
Centrum
voor

Wiskunde
en

lnformatica ·
Centre for Mathematics and Con1:>uter Science

L.M. Kirousis, E. Kranakis

A survey of concurrent readers and writers

Computer Science/Department of Algorithmics & Architecture Report CS-R8936 September

1989

a brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301653196?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

L.M. Kirousis, E. Kranakis

A survey of concurrent readers and writers

Computer Science/Department of Algorithmics & Architecture Report CS-R8936 September

-:~';= :: __ :~_- :: -·- - --·· -

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11,
1946, as a nonprofit institution aiming at the promotion of mathematics, com
puter science, and their applications. It is sponsored by the Dutch Govern
ment through the Netherlands Organization for the Advancement of Research
(N.W.0.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

A SURVEY OF CONCURRENT READERS
AND WRITERS

Lefteri1 M. Kirousis •
Computer Technology Institute, University of Patras

P.O. Box 1122, 26110 Patras, Greece
(k.irousis@grpatvxl. bit net)

Evangelos Kranak.is
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
(eva@cwi.nl)

Abstract

We are interested in implementations of concurrent high level objects from weaker
lower level objects which are free from the usual control primitives, like mutual exclu
sion, test and set, etc. We give a survey of the most important recent results concerning
such wait-free implementations of atomic multiwriter, multireader shared registers. We
present several algorithms for constructing atomic bits from safe bits, atomic multival
ued shared variables from atomic bits, as well as atomic multireader and multiwriter
shared variables from multivalued single writer, single reader shared variables. We also
discuss several methods for proving the correctness of concurrent reader concurrent
writer protocols.

Report CS-R8936
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Qui scribit bis legit
Whoever writes reads twice

-LATIN PROVERB

You read, but understood not;
for if you had understood,

you would have not condemned
-C. P. CAVAFY

•Research partially supported by the ESPRIT II Basic Reaearch Actions Program of the EC under
contract no. 3075 {Project ALCOM)

1

1 Introduction

The parallel execution of programs in multiprocessor environments and computer networks
requires concurrency control of the various processes involved. If a read process and a write
process share the same buffer area then precautions need to be taken so that the reader is
protected from having its data garbled by the writer before completion of its action. By ac
tively serializing concurrent actions using synchronization primitives like. mutual exclusion,
test and set, lockout, semaphores, etc., the data is effectively protected from such unex
pected disturbances. Several schemes which guarantee exclusive access to a shared resource
have been proposed both at the software and hardware level. However, an uncritical use
of synchronization primitives in multiprocessor environments and parallel machines whose
natural environment is meant to take advantage of the best aspects of parallelism would
seem rather inappropriate. No doubt, there are several tasks, like access to a peripheral
device, where exclusiveness is necessary, and therefore it is impossible to implement them
without resort to the above synchronization primitives. However for other tasks (like airline
reservation systems) exclusiviness is not so important. For example in the case of a shared
file all that may matter is to be able to read the most recent correct version of the file.

Therefore the question arises as to which programming tasks can be implemented with
out resort to waiting mechanisms and how. Part of the answer seems to be that we need to
discard Von Neumann's concept of centralized architecture and consider instead multipro
cessor architectures with true parallelizable characteristics. Such multiprocessor environ
ments are within the reach of today's technology [Hil85]. However the main problem still
remains. How can we coordinate the activities of the numerous processors at the software
level in such a way that on the one hand we take full advantage of the merits of paral
lelism (e.g. increased speed of program executions) and on the other hand we guarantee
the accurate implementation of the objects (like concurrent reading and concurrent writing)
concerned? The answer to this question is not obvious. It is the purpose of the present
paper ·to outline how to develop algorithms that implement "objects" with optimal serializ
ability characteristics via other lower level objects in a wait free environment. Nevertheless,
one thing seems clear. As has been pointed out by Lamport [Lam86), to implement such
primitives we need interprocess communication through a shared memory unit, also called
shared register or shared variable.

It should also be noted that wait-free protocols are of particular interest not only because
they are free from the usual control primitives (like, mutual exclusion, test-and-set, etc.)
but also because they make possible a quantitative appraisal of the complexity of the various
algorithms considered, e.g. determining the protocol with best running time.

2 The Concurrent Readers and Writers Problem

Throughout the present paper, the terms (shared) variable and (shared) register have iden
tical meanings. In very simple terms the CRCW (Concurrent Readers, Concurrent Writers)
problem can be described as follows. There is a shared variable that is to be distributed and
replicated among several processors. The distribution problem concerns the implementa
tion of multivalued shared variables from boolean shared variables. The replication problem
concerns reproducing the shared variable in order to be used by many processors. The re
quired implementation is achieved by providing a protocol or algorithm that the concerned
processors must follow. The ma.in assumptions regarding the protocol constructions is that
there should be

2

• no waiting (i.e. a processor should never have to wa.it for another processor to finish
its action before it executes its own),

• completely asynchronous, with no synchronization primitives like mutual exclusion,
semaphores, locking, test and set, etc,

• no global clock (i.e. the processors do not have acceBS to a global time reference
system).

The above assumptions define what the requirements for a proper solution should be. More
over the only solutions to the CRCW problem we will be interested in are protocols that
satisfy the above conditions.

We will not attempt to define here rigorously what a wait-free protocol is. Intuitively,
however, by wait-free implementation of e. concurrent-data object we understand a protocol
~r algorithm wh.ich can be executed by any processor in the system in a finite number
of steps which is independent of the execution speeds of the processors involved. Several
programs for implementing these protocols will be given later. Intuitively they should be
constructed inductively using "appropriate" initial assignment statements, and program
statements constructed from these by iterating the two operators if ... then . .. else . .. ,
for i := 1, ... , n do . .. od, where ... is a sequence of program statements at an earlier
stage of the inductive construction (AG87).

2.1 The Implementation Problem

The implementation problem can be described e.s follows. We are given some registers each
capable of storing words of a fixed length a.nd with certain restrictions on their mode of
operation, e.g. that only a certain number of processora are allowed to access each one of
them; also, we assume that these registers satisfy certain serializablity properties (i.e., a
succession of reads and writes on the registers must, in some degree, be serializable). By us
ing these registers (often called subregisters) as building blocks, we are asked to construct a
more powerful compound register capable of storing words of (possibly) even longer length,
with (possibly) more relaxed accessibility restrictions a.nd the same or even stronger seri
lazability properties. The subregisters will be structured according to an architecture (e.g.,
a matrix or a sequence of buffers) and moreover each operation (i.e., read or write) on the
compound register will consist of a succession of operations on the subregisters executed
according to a protocol. The architecture together with the protocol will guarantee the
stronger properties we require from the compound register. The protocol will often utilize
variables local to each processor. These local variables should, of course, be distinguished
from the shared variables of the protocol which are none other but the subregisters used by
the architecture.

