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Jacobi Polynomials as Generalized Faber Polynomials 

by 
Ahmed I. Zayed 

Department of Mathematics, 
California Polytechnic State University 

San Luis Obispo, CA 93407 
U.S.A 

Let B be an open bounded subset of the complex z-plane with closure ii whose complement ii0 is a sim­
ply connected domain on the Riemann sphere. Let z=l/i(.w) map the domain lwl>p(p>O) one-to-one con-

oo 
formally onto the domain 8° such that l/i(.oo)=oo. Let R(w)= ~ cnw-n, c0+o be analytic in the domain 

n=O 
00 00 1 

lwl>P with R(w);CO. Let F(z)= ~ bnzn, bn=FO, F.(z)= ~ bzn be analytic in lzl<1 and analytically 
n=O n=O n 

continuable to any point outside lzl<1 along any path not passing through the points z=0, 1,oo. 
The generalized Faber polynomials {Pn(z)}~=o of Bare defined by 

~ z '.___ 00 1 
l/i(.t) R(t)F(l/i(.t» - n~/n(Z)fn.ltl>p 

The aim of this paper is to show that 
1) if the Jacobi polynomials {~'tJl}~=o are generalized Faber polynomials of any region B, then it must 
be the elliptic region {z:lz+1i+lz-1l<p+.1,p>1}. 

p 
2) the only jacobi polynomials that can be classified as generalized Faber polynomials are the Thebichef 
polynomials of the first kind, some normalized Gegenbauer polynomials, some normalized Jacobi polynomi­
als of type {~'f..r+ 1 > }~=O· {F1(it 1·P> }~=o and there are no others, no matter how one normalizes them. 
3) the Hermite and Laguerre polynomials can not be generalized Faber polynomials of any region. 

AMS-subject classification (1985): Primary 33A65, secondary 30C10 
Keywords and phrases: Jacobi polynomials, Faber polynomials. 
Note: This report will be submitted for publication elsewhere. 

1. INTRODUCTION 

1 

Faber polynomials, which were introduced by Faber in 1903 [2] and later developed by several Rus­
sian mathematicians (see [7] and [9] for references), play an important role in the theory of functions 
of a complex variable and in approximation theory. 

One of their most important properties is that the Faber polynomials {Pn(z)}:1=o of a domain B 
play in B the role that {zn}:1=o play in the unit disc, i.e., any analytic function f (z) in B can be 

00 

expanded in a series of Faber polynomials f(z)= ~ anPn(z), where the series converges uniformly to 
n=O 

f(z) on compact subsets of B. 
Although not necessarily orthogonal, they have been used in the theory of orthogonal polynomials 

and special functions by several people including Y. GERONIMUS [3], v. SMIRNOV and N. LlmEDEV [7], 
P. Su:ETIN [10], G. SZEGO' [12] in connection with polynomials orthogonal on intervals, curves and by 
P. SUETIN [11] in connection with polynomials orthogonal on domains. 

To introduce the Faber £.Olynomials, let us assume that B is an open bounded subset of the com­
plex z-plane with closure B whose complement ic is a simply connected domain on the Rie~ 
sphere Q. Let z =ili(w) map the domain jwj>p(p>O) one-to-one conformally onto the domain Be 
such that l/l(,oo)=oo. We denote the incverse function of z=ili(w) by w=cp(z). Let L, be the image of 
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aDr={w:lwl=r}, when mapped by the function z =¥-(w) and Br be the bounded domain with boun­
dary 4. The boundary of B will be denoted by L. Let 

00 

R(w) = ~ CnW-n (1.1) 
n=O 

be analytic in the domain lwl>p with R(w)#) therein. The Faber polynomials {Pn(z)'ft,0 of the 
domain B are defined by 

tlf!<t> ~ 1 I I .I.I ) R(t) = ~ Pn(z)- , t >p. (1.2) •nl -z n=O tn 

It can be shown [7] that, when the generating function i )'(t) R(t) is expanded as a Laurent series in t -z 
some neighbourhood oft= oo, Pn(z) is indeed a polynomial in z of exact degree n. 

