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A well-known method for interpreting planar projections (images) of 3-

dimensional polyhedra is to label their lines by the Clowes-Huffman scheme. 

However, the question of whether there is such a labeling has been shown to be 

NP-complete. In this paper a linear in time algorithm is given that answers the 

labelability question under the assumption that some information is known about 

those edges of the polyhedron whose both faces are visible. In many cases, this 

information can be derived from the image itself. Moreover, the algorithm has 

an effective parallel version, i.e., with polynomially many processors it can be 

executed in time polynomial in logn . 
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1. Introduction. 

Interpreting 2-dimensional figures as 3-dimensional objects is a central problem in Artificial 

Intelligence some aspects of which are studied in this paper. 

The 3-dimensional objects considered are restricted to solid, trihedral, opaque polyhedra. 

For our purposes, a polyhedron is a closed and bounded subset of the three dimensional euclidean 

space R3, whose topological boundary is a union of finitely many subsets (the faces), each lying 

on a plane and bounded by finitely many segments of lines (the edges). The faces intersect at the 

edges. The endpoints of the edges are the vertices of the polyhedron. Notice that according to our 

definition, a polyhedron may contain a number of smaller polyhedra disconnected from each 

other. Solid means that no 'hanging' faces or edges are allowed. In other words, 'origami' con­

structions are excluded. Formally, that amounts to requiring that for every point on the surface 

(boundary) of the polyhedron there exists a topologically three dimensional set that contains this 

point and is contained in the polyhedron. A trihedral polyhedron is one all the vertices of which 

are intersections of exactly three faces lying on three different planes. This excludes the possibil­

ity of touching polyhedra or cracks. 

Without loss of generality, we consider polyhedra situated in the first of the octants defined 

by the three cartesian axes of the three dimensional euclidean spa<'e. If for such a polyhedron, we 

project the parts of its edges visible from the xy plane onto this plane, we get a graph called the 

image of the polyhedron (Figure 1). Formally, a point (x, y, z) of the polyhedron is called visible 

(from the ~xy plane) if there is no other point (x, y ,z ') in the polyhedron such that z' < z . Only 

the visible parts of the edges are projected because of the opaqueness assumption. The projected 
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polyhedron is refered to as the scene, or the 3D realization of the image. The projections of the 

vertices and the edges of the polyhedron are called the nodes (or points) and lines, respectively, 

of the image. 

If a face of the polyhedron occludes part of an edge, then the projections of the boundary 

edge of the occluding face and the visible part of the partly occluded edge intersect in the image, 

forming a T-shaped figure. Although such a point of intersection is not the projection of a vertex, 

we count it among the nodes of the graph. Thus, the image is a plane graph, with nodes of degree 

2or3. 

Figure 1. The image of a polyhedral object. 

For reasons of clarity, we consider only orthographic projections, although the results can 

be almost verbatim extended to central (perspective) projections. 

There is a natural classification of the nodes of an image according to their shape: Y-nodes 

are those where the three incoming lines form three angles of less than 180°, E-nodes are those 

where one angle is greater than 180°, L-nodes are those that have degree two, finally T-nodes are 

those where two of the three incoming lines are collinear (nodes A , B , C and D in Figure 1 are 

examples of each classification group, respectively). The T-nodes, as we have seen, are not pro­

jections of vertices. 

There is a standard way [1, 3] to label the lines of an image depending on the way the 

corresponding edges of the scene are seen from the projection plane: if an edge is convex as seen 

from thee projection plane, its projection is labeled by a '+', if it is concave, its projection is 



-3-

labeled by '-',and if it is a contour edge, i.e. an edge whose one face occludes the other, its pr9-

jection is labeled with an '-?'. The direction of the arrow is such as to leave to the right the 

occluding face. So, there are three labels and four possible ways to label a line. Non-contour 

edges (lines) are called connecting edges (lines). In Figure 1, some labels are given that 

correspond to the natural realization of the image depicted. 

Having a consistent labeling of an image obviously reveals important information about its 

30 realization. Combinatorially, though, there is a very large number of possible labelings of the 

lines of an image. 

In their pioneering works, Clowes [1] and Huffman [3] have shown that there is a very 

small number of ways to label the lines of a node so that it can be possibly realized as the projec­

tion of a vertex of a polyhedron. 

v v vvvv 
L-nodes. 

Y-nodes. E-nodes. 