In general, according to the strength of the serializability conditions they satisfy, we
distinguish the following four types of registers: safe, normal, regular, and atomic. A
register is called safe (respectively, normal, regular, atomic) if any system execution on the
register (i.e., any succession of operation executions) is safe (respectively, normal, regular,
atomic). For single writer registers, a system execution is safe if every read that does not
overlap a write returns the most recent value, otherwise it may return an a.rbitrary value
(with the restriction th.at it is within the set of values the register is allowed to assume). A
system execution is normal if every read returns the value of a write that either precedes
this read or is concurrent with it. A system execution is regular if it is normal and moreover

3

no read returns a value that at the time this read begins has been already overwritten by
another value.

Finally, a system execution is atomic if reads and writes behave as if they were linearly
ordered. (This intuitive definition of atomicity is alao valid for multiwriter registers, see
section 5.2.) More formally, a system execution is atomic if

1. There exists a total (i.e., linear) order extending the natural order in which the op
eration executions on the compound register have taken place (external consistency).
This order, in some sense, represents the succession these operations seemingly follow.

2. There is no second write placed by this linear order between a read and the write it
reads (internal consistency).

If we assume that there is a global time-reference system (i.e. that an observer could cor
rectly time the beginning and end of all actions by all the subregisters) and if all subactions
of an operation execution on the compound register precede in time all the subactions of
a second operation execution on the compound regiater, then, by property (1) above, this
order must place the second operation execution after the first one. In general, the natu
ral order of the operation executions referred to at property (1) above, is imposed by the
problem (e.g., it may be an acyclic relation that tells us if a.n operation execution can have
an influence on another).

For simplicity we will use the following notations and abbreviations. By mW nRbB
register we abbreviate an m-writer, n-reader, b-bit register. This means that the shared
variable can hold values which are b bits long, can be written by m processors (the writers)
and read by n processors (the readers). If we want to stress the fact that the register assumes
the values {O, 1, ... , v-1} (i.e. it is v-valued) then we write mWnRvV. Clearly, mWnRbB
is equivalent to mWnR2bV. A safe (normal, regular, atomic) lWlRlB register is also
called safe (normal, regular, atomic) bit. Safe bits are alao known as "flip-fiops" (see 2.3)
to indicate their resemblance to the bistable component& used in computer manufacturing.
Regular bits are also called ''flickering" bits to indicate the filckering behavior of the shared
variable over the duration of a write.

To facilitate our understanding the replication and distribution problems are conve
niently split into the following easier constructions (however, this does not rule out the
possibility of bypassing one or more of the steps below):

• flickering bits from flip-flops,

• atomic bits from flickering bits,

• atomic, single-processor, multi-bit registers from atomic bits,

• atomic, single-writer, multi-reader, multi-bit registers from atomic, single-writer, single
reader, multi-bit registers, and

• atomic, multi-processor, multi-bit registers from atomic, single-writer, multi-reader,
multi-bit registers.

Thus the ultimate goal is the efficient construction of atomic, multiprocessor, multibit
variables via flip-fiops.

4

2.2 A Brief History

The difficulty of implementating correctly concurrent transactions had already been rec
ognized in the ALGOL68 report [vWMPK69), where it is explicitely stated that "in view
of the none-to-advanced state of the art" only facilities ''restricted to their essentials" are
introduced for "collateral" (a weak form of concurrent) ''programming". It was to overcome
such problems that synchronization primitives like semaphores, mutual exclusion, test and
set, etc., were introduced by [Dij68) and [Hoa78) (see [Ben82} for a very eloquent description
of these primitives). The problem of concurrency control with readers and writers was also
considered by [CHP71), which offers two solutions to a restricted version of the CRCW
problem. In their first solution they demand that "no reader should be kept waiting unless
a writer has already obtained permission to use the shared resource". In the second solu
tion they demand that not only "the writers must have exclusive access while readers may
share", but that in addition "once a writer is ready to write it perfoms its write as soon
as possible". Clearly, neither of these solutions provide satisfactory answers to the CRCW
problem posed here because they impose waiting on the processors.

The first to isolate and pose the problem of atomic, wait-free implementation of concur
rent objects in its present "single writer" form were L. Lamport [Lam86) and G. Peterson
[Pet83). Lamport discusses in (Lam86) extensively the hierarchical nature of system execu
tions, proposes protocols for distributing the value of a shared variable among two proces
sors, one writing and the other reading, and classifies registers in three types according to
increasing serializability characteristics: safe, regular and atomic. At the same time G. Pe
terson [Pet83) considers the problem of distributing a shared variable among many readers,
although at the time it was not known how to construct such shared variables from even
simpler (non-atomic) ones. The multiwriter multireader problem remained dormant for a
few years (and it almost looked ~ if it would turn out to be impossible to solve) till it was
explicitely posed by N. Lynch in her MIT seminar series. Its most recent revival is due to
P. Vitanyi and B. Awerbuch (VA86] who attempted to implement wait-free multiprocessor
protocols from the most basic shared variables possible, the ''idealized" flip-flops.

2.3 Idealized Flip-Flops

As mentioned above the basic problem in the CRCW area is how to implement atomic
multiuser multivalued variables from the more fundamental single writer, single reader,
single bit safe registers. But it must be stressed that such safe variables are only idealized
objects of our imagination. The closest approximation of safe bits in the world of electronics
is considered to be the flip-flop. These are one-bit memory elements that are capable of
exhibiting either of two stable states (i.e. bistable). When triggered by sufficient current
they can switch from voltage 0 to voltage 1 and vice versa. However when the input to the
flip-flop is marginal it may cause the bistable device to remain for an indefinite period oftime
in a metastable state which is different from any of the above two states. Mathematically,
this phenomenon is due to the fact that a continuous function assuming the values 0 and
1 will also have to assume any value between 0 and 1 (known in analysis as Bolzano's
theorem). For a formal description of this phenomenon we refer the reader to [Mar86).
However we will not be concerned here with such situations. The idealized safe bits we
have in mind are "perfect" bistable devices that do not exhibit the above metastability
phenomenon.

5

___ ,,, , _ -: - -.::,;_ : ,. .

3 Initial Algorithms

Here we study several relatively simple implementations of the CRCW problem. Although
we will never mention it explicitely we uaume that all the registers given below begin the
execution of their respective protocols with some consistent initialization. In order to avoid

unnecessary notational complications we describe all our protocols rather informally using

the basic statements write and read. It should be stressed however that these are merely

assignment statements of the form x := F(yi. . .. , Jin), where F is a funciion symbol in the
protocol language and x, Yi. ... , Jin are protocol variables ..