One of the aims of this paper is to study the relationship between Faber polynomials and some of 
the classical orthogonal polynomials. Unfortunately, the class of Faber polynomials defined by (1.2) 
is so limited that the only classical system of orthogonal polynomials it contains is the Tchebichef 
polynomials of the first kind. A larger class of Faber polynomials, known as the generalized Faber 
polynomials, was introduced by v. SMIRNOV and N. LEBEDEV [7] as follows: 

Let 
00 

F(z) = ~ bnzn ,bn=/=O (1.3) 
n=O 

be analytic in lzl<l and assume that F(z) can be continued analytically to any point outside the unit 
disc by any path not passing through the points z =O, 1, oo. 
If the same is true for the function 

00 1 
F.(z) = ~ -b zn, 

n=O n 
(1.4) 

we say that F(z) and F.(z) are adjoint. In this case it is easy to see that the point z = 1 is a singular 
point for both F(z) and F.(z). 

Let the set B be as before. Furthermore, let us assume that the point z = 0 belongs to B and that 
F(z), F.(z) are adjoint. Then, the generalized Faber polynomials {Pn(z)}~=o of Bare defined by 

to/ '(t) z - 00 1 
.1.1) R(t)F( .1.1)) - ~ Pn(z)-;;- ,ltl>p. (1.5) 't'\t 't'\t n=O t 

Again, it can be shown that Pn(z) is a polynomial in z of exact degree n. Moreover, if f(z) is analytic 
in the domain Br and has a singular point on 4, then 

00 

f(z) = ~ anPn(z), zEBr (1.6) 
n=O 

where 

(1.7) 

and 

-n _II':(" 1 
lim V lanl = - , p<r<oo 

n-+oo r (1.8) 

and 

(1.9) 
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Clearly, (1.2) is a special case of (1.5) when F(u) = (l ~u) 
In a recent paper [ 13], the authors showed that an analytic function f (z) in B given by (l.6) has a 

singular point at z = z 1 if and only if 

~ (1.10) 
n=o 

has one at w = wi. where w1 = <P(_z 1), i.e., z 1 = 1/-(wi) and deduced an old result by R. GILBERT [5] 
that a series of Gegenbauer polynomials 

- oo A -.- n - l _!_ f(z) - ~ anCn(z), fun \i'i(i;;T - -,p>l,A>- 2 ,A=#} (1.11) n=O n-..oo p 

has a signular point at z = z 1 if and only if g(w) has one at w = w1 where 
I 1 

Z1 = 2(w1 +-). 
W1 

(l.12) 

A key point in their proof is to show that the Gegenbauer polynomials are generalized Faber poly­
nomials of the elliptic region 

~= {z:lz+ll+lz-ll<p+.l}. 
p 

A proof of this fact will be given in the following section. It should be mentioned that Gilbert's result 
is, in fact, a generalization of an earlier result by Z. NEHARI [6] who showed that a series of Legendre 
polynomials 

oo _ _ nfl::I 1 
f(z) = ~ anPn(z), fun y Ian I = -,p> 1 

n=O n-+oo p 

has a singular point at z = z 1 if and only if g(w) has one at w = w1 where z 1 and w1 are related as 
in (l.12). For A = ~ , Gilbert's result yields Nehari's. 

Although a similar result concerning the location of the singularities of series of Jacobi polynomials 
00 

~ anP~a,/!)(z),a,{J>-1, 
n=O 

was proved by R. GILBERT [2], the authors in [13] were unable to deduce it from their general 
theorem concerning the location of the singularities of series of generalized Faber polynomials since it 
was not known whether the Jacobi polynomials were generalized Faber polynomials of any region B. 
It was also conjuctured that the Jacobi polynomials might be generalized Faber polynomials of some 
domain o<a,/!) that depends on a,{J and which reduces to the elliptic region ~when a = {J. 

The aim of this paper is to show that: 
I) the above conjecture is false, i.e., if the Jacobi polynomials are generalized Faber polynomials of 

any region, then it must essentially be the elliptic region Ci. 
2) the only Jacobi polynomials that can be classified as generalized Faber polynomials are the Tche­

bichef polynomials of the first kind, some normalized Gegenbauer polynomials, some normalized 
Jacobi polynomials of type 

{~a.a+ I)(z) }:i=o, { p';f+ l,/!)(z) }:i=o 

and there are no others, no matter how one normalizes them. 
3) the Hermite and Laguerre polynomials can not be generalized Faber polynomials of any region. 
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2. PRELIMINARIES 
For any complex number a and nonnegative integer n, let 

(a)o = I, (a)n = a(a + l) ... (a +n -1) = f(a +n) 
f(a) 

[a] _ f(a +l) 
n - f(n + l)f(a -n + l)" 

(2.1) 

(2.2) 

For any complex number a,b and c with c~0,-1, -2, ... , the hypergeometric function 
F(a,b;c;z) = 2F 1(a,b;c;z) is defined by 

• • _ CXl (a)n(b)n n 
F(a,b,c,z)- ~ () 1 z, lzl<l. (2.3) n=O C nn. 

