic shared variables possible, the ''idealized" flip-flops. 

2.3 Idealized Flip-Flops 

As mentioned above the basic problem in the CRCW area is how to implement atomic 
multiuser multivalued variables from the more fundamental single writer, single reader, 
single bit safe registers. But it must be stressed that such safe variables are only idealized 
objects of our imagination. The closest approximation of safe bits in the world of electronics 
is considered to be the flip-flop. These are one-bit memory elements that are capable of 
exhibiting either of two stable states (i.e. bistable). When triggered by sufficient current 
they can switch from voltage 0 to voltage 1 and vice versa. However when the input to the 
flip-flop is marginal it may cause the bistable device to remain for an indefinite period oftime 
in a metastable state which is different from any of the above two states. Mathematically, 
this phenomenon is due to the fact that a continuous function assuming the values 0 and 
1 will also have to assume any value between 0 and 1 (known in analysis as Bolzano's 
theorem). For a formal description of this phenomenon we refer the reader to [Mar86). 
However we will not be concerned here with such situations. The idealized safe bits we 
have in mind are "perfect" bistable devices that do not exhibit the above metastability 
phenomenon. 
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3 Initial Algorithms 

Here we study several relatively simple implementations of the CRCW problem. Although 
we will never mention it explicitely we uaume that all the registers given below begin the 
execution of their respective protocols with some consistent initialization. In order to avoid 

unnecessary notational complications we describe all our protocols rather informally using 

the basic statements write and read. It should be stressed however that these are merely 

assignment statements of the form x := F(yi. . .. , Jin), where F is a funciion symbol in the 
protocol language and x, Yi. ... , Jin are protocol variables .. 

3.1 Two Examples 

One of the most surprising aspects of the CRCW area is the eaae with which one can provide 
either unsatisfactory or wrong algorithms. We illustrate this in the present section with two 
examples. In both instances we wa.nt to implement a 1 WlRbB atomic va.riable using atomic 
bits. We represent a given value 0 ~ v < 26 by its binary encoding, with b bits. The main 
idea in executing read and write actions in the compound register is the following. To write 
a value v the writer writes the binary encoding of v in a track (or buffer) consisting of b 
spaces (subregisters), one for each bit. To read a value the reader enters a certain track 
(specified by the algorithm), reads all the bits in the track and returns the sequence of b 

bits it read. 
In our first example, there is an infinite sequence of tracka tr1, tr2, ... each consisting of 

b atomic bits that can be read by the reader and written by the writer. Next we consider 
the following algorithm [Hal.87]; :t is an atomic shared variable that can be written by the 

writer and read by the reader. To write a value v the writer executes the following protocol. 

write value v on track trz+l; 

x := x + 1; 

To read a va.lue the reader executes the following protocol. 

read x; 
return value from trz; 

In the above protocol, the reader al.ways reads the most recently written value and this 

value is al.ways correct. There should be no difficulty in verifying that this register is 
atomic. However there is slight problem with this register. It uses infinite space, namely an 
infinite number of length b tracks. The protocol al.so aaaumes the existence of an oo-valued 
atomic va.riable x in order to implement a bounded valued variable! 

Therefore one is lead to limiting the number of tracks. In our second example we assume 
that there are only three tracks, numbered tr1, tr2, tr3 [Len87]. Consider a function f such 

that /(x,y) #- x,y, for all x,y = 1,2,3. Further let KR,Kw be two lWlR three valued 
atomic registers. KR {respectively, Kw) is written by the reader (respectively the writer) 
and read by the writer (respectively the reader). To write a value v the writer executes the 
following protocol. 

read KR; 
write v on track trf(KR,Kw)i 
write new track number J(KR, Kw) on Kw; 

To read a value the reader executes the following protocol. 
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read Kw; 
write track value read above in KRi 
return the value on track numbered trKwi 

This register satisfies the necessary bounded space requirements. It uses three tracks each 
oflength b. Hence the total space used is 3·b+0(1) and the time is b+O(l). Unfortunately 
it fails to be atomic. A moment's reflection will reveal that the reader and the writer may 
very well collide on the same track, in which case the reader could report a "meaningless" 
value. We will see in section 4.1 how to resolve this subtlety. 

3.2 The Basic Implementations 

We now begin by considering protocols that "gradually" solve instances of the CRCW 
problem. The first simple construction concerns implementing regular bits with safe bits 
and is due to L. Lamport (Lam86). Suppose that K represents a safe bit. We implement 
a regular bit K' as follows. The reading operation is performed by merely reading K. 
Concerning the writing operation, the main "trick" is that in order to write the value b the 
writer "avoids writing the same value twice", i.e. let l be a variable which is local to the 
writer. 

if l :f:. b then 
write b on K; 
l := b; 

fi 

We can prove the following simple theorem. 