T-nodes. 

Figure 2. Legal labelings of a node (Clowes-Huffman labeling scheme). 

These legal labelings for each type of node are given in Figure 2. Obviously, they impose severe 
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restrictions on the nwnber of ways an image can be labeled. Winston [9] gives an excellent 

account for the work in the area. In this paper, we show how to further restrict the possible labels 
of an image, again under the sole asswnption that the image is realizable. 

Despite these restrictions, we are still faced with the combinatorial problem of consistently 
labeling the lines of an image so that no line receives different labels from its two endpoints. 

Images with such a labeling .are called labelable. Non-labelable images are just impossible 
objects. The converse is known not to be true. For example, Figure 3 depicts a labelable image 
which is not realizable. The non-realizability is due to the fact that the two different faces A and 

B intersect in two non-collinear edges, namely a and b . Nevertheless, Sugihara [7] has given a 
polynomial algorithm that checks the realizability of a legally labeled image. 

Figure 3. A labelable but non-realizable image. 

Waltz [8] developed a filtering algorithm for labeling an image. Waltz' algorithm empiri­

cally had good running time in most applications [9]. Nevertheless, Kirousis and Papadimitriou 

[4] proved that the labelability (and realizability) problems are NP-complete. On the positive 
side, they gave a polynomial algorithm for the labelability problem of images that are taken to be 

projections of orthohedral scenes, i.e. scenes where all faces are perpendicular to one of the three 

cartesian axes. Orthohedral scenes, however, are a very limited special case of the trihedral 

world. 

On the other hand, Freuder [2] investigates the question of how many lines of the image 
must be a priory known to be contour or connecting in order to insure that the image has a unique 

labeling. 

2. Statement of result. 

In this paper, we give a linear (in time) algorithm that answers the labelability question of a gen­

eral image, under the asswnption that a certain minimal set M of connecting lines is given. A set 
of lines M of an image is called a minimal set of connecting lines, if there is no legal labeling of 
the image whose set of connecting lines is properly contained to M. Notice that, in general, the 
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number of legal labelings compatible with a minimal set of connecting lines can be anywhere 

from zero to an exponential expression of the number of the nodes of the image. 

This result possibly explains the success of Waltz's algorithm, despite the fact that its com­

plexity is exponential in general. This is so because the knowledge of the set M can often be 

directly derived from the image. 

To be more specific, the set M that we have to be given must contain at least one line for 

each Y-node. In other words, for each Y-node we have to know a priory at least one line that 

must be labeled with a '+' or a '-'. It is clear from the set of legal labelings of Y-nodes that 

every Y-node contains at least one connecting line. Therefore, such a set M is a minimal set of 

connecting lines. 

Notice that in many cases such an a priori specification of a line as a connecting one can 

obtained from the type of one of its nodes. For example, if a line of a Y-node is also the middle­

line of an E-node, then this line must be a connecting one and so there is no reason to require any 

information at all about the lines of this Y-node. The image of Figure 1 is such that no informa­

tion is needed about the connecting lines to answer the labelability question. It seems that for 

most 'natural' images, the number of Y-nodes for which we cannot specify a connecting line 

(using only information supplied by the image) is very small, if not zero. So, our algorithm effec­

tively labels most images without any outside information at all. 

3. A linear algorithm for labeling an image. 

We start by making explicit an assumption about the scene which practically states that small 

movements of the camera 'looking at' the scene do not affect the information content of the pic­

ture (image). This assumption is made in every work in the area. Our definition and lemma 1 

below formalize what is informally assumed in other works, e.g., [3] or [9]. 

The scene is assumed to be in general position with respect to the projection plane. Infor­

mally, that means that if we perturb the polyhedron (or equivalently, the projection plane) a little 

bit, no new lines or nodes will appear on the image. In other words, the projective geometry of 

the image will not change. Formally, that means that no plane or line geometrically defined by 

edges or vertices of the scene is perpendicular to the projection plane. 

As a consequence of the general position assuption we have the following: 

Lemma l. If two lines in the image are parallel, then they are projections of parallel edges. Also, 

if two lines are collinear then they are projections of collinear edges. 

Proof. Indeed, suppose that two edges were skew to each other and had parallel projections. 

These skew edges uniquely define a line in space that is perpendicular to both. Consider the plane 

which is perpendicular to this uniquely defined line and contains the first of the two skew edges. 