The Jacobi polynomials p~a,P>(x),n = 0, 1,2, ... ,a,/J>- l are defined by 

p~a.P>(x) = [n;a]F(-n,n+a+{J+I;a+I; l;x), 

hence 

p~a,P)(l) = [n ;a] = (a:
1
I)n. 

~a,P>(x) is a polynomial solution of the differential equation 

(l-x 2)y"+[({J-a)-(a+{J+2)x]y'+n(n +a+{J+ l)y = 0. 
They form a complete orthogonal system in L 2{(-l, l),dw<a.P>(x)} where 

dw<a,P>(x) = (1-x)«(l +xfdx. 

The orthogonality relation reads 
I 

J ~a,P>(x )P!:-P>(x )(1-X )a(l + X f dx = hnBnm 
-1 

where 

h = 2a+/Hlf(n+a+l)f(n+p+l) 
n (2n +a+ p+ l)f(n + l)f(n +a+ p+ 1). 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

The following special cases of the Jacobi polynomials are of some importance to us: 
1) The Gegenbauer polynomials C~(x ), also known as the ultraspherical polynomials, are defined by 

1 
A f(l\+2)f(n +2A) <A-t,A-+) 1 

Cn(x) = 1 Pn (x), l\>-2. (2.10) f(2A)f(n +l\+2) 

I 

2) The Legendre polynomials Pn(x) are Pn(x) = c""[ (x) = ~o,o>(x). 
3) The Tchebichef polynomials of the first and second kinds are given respectively by 

p~-+.-+>(x) 
Tn(X) = 1 1 = COS nO, X = cos() 

p~-2·-2\1) 
(2.12) 

and 

(2.13) 
Finally, let p>l and c~. Then, the exterior of the circle ltl =p is mapped one-to-one under the 
conformal mapping 
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l 1 
z = 2(ct +et) 

onto the exterior of the ellipse a(:jl(c) whose foci are at +1 semi-axes 

l 1 l 1 -l(cp+-)1 and -l(cp--)1, 
2 cp 2 cp ~ 

provided that we take the branch of the inverse map t = z + V z2 - 1 which becomes infinite at 
z = oo. We denote the elliptic region bounded by a(:jl(c) by @(c).In particular, 

it= @(I)= {z:lz-ll+lz+ll-<p+l.}. 
p 

3. THE MAIN RESULTS 

This section contains the main results which are formulated in three theorems and a corollary. 

'THEOREM 1. The following sets of Jacobi polynomials are generalized Faber polynomials of the elliptic 
region <f. 
a) {To(x),2Tn(x)}~=I 
b) {C~(x)}~=O• J\:FO 
c) { (n ~X) C~(x)}~=o, J\=#) 

d) { (2a + 2)n p(a,a+ l)(x)} oo -
(a+l)n n n-0 

e) { (2/J + 2)n (fl+ l,/J) } oo 
(fJ+ l)n Pn (x) n=O· 

PROOF. a) Since Tn(cosf/) = cos nO, it follows from Poisson's sum 

oo l-r2 
I +2n~I(cos nO)rn = 1-2rcosO+r2' lrl <1 

that 

To(x)+ ~2Tn(x)..+ = (t~-l)[l- x 1-1 
n=I t (t +l) .!.(t+l.) 

2 t 

which is in the form given by (1.5) with \f!(t) = ~ (t + +) 
R(t) = 1 

and 

I 
F(u) = (1-u) 

b) From the generating function ([I], p. 21) 
00 I t']),_ 
n~oC~(x)/r( = (t2-2xt+If' ltl>l, A=#) 

one obtains 
00 I t']),_ 
~ C~(x)--;;- = [I- x r" 

n=O t (t
2
+lf _l(t+l.) 