Theorem 3.1 ([Lam86]} A regular bit can be implemented with a safe bit. 0 

Next we proceed with multivalued registers. Here we are concerned with the distribution 
problem. We implement a single writer b-bit register by using only single writer single bit 
registers. As opposed to the previous examples where we used binary encoding, we will 
now use unary encoding, i.e. the value 11 is represented by 11 - 1 zeroes followed by a 1 at 
the 11th position. Suppose that Ki, ... , Kn are single bit, single writer registers and let K 
be the n-valued register in which the write and read operations are performed as follows. 
To write a value v the processor writes the bit 1 on register K,, and sets all the previous 
registers Kl, ... Kv-1 to 0 beginning with K,,_1 and moving backwards all the way down 
to K1. More formally, in order to write the value 11 the processor executes the following 
protocol. 

write 1 on K,,; 
for u := v - 1 step -1 until 1 do write 0 on Ku od; 

To read a value the proccessor returns the first 11 such that K,, := 1 but for all u < 11 

K,,, := 0. More formally, in order to read a value the processor executes the following 
protocol. 

v := 1; 
while K,, has value 0 do 11 := 11 + 1 od; 
return 11 
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This protocol constitutes construction 4 in Lamport's paper [Lam86] which also proves 

the following theorem. 

Theorem 3.2 ([Lam86]} A regular, single writer, m-reader, n-valued register can be im

plemented with n regular, single writer, m-reader, single bit registers. 0 

It is not hard to see that K can fail to be atomic even if all the Kv 's are atomic. For 

example, consider the initial value 3 = (0, 0, 1) in the above implementation of a 3-valued 
register with three atomic subregisters. In the following sequence of actions the second read 

read2 returns the old value 1 while the first read read1 returns the new value 1. 

read1: reads x1 = 0 and continues 
write1 (writes value 1): writes x1 = 1 and ends 
write2 (writes value 2): writes x2 = 1 and continues 
read1: reads x2 = 1 and returns 2 
read2: reads x1 = 1 and returns 1 
write2: writes x1 = 0 and ends 

However in a rather clever twist it was observed by K. Vidyasankar (Vid88a] that a simple 
modification of the read operation can lead to an atomic regieter. All that the new modified 
reader algorithm needs to do is after finding the first 1, i.e. the first v with Kv = 1, not 
to report v as the value read, but instead to backstep, read the values Kv-1 through K1 
over again and report instead the smallest u ~ 11 such that Ku = 1. The writer protocol 
remains unchanged. To read a value in the modified register K' the proccessor executes the 

following protocol. 

'V := 1; 
while Kv has value 0 do v := 11 + 1 od; 
'U := 'Vj 

for i := v - 1 step -1 until 1 do if Ki has value 1 then u := i od; 
return u; 

For this new modified register we can prove that K' is atomic if each Kv is. In fact we 
have the following theorem. 

Theorem 3.3 ([Vid88aj} An atomic, single writer, m-reader, n-valued register can be im
plemented with n atomic, single writer, m-reader, single bit registers. 0 

There are several problems with this last algorithm. For once it does not replicate 
the shared variable among many users. It would also be wrong to think that theorem 3.3 
has solved the distribution problem of implementing an atomic multivalued variable from 

atomic bits. A moment's reflection will show the disadvantages of using the unary encoding 
of numbers. The above algorithm implements a single writer, b-bit, atomic variable by 
using an exponential number (i.e. 2b) of single writer, atomic bits. We will show in section 
4.1 that this can be done more efficiently by using only O(b) atomic bits, in the 1 WlRbB 

case, and in section 4.2 in O(n2 • b) atomic bits, in the lWnRbB case. Finally, the most 

general nWnRbB case is studied in section 4.3. It is exactly this interplay between time and 
space complexity of an algorithm and the difficulty of proving its correctness that creates 

numerous interesting and unexpected complications in this area. 
Here is a summary of the main single writer implementations given in the present section. 