3.1 Two Examples

One of the most surprising aspects of the CRCW area is the eaae with which one can provide
either unsatisfactory or wrong algorithms. We illustrate this in the present section with two
examples. In both instances we wa.nt to implement a 1 WlRbB atomic va.riable using atomic
bits. We represent a given value 0 ~ v < 26 by its binary encoding, with b bits. The main
idea in executing read and write actions in the compound register is the following. To write
a value v the writer writes the binary encoding of v in a track (or buffer) consisting of b
spaces (subregisters), one for each bit. To read a value the reader enters a certain track
(specified by the algorithm), reads all the bits in the track and returns the sequence of b

bits it read.
In our first example, there is an infinite sequence of tracka tr1, tr2, ... each consisting of

b atomic bits that can be read by the reader and written by the writer. Next we consider
the following algorithm [Hal.87]; :t is an atomic shared variable that can be written by the

writer and read by the reader. To write a value v the writer executes the following protocol.

write value v on track trz+l;

x := x + 1;

To read a va.lue the reader executes the following protocol.

read x;
return value from trz;

In the above protocol, the reader al.ways reads the most recently written value and this

value is al.ways correct. There should be no difficulty in verifying that this register is
atomic. However there is slight problem with this register. It uses infinite space, namely an
infinite number of length b tracks. The protocol al.so aaaumes the existence of an oo-valued
atomic va.riable x in order to implement a bounded valued variable!

Therefore one is lead to limiting the number of tracks. In our second example we assume
that there are only three tracks, numbered tr1, tr2, tr3 [Len87]. Consider a function f such

that /(x,y) #- x,y, for all x,y = 1,2,3. Further let KR,Kw be two lWlR three valued
atomic registers. KR {respectively, Kw) is written by the reader (respectively the writer)
and read by the writer (respectively the reader). To write a value v the writer executes the
following protocol.

read KR;
write v on track trf(KR,Kw)i
write new track number J(KR, Kw) on Kw;

To read a value the reader executes the following protocol.

6

read Kw;
write track value read above in KRi
return the value on track numbered trKwi

This register satisfies the necessary bounded space requirements. It uses three tracks each
oflength b. Hence the total space used is 3·b+0(1) and the time is b+O(l). Unfortunately
it fails to be atomic. A moment's reflection will reveal that the reader and the writer may
very well collide on the same track, in which case the reader could report a "meaningless"
value. We will see in section 4.1 how to resolve this subtlety.

3.2 The Basic Implementations

We now begin by considering protocols that "gradually" solve instances of the CRCW
problem. The first simple construction concerns implementing regular bits with safe bits
and is due to L. Lamport (Lam86). Suppose that K represents a safe bit. We implement
a regular bit K' as follows. The reading operation is performed by merely reading K.
Concerning the writing operation, the main "trick" is that in order to write the value b the
writer "avoids writing the same value twice", i.e. let l be a variable which is local to the
writer.

if l :f:. b then
write b on K;
l := b;

fi

We can prove the following simple theorem.

Theorem 3.1 ([Lam86]} A regular bit can be implemented with a safe bit. 0

Next we proceed with multivalued registers. Here we are concerned with the distribution
problem. We implement a single writer b-bit register by using only single writer single bit
registers. As opposed to the previous examples where we used binary encoding, we will
now use unary encoding, i.e. the value 11 is represented by 11 - 1 zeroes followed by a 1 at
the 11th position. Suppose that Ki, ... , Kn are single bit, single writer registers and let K
be the n-valued register in which the write and read operations are performed as follows.
To write a value v the processor writes the bit 1 on register K,, and sets all the previous
registers Kl, ... Kv-1 to 0 beginning with K,,_1 and moving backwards all the way down
to K1. More formally, in order to write the value 11 the processor executes the following
protocol.

write 1 on K,,;
for u := v - 1 step -1 until 1 do write 0 on Ku od;

To read a value the proccessor returns the first 11 such that K,, := 1 but for all u < 11

K,,, := 0. More formally, in order to read a value the processor executes the following
protocol.

v := 1;
while K,, has value 0 do 11 := 11 + 1 od;
return 11

7

This protocol constitutes construction 4 in Lamport's paper [Lam86] which also proves

the following theorem.

Theorem 3.2 ([Lam86]} A regular, single writer, m-reader, n-valued register can be im

plemented with n regular, single writer, m-reader, single bit registers. 0

It is not hard to see that K can fail to be atomic even if all the Kv 's are atomic. For

example, consider the initial value 3 = (0, 0, 1) in the above implementation of a 3-valued
register with three atomic subregisters. In the following sequence of actions the second read

read2 returns the old value 1 while the first read read1 returns the new value 1.

read1: reads x1 = 0 and continues
write1 (writes value 1): writes x1 = 1 and ends
write2 (writes value 2): writes x2 = 1 and continues
read1: reads x2 = 1 and returns 2
read2: reads x1 = 1 and returns 1
write2: writes x1 = 0 and ends

However in a rather clever twist it was observed by K. Vidyasankar (Vid88a] that a simple
modification of the read operation can lead to an atomic regieter. All that the new modified
reader algorithm needs to do is after finding the first 1, i.e. the first v with Kv = 1, not
to report v as the value read, but instead to backstep, read the values Kv-1 through K1
over again and report instead the smallest u ~ 11 such that Ku = 1. The writer protocol
remains unchanged. To read a value in the modified register K' the proccessor executes the

following protocol.

'V := 1;
while Kv has value 0 do v := 11 + 1 od;
'U := 'Vj

for i := v - 1 step -1 until 1 do if Ki has value 1 then u := i od;
return u;

For this new modified register we can prove that K' is atomic if each Kv is. In fact we
have the following theorem.

Theorem 3.3 ([Vid88aj} An atomic, single writer, m-reader, n-valued register can be im
plemented with n atomic, single writer, m-reader, single bit registers. 0

There are several problems with this last algorithm. For once it does not replicate
the shared variable among many users. It would also be wrong to think that theorem 3.3
has solved the distribution problem of implementing an atomic multivalued variable from

atomic bits. A moment's reflection will show the disadvantages of using the unary encoding
of numbers. The above algorithm implements a single writer, b-bit, atomic variable by
using an exponential number (i.e. 2b) of single writer, atomic bits. We will show in section
4.1 that this can be done more efficiently by using only O(b) atomic bits, in the 1 WlRbB

case, and in section 4.2 in O(n2 • b) atomic bits, in the lWnRbB case. Finally, the most

general nWnRbB case is studied in section 4.3. It is exactly this interplay between time and
space complexity of an algorithm and the difficulty of proving its correctness that creates

numerous interesting and unexpected complications in this area.
Here is a summary of the main single writer implementations given in the present section.

The first column is the author of the paper, and the second column gives the number and

type of subregisters required to implement the register in the third column.

8

PAPER SUBREGISTER REGISTER
[Lam86] 1 Safe 1 W nRlB Regular 1 W nRlB
[Lam86] 2° Regular 1 W nRlB Regular 1 W nRbB
[Vid88a] 211 Atomic lWnRlB Atomic 1 W nRbB

Figure 1: Implementing stronger registers from weaker ones

4 The Main Algorithms

We can now proceed with some of the main solutions to the CROW problem. Here we show
how to implement atomic multiwriter, multireacler, multivalued shared variables using as
building blocks the idealized flip-flops (also called safe bits). Our description of atomic
multireader and multiwriter registers is rather sketchy. A more thorough outline of the
algorithms concerned will appear in a more complete version of this paper.