2 t 

(3.1) 

(3.2) 

(3.3a) 

(3.3b) 

(3.4) 

(3.5) 
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which yields (1.5) for #_t) = ; (t + ! ) 
2A 

R(t) - t 

and 

- (t2+1f-l(t2-l) 

F(u) = l v.. 
(1-u, 

c) Similarly, from the generating function ([I], p. 71) 
00 ( +') 1 t2A(t2-1) 
~n, I\ C~(x)-;;- = 2 - ~+I, ltl >1, A=#) 

n =O I\ t (t - 2xt + 1 J 

we obtain 

f (n +A) C~(x)-k- = t2A(t
2
-l) [l- x r<A+I) 

n=O A t (t2+1j-+I 1.(t+_l} 
2 t 

which yields (1.5) for #_t) = ; (t +l) 
t 

2A 
R(t) - - 1

--
- <12+1r 

and 

(3.6a) 

(3.6b) 

(3.7) 

(3.8) 

(3.9a) 

F(u) = (1-u)-(A+l). (3.9b) 

d) Upon setting p = a+ 1 and replacing t by _l in the generating function ([I], p. 21) 
t 

f (a+/J+ l)n p(a,/J)(x)tn = 1 F( a+,8+ 1 a+p+2·a+ 1. 2t(x -1» (3.IO) 
n=O (a+ l}n n (1-t}a+/Hl 2 2 ' ' (1-t)2 

we obtain 

~ (2a+2)np(a,a+l)(x)-l = 12a+
2 

F( +l +3 +l 2(x-l) ) 
""" n '\2a+2 a ,a 2;a ; 

n=O (a+l)n tn (t-11 (Vt--1-)2 

Since F(a,b;a,z) = (1-z)-b. 

Equation (3.11) yields (1.5) with #_t) = ; (t +l) 
t 

t2a+2 
R(t) = ----,--

(t2+1t++ (t +I) 

and 

-(a+1..) 
F(u) = (1-u) 2 

c) Upon using the generating function ([8], p. 112) 

f (a+,8+ l)n p(a,/J)(x)rn = 
n =O (/J+ l}n n 

Vi 

(3.11) 

(3.12a) 

(3.12b) 

(3.13) 
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1 F(a+p+I a+p+2·,8+I·2r(x+l» 
(1 +rr+JJ+i 2 2 ' ' (I +r)2 

with a = ,8+ 1 and r = .l we obtain as in part (c) 
t 

~ (2,8+2)n p(fJ+l,/J)(x)-1 = 
n =O (,8+ l)n n tn ~ (3.14) 

3 t 21l+2(t + 1) x -(.8+2) 
+1.. [I- I 1 ] 

(12 + l)/J 2 2(t +7) 

which gives (1.5) with #_t) = ~ (t ++) 

t2fl+2 
R(t) = /J+ I 

(t2 +1) 2 (t-l) 
(3.15a) 

and 

-(.8+1..) 
F(u) = (1-u) 2 

(3.15b) 

Q.E.D. 
It should be noted that although the polynomials { (

2
n ~I) T2n-i(x)}:i=i have a generating func­

tion of the form (1.5), namely 

oo 2 I 1+2x(t+ !>-1 
~ T2n-1(x)- =In{ } n=I (2n -1) tn 1-2x(t +.l)-1 

t 

(see [12], p. 83) 

with #_t) = ~ (t + .l ), 
t 

and 

R(t) = t2 + l' 
,2_1 

F(u) = In{ 1 +u} 
1-u 

(3.16) 

(3.17a) 

(3.17b) 

they are not generalized Faber polynomials of the elliptic region lie since they consist only of odd 
polynomials. 

THEOREM 2. Let { £n }:i=o be any sequence of complex numbers such that the series ~:i=o£np~a,/J)(x) t: 
converges for xe[-1, I] and It I> 1. Then, if the normalized Jacobi polynomials {£nP~a,/J)(x)}:i=o are 
generalized Faber polynomials of any region, then it must be the elliptic region Ci'(c). 