This plane, which is geometrically defined in a unique way from the elements of the image, is 

perpendicular to the projection plane, a contradiction. For the second part of the lemma, consider 

two collinear lines. By the first part of the lemma, those are projections of parallel edges. If these 

edges are not collinear, then the plane that they define would be perpendicular to the projection 

plane, a contradiction again.D 

In the complexity considerations of the algorithms in the sequel, unless we state differently 

or unless what we mean is clear from the context, we take as input size the number of the nodes 

of the image (denoted by n ). If e is the number of edges of the image, then, because all nodes are 



-6-

of degree 2 or 3, e = 0(n ). 

The procedures of our algorithm involve the location of various types of subgraphs of the 

image (these types will be formally defined in the sequel). We assume, without explicitly men­

tioning it each time, that the location of such a subgraph is done in linear time by one of the stan­

dard graph searching techniques. Moreover, we suppose, without loss of generality, that the 

image is connected. Indeed, otherwise we only have to label its connected components separately. 

Finally, we suppose that for each Y-node of the image we know at least one line which is 

connecting. These lines are marked by c and comprise a minimal set of connecting lines. 

To check the labelability of the image, we first check the labelability of certain types of sub­

graphs of it, which we now define. 

An L-chain is a subgraph of the image that comprises all the lines incident on a maximal 

succession of adjacent L-nodes (Figure 4). We suppose, without loss of generality that L-chains 

are open, like the one in Figure 4, i.e., they do not form a cycle of lines. This is so, because a 

cycle of L-nodes constitutes a connected component by its own, which obviously is legally label­

able (and also realizable as an object with only one visible face). 

a 

Figure 4. An L-chain. The lines a and b are called end-lines. 

A YE-chain is a subgraph of the image that comprises all the lines incident on a maximal 

succession of adjacent Y- or E-nodes (Figure 5). 

In the following lemmata, we prove certain properties that a labeling of a graph must 

satisfy. These properties restrict the possible labelings of an image even further than the Clowes­

Huffman scheme (Figure 2). The properties are proved under the sole assumption that the 

image must have a 3D realization with the given labeling. We then give a linear algorithm that 

checks the labelability of an image when a connecting line is given for each Y -node. Of course, 

when developing the algorithm we do not assume that the image is realizable, as we do when 

proving properties of the labeling. This distinction, although is not always explicitly stated, is 

clear from the context. It should be pointed out that the NP-completeness of the general labela­

bility eroblem remains valid even under the extra restrictions on the legal labelings that are 

described below. This is so, because in [4] the NP-completeness is proved by reducing the 
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Figure 5. A YE-chain. 

boolean satisfiability question to the labelability question of an image which if labelable is also 
realizable. 

Lemma 2. If a line of an L-chain has a connecting label ('+'or '-'),then the labels of all other 
lines are uniquely determined. 

Proof. Call a the line whose connecting label is given. If no two lines of the L-chain are col­
linear, then the labels of all other lines are arrows. This is so because there is at most one visible 
face on each side of the L-chain, and two faces cannot intersect on non-collinear edges. More­
over, it easily follows from the legal labelings of L-nodes in Figure 2 that these arrows have 
uniquely defined direction. Therefore, in this case, we have a uniquely defined label for all lines. 
If, on the other hand, some lines are collinear, then by the general position assumption, they 
correspond to collinear edges. Also, again because there is at most one pair of visible faces, for 
any two collinear edges, if one has a connecting label('+' or'-') the other must have the same 
label. Therefore, the lines that are collinear with a must have the same label as a. Moreover, the 
ones that are not collinear with a must be labeled with an arrow. It can be easily seen now that 
each of the lines collinear with a determines a unique direction for these arrows. If these direc­
tions are incompatible, then the L-chain is not labelable. If they are compatible, we have a 
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uniquely defined label for the lines of the L-chain.O 

Notice that the above lemma cannot be proved assuming only the restrictions on the label­
ing imposed by the Clowes-Huffman scheme. 

Lemma 3. If a line of an L-chain is labeled with an arrow, then the possible labelings of any 
other line on that L-chain are at most three. These are the two arrows of opposite directions and 
one connecting label. In other words, an arrow label on a line of an L-chain excludes one con­
necting label from each of the other lines (the excluded connecting label need not be the same for 
all lines). 