4.1 Atomic Bits

There are two important points that must be considered in implementing 1 WlRbB registers.
The first is that in order to minimize the space used we must employ binary encoding of
the values concerned. This means that we will write the values on a finite number of tracks
(or buffers) each consisting of b single bit subregisters. Clearly on such a b-bit buffer we
will be able to write and read values in the range from 0 to 26 - 1. The second is that we
will implement a switch (i.e. protocol together with some extra bits) that will eventually
enable the processors to alternate among the tracks in order to read and write, respectively,
values in such a way that the desired correctness properties of the protocol a.re satisfied. In
doing this we are lead to considering two types of protocol implementations. In the first
one pure copies are used, i.e. the copies of the simulated object are never overwritten while
they are being used, while in the second one they may not necessarily be pure. There is
an interesting interplay between these two types of constructions. As expected, the pure
copies construction uses more space but less time, while the reverse is true in the impure
copy construction.

Using impure copies G. Peterson [Pet83] implements an atomic lWnRbB register with
atomic 1 W nR bits. Peterson 's idea is roughly as follows. The desired shared variable is
implemented on three tracks. The writer writes the value three times, once on each track,
and the reader reads the values from each of the tracks but in different order than the
writer. He then implements a switch that permits the reader to decide which value was
read "without collision". The switch must consist of atomic bits since it must able to detect
collisions in the three tracks. Next L. Lamport [Lam86] implements an atomic bit using
a finite number of safe bits. Combining these two implementations we obtain a modular
construction of an atomic, single writer, single reader register.

Theorem 4.1 ([Pet83} + {Lam86}} Using impure copies, an atomic, single writer, single
reader, b-bit register can be implemented, with 3 · b + 0(1) aafe, single writer, single reader
bits, in time 3 · b + 0(1). D

In the sequel we present a modified version of Peterson's construction due to [Vid88c];
the new protocol has a simpler control structure and both the read and write operations

9

do less work. The atomic 1 WlRbB register we present consists of three atomic bits:
c, writing, reading, three safe b-bit tracks: tro, tri and the copy track ctr. The writer
also uses two local boolean variables cl, wl. (E9 denotes modulo 2 addition.) To read a b-bit
value the processor executes the following protocol.

read bit bi from writing;
write bit bi EEl 1 to reading;
read bit b from c;
read track trb;
read bit "2 from writing;
if "2 = bi then

return value from trb
else

return value from ctr
fi

To write a b-bit value v the processor executes the following protocol.

cl := cl EEl 1;
write value on trct;
write cl in c;
read bit bi from reading;
if bi =I= wl then

fi

write value v on ctr;
write bi on writing;
wl :=bi

Combining this algorithm with the algorithm in [Lam86) we obtain the following improve
ment of theorem 4.1.

Theorem 4.2 ({Vid88c} + {Lam86}) Using impure copies, an atomic, single writer, single
reader, b-bit register can be implemented, with 3 · b + 0(1) safe, single writer, single reader
bits, in time 2 · b + 0(1). 0

Another idea is to implement a switch that will enable the processors to alternate on
the tracks but in such a way that they never have to execute a write or read action on the
same track at the same time. Since in this case the tracks are collision free they can be
assumed to consist of safe bits. Also, unlike Peterson's original construction, the switch of
the four track register need only be regular while the track subregisters only safe, which
gives a direct implementation of the desired register from regular subregisters. Thus, using
pure copies [KKV88] implements an atomic lWlRbB register with 4·b+39 safe lWlR bits,
in time b + 26; this was later improved by [Tro89] to 4 · b + 8 safe 1 WlR bits, in time b + 4.
Hence we obtain a direct construction of the required register in the following theorem.

Theorem 4.3 ({KKV88}, [Tro89}) Using only pure copies, an atomic, single writer, single
reader, b-bit register can be implemented, with 4 · b + 0(1) aafe, single writer, single reader
bits, in time b + 0(1). 0

10

Next we present a slightly weaker version of Tromp's four track register (for details on
his 4 · b + 8 construction consult [Tro89]). The register consists of the following subregisters.
Four safe b-bit tracks divided into two groups: T11 = {tr11,o, tr11,1}, a= 0, 1. An atomic bit
W(R) to be written by the writer (reader) and read by the reader (writer) and two atomic
"display" bits Do, D1 to be written by the writer and read by the reader. Also the writer
has the local variables w, do, d 1 and the reader the local variable r. To write a b-bit value
the writer executes the following protocol.

if R = w then
w := w EB 1;
write value on track trw,d,,,;
W:=w;

else

fi

dw := dwEBl;
write value on track trw,d,,,;
Dw := dw

To read a b-bit value the reader executes the following protocol.

if W =/:- r then
r := r EB 1;
R:=r

fi;
read bit a Crom Dri
read b-bit value from track trr,a

Next we summarize the space and time complexity of the above constructions. First,
some explanations are needed for the proper interpretation of the complexity tables given in
the sequel. By time complexity of a high level object we understand the worst-case number
of accesses of low-level subregisters required by the given processors, which for the CRCW
problem are readers and writers, in order to complete a full run of their protocol. By space
complexity of a high level object we understand the number of low level subregisters used
for the implementation of the object multiplied by the bit-size of the tags (or time stamps)
used by each individual subregister. With this in mind we have the following table.

PAPER SPACE TIME
[Pet83] + [Lam86] 3. b + 0(1) 3. b + 0(1)
[Vid88c] + [Lam86] 3·b+O(l) 2. b + 0(1)
[KKV88] 4. b +39 b+26
[Tro89] 4·b+8 b+4

Figure 2: From 1 WlR Safe bits to 1 WlRbB Atomic registers

Concerning the optimality of the atomic bit implementations we can prove the following
theorem.

Theorem 4.4 ([PB87c}, {Tro89]} 3 safe bits, 2 written (read) by the writer (reader} and
one by the reader (writer) are necessary and sufficient to implement an atomic bit. D

11

-----:---------

4.2 Atomic Multireader Registers

We now come to a more complicated problem. It concerns the construction of multireader
shared variables which are written by a single writer, from single writer, single reader
registers. This problem was solved simultaneously by four different groups of researchers
L. Kirousis, E. Kranakis and P. Vitanyi [KKV88), J. Anderson, A. Singh and M. Gouda
[ASG87), G. Peterson and J. Burns [PB87a), R. Newman-Wolfe [New87) by using entirely
different algorithms. New algorithms were later reported by A. Israeli, M. Li and P. Vitanyi
[ILV87) as well as M. Li, J. Tromp and P. Vitanyi [LTV89). Two among these five papers,
[KKV88) and [New87], implement algorithms that use pure copies. As such they achieve
better reader-time. Here is a table of the known implementations together with their com
plexity.