PROOF. Assume that {£np~a,/J)(x)}:i=o are generalized Faber polynomials of some domain B deter­
mined by the conformal mapping z = #_t). Therefore, there exist R(t) and F(u) as described in sec­
tion 1 such that 

00 
nla /J) 1 _ EJtfil X _ X ~ £nrn • (x)-;;- - .u) R(t)F(u)) - G(t)F( .u)) n =O t 'Y\t •nt 'Y\t 

(3.18) 
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where 

Let 

and 

G(I) = t1/J '(I) R(I) 
'1{1) 

2q=a+p+1 

d2 d 
f5xa,/J) = (l -x2) dx2 +[(p-a)-(a+ P+2)x] dx. 

From (2.6), we have 

f5xa,fJ)p~a,/J)(x) = (q2-(n +qf)P~a,/J)(x) 

and thus by operating with f5xa,/J) on both sides of (3.18), we obtain 
00 

/J) 1 /J) x n~0£n(q
2 -(n +qf ]P~a, (x)fn = f5xa, G(l)F( 1/{I)) 

= G(t)f5xa.fJ) F( 2-) 
#.I) 

or equivalently 
00 1 /J) x 

- n~0£n(n +qf P~a,/J)(x)fn = G(t)eff• F(#.
1
»-

q2G(l)F( ~) ). 

From (2.6) and (3.18), it is easy to see that 

00 1 
n~0£n(n +qf P~a,/J)(x)fn = 

= lq + 1.!l.1.!l.( l._G(l)F( 2-)). 
di di lq '1{1) 

Thus, by combining (3.23) and (3.24) we obtain 

G(1)f5xa,fJ) F(2-)+1q + 1.!l.1.!l.( l._G(l)F( 2-)) 
#.t) di di lq #.I) 

-q2G(l)F(2-) = 0 
'1{1) 

which, after somewhat involved computations, reduces to 

(1-A (l)u2)F"(u) + [(p-a)#.1)-B(l)#.l)u }F'(u) 

+ C(1')i/J(1)F(u) = 0 

where 

u=2-
#.I) 

A (1) = (1[}(1)-12[l/i'(1)f 

B(I) = (2q + l)#.1)-(2q- l)ll/i'(1)+212lJI 1(1) ~'t:? 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 



+ t21/i''(t)-2t2 [f(t)]2 
1/1(.t) 

C(t) = (I-2q)t.Qfil + t2 G"(t). 
G(t) G(t) 

£ill But since G(t) = 1/1(.t) R(t), then 

G'(t) = _!_ + i.:.J!l + Jrfil _ ~ 
G(t) t if! '(t) R(t) 1/1(.t) 

and consequently 

A (t) = (1[}(t)-t2[1/i'(t)f) 

B(t) = (2q + 1)#.t) + (3-2q)ti/I '(t) + 3t2o/ "(t) 

-4t2 IY'(t}f + 2t2o/ '(t) R'(t) 
1/1(.t) R(t)' 

C(t) = (l-2q)t(.Qfil)+t2(.Qfil)2 +t2..4.(.Qfil) 
G(t) G(t) dt G(t) 

9 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

where ~(:J is given explicitly in terms of R(t) by (3.27). 

From (~.26), it follows that for F(u) to have a singularity at u = l,A(t) must be 1. therefore, 

1f}(t)-t2(i/l'(t)f = 1 (3.31) 

which upon solving yields 

1 1 
1/1(.t) = 2(ct + et) (3.32) 

Q.E.D. 
and this completes the proof. 

In the next theorem we show that the only Jacobi polynomials that can be classified as generalized 
Faber polynomials are exactly those given in theorem I and there are no others. 

THEOREM 3. The only Jacobi polynomials that can be classified as generalized Faber polynomials are 
exactly those given in theorem 1 and there are no others. 

PR.ooF. From theorem 2 we need only to consider the Jacobi polynomials which can be classified as 
generalized Faber polynomials of the elliptic region (f(c). Without loss of generality, we may take 
c = 1. For 1/1(.t) = ~ (t + ! ), the differential equation (3.29) now takes the form 

(l-u2)F"(u) + [(JJ-a)#.t)-B(t)#.t)u]F'(u)+ (3.33) 