Proof. Itis easy to see that if a '+' is changed to a '-' (or vice versa) then all arrow labelings 
(which are uniquely determined by the previous lemma) must change direction. Therefore, an 
arrow labeling cannot be compatible with both a'+' and a'-' on some other line.O 

Let us turn now to the YE-chains. Every Y -node of such a chain has at least one line 
marked by c, meaning that it must be labeled by either a '+' or a '-'. Also, the middle-lines of 
E-nodes are connecting lines. Moreover, any line in a YE-chain has at most three labelings. This 
is so because a) from the side-lines of E-nodes, arrows forming a 'left tum' are excluded and b) 
from the two lines of a Y-node that are not marked by c, arrows forming a 'right tum' are 
excluded. So, for a line of a YE-chain an arrow-label has only one possible direction. But there is 
a lot more that can be said about the possible labelings of a YE-chain. First we give a definition. 

We generalize the notion of a label by introducing the notion of a type. Types are to be 
assigned to lines of YE-chains only (for those, an arrow-label has only one possible direction). 
There are four distinct types. The first three, the types '+', '-' and '-?' are identical to the 
corresponding labels. It is only for reasons of convenience that we also call them types. The 
fourth type we introduce is denoted by '-/-?'. Its interpretation is that a line with this type must 
have label '-' or '-?', but it is not known which of the two is the case. For example, if we know 
that the middle-line of an E-node ha~ label '+', then the legal labelings of Figure 2 do not provide 
sufficient information to determine the label of the side-lines. However, the type of them is 
uniquely determined to be '-/-?'. In other words, this last type may be viewed as a set of possible 
labels. We call the type'-/-?' the ambiguous type. Its introduction is due to C.H. Papadimitriou 
[5]. We say that the ambiguous type is more general from the types'-' and'-?'. 

Obviously, if the ambiguous type is assigned to a line marked by c or to the middle-line of 
an E-node, then a label (non-ambiguous type) for this line is uniquely determined (namely, '-'). 
In general, the legal labelings of Figure 2 imply the following observations about the types that 
can be assigned to the lines incident to a node of a YE-chain. 

a) If a type is assigned to a line marked by c or to the middle-line of an E-node, then a label 
for this line is uniquely determined. 

b) If a type is assigned to a side-line of an E-node, then a label for its middle-line and a type 
for the second side-line are uniquely determined. 

b) If a type is assigned to the middle~line of an E-node, then types for all its lines are 
uniquely determined (the type for the middle-line is non-ambiguous). 

c) If a type is assigned to a line of a Y-node, then types for all its lines are uniquely deter­
mined (the type for the line marked by c is non-ambiguous). 

Of course, the above are true under the assumption that the original assignment of a type is 
legal (e.g., is not the assignment of'-?' to a line marked by c).Observe that the c marks are 
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essential to obtain the above. Otherwise, assigning e.g., the ambiguous type to a line of a Y-node, 

would leave three possibilities for the other lines: the'-' and two arrows of opposite direction. 

If we are given the type of one line of a YE-chain, we can uniquely assign types to all of its 

lines, following the above rules for the propagation of types. Specifically, we first visit the node 

for which the type of one of its lines is given. We assign types to all its lines following the rules 

above. We visit the other nodes in a breadth-first fashion. In other words, after assigning types to 

all lines of a node A , we visit sequentially all nodes B such that the line AB was assigned a new 

type during this last visit to A (a new type is either the first type assigned to a line or a type less 

general than the previous one). When visiting the node B , a type is determined for all its lines 

utilizing the above rules and the new type of AB that made us visit B . If a line of B had already 

another type, we assign to it the less general one (if, of course, the two types are compatible). 

Notice that we may be forced to return to A , immediately after the visit to B is completed. The 

procedure continues as long as we can assign a new type to a line. If we ever hit a contradiction, 

i.e., if we are forced to assign incompatible types to the same line, then we stop and we conclude 

that there is no assignment compatible with the type originally given. The time complexity of this 

procedure is linear, since we can assign a new type to a line at most twice. The procedure, so far, 

is similar to the filtering algorithm of Waltz [8], only with much fewer possible cases. In Figure 

5, an assignment of types is given under the asswnption that the line at the top marked with c 
was given to have label'-'. 

A line which at the end of the above procedure has the ambiguous type is called an ambigu­

ous line. Also, we call maximal ambiguous set a maximal succession of adjacent (i.e., sharing a 

node) ambiguous lines. In Figure 5, the four lines at the bottom form a maximal ambiguous set. 