The first column is the author of the paper, and the second column gives the number and 

type of subregisters required to implement the register in the third column. 
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PAPER SUBREGISTER REGISTER 
[Lam86] 1 Safe 1 W nRlB Regular 1 W nRlB 
[Lam86] 2° Regular 1 W nRlB Regular 1 W nRbB 
[Vid88a] 211 Atomic lWnRlB Atomic 1 W nRbB 

Figure 1: Implementing stronger registers from weaker ones 

4 The Main Algorithms 

We can now proceed with some of the main solutions to the CROW problem. Here we show 
how to implement atomic multiwriter, multireacler, multivalued shared variables using as 
building blocks the idealized flip-flops (also called safe bits). Our description of atomic 
multireader and multiwriter registers is rather sketchy. A more thorough outline of the 
algorithms concerned will appear in a more complete version of this paper. 

4.1 Atomic Bits 

There are two important points that must be considered in implementing 1 WlRbB registers. 
The first is that in order to minimize the space used we must employ binary encoding of 
the values concerned. This means that we will write the values on a finite number of tracks 
(or buffers) each consisting of b single bit subregisters. Clearly on such a b-bit buffer we 
will be able to write and read values in the range from 0 to 26 - 1. The second is that we 
will implement a switch (i.e. protocol together with some extra bits) that will eventually 
enable the processors to alternate among the tracks in order to read and write, respectively, 
values in such a way that the desired correctness properties of the protocol a.re satisfied. In 
doing this we are lead to considering two types of protocol implementations. In the first 
one pure copies are used, i.e. the copies of the simulated object are never overwritten while 
they are being used, while in the second one they may not necessarily be pure. There is 
an interesting interplay between these two types of constructions. As expected, the pure 
copies construction uses more space but less time, while the reverse is true in the impure 
copy construction. 

Using impure copies G. Peterson [Pet83] implements an atomic lWnRbB register with 
atomic 1 W nR bits. Peterson 's idea is roughly as follows. The desired shared variable is 
implemented on three tracks. The writer writes the value three times, once on each track, 
and the reader reads the values from each of the tracks but in different order than the 
writer. He then implements a switch that permits the reader to decide which value was 
read "without collision". The switch must consist of atomic bits since it must able to detect 
collisions in the three tracks. Next L. Lamport [Lam86] implements an atomic bit using 
a finite number of safe bits. Combining these two implementations we obtain a modular 
construction of an atomic, single writer, single reader register. 

Theorem 4.1 ([Pet83} + {Lam86}} Using impure copies, an atomic, single writer, single 
reader, b-bit register can be implemented, with 3 · b + 0(1) aafe, single writer, single reader 
bits, in time 3 · b + 0(1). D 

In the sequel we present a modified version of Peterson's construction due to [Vid88c]; 
the new protocol has a simpler control structure and both the read and write operations 
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do less work. The atomic 1 WlRbB register we present consists of three atomic bits: 
c, writing, reading, three safe b-bit tracks: tro, tri and the copy track ctr. The writer 
also uses two local boolean variables cl, wl. (E9 denotes modulo 2 addition.) To read a b-bit 
value the processor executes the following protocol. 

read bit bi from writing; 
write bit bi EEl 1 to reading; 
read bit b from c; 
read track trb; 
read bit "2 from writing; 
if "2 = bi then 

return value from trb 
else 

return value from ctr 
fi 

To write a b-bit value v the processor executes the following protocol. 

cl := cl EEl 1; 
write value on trct; 
write cl in c; 
read bit bi from reading; 
if bi =I= wl then 

fi 

write value v on ctr; 
write bi on writing; 
wl :=bi 

Combining this algorithm with the algorithm in [Lam86) we obtain the following improve
ment of theorem 4.1. 

Theorem 4.2 ({Vid88c} + {Lam86}) Using impure copies, an atomic, single writer, single 
reader, b-bit register can be implemented, with 3 · b + 0(1) safe, single writer, single reader 
bits, in time 2 · b + 0(1). 0 

Another idea is to implement a switch that will enable the processors to alternate on 
the tracks but in such a way that they never have to execute a write or read action on the 
same track at the same time. Since in this case the tracks are collision free they can be 
assumed to consist of safe bits. Also, unlike Peterson's original construction, the switch of 
the four track register need only be regular while the track subregisters only safe, which 
gives a direct implementation of the desired register from regular subregisters. Thus, using 
pure copies [KKV88] implements an atomic lWlRbB register with 4·b+39 safe lWlR bits, 
in time b + 26; this was later improved by [Tro89] to 4 · b + 8 safe 1 WlR bits, in time b + 4. 
Hence we obtain a direct construction of the required register in the following theorem. 