+ C(t)1[}(t)F(u) = 0 

where 

- .!L l. 2 - _l Jrfil 1/1(.t)B(t) - 12 +(q +4)+ 2 t(t t2 X R(t) ), (3.34) 

and 

C(t)1[}(t) = .l(t2+1)2{ -8[(q+l)t2-(l-q)][t2-l] + 
4 04-1)2 

I .!fJ.!11 + St R'(t) + 
(1-2q)7( R(t) ) (t4-1) ( R(t» 
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B.J!l d R'(t) 
( R(t) )2 + dt ( R(t»}· 

Case (i): if C(tW(t) = 0, thus C(t) = 0. From (3.30), one obtains 

(I-2q)G'(t)+tG"(t) = 0 

which upon solving gives 

G(t) = [~c0t2< +c1 if q7::° 
c0Int +c 1 if q-0 

where c0 and c1 are constants. In view of (3.19) and (3.36), one has 

(t2 +1) 
(t2-l)Co 

(t2+1)(cot2q+c1) ifq-'-O 
R(t) = (t2-l) I 

(t2 + l)(colnt +c1) 
if q =O 

(t2 -1) 

Equation (3.33) now gives 

F"(u) __ [(,8-a)l/i(t)-B(t)l/i(t)u] 
F'(u) - (l -u2) 

For F(u) to be independent oft, P must be equal to a and 

B(t).p(_t) = a (constant). 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

By combining (3.34) and (3.39) one obtains, after solving the resulting differential equation in R (t), 

Rt 
_ C t2q(t2-l)(a-2q-4)12 

( ) - 2 (t2 + 1 )Ca -4)/2 (3.40) 

for some constant c2. By comparing (3.37) and (3.40), one deduces that the only possible solution is 
when a = 2, q = 0 and hence 

R(t) = c (t
2

+1) · (3.41) 
o(t2-1) 

Equation (3.38) now becomes 

which gives 

F"(u) = ~ 
F'(u) l-u2 

F(u) = ~In{ ! ~: }. 

(3.42) 

(3.43) 

Although R(t) and F(u) have been calculated explicitly, no generalized Faber polynomials exist in 
this case since R(t),F(u) are the same as those given in (3.17a) and (3.17b). 
Case (ii): if C(tW(t)-=f:=O and P-=f:=a. By taking the partial derivative of (3.33) with respect to t, we 
obtain 

F'(u) _ _ t(C(tW(t)) 

F(u) a.ut\ a 
(,8-a)~ -(-B(t)Kt))u at at 

(3.44) 



For F(u) to be independent oft, we must have 

:t (B(t)#_t)) = TJ 'dfit) or B(t)#_t) = TJIK.t)+a 

and 

:t (C(t)1[}(1)) = ; 'd~t) or C(t)lf}(I) = ; l/i(t)+: 

11 

(3.45) 

~ (3.46) 

for some constants TJ,a,d and e. By combining (3.34), (3.45) for l/i(t) = ~ (t +l.) and solving for R(t), 
t 

we have 

_ t2q(l2 - l)<a-2q-4)/2(I -1)1112 
R (I) - Co (t2 + I)<a -4)12(t + 1)1112 . 

In view of (3.35) and (3.46), we have 

.l(t2+1 )2 { -S[(q + l)t
4 
-2t

2 
+(1-q)J + (l -2q)1.y + 

4 (t4-1)2 t 

St + 2 + '} = .!l..(t +1-)+~ 
(t4 - I)y y y 4 t 4 

where y = ~'t:J . taking the logarithmic derivative of (3.47) yields 

_ yt3 +2(a -q-4)t2 +yt -2q 
y - l(t4-l) ' 

which, upon substituting in (3.4S) and simplifying, gives 

[TJ+2qTJ+d]t6 + [-4q2 +(4a -12)q -TJ2 +e +4a -S]t5 +[6TJq +(I I -4a)TJ-d]14 

+[-Sq2 +(Sa -24)q -2TJ2-2e -4a2+16a -16]t3 +[6TJq +(1 l -4a)TJ-d]t2 

+[-4q2 +(4a -12)q-TJ2 +e +4a -S]I +(2TJq +TJ+d) = 0. 

Therefore, 

TJ+2qTJ+d = 0 

-4q2 +(4a -12)q-TJ2 +e +4a -S = 0 

-4q2 +(4a-12)q-TJ2-e -2a2 +Sa -S = 0 

6TJq +(ll-4a)TJ-d = 0 

Solving these equations gives the following solutions: 

TJ = 0, +I, d = -TJ(l +2q), e = -a(a-2) and a = 2q +3 unless TJ = 0. 