PAPER SPACE WRITER-TIME READER-TIME
[KKV88) O(n2

• (n + b)) O(n · b) O(n + b)
[ASG87] O(n· (n+b)) O(n · (n + b)) O(n · b)
[PB87a] O(n2

• b) O(n · b) O(n · b)
[New87) O(n · (n + b)) O(n · b) O(n+ b)
[ILV87) O(n2

• b) O(n · b) O(n · b)
[LTV89) O(n"' · b) O(n · b) O(n · b)

Figure 3: From 1 WlRlB atomic to 1 W nRbB atomic

In addition [Vid88d), [Vid88b) reports two simple constructions of atomic, multireader,
multivalued registers from multireader, atomic bits.

4.3 Atomic Multiwriter Registers

Finally we come to the most difficult problem in this area. Implementing a multiwriter
shared variable.

The first such multiwriter implementation due to B. Bloom was rather unique for its
simplicity, but it concerns only the construction of a two writer atomic register. Suppose
that Ko, Ki are two b+l-bit, atomic, single writer registers such that Ko (Ki) can be written
by the writer (reader) and written (read) by the reader (writer). Let po, pi, ... ,Pn-1 be n
processors (all readers) of which the first two po, Pl can both read and write. We represent
the contents of the registers as pairs (ti, 'Vi), where ti E {O, 1} is a tag and 'Vi is the actual
b-bit value. Also let ED denote modulo 2 addition. The algorithm for implementing the two
writer register is as follows. Writer Pi, i = 0, 1, writes a value by first reading the tag of
KiEBl and then writing its value on Ki together with an appropriate tag.

Pi WRITES THE VALUEv:
read the tag tiEBl from Kieal;
write (i ED tiEBl, v) to register Ki;

The reader Pi (i = 0, ... , n - 1) reads twice. At first, it reads the tags in both Ko, K1, say
to, t1 and then returns the value it reads in register KtoEBti, after a second reading.

Pi READS A VALUE:
read the tag to from Ko;

12

read the tag ti from K1;
return the value from Kt0et1 ;

(Incidentally, notice that all the readers execute exactly the same protocol.) It can be
shown that the resulting two writer register is atomic (Blo87]. Hence we have the following
theorem.

Theorem 4.5 ({Blo87)} An atomic 2WnRbB regiater can be implemented with two atomic
lWnR(b + l)B registers. D

The first attempt at solving the general multiwriter problem with bounded tags was
by P. Vitanyi and B. Awerbuch [VA86). This construction uses single writer, single reader
registers to implement the desired register, but the "hue" registers must have unbounded
tags. Here is a description of the algorithm. The n x n matrix register K consists of n2

atomic, single writer, single reader, subregisters Ki,;, i,j == 1,. . .,n. Each processor Pi is
connected to the write terminal of K;.; and the read terminal of K;,i, j = 1, ... , n. Each
subregister can hold a pair (tag, value); tags are pairs (k,i), where k is a.n arbitrary non
negative integer and i = 1, ... , n, while value is the actual value which will be either read
or written. The writer reads its column, updates its tag a.nd then writes its updated tag
and value to all subregisters in its row.

Pi WRITES THE VALUEv:
for j := 1, ... , n read K;,ii
compute the lexicographically largest tag (k_, m) among the tags just read
and set own tag to (kmaz + 1,i);
for j := 1, ... ,n write on Ki.; the pair ((kmaz + 1,i),v);

The reader reads its column, stores the value corresponding to the maximal tag a.nd updates
its tag. It then writes its updated tag as well as the value it stored to all subregisters in its
row.

Pi READS A VALUE:
for j := 1, ... , n read K;,ii
compute the lexicographically largest tag (kmaz, m) among the tags just read,
store the value Vm included in this pair and set own tag to (kmaz, m);
for j := 1, ... , n write on Ki.; the pair ((kmaz 1 m), Vm)i

return 'Vmi

Inspecting the above protocol it is not difficult to see that the "diagonal" registers Ki,i
are not shared, but are only used by processor Pi, for i = 1, ... , n, respectively; hence they
are not necessary. For this multiwriter, multireader register we can prove the following
theorem.

Theorem 4.6 ({VA86}, [AKKV88}) The matrix register is an atomic, n-writer, n-reader
register which can be implemented with n2 - n atomic, single writer, single reader registers
with unbounded tags. D

Despite its "elegance", the space complexity of the matrix register is infinite and as such
this register does not provide a solution to the CRCW problem. A subsequent modification,
due to G. Peterson and J. Burns [PB87b], used some of the ideas of the bounded tag

13

- ~<'. _ _ :

version of the matrix algorithm [VA86] (which was later found to be erroneous) together
with the new idea of repeated reading in order to restrict the number of time stamps to
a finite number, but their algorithm was later found to be wrong by R. Schaffer [Sch88].
This last paper corrects the [PB87b]-register and provides a correctness proof of the new
implementation using input output automata. Another construction was also given by M.
Li and P. Vitanyi [LV89]; its correctness proof is given in [LTV89]. Here is a table of the
known multiwriter, multireader, atomic registers together with their complexity.

PAPER SPACE TIME
[VA86] 00 O(n)
[PB87b] + [Sch88] O(n3 · b) O{n3 • b)
[IL87] O(n4 · b) O(n2 • b)
[LV89], [LTV89) O(n" · b) O(n · b)

Figure 4: From lWlRlB atomic to nWnRbB atomic

4.4 Interfaces for Multiprocessor Registers

An interesting phenomenon appearing in the construction of atomic registers is the sim
plicity of the protocols concerned if we could assume an infinite tag system (i.e. infinite
space). This phenomenon manifests itself in the case of the matrix register which is rela
tively easy to prove atomic if the base registers were aasumed to possess unbounded tags.
However the same problem is surprisingly hard in the bounded tag case. One is therefore
led to the following interesting question. Can we construct interfaces for converting a given
unbounded tag algorithm (like the matrix register) into a bounded tag algorithm? A. Is
raeli ~nd M. Li ~L87] were the first to consider this problem; in this paper they construct
bounded sequential time stamp systems in the case where no two operations are concurrent.
A significant improvement is reported by D. Dolev and N. Shavit in [DS89] which provides
bounded concurrent time-stamp systems.

5 Proving Correctness

Proving the correctness of CROW protocols can always create heated debates among re
searchers in the field. Time and again the usual intuitive approach for proving correctness
consisted in proving first the correctness for unbounded tag registers, and then showing
that in fact a finite number of tags is sufficient. The first pa.rt has usually been easy to do;
after all you design the algorithm with this property in mind. The second part is usually
the main point of contention. You need to make some adjustments and modifications to
the initial infinite tag protocol in order to convert it into a finite tag protocol. But alas
this often complicates the correctness proof of the original protocol to such an extend that
you run the risk of losing track of what you a.re trying to do. Such examples abound in
this research realm and must have certainly been experienced by any researcher. We hope
that the reader has been convinced of that by the two examples given at the beginning of
section 3. Therefore correctness proofs are not something to be viewed lightly in this area,
but on the contrary they are ·of vital importance.