Theorem 4.3 ({KKV88}, [Tro89}) Using only pure copies, an atomic, single writer, single 
reader, b-bit register can be implemented, with 4 · b + 0(1) aafe, single writer, single reader 
bits, in time b + 0(1). 0 
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Next we present a slightly weaker version of Tromp's four track register (for details on 
his 4 · b + 8 construction consult [Tro89]). The register consists of the following subregisters. 
Four safe b-bit tracks divided into two groups: T11 = {tr11,o, tr11,1}, a= 0, 1. An atomic bit 
W(R) to be written by the writer (reader) and read by the reader (writer) and two atomic 
"display" bits Do, D1 to be written by the writer and read by the reader. Also the writer 
has the local variables w, do, d 1 and the reader the local variable r. To write a b-bit value 
the writer executes the following protocol. 

if R = w then 
w := w EB 1; 
write value on track trw,d,,,; 
W:=w; 

else 

fi 

dw := dwEBl; 
write value on track trw,d,,,; 
Dw := dw 

To read a b-bit value the reader executes the following protocol. 

if W =/:- r then 
r := r EB 1; 
R:=r 

fi; 
read bit a Crom Dri 
read b-bit value from track trr,a 

Next we summarize the space and time complexity of the above constructions. First, 
some explanations are needed for the proper interpretation of the complexity tables given in 
the sequel. By time complexity of a high level object we understand the worst-case number 
of accesses of low-level subregisters required by the given processors, which for the CRCW 
problem are readers and writers, in order to complete a full run of their protocol. By space 
complexity of a high level object we understand the number of low level subregisters used 
for the implementation of the object multiplied by the bit-size of the tags (or time stamps) 
used by each individual subregister. With this in mind we have the following table. 

PAPER SPACE TIME 
[Pet83] + [Lam86] 3. b + 0(1) 3. b + 0(1) 
[Vid88c] + [Lam86] 3·b+O(l) 2. b + 0(1) 
[KKV88] 4. b +39 b+26 
[Tro89] 4·b+8 b+4 

Figure 2: From 1 WlR Safe bits to 1 WlRbB Atomic registers 

Concerning the optimality of the atomic bit implementations we can prove the following 
theorem. 

Theorem 4.4 ([PB87c}, {Tro89]} 3 safe bits, 2 written (read) by the writer (reader} and 
one by the reader (writer) are necessary and sufficient to implement an atomic bit. D 
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4.2 Atomic Multireader Registers 

We now come to a more complicated problem. It concerns the construction of multireader 
shared variables which are written by a single writer, from single writer, single reader 
registers. This problem was solved simultaneously by four different groups of researchers 
L. Kirousis, E. Kranakis and P. Vitanyi [KKV88), J. Anderson, A. Singh and M. Gouda 
[ASG87), G. Peterson and J. Burns [PB87a), R. Newman-Wolfe [New87) by using entirely 
different algorithms. New algorithms were later reported by A. Israeli, M. Li and P. Vitanyi 
[ILV87) as well as M. Li, J. Tromp and P. Vitanyi [LTV89). Two among these five papers, 
[KKV88) and [New87], implement algorithms that use pure copies. As such they achieve 
better reader-time. Here is a table of the known implementations together with their com
plexity. 

PAPER SPACE WRITER-TIME READER-TIME 
[KKV88) O(n2 

• (n + b)) O(n · b) O(n + b) 
[ASG87] O(n· (n+b)) O(n · (n + b)) O(n · b) 
[PB87a] O(n2 

• b) O(n · b) O(n · b) 
[New87) O(n · (n + b)) O(n · b) O(n+ b) 
[ILV87) O(n2 

• b) O(n · b) O(n · b) 
[LTV89) O(n"' · b) O(n · b) O(n · b) 

Figure 3: From 1 WlRlB atomic to 1 W nRbB atomic 

In addition [Vid88d), [Vid88b) reports two simple constructions of atomic, multireader, 
multivalued registers from multireader, atomic bits. 

4.3 Atomic Multiwriter Registers 

Finally we come to the most difficult problem in this area. Implementing a multiwriter 
shared variable. 

The first such multiwriter implementation due to B. Bloom was rather unique for its 
simplicity, but it concerns only the construction of a two writer atomic register. Suppose 
that Ko, Ki are two b+l-bit, atomic, single writer registers such that Ko (Ki) can be written 
by the writer (reader) and written (read) by the reader (writer). Let po, pi, ... ,Pn-1 be n 
processors (all readers) of which the first two po, Pl can both read and write. We represent 
the contents of the registers as pairs (ti, 'Vi), where ti E {O, 1} is a tag and 'Vi is the actual 
b-bit value. Also let ED denote modulo 2 addition. The algorithm for implementing the two 
writer register is as follows. Writer Pi, i = 0, 1, writes a value by first reading the tag of 
KiEBl and then writing its value on Ki together with an appropriate tag. 