First, let us assume that TJ::;if:O. Then, 
a)ifTJ = 1, d = -(1+2q), a= 2q+3, e = -(2q+3)(2q+l) 
and 
b)ifTJ = -1, d = (1+2q), a= 2q+3, e = -(2q+3)(2q+l). 

Equation (3.44) can now be written in the form 

thus, 

F'(u) __ d I 
F(u) - 2TJ (/J-a) 

u 
TJ 

(3.47) 

(3.4S) 

(3.49) 

(3.50) 

(3.51) 

(3.52) 
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F(u) = [ (,8-a) u)'1!211. 
'I} 

(3.53) 

Since F(u) has a singularity at u = 1, then 'I} = p-a. Therefore, in case (a), p = a+ I, 2q = 2a+2, 
and from (3.47), (3.53) we obtain 

t2a+2 
R(t) = c0 1 (ef.(3.12a)) 

(t2 + 1t+2 (t+1) 

F(u) = [l-ur<a+312> (cf.(3.12b)). 

Thus, we have a generating function for generalized Faber polynomials of the form 

c (t -l)t2a+2 [1- X J-(a+312) (c"'.(3.11) 
o (t2 + J)(a+312) 1 I :J. 

-(t+-) 
2 t 

From theorem 1-d, we conclude that the generalized Faber polynomials in this case are 

{ (2a+2)n p(a,a+l)(x)}oo-
(a+ l}n n n -0· 

In case (b}, a = p+ I,2q = 2p+2, and (3.47), (3.53) now give 
t2fJ+2 

R(t) = c0 1 (ef.(3.15a)) 
(t 2 + tlJ+T (t -1) 

-(fl+1-) 
F(u) = [1-u] 2 . (cf.(3.15b)). 

Thus, we have a generating function for generalized Faber polynomials of the form 

c 12/H2(t + 1) [1- X )-(fl+3!2) (c"'.(3.14)) 
o (t2 + pB+3!2 1 1 'J 

I -(t +-) 
2 t 

Again, from theorem 1-c, we conclude that the generalized Faber polynomials in this case are 

{ 
(2P+ 2)n w+ i,{J) } 00 
(P+ l)n Pn (x) n=O· 

Now we consider the case 'I} = 0. In this case (3.44) becomes 

a 
F'(u) = - at(C(t')i/}(t)) 

F(u) (p-a)_EM 
at 

(3.54) 

(3.55) 

and for F(u) to be independent oft and have a singularity at u = 1, ;
1 

(C(t')i/}(t)) must be zero and 

P must be equal to a which contradicts our assumption. 
Case (iii): if C(t')i/}(t)=/=O and P = a. In this case equation (3.44) becomes 

aat (C(t')i[}(t)) 
F'(u) _ -----

F(u) - ;/B(tN{t))u 

and for F(u) to be independent oft and have a singularity at u = 1, we must have 

B(tN{t) = a and C(t')i/}(t) = : . 
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To solve these two equations simultaneousely, we note that they are equivalent to (3.45), (3.46) with 
71 = O and d = 0 respectively. Therefore, it is easy to see that in this case we obtain a system of 
equations similar to (3.51) but with 71 = 0 = d. Upon solving this new system of equations, we have 

e = -a(a-2),a = {~iti~ , ~ 
and hence by (3.47) 

R(t) = 

t'lq . 
co 2 < I) 2 if a = 2(q + 1) (cf. (3.6a)) 

(t +l)q- (t -1) 

t'lq . 
c0 2 

if a = 2(q +2)(cf. (3.9a)) 
(t +I~ 

Equation (3.33) now becomes 

(l -u2)F"(u)-2(q + l)uF'(u)-q(q + l)F(u) = 0, if a = 2(q +I) 

and 

(l-u2)F"(u)-2(q +2)uF'(u)-(q + IXq +2)F(u) = 0, if a = 2(q +2). 