14

We have not given the proofs of any of the theorems in the paper. However it should be
stressed that most of them (especially the ones on multireader and multiwriter protocols)
require rather laborious proof techniques (the single exception being the implementation
of a flickering bit from a flip-flop). In the sequel we consider several proof techniques that
have been used to prove the correctness of the CROW protocols and refer the interested
reader to the original papers.

5.1 Lamport's Semantics

L. Lamport [Lam86) introduces register axioms and system executions for single writer
registers in order to give rigorous proofs of the atomicity of his implementation of an atomic
single writer, single reader register from safe bits. The main notion providing the ability to
build hierarchicaly the compound registers is that of system execution. These are triples
S = (A,---+, - --+). Intuitively, ---+ stands for "precedes" while - --+ stands for "can
causally affect". A is a countable set representing the set of read and write actions of an
execution, and ---+, - --+ are binary relations satisfying axioms A1, A2, Aa, ~. A5 below,
for all a, b, c, d E A:

A1: ---+ is an irreflexive, partial ordering,
A2: if a ---+ b then a- --+ b and not (b- --+ a),
Aa: if a ---+ b- --+ c or a- --+ b ---+ c then a- -+ c,
A4: if a---+ b- --+ c---+ d then a--+ d,
A,4: if a---+ b---+ c---+ d then a---+ d,
A5: the set {b EA : not (a---+ b)} is finite,
A5: a ---+ b or b- --+ a.

H in addition the system execution satisfies axiom Aa then it is called a global system
execution. Global system executions are intended to capture the natural order of actions
when there is a global time reference system (of which the processors need not be aware).
By global time models we understand triples (A, s, !), where s, f : A 1--+ R are real-valued
functions such that for all a, s(a) $ J(a) and for all real numbers t, the set {a EA: s(a) < t}
is finite. Every global time model gives rise to a global system execution. Simply define

a---+ b *> f(a) < s(b), and
a- --+ b *> s(a) $ f(b).

But also conversely, we can prove the following theorem.

Theorem 5.1 ([Lam85]} Every global syatem execution is isomorphic to a global time
model. More generally, every system execution can be extended to a global system execution.
D

Another class of system executions is obtained from the set A of all nonempty subsets
of a partially ordered set (P, <). The system execution defined by

a ---+ b *> Vx E aVy E b(x < y), and
a---+ b *> 3x E a3y E b(x < y),

satisfies axioms A1, A2, Aa, A4, A,4. (According to [Ben88) this last axiom was first proposed
by Abraham in [AB87).) Extending theorem 5.1, S. Ben-David [Ben88) (and independently
Anger) proves a completeness result for La.mport's axiomatic system.

15

~<...::~_-_: ___ -

Theorem 5.2 ({Ben88}) For every global system ezecution S = (A, --+1 - -) on a set A
of actions satisfying aziom A4 there is a class (} = {g = (A, --+9 , - - 9)} of global time
models with the same set A of actions such that for all a, b EA,

a--+ b if and only ifVg E Q(a --+9 b), and

a- - b if and only ifVg E Q(a- - 9 b). 0

It follows that global time models capture the full provability power of global system
executions satisfying axiom Al. [Lam86) also gives three communication axioms Bo, Bi, B2
concerning operation executions on the same single writer register. Axiom Bo states that
the write actions on the same register must be linearly ordered by --+, say

w 0
--+ w1

--+ · · · --+ w" --+ · • ·

Axiom Bi states that for any read r and any write w to the same register either w- - r

or r- - w, while B2 states that a read obtains one of the values that may be written
in the register. A read r is said to see wliJ) where i = max{k : not(r- - w")} and
j = max{k: w"- - r}. Next Lamport defines three types of single writer shared variables.

• safe: a read that sees wli,i) obtains the value w',

• regular: a read that sees wli,j) obtains the value wlc, for some i $ k $ j,

• atomic: if a read sees wliJ) then i = j.

Notice that the above definition of atomicity refers to registers that are actually atomic,
i.e., no overlapping of a read with more than one write ie allowed (overlapping of reads
that read the same write is allowed, but this obviouely does not affect the serializability
of the operation executions). In other words, operation executions are essentially a priori
linearly ordered. In contrast to this approach, in Section 2.1 we defined atomicity in a
virtual sense, i.e. we allowed overlappings of a read with many writes, but we put as a
requirement the existence of a linear order which represents the succession that operation
executions seemingly follow. The two notions are connected in the following theorem:

Theorem 5.3 ({Lam86}) Let S:::: (A, --+ 1 - -) be a system execution on a regular register
w such that there ezists an integer-valued function </J on the set of reads satisfying

1. if r sees wli,j) then i $,P(r) ~ j,

2. r returns the value wliP<r)),

3. if r --+ r1 then ,P(r) ~ ,P(r'),

for all reads r, r 1
• Then S implements a system ezecution in which w is an atomic register.

0

This proof technique has been used in (Lam86] to prove the correctness of his algorithms
in subsections 3.2, 4.1.

16

5.2 Semantics with a Single Causality Relation

This semantics was developed by B. Awerbuch, L. Kirousis, E. Kranakis and P. Vitanyi in
[AKKV88] in order to prove the correctness of atomic, multiwriter registers. In a general
readers/writers protocol there are two types of actions which are being executed: reads and
writes. Let A be the set of such actions associated with an execution of the protocoL Let
R and W be the sets of read and write actions, respectively, such that A = R U W and
Rn W = 0. It is possible to provide a proof technique baaed on a single binary relation
(partial ordering)--+ instead of the two--+, - --+of Lamport'• semantics. Intuitively, a--+ b
stands again for "a precedes b." In this semantics, a is said to be concurrent with b if neither
a --+ b nor b --+ a. Also, a write w is said to directly precede a read r if w --+ r and there is
no write w1 such that w--+ w' --+ r. In addition to the precedence relation --+,it is assumed
that there is a reading function 'II" : R 1---+ W associating with each read action r E R the
write action 'll"(r) E W which is read by r. The triple p = (A,-+,'11") is also called a run of
the protocol. We distinguish the following types of runs p = (A,--+, '11").

• normal: '11"(r) either precedes r or is concurrent with r.

• regular: '11"(r) either directly precedes r or is concurrent with r.

• atomic: There is a total order => extending --+ (external consistency), there is no
write w such that '11"(r) => w => r (internal consistency) and '11"(r) => r.

(The definition of normal register is due to L. Meertens [Mee87].)
The clan [w]p of a write w is the set { w} U { r E R : '11'(r) = w}. Define the relation

w -+P w' to mean that for some a E [w]p, a' E [w']p, a --+ a1
• In proving the atomicity of

registers the following criterion has proved to be useful.

Theorem 5.4 ([AKKV88}} For any run p of a register,

1. p is atomic ~ p is normal and -+P is acyclic.

2. For single writer registers, p is atomic~ p is regular and 'II" is weakly monotonic. D

The above proof technique has been further elaborated in [AKKV88] to include commu
nication axioms for multiwriter registers and was used successfully to prove the correctness of
the matrix register [VA86], the two writer register [Blo87], the four track registers [KKV88]
and [Tro89] and the multiwriter register in [LV89), [LTV89].