Pi WRITES THE VALUEv: 
read the tag tiEBl from Kieal; 
write ( i ED tiEBl, v) to register Ki; 

The reader Pi (i = 0, ... , n - 1) reads twice. At first, it reads the tags in both Ko, K1, say 
to, t1 and then returns the value it reads in register KtoEBti, after a second reading. 

Pi READS A VALUE: 
read the tag to from Ko; 
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read the tag ti from K1; 
return the value from Kt0et1 ; 

(Incidentally, notice that all the readers execute exactly the same protocol.) It can be 
shown that the resulting two writer register is atomic (Blo87]. Hence we have the following 
theorem. 

Theorem 4.5 ({Blo87)} An atomic 2WnRbB regiater can be implemented with two atomic 
lWnR(b + l)B registers. D 

The first attempt at solving the general multiwriter problem with bounded tags was 
by P. Vitanyi and B. Awerbuch [VA86). This construction uses single writer, single reader 
registers to implement the desired register, but the "hue" registers must have unbounded 
tags. Here is a description of the algorithm. The n x n matrix register K consists of n2 

atomic, single writer, single reader, subregisters Ki,;, i,j == 1,. . .,n. Each processor Pi is 
connected to the write terminal of K;.; and the read terminal of K;,i, j = 1, ... , n. Each 
subregister can hold a pair (tag, value); tags are pairs (k,i), where k is a.n arbitrary non
negative integer and i = 1, ... , n, while value is the actual value which will be either read 
or written. The writer reads its column, updates its tag a.nd then writes its updated tag 
and value to all subregisters in its row. 

Pi WRITES THE VALUEv: 
for j := 1, ... , n read K;,ii 
compute the lexicographically largest tag ( k_, m) among the tags just read 
and set own tag to (kmaz + 1,i); 
for j := 1, ... ,n write on Ki.; the pair ((kmaz + 1,i),v); 

The reader reads its column, stores the value corresponding to the maximal tag a.nd updates 
its tag. It then writes its updated tag as well as the value it stored to all subregisters in its 
row. 

Pi READS A VALUE: 
for j := 1, ... , n read K;,ii 
compute the lexicographically largest tag ( kmaz, m) among the tags just read, 
store the value Vm included in this pair and set own tag to (kmaz, m); 
for j := 1, ... , n write on Ki.; the pair ((kmaz 1 m), Vm)i 

return 'Vmi 

Inspecting the above protocol it is not difficult to see that the "diagonal" registers Ki,i 
are not shared, but are only used by processor Pi, for i = 1, ... , n, respectively; hence they 
are not necessary. For this multiwriter, multireader register we can prove the following 
theorem. 

Theorem 4.6 ({VA86}, [AKKV88}) The matrix register is an atomic, n-writer, n-reader 
register which can be implemented with n2 - n atomic, single writer, single reader registers 
with unbounded tags. D 

Despite its "elegance", the space complexity of the matrix register is infinite and as such 
this register does not provide a solution to the CRCW problem. A subsequent modification, 
due to G. Peterson and J. Burns [PB87b], used some of the ideas of the bounded tag 
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version of the matrix algorithm [VA86] (which was later found to be erroneous) together 
with the new idea of repeated reading in order to restrict the number of time stamps to 
a finite number, but their algorithm was later found to be wrong by R. Schaffer [Sch88]. 
This last paper corrects the [PB87b]-register and provides a correctness proof of the new 
implementation using input output automata. Another construction was also given by M. 
Li and P. Vitanyi [LV89]; its correctness proof is given in [LTV89]. Here is a table of the 
known multiwriter, multireader, atomic registers together with their complexity. 

PAPER SPACE TIME 
[VA86] 00 O(n) 
[PB87b] + [Sch88] O(n3 · b) O{n3 • b) 
[IL87] O(n4 · b) O(n2 • b) 
[LV89], [LTV89) O(n" · b) O(n · b) 

Figure 4: From lWlRlB atomic to nWnRbB atomic 

4.4 Interfaces for Multiprocessor Registers 

An interesting phenomenon appearing in the construction of atomic registers is the sim
plicity of the protocols concerned if we could assume an infinite tag system (i.e. infinite 
space). This phenomenon manifests itself in the case of the matrix register which is rela
tively easy to prove atomic if the base registers were aasumed to possess unbounded tags. 
However the same problem is surprisingly hard in the bounded tag case. One is therefore 
led to the following interesting question. Can we construct interfaces for converting a given 
unbounded tag algorithm (like the matrix register) into a bounded tag algorithm? A. Is
raeli ~nd M. Li ~L87] were the first to consider this problem; in this paper they construct 
bounded sequential time stamp systems in the case where no two operations are concurrent. 
A significant improvement is reported by D. Dolev and N. Shavit in [DS89] which provides 
bounded concurrent time-stamp systems. 