Thus, 

{

(l-u)-q if a = 2(q + 1) (cf. (3.6b) 
F(u) = (1-u)-(q+I)if a = 2(q +2)(cf. (3.9b)) 

and consequently there are two generating functions for two sets of generalized Faber polynomials 

/1.q [I - x I rq if a = 2(q + 1) (cf. (3.5)) 
(t +I~ .l(t +-) 

2 t 

and 

(t2-l)t1.q [1- x r<q+l) if a = 2(q +2)(c". (3.8)) 
( t 2 + l)q + 1 I 1 1 , -(t+-) 

2 t 

Since 2q = a+ p + I = 2a + I and for the Gegenbauer polynomials a = A - ~ , hence q = A, we 
conclude from theorem 1-b,c that the generalized Faber polynomials in this case are 

{C~(x)}:i=o if a = 2(q + 1) and «n ~A) C~(x)}:i=o if a = 2(q +2). 

Q.E.D. 

Finally, let us remark that the generalized Faber polynomials have also been defined for unbounded 
and multiply-connected domains as well ([7],p.145). 

Although some normalized Hermite polynomials are limits of generalized Faber polynomials, since 
([12],p.107) 

H. (x) _..!.. 
_n_ = lim[A-n12 C~(A 2 x)], 

n ! A->oo 

they are not themselves generalized Faber polynomials for any region, no matter how we normalize 
them. 
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COROLLARY I. For any normalization whatsoever, the Laguerre and Hermite polynomials are not gen­
eralized Faber polynomials for any region B. 

PROOF. In the cases where B is simply connected, whether bounded or not, one uses the same argu­
ments given in theorems 2,3 together with the Laguerre and Hermite differential equations to show 
that there exists no function F(u) for which (1.5) holds. The case where B is multiply-coniiected can 
be considered as a combination of the above two. 

REFERENCES 
[I] R. AsKEY, Orthogonal polynomials and special functions, SIAM, Regional conference series in 

Applied Math., vol. 21, (1975). 
[2] G. FABER, Uber polynomische Entwicklungen, Math. Ann., 57, (1903), pp. 389-408; 64 (1907), pp. 

116-135. 
[3] Y A.L. GERONIMUS, Polynomials, orthogonal on a circle and on an interval, IV, 77, Fizmatgiz 

(1958). 
[4] R. GILBERT, Integral operator methods in bi-axially symmetric potential theory, Contrib. 

Differential Equations, 2 (1963), pp. 441-456. 
[5] R. GILBERT, Bergman's integral operator method in generalized axially symmetric potential theory, 

J. Math. Phys. 5 (1964), pp. 983-997. 
[6] Z. NEHARI, On the singularities of Legendre expansions, Indiana J. Math. Soc., 5 (1956), pp. 987-

992. 
[7] V.J. SMIRNOV and N. LEBEDEV, Functions of a complex variable, M.I.T. Press, Cambridge, Mass. 

(1968). 
[8] H. SRIVASTAVA and H. MANocHA, A treatise on generating functions, Ellis Horwood publ. West 

Sussex, England, (1984). 
[9] P. SUETIN, The basic properties of Faber polynomials, Uspehi Mat. Nauk 19 (1964), No. 4 (118), 

pp. 125-154 = Russian Math. Surveys 19 (1964), No. 4, pp. 121-149. 
[10] P. SUETIN, Fundamental properties of polynomials orthogonal on a contour, Uspehi Mat. Nauk 21, 

(1966), No. 2 (128), pp. 41-88 = Russian Math. Surveys 21 (1966), No. 2, pp. 35-83. 
[11] P. SUETIN, Polynomials orthogonal over a region and Bieberbach polynomials, Proc. of the Steklov 

Institute of Math., No. 100 (1971), English Transl., Amer. Math. Soc., Providence, Rhode Island 
(1974). 

[12] G. SZEGO, Orthogonal polynomials, Amer. Math. Soc. Colloq. Puhl., Vol. 23, Amer. Math. Soc., 
Providence, Rhode Island (1975). 

[13] A. ZAYED, M. FREUND and E. GORLICH, A theorem of Nehari revisited, to appear in the Journal 
of complex variables: Theory and Applications. 

ACKNOWLEDGEMENT 
This research was done while the author was spending part of his sabbatical leave at the Mathematics 
and Computer Centre (Stichting Mathematisch Centrum) in Amsterdam and he would like to take 
this opportunity to thank prof. M. Hazewinkel, the head of the Mathematics Department, for his hos­
pitality and prof. T. Koomwinder for his interest in this research and for making constructive com­
ments. 