Clearly, the theorem is an extension of theorem 5.3 to multiwriter registers. The first
part of the theorem had been discovered independently by K. Vidyasankar [Vid85] in the
context of database serializability [Pap79], [Pap86]. An equivalent axiomatic formulation of
the theorem was given by G. Peterson and J. Burns [PB87a]. They provide a list of seven
axioms BC1 - BC1 which must be satisfied by a precedence relation in order to be atomic.
They also point out that for the case of single writer registers these seven axioms reduce
to the last two BC5, BC7. However, their axiomatization does not in any way enhance or
shorten the atomicity proofs.

In some cases it may be possible to associate an open time interval (s(a), /(a)) to each
action a E A, where s, f : A 1---+ R are real-valued functions; s(a) is the starting and
/(a) the finishing time of the action. An important aspect of atomic runs concerns the
instantaneousness of their execution, i.e. although their actions have an actual duration
(possibly overlapping one another) in a global time reference system each individual action

17

may be considered to take place at a particular instant. If the causality relation _. is
induced by a representation of the actions as open time intervals then it is possible to
"shrink" the duration of the actions to a time instant. A shrinking function is a one to one
mapping associating to each interval (s(a), f(a)) a. real number o-(a) in this interval. The
relation a <u b defined by o-(a) < o-(b) induces an ordering on the set of actions. A run p is
called shrinking atomic if there is a shrinking function such that (A, <u, 7r) is atomic. More
formally we can prove the following theorem.

Theorem 5.5 {[AKKV88}) For any ron p of a register, i/-t is the order induced by the
representation of the actions A by open time intervals then p = (A,_., 7r) ia atomic if and
only if p is shrinking atomic. D

An equivalent definition of atomicity using shrinking of the actions was also given by J.
Misra [Mis86].

5.3 Input/Output Automata

The Input/Output automaton provides a very powerful methodology for modelling and
proving the correctness of concurrent and distributed discrete event systems. It has been
defined by N. Lynch and M. Tuttle (see [LT89) for an outline of the model). This model has
been used in [LG89] to prove the correctness of the Bloom register [Blo87], the matrix reg
ister [VA86), [AKKV88], as well as by [Sch88] to correct the modified multiwriter algorithm
in [PB87b).

It is also interesting to note that J. Tromp [Tro89] in the full version of his paper
develops a finite state automaton, the atomicity automaton, for proving the correctnes of
his four track protocol. Transitions in the atomicity automll.ton represent beginnings and
ends of read and write actions, while nodes represent the atomicity state of the shared
variable. This makes possible the application of automatic verification methods for proving
the correctness of the protocol (this is of practical interest as well, and ought to satisfy even
the most skeptical).

6 Conclusion

Due to both hardware and software design-constrains conventional programming methodol
ogy has limited itself mainly to environments with serial mode of operation. However, this
is not only too restrictive, but in addition, runs contrary to the parallelism encountered by
many physical machines of every-day life [Gel89]. Although we are still far from creating
a thorough framework for writing, implementing and proving the correctness of parallel
programs, there is no doubt that there are several programming tasks which are naturally
amenable to parallel methodology. Surprisingly, we have shown that the CRCW problem
is such a parallelizable task.

The solutions of the CRCW problem pre8ented here also raise a very relevant question.
Can we implement higher level register objects (like atomic test-and-set, mutual exclusion,
etc.) using atomic registers? It was shown by M. Herlihy [Her88] and M. Loui and H.
Abu-Amara [LA87] that this is indeed impossible. For more information consult [AG87]
and [Kra89). The impossibility results just cited have also given rise to another line of
research. It concerns randomized, wait-free implementatons for the above primitives. For
more details consult [KV89], [AH88], [PZ86].

18

In the present paper we have outlined some of the most important algorithms and
proof techniques in the concurrent readers and writers area. The simplicity of the problem
as well as its importance for implementations in parallel environments provoked a flurry of
activity by numerous researchers which lifted the problem from its long dormancy. Although
concurrent reading and concurrent writing is now better understood and its feasibility is
beyond doubt, correctness proofs of the existing protocols {especially the multiwriter ones)
are still complicated and hard to comprehend. It is therefore importan~ that more efforts
will be directed at

• providing new, simpler algorithms for implementing the concurrent objects concerned,

• refining and amplifying existing proof methods using order semantics,

that will clarify and illuminate our understanding of paralleliiable programming methodol
ogy.

7 Acknowledgements

We are thankful to P. VitB.nyi for numerous discussions on the topics discussed in the present
brief survey. John Tromp provided useful comments on a first draft of the paper.

References

[AB87] U. Abraham and S. Ben-David. Informal and formal correctness proofs for
programs (for the critical section problem). 1987. Reprint.

[AG87) J. H. Anderson and M. G. Gouda. The Virtue of Patience: Concurrent Pro
gramming With and Without Waiting. Technical Report 78712-1188, Depart
ment of Computer Science, University of Texas, 1987.

[AH88] James Aspnes and Maurice Herlihy. Fast Randomized Consesua Using Shared
Memory. Technical Report CMU-CS-88205, Carnegie Mellon, 1988.

[AKKV88] Baruch Awerbuch, Lefteris M. Kirousis, Eva.ngelos Krana.kis, and Paul
Vitanyi. On proving register atomicity. In K. Nori and S. Kumar, editors,
Proceedings of the 8th Conference on Foundations of Software Technology and
Theoretical Computer Science, Springer Verlag Lecture Notes in Computer
Science, Heidelberg, 1988. Vol. 338.

[ASG87] J. H. Anderson, A. Singh, and M. G. Gouda. The elusive atomic register. In
Proceedings of 6th ACM Symposium on Principles of Distributed Computing,
Vancouver, Canada, 1987.

[Ben82] M. Ben-Ari. Principles of Concurrent Programming. Prentice Hall Interna
tional, 1982.

(Ben88] S. Ben-David. The global time assumption and semantics for concurrent sys
tems. In Proceedings of 7th ACM Symposium on Principles of Distributed
Computing, Toronto, Canada, 1988.

19

.•. .- r-- - ;:; ~ - .

[Blo87]

(CHP71)

[Dij68]

[DS89]

(Gel89]

(Ha.187)

[Her88]

[Hil85]

[Hoa78]

(IL87)

[ILV87]

(KKV88]

[Kra89)

[KV89]

[LA87]

Bart Bloom. Constructing two-writer atomic registers. In Proceedings of
6th ACM Symposium on Principles of Diatributed Computing, Vancouver,
Canada, 1987.

P. J. Courtois, F. Heymans, and D. L. Parnas. Concurrent control with
"readers" and "writers" . Communication• of ACM, 14(10):667 - 668, 1971.

E. W. Dijkstra. Cooperating sequential processes. In F. Genuys, editor,
Programming Languages, Academic Press, 1968.

Danny Dolev and Nir Shavit. Bounded concurrent time-stamp systems. In
Proceedings of the flst Annual ACM S'llmposium on Theory of Computing,
Seattle, 1989.