5 Proving Correctness 

Proving the correctness of CROW protocols can always create heated debates among re
searchers in the field. Time and again the usual intuitive approach for proving correctness 
consisted in proving first the correctness for unbounded tag registers, and then showing 
that in fact a finite number of tags is sufficient. The first pa.rt has usually been easy to do; 
after all you design the algorithm with this property in mind. The second part is usually 
the main point of contention. You need to make some adjustments and modifications to 
the initial infinite tag protocol in order to convert it into a finite tag protocol. But alas 
this often complicates the correctness proof of the original protocol to such an extend that 
you run the risk of losing track of what you a.re trying to do. Such examples abound in 
this research realm and must have certainly been experienced by any researcher. We hope 
that the reader has been convinced of that by the two examples given at the beginning of 
section 3. Therefore correctness proofs are not something to be viewed lightly in this area, 
but on the contrary they are ·of vital importance. 
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We have not given the proofs of any of the theorems in the paper. However it should be 
stressed that most of them (especially the ones on multireader and multiwriter protocols) 
require rather laborious proof techniques (the single exception being the implementation 
of a flickering bit from a flip-flop). In the sequel we consider several proof techniques that 
have been used to prove the correctness of the CROW protocols and refer the interested 
reader to the original papers. 

5.1 Lamport's Semantics 

L. Lamport [Lam86) introduces register axioms and system executions for single writer 
registers in order to give rigorous proofs of the atomicity of his implementation of an atomic 
single writer, single reader register from safe bits. The main notion providing the ability to 
build hierarchicaly the compound registers is that of system execution. These are triples 
S = (A,---+, - --+ ). Intuitively, ---+ stands for "precedes" while - --+ stands for "can 
causally affect". A is a countable set representing the set of read and write actions of an 
execution, and ---+, - --+ are binary relations satisfying axioms A1, A2, Aa, ~. A5 below, 
for all a, b, c, d E A: 

A1: ---+ is an irreflexive, partial ordering, 
A2: if a ---+ b then a- --+ b and not (b- --+ a), 
Aa: if a ---+ b- --+ c or a- --+ b ---+ c then a- -+ c, 
A4: if a---+ b- --+ c---+ d then a--+ d, 
A,4: if a---+ b---+ c---+ d then a---+ d, 
A5: the set {b EA : not (a---+ b)} is finite, 
A5: a ---+ b or b- --+ a. 

H in addition the system execution satisfies axiom Aa then it is called a global system 
execution. Global system executions are intended to capture the natural order of actions 
when there is a global time reference system (of which the processors need not be aware). 
By global time models we understand triples (A, s, !), where s, f : A 1--+ R are real-valued 
functions such that for all a, s(a) $ J(a) and for all real numbers t, the set {a EA: s(a) < t} 
is finite. Every global time model gives rise to a global system execution. Simply define 

a---+ b *> f(a) < s(b), and 
a- --+ b *> s(a) $ f(b). 

But also conversely, we can prove the following theorem. 

Theorem 5.1 ([Lam85]} Every global syatem execution is isomorphic to a global time 
model. More generally, every system execution can be extended to a global system execution. 
D 

Another class of system executions is obtained from the set A of all nonempty subsets 
of a partially ordered set (P, <). The system execution defined by 

a ---+ b *> Vx E aVy E b(x < y), and 
a---+ b *> 3x E a3y E b(x < y), 

satisfies axioms A1, A2, Aa, A4, A,4. (According to [Ben88) this last axiom was first proposed 
by Abraham in [AB87).) Extending theorem 5.1, S. Ben-David [Ben88) (and independently 
Anger) proves a completeness result for La.mport's axiomatic system. 
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Theorem 5.2 ({Ben88}) For every global system ezecution S = (A, --+1 - -) on a set A 
of actions satisfying aziom A4 there is a class (} = {g = (A, --+9 , - - 9 )} of global time 
models with the same set A of actions such that for all a, b EA, 