It can be seen now that if following the above procedure, we succeed to uniquely assign types, 

then we can also assign a legal labeling to the chain. Indeed, for a maximal ambiguous set, we 

can either label all of its lines with a '-' or with a '~'. Arbitrarily specifying in this way the 

label of the lines of a maximal ambiguous set does not pass any information outside the set, 

therefore it can be safely done. This is so because any line adjacent to an element of a maximal 

ambiguous set (and not itself an element of the set) must be a connecting line whose label is 

uniquely determined just from the type of the elements of the set. A similar fact does not hold 

true for the possible types the Waltz' filtering algorithm gives. In that case, to check for labelabil­

ity, we have to try all exponentially many combinations we might be possibly left with at the end 

of the algorithm. 

The above considerations show how to label YE-chains. The problem, however, is to label 

the whole image. Difficulties arise if we try to check whether joining together labelable YE­

chains through L-chains gives a labelable graph. To be more specific, when joining YE-chains 

and L-chains the following situations may arise. 

First, suppose that we have a subgraph of the image that consists of a YE-chain and an L­

chain so that the YE-chain shares an end-line a with the L-chain and moreover, the second end­

line b of the L-chain is the middle-line of a T-node of the image (Figure 6). We call such L­

chains hanging L-chains. It is trivial to check that the labelability of the YE-chain in this case 

implies the labelability of the subgraph consisting of the YE-chain and the L-chain. In other 

words, we can safely ignore hanging L-chains when resolving the labelability question of a graph. 

Even more obvious is the fact that we can also ignore L-chains whose both end-lines are middle­

lines of two T-nodes of the image. Indeed, those are always labelable (e.g., by arrows going 

'along' the L-chain) in a way that does not interfere with the other labels of the graph. 

For a case a little more interesting from the above, consider a subgraph consisting of two 
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Figure 6. A hanging L-chain (with end-lines a and b ). 

YE-chains connected through an L-chain and suppose moreover, that the two end-lines a and b 

of the L-chain, which belong to the YE-chains, are collinear (Figure 7). 

a b 

Figure 7. 

In this case, by the general position assumption, the edges a and b must have the same label. 

Therefore, once we have an assignment of types for one of the two YE-chains, we obtain in a 

unique way an assignment for the other. Observe also that, by the proof of Lemma 1, if types for 

the two end-lines of an L-chain are given, then we can, in linear time, (the input size is the length 

of the L-chain) determine all pairs of labels of the two end-lines that are compatible with the 

given types and are extendible to a labeling of the whole chain. Of course, it may very well be the 

case that there is no such pair for a certain L-chain and the given types of its end-lines. 

These considerations lead to the following: We call a subgraph of the image a component 
if it is a maximal subgraph comprising a) YE-chains joined together with L-chains in each one of 

which the two end-lines are collinear and b) hanging L-chains attached to those YE-chains. Given 
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now a component and the type of one of its lines we can determine, in linear time, whether this 

component is labelable compatibly with the given type. To do that, we execute the type assigning 

algorithm described below: 

1) Assign types to all lines of the YE-chains of the component by the procedure described 

above. If that cannot be consistently carried out then the component is not labelable (compatibly 

with the originally given type). Otherwise, 

2) for each L-chain of the component with collinear end-lines find, in linear time, all pairs 

of identical labels of its two end-lines (respectively) that a) can be extended to a legal labeling of 

the whole L-chain and b) are compatible with the types of the end-lines that have been deter­

mined in the previous step. Call these pairs (and the labels they contain) permissible. If this step 

is not succesful, i.e., if there is at least one L-chain with no permissible pair, then the component 

is not labelable (compatibly with the originally given type). Otherwise, 

3) check whether the types found in the first step are compatible with the permissible pairs. 