David Gelernter. The metamorphosis of information management. Scientific
American, 54 - 61, August 1989.

J. Halpern. 1987. Personal Communication.

M. P. Herlihy. Impossibility and universality results for wait-free synchro
nization. In Proceedings of 7th ACM Symposium on Principles of Distributed
Computing, Toronto, Canada, 1988.

W. D. Hillis. The Connection Machine. MIT Press, 1985.

C. A. R. Hoare. Communicating sequential processes. Communications of
ACM, 21 :666 - 677, 1978.

A. Israeli and Ming Li. Unbounded time stamps. In Proceedings of IEEE 28th
Annual Symposium on Foundations of Computer Science, New York, 1987.

A. Israeli, Ming Li, and Paul Vitanyi. Simple Multireader Registers Using
Time-Stamp Schemes. Technical Report CS-R8758, Centrum voor Wiskunde
en Informatica, Department of Algorithms and Architectures, 1987.

Lefteris M. Kirousis, Evangelos Kranakis, and Paul Vitanyi. Atomic multi
reader register. In Jan van Leeuwen, editor, Proceedings of 2nd International
Workshop on Distributed Algorithms, Amsterdam, July 1987, pages 278- 296,
Springer Verlag Lecture Notes in Computer Science, Heidelberg, 1988. Vol.
312.

Evangelos Kranakis. Functional dependencies of variables in wait-free pro
grams. In Proceedings of 3rd International Workshop on Distributed Algo
rithms, Nice, September 1989, Springer Verlag Lecture Notes in Computer
Science, 1989.

Evangelos Kranakis and Paul Vitanyi. Fair, wait-free, atomic test and set.
1989. preprint.

M. Loui and H. Abu-Amara. Memory requirements for agreement among
unreliable asynchronous processes. Advancea in Computing Research, JA!
Press, 163 - 183, 1987.

20

[Lam85)

[Lam86]

[Len87]

[LG89]

[LT89]

[LTV89)

[LV89]

[Mar86]

[Mee87]

[Mis86]

[New87]

[Pap79]

[Pap86]

[PB87a]

[PB87b]

[PB87c]

Leslie Lamport. lnterproce88 Communication. Technical Report, SRI Inter
national, June 1985.

Leslie Lamport. On interprocess communication, part i: basic formalism, part
ii: basic algorithms. Distributed Computing, 1:77- 101, 1986.

A. Lenstra.. 1987. Personal Communication.

Nancy A. Lynch and Kenneth J. Goldman. Distributed Algorithms. Technical
Report MIT/LCS/RSS 5, MIT Research Seminar Series, May 1989. Lecture
Notes for 6.852, Fall 1988.

Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output au
tomata. CW/ Quarterly, 2(3):217 - 244, 1989.

Ming Li, John Tromp, and Paul VitB.nyi. How to Share Concurrent Wait-free
Variables. Technical Report CS-R8916, Centrum voor Wiskunde en Informa.t
ica, Department of Algorithms and Architectures, 1989.

Ming Li and Paul VitB.nyi. A very simple construction for atomic multiwriter
register. In /GALP, Springer Verlag Lecture Notes in Computer Science,
Heidelberg, 1989.

L. R. Marino. General theory of metastable operation. IEEE '.lhmsactions
on Computersa, C-90, 107 - 115, 1986.

Lambert Meertens. 1987. Personal Communication.

J. Misra.. Axioms for memory access in asynchronous hardware systems. ACM
1hmsactions on Programming Languages and Systems, 8:142- 153, 1986.

R. Newman-Wolfe. A protocol for wait-free, atomic, multi-reader shared vari
ables. In Proceedings of 6th ACM Symposium on Principles of Distributed
Computing, Vancouver, Canada, 1987.

Christos Papadimitriou. The serializability of concurrent database updates.
Journal of the ACM, 26(4):631-653, 1979.

Christos Papadimitriou. Theory of Databa1e Concurrency Control Computer
Science Press, 1986.

Gary Peterson and James Burns. Concurrent reading while writing i. In
Proceedings of 6th ACM Symposium on Principles of Distributed Computing,
Vancouver, Canada, 1987.

Gary Peterson and James Burns. Concurrent reading while writing ii. In
Proceedings of IEEE 28th Annual Sympo1ium on Foundations of Computer
Science, New York, 1987.

Gary Peterson and James Burns. Sharp Bounds for the Concurrent Reading
while Writing Problem. Technical Report GIT-ICS-87 /31, Georgia Institute
of Technology, 1987.

21

[Pet83)

[PZ86)

[Sch88)

[Tro89)

[VA86)

[Vid85)

[Vid88a)

[Vid88b)

[Vid88c)

[Vid88d]

Gary Peterson. Concurrent reading while writing. ACM 7ransactions on
Programming Languages and Systems, 5:46-55, 1983.

Amir Pnueli and Lenore Zuck. Verification of multiprocess probabilistic pro
tocols. Distributed Computing, 1(1):53 - 72, 1986.

R. Schaffer. On the Correctness of Atomic Multiwriter Registers Without
Waiting. Technical Report TM-364, Maasachusets Institute of Technology
Laboratory for Computer Science, 1988.

John Tromp. How to construct an atomic variable. In Proceedings of 9rd Inter
national Workshop on Distributed Algorithms, Nice, September 1989, Springer
Verlag Lecture Notes in Computer Science, 1989.

Paul Vitanyi and Baruch Awerbuch. Atomic shared register access by asyn
chronous hardware. In Proceedings of IEEE f7th Annual Symposium on Foun
dations of Computer Science, Toronto, 1986. Errata, ibid 1987.

K. Vidyasa.nkar. A simple characterization of database serializability. In
Proceedings of the 5th Conference on Foundations of Software Technology and
Theoretical Computer Science, Springer Verlag Lecture Notes in Computer
Science, Heidelberg, 1985. Vol. 206.

K. Vidyasankar. Converting Lamport 11 Regular Register to Atomic Register.
Technical Report 8801, Department of Computer Science, Memorial Univer
sity of Newfoundland, 1988.

K. Vidyasankar. An Elegant 1-Wrtiter Multireader Multivalued Atomic Reg
ister. Technical Report 8807, Department of Computer Science, Memorial
University of Newfoundland, 1988.

K. Vidyasankar. Improving Peterson1s Construction of 1- Wrtiter n-Reader
Multivalued Atomic Register. Technical Report 8808, Department of Com
puter Science, Memorial University of Newfoundland, 1988.

K. Vidyasankar. A New 1-Wrtiter Multireader Multivalued Atomic Register.
Technical Report 8804, Department of Computer Science, Memorial U niver
sity of Newfoundland, 1988.

[vWMPK69] A. van Wijngaarden, B. J. Mailloux, J. E. L. Peck, and C. H. A. Koster.
Report on the algorithmic language algol68. Numerische Mathematik, 14:79
- 218, 1969.

22