a--+ b if and only ifVg E Q(a --+9 b), and 

a- - b if and only ifVg E Q(a- - 9 b). 0 

It follows that global time models capture the full provability power of global system 
executions satisfying axiom Al. [Lam86) also gives three communication axioms Bo, Bi, B2 
concerning operation executions on the same single writer register. Axiom Bo states that 
the write actions on the same register must be linearly ordered by --+, say 

w 0 
--+ w1 

--+ · · · --+ w" --+ · • · 

Axiom Bi states that for any read r and any write w to the same register either w- - r 

or r- - w, while B2 states that a read obtains one of the values that may be written 
in the register. A read r is said to see wliJ) where i = max{k : not(r- - w")} and 
j = max{k: w"- - r}. Next Lamport defines three types of single writer shared variables. 

• safe: a read that sees wli,i) obtains the value w', 

• regular: a read that sees wli,j) obtains the value wlc, for some i $ k $ j, 

• atomic: if a read sees wliJ) then i = j. 

Notice that the above definition of atomicity refers to registers that are actually atomic, 
i.e., no overlapping of a read with more than one write ie allowed (overlapping of reads 
that read the same write is allowed, but this obviouely does not affect the serializability 
of the operation executions). In other words, operation executions are essentially a priori 
linearly ordered. In contrast to this approach, in Section 2.1 we defined atomicity in a 
virtual sense, i.e. we allowed overlappings of a read with many writes, but we put as a 
requirement the existence of a linear order which represents the succession that operation 
executions seemingly follow. The two notions are connected in the following theorem: 

Theorem 5.3 ({Lam86}) Let S:::: (A, --+ 1 - -) be a system execution on a regular register 
w such that there ezists an integer-valued function </J on the set of reads satisfying 

1. if r sees wli,j) then i $ ,P(r) ~ j, 

2. r returns the value wliP<r)), 

3. if r --+ r1 then ,P( r) ~ ,P( r'), 

for all reads r, r 1
• Then S implements a system ezecution in which w is an atomic register. 

0 

This proof technique has been used in (Lam86] to prove the correctness of his algorithms 
in subsections 3.2, 4.1. 
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5.2 Semantics with a Single Causality Relation 

This semantics was developed by B. Awerbuch, L. Kirousis, E. Kranakis and P. Vitanyi in 
[AKKV88] in order to prove the correctness of atomic, multiwriter registers. In a general 
readers/writers protocol there are two types of actions which are being executed: reads and 
writes. Let A be the set of such actions associated with an execution of the protocoL Let 
R and W be the sets of read and write actions, respectively, such that A = R U W and 
Rn W = 0. It is possible to provide a proof technique baaed on a single binary relation 
(partial ordering)--+ instead of the two--+, - --+of Lamport'• semantics. Intuitively, a--+ b 
stands again for "a precedes b." In this semantics, a is said to be concurrent with b if neither 
a --+ b nor b --+ a. Also, a write w is said to directly precede a read r if w --+ r and there is 
no write w1 such that w--+ w' --+ r. In addition to the precedence relation --+,it is assumed 
that there is a reading function 'II" : R 1---+ W associating with each read action r E R the 
write action 'll"(r) E W which is read by r. The triple p = (A,-+,'11") is also called a run of 
the protocol. We distinguish the following types of runs p = (A,--+, '11"). 

• normal: '11"( r) either precedes r or is concurrent with r. 

• regular: '11"( r) either directly precedes r or is concurrent with r. 

• atomic: There is a total order => extending --+ (external consistency), there is no 
write w such that '11"( r) => w => r (internal consistency) and '11"( r) => r. 

(The definition of normal register is due to L. Meertens [Mee87].) 
The clan [w ]p of a write w is the set { w} U { r E R : '11'( r) = w}. Define the relation 

w -+P w' to mean that for some a E [w]p, a' E [w']p, a --+ a1
• In proving the atomicity of 

registers the following criterion has proved to be useful. 

Theorem 5.4 ([AKKV88}} For any run p of a register, 

1. p is atomic ~ p is normal and -+P is acyclic. 

2. For single writer registers, p is atomic~ p is regular and 'II" is weakly monotonic. D 

The above proof technique has been further elaborated in [AKKV88] to include commu
nication axioms for multiwriter registers and was used successfully to prove the correctness of 
the matrix register [VA86], the two writer register [Blo87], the four track registers [KKV88] 
and [Tro89] and the multiwriter register in [LV89), [LTV89]. 