Before we show how to do that, let us give a definition: An M-class is a maximal sequence of 

maximal ambiguous sets where each term of the sequence is joined to the next through an L­

chain that has collinear end-lines (strictly speaking, the M-classes are the collections of the terms 

of these sequences, rather than the sequences themselves). It is easy to see that all lines in the 

union of the sets of an M-class should have the same type. Therefore, we do the following: i) 

Locate the M-classes. ii) For each M-class M assign to the lines in the union of its elements the 

(same) most general type which is compatible with the permissible labels of the end-lines of all 

L-chains that join together elements of M. If for at least one M-class there is no such type compa­

tible with all permissible pairs, then the component is not labelable (compatibly with the origi­

nally given type or label).D 

It can be seen now that the above algorithm, if it is succesful, then it uniquely assigns types 

to the lines of the component. Call an M-class whose lines have been assigned the type'-/-+' an 

ambiguous M-class. Observe that both possible labelings of the elements of the sets of an ambi­

guous M-class are compatible with the permissible pairs. Therefore, we obtain a legal labeling of 

the component if we specify either as '-' or as '-+' the label of all elements in the union of the 

sets of an ambiguous M-class. Moreover, since each step of the above algorithm imposes on the 

possible labels restrictions that necessarily follow from the restrictions of the previous steps, the 

labelings that are thus obtained are the only possible ones. Therefore, we have proved the follow­

ing: 

Lemma 4. Let C be a component of the image and suppose that the type of a line of C is given. 

Then, in linear time, we can find pairwise disjoint classes Mi. ... , Mk (the ambiguous M­

classes) such that each Mi consists of maximal ambiguous sets and the following are true: 

a) The given type implies that the type of all lines in the union of the sets that appear in any 

ambiguous M-class is '-/-+'. 

b) The labels of all lines that do not belong to a set of an ambiguous M-class are uniquely 

determined by the given type. 

c) All legal labelings of the component that are compatible with the given type can be 

obtained as follows: (i) for each class Mi, assign to all lines that belong to any of its sets the 

same label('-' or'-+'), and b) assign labels to the L-chains observing the restrictions imposed by 

the labels Df their end-lines. 

There are many ways, other than forming components, that the YE-chains and the L-chains 
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can join to form larger parts of the image. With regards to the labelability question though, the 

only remaining interesting case to be examined is that of components joined together through L­

chains with non-collinear end-lines. All other cases either reduce to labeling components 

separately or they can be settled by the methods to be developed for this case. For notational 

convenience, an L-chain that joins two components and has end-lines that are not collinear and 

belong to YE-chains of the respective components is called a component joining L-chain. 

a 

Figure 8. A component joining L-chain. 

The end-lines a and b are not collinear and belong to YE-chains of the respective components. 

Consider now a component joining L-chain. We know that each of its end-lines, being an 

element of a YE-chain, can be labeled in at most three ways: with a connecting label or with an 

arrow of a determined direction. Also, by the arguments in the proof of Lemma 2, we know that 

these end-lines cannot both get a connecting label. Moreover, by the proof of Lemma 3, we know 

that assigning an arrow label to one of these end-lines excludes the possibility of one connecting 

label from the other. Therefore, the permissible pairs of labelings of these end-lines, i.e., those 

that can possibly be extended to a labeling of the whole L-chain, are at most three: a pair consist­

ing of an arrow on each end-line, and two pairs consisting of an arrow on one and a connecting 

label on the other. Also, the above considerations reduce the number of permissible labelings of 

each end-line to at most two. 

For each end-line a that has exactly two permissible labelings, we introduce a boolean vari­

able Va which is intended to take the value 'true', if the label of a is a prespecified one out of 

the two possibilities, and is intended to take the value 'false', otherwise. Of course, it is imma­

terial which of the two labelings corresponds to which of the two boolean values of Va. The 

important thing is that we have a different boolean value for each of the two permissible label­

ings. For example, if the two permissible labels of an end-line are '+' and '-', we may associate 

the value 'true' with'-' and the value 'false' with'+'. 

O&>serve now that a label on an end-line a of an L-chain may uniquely determine the label 

of another end-line b . Such restrictions on the labelings of end-lines can be expressed by boolean 
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formulas of the form (x implies y ), where x and y are literals of the variables Va and vb , respec­

tively. Observe that all these formulas have two literals, therefore we can check them for 

satisfiability in linear time by assigning a truth value to a variable and following the implications 

as far as they would go. These considerations lead to the following algorithm that checks the 

labelability of the image (given at least one line marked c for each Y-node). 

1) Determine the L-chains and the YE-chains of the image and the at most three possible 

labelings of each line in a YE-chain. 

2) Determine the hanging L-chains and the L-chains with collinear end-lines and then 

determine the components of the image. Determine the component joining L-chains, and find the 

(at most two) permissible labelings of their end-lines. If this step is not succesful, i.e., if there is 

an end-line with no permissible labelings, then the image is not labelable. Determine the boolean 

fom1ulas that express the restrictions on how these labelings can be paired. 

3) Introduce a variable EL and set it equal to the collection of end-lines of component join­

ing L-chains with exactly one permissible labeling. Let EL have the structure of a stack (i.e., a 

LIFO structure). Also, introduce a boolean variable abrt, whose intended meaning is that the step 

( 4) below has been aborted. 

4) As long as EL is non-empty repeat the two-step procedure described in the following two 

paragraphs. 

i) Set abrt =false and and take the top end-line, call it a, out of EL. Call C the component 

that a belongs to. Observe that, since a has only one permissible labeling, the label of one line of 

C is given. If no assignment of types has been carried out for C , invoke the type assigning pro­

cedure for it and determine its ambiguous M-classes Mi. ... , Mk. Otherwise, if such an assign­

ment has been previously carried out, then further restrict, as necessary, the collection of the 

ambiguous M-classes of C. For a component already provided with types, such a •tifting of 

ambiguity' of some of its M-classes is the only new information that the label of a can provide. 

If, when assigning types to a component a contradiction arises, i.e., incompatible types are 

assigned to the same line, then the current labeling cannot be carried out, so a) abort the current 

step (4) of the algorithm, c) undo all assignments of types as well as all changes on the set EL 

and on the collection of boolean formulas executed during this step and c) set abrt =true. 

ii) The specification of types done in (i) further restricts the permissible labelings of the 

end-lines of the component joining L-chains. So, consider those end-lines whose label is by now 

uniquely determined. Those determine the truth value of their corresponding variables v . Pro­

pagate these truth values as far as possible, by following the implications described by the 

boolean formulas. In this way, the permissible labelings of end-lines are further restricted. Again, 

if any contradiction arises, abort the current step (4), undo all changes and set abrt =true. Other­

wise, put in EL (in any order) the end-lines whose set of permissible labelings has been reduced 

to a singletone. From the collection of boolean formulas, retain only those whose both variables 

correspond to end-lines with exactly two permissible values. 

5) If abrt =false and if there is an end-line, say a, of a component joining L-chain whose 

label is not as yet uniquely determined do the following: Arbitrarily specify a truth value to the 

corresponding variable Va • Thus, the label of a is uniquely determined. Put a on top of EL and 

go to step (4). If this step is aborted, that means that the chosen truth value leads to a contradic­

tion. Therefore, in this case, assign to the Va the only rema~ning second truth value. Thus, again, 

the numbet of permissible labelings of a is reduced to one. Put a on top of EL and go to (4).0 

If the above algorithm ends with abrt = true, then there is no legal labeling of the image. If, 
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on the other hand, the algorithm ends with abrt = false then we have succeded to assign types to 
the lines of the image. From this assignment, we obtain a legal labeling of the image by arbi­
trarily specifying one label('-' or·~·) to the elements of each M-class that has type'-/~'. To 
be more specific, we prove the following: 

Theorem. If for each Y-node of the image we are given at least one line that must be labeled with 
a '+' or '-', then, in time linear on the number of nodes (or edges), we can check whether the 
image is legally labelable. 

Proof. Execute the algorithm described above. Observe that according to this algorithm, if we 
ever assign contradictory types to a line, we try the alternative truth-value assignment only for the 
last call of step (5). If this also leads to a contradiction, then we conclude that the image is not 
labelable. In other words no bactracking is ever made to a call of step (5) other than the last one. 
The only thing that needs to be shown to obtain the correctness of the algorithm is that this is 
enough. 

We first observe that the boolean formulas involved in the algorithm are all of the form (x 

implies y ). We conclude that if any contradiction arises during the propagation of the truth 
values of the variables v, this contradiction is only due to the assignment of a truth value per­
formed at the last call of step (5). This is proved by the following well-known argument: Sup­
pose that at a stage earlier than the last visit to step (5), the literal y was assigned the truth value 
'false'. Suppose, moreover, that the first contradiction during the propagation of truth values is 
obtained by an implication of the form (x implies y ), where x is known to be true. Then, by the 
contrapositive of the boolean implication, we should have obtained that x is false at the step that 
y was determined to be false. But then, we would have had an earlier contradiction. So, we 
proved that no backtracking to calls of step (5) preceding the last one is necessary for contradic­
tions of this type. 