Clearly, the theorem is an extension of theorem 5.3 to multiwriter registers. The first 
part of the theorem had been discovered independently by K. Vidyasankar [Vid85] in the 
context of database serializability [Pap79], [Pap86]. An equivalent axiomatic formulation of 
the theorem was given by G. Peterson and J. Burns [PB87a]. They provide a list of seven 
axioms BC1 - BC1 which must be satisfied by a precedence relation in order to be atomic. 
They also point out that for the case of single writer registers these seven axioms reduce 
to the last two BC5, BC7. However, their axiomatization does not in any way enhance or 
shorten the atomicity proofs. 

In some cases it may be possible to associate an open time interval (s(a), /(a)) to each 
action a E A, where s, f : A 1---+ R are real-valued functions; s(a) is the starting and 
/(a) the finishing time of the action. An important aspect of atomic runs concerns the 
instantaneousness of their execution, i.e. although their actions have an actual duration 
(possibly overlapping one another) in a global time reference system each individual action 
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may be considered to take place at a particular instant. If the causality relation _. is 
induced by a representation of the actions as open time intervals then it is possible to 
"shrink" the duration of the actions to a time instant. A shrinking function is a one to one 
mapping associating to each interval (s(a), f(a)) a. real number o-(a) in this interval. The 
relation a <u b defined by o-(a) < o-(b) induces an ordering on the set of actions. A run p is 
called shrinking atomic if there is a shrinking function such that (A, <u, 7r) is atomic. More 
formally we can prove the following theorem. 

Theorem 5.5 {[AKKV88}) For any ron p of a register, i/-t is the order induced by the 
representation of the actions A by open time intervals then p = (A,_., 7r) ia atomic if and 
only if p is shrinking atomic. D 

An equivalent definition of atomicity using shrinking of the actions was also given by J. 
Misra [Mis86]. 

5.3 Input/Output Automata 

The Input/Output automaton provides a very powerful methodology for modelling and 
proving the correctness of concurrent and distributed discrete event systems. It has been 
defined by N. Lynch and M. Tuttle (see [LT89) for an outline of the model). This model has 
been used in [LG89] to prove the correctness of the Bloom register [Blo87], the matrix reg
ister [VA86), [AKKV88], as well as by [Sch88] to correct the modified multiwriter algorithm 
in [PB87b). 

It is also interesting to note that J. Tromp [Tro89] in the full version of his paper 
develops a finite state automaton, the atomicity automaton, for proving the correctnes of 
his four track protocol. Transitions in the atomicity automll.ton represent beginnings and 
ends of read and write actions, while nodes represent the atomicity state of the shared 
variable. This makes possible the application of automatic verification methods for proving 
the correctness of the protocol (this is of practical interest as well, and ought to satisfy even 
the most skeptical). 

6 Conclusion 

Due to both hardware and software design-constrains conventional programming methodol
ogy has limited itself mainly to environments with serial mode of operation. However, this 
is not only too restrictive, but in addition, runs contrary to the parallelism encountered by 
many physical machines of every-day life [Gel89]. Although we are still far from creating 
a thorough framework for writing, implementing and proving the correctness of parallel 
programs, there is no doubt that there are several programming tasks which are naturally 
amenable to parallel methodology. Surprisingly, we have shown that the CRCW problem 
is such a parallelizable task. 

The solutions of the CRCW problem pre8ented here also raise a very relevant question. 
Can we implement higher level register objects (like atomic test-and-set, mutual exclusion, 
etc.) using atomic registers? It was shown by M. Herlihy [Her88] and M. Loui and H. 
Abu-Amara [LA87] that this is indeed impossible. For more information consult [AG87] 
and [Kra89). The impossibility results just cited have also given rise to another line of 
research. It concerns randomized, wait-free implementatons for the above primitives. For 
more details consult [KV89], [AH88], [PZ86]. 
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In the present paper we have outlined some of the most important algorithms and 
proof techniques in the concurrent readers and writers area. The simplicity of the problem 
as well as its importance for implementations in parallel environments provoked a flurry of 
activity by numerous researchers which lifted the problem from its long dormancy. Although 
concurrent reading and concurrent writing is now better understood and its feasibility is 
beyond doubt, correctness proofs of the existing protocols {especially the multiwriter ones) 
are still complicated and hard to comprehend. It is therefore importan~ that more efforts 
will be directed at 

• providing new, simpler algorithms for implementing the concurrent objects concerned, 

• refining and amplifying existing proof methods using order semantics, 

that will clarify and illuminate our understanding of paralleliiable programming methodol
ogy. 
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