Another crucial observation now is that the propagation of types takes place following rules 
that all have the syntactical form: 'if the type of line a is t, then the type of line b is t'' (again, 
clauses with two literals which, however, may assume at most four values: the number of possi­
ble types). Notice now that the end-lines of component joining L-chains have at most two possi­
ble labelings. Therefore, the restrictions that the labeling of one end-line imposes on the possible 
labelings of another can all be expressed by rules that have the syntactical form of two-literal 
clauses with two-valued variables. Therefore, again, if any contradiction is obtained in assigning 
labels to end-lines, we should only try to change the truth value assigned at the last call of step 
(5), and no further backtracking is necessary. 

Finally, consider a component C and let a be the end-line in this component that is visited 
first during the execution of the algorithm. Assigning a label to a leads to the assignment of 
types to the lines of C , in linear time, by the type assigning algorithm. This assignment is pro­
pagated further by step (4). If this is done without any contradictions, then neither any later 
visits to end-lines of C can lead to contradictory assignments for the lines of C. This is so, 
because as explained above, no assignment of a label to any end-line can contradict the label 
assigned to another end-line at an earlier stage. Of course, it is possible that at a later visit to the 
component C, we could determine the label of an end-line that had been previously assigned-by 
the type assigning algorithm- the type '-/~'. But, as explained, this only entails the 'lifting of 
ambigl\i.ty' of an ambiguous M-class, and cannot lead to any contradictions inside C. Therefore, 
a contradictory assignment of types to the lines of C does not make necessary any backtracking 
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to a call of step (5), other than the last one. But, we have now covered all possible cases of con­

tradiction that could make necessary a backtracking. Since a variable v assumes at most two 

values we conclude the correctness and the linearity in time of the algorithm. The algorithm 

though leaves some of the M-classes without a label, but only with an assignment of an ambigu­

ous type. Fortunately, this is no problem: we can arbitrarily assign a'-' or '-t' label to all lines 

appearing in any element of an M-class that is left with an ambiguous type, with the restriction 

that lines from the same class get the same label. Indeed, this is possible in the context of the 

whole image, since M-classes that are left with an ambiguous type are not joined via L-chains. 

Therefore assigning a label to all lines in one of them does not supply any information about the 

label or type of any line outside the class. The fact that M-classes left with an ambiguous type are 

not joined follows immediately from the observation that non-collinear end-lines of L-chains are 

not assigned a type, but rather a label.D 

4. Discussion. 

It should be mentioned that the constant involved in the complexity formula of the above algo­

rithm is very small. Indeed, the various types of subgraphs of the image can be located in one 

search of the graph. The determination of the permissible pairs of the labels of the end-lines of 

the L-chains and the determination of the corresponding boolean formulas all require only one 

visit to each of the lines of the L-chain involved. Finally, during steps ( 4) and (5) of the algorithm 

each line of the graph is visited at most 6 times. In the worst case a line will be assigned at the 

first visit the type '-/-t', then at the second, the label '-' or '-t' and at the third visit a contrad­

iction may arise. The same pattern may be repeated after backtracking to the last call of step (5). 

Moreover, the algorithm has an effective parallel version, i.e., it can be carried out with 

polynomially many processors in time polynomial in logn . Indeed, it is routine to check that all 

tasks involved in our algorithm, like locating various subgraphs, propagating types, and propagat­

ing truth values following the implications of clauses with two literals are all variants of the prob­

lem of finding the strongly connected components (in the usual graph-theoretic sense) of a 

directed graph. We do not give the details, since they are messy and standard. As a sketch" con­

sider the task of propagating types. To carry it out in parallel, we construct a directed graph as 

follows: For each line of the image, we introduce four nodes of the directed graph under construc­

tion. Each of these nodes corresponds to one of the possible four types that the line may have. 

Now, for each type-propagation rule of the form: 'If the line a has type t, then the line b has type 

t' ',we connect (with a directed edge) the node that corresponds to the line a with label t to the 

node that corresponds to the line b with type t' . It can be seen that finding the strongly con­

nected components of this directed graph is equivalent to the task of propagating types in the 

image. It is well known now how to find strongly connected components of a graph in an eff ec­

tive parallel fashion by carrying out matrix multiplication. For a review of all the related results 

see [6]. As it follows from these results, our algorithm can be carried out with n 3 many proces­

sors in 0 (log2n ) time. 
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