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Small and medium sized reactors, SMRs, (according to IAEA, ‘small’ refers to reactors with power less than
300 MWe, and ‘medium’with power less than 700 MWe) are considered as an attractive option for investment
in nuclear power plants. SMRs may benefit from flexibility of investment, reduced upfront expenditure, en-
hanced safety, and easy integration with small sized grids. Large reactors on the other hand have been an attrac-
tive option due to the economy of scale. In this paper we focus on the economic impact of flexibility due to
modular construction of SMRs. We demonstrate, using real option analysis, the value of sequential modular
SMRs. Numerical results under different considerations of decision time, uncertainty in electricity prices, and
constraints on the construction of units, are reported for a single large unit and for modular SMRs.
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1. Introduction

Deregulation of the electricitymarket has been driven by the belief in
increased cost-efficiency of competitive markets. There is a need for val-
uation methods to make economic decisions for investment in power
plants in these uncertain environments. Kessides (2010) emphasizes
the use of real options analysis (ROA) to estimate the option value that
arises from theflexibility towait and choose between further investment
in the nuclear plant and other generating technologies as new informa-
tion emerges about energy market conditions.

There is an increased interest in SMRs as an alternative to largeGen III
type nuclear reactors (Boarin et al., 2012). This is primarily because the
former has, amongst other benefits, comparatively low upfront costs
and flexibility of ordering due to its modular nature (Carelli et al.,
2010). When comparing economy of large reactors and SMRs, it's neces-
sary to take into account the value of flexibility arising due to modular
construction, which traditional valuation methods like NPV cannot. As
the decisions to order new reactors would be planned for finite time
horizons, there is a need to adapt the real option valuation for modular
construction, as proposed byGollier et al. (2005), to afinite time horizon.
The case studies presented here are not only important for the
.eu (F. Roelofs),
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construction of power plants but they are also relevant for a larger
class of decision questions in which flexibility due to modularity and
economy of scale plays an important role.

The real options approach for making investment decisions in pro-
jects with uncertainties, pioneered by Arrow and Fischer (1974), Henry
(1974), Brennan and Schwartz (1985) and McDonald and Siegel
(1986) became accepted in the past decade. Dixit and Pindyck (1991)
and Trigeorgis (1996) comprehensively describe the real options ap-
proach for investment in projects with uncertain future cash flows.
Using real options it's possible to value the option to delay, expand or
abandon a project with uncertainties, when such decisions aremade fol-
lowing an optimal policy.

ROA has been applied to value real assets like mines (Brennan and
Schwartz (1985)), oil leases (Paddock, et. al (1988)), patents and R&D
(Lucia and Schwartz (2002)). Pindyck (1993) uses real options to analyze
the decisions to start, continue or abandon the construction of nuclear
power plants in the 1980's. He considers uncertain costs of a reactor rath-
er than expected cash flows for making the optimal decisions. Rothwell
(2006) uses ROA to compute the critical electricity price at which a new
advanced boiling water reactor should be ordered in Texas.

In this paper we focus on the value of flexibility that arises from the
modular construction of SMRs. Our approach is similar to Gollier et al.
(2005), where the firm needs tomake a choice between a single high ca-
pacity reactor (1200 MWe) or a flexible sequence of modular SMRs
(4×300 MWe). We, however, consider finite time horizon before which
the investment decision should be made. In a competitive market the
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Fig. 1. The area between the electricity path (starting at 3.5 cents/kWh) and cost of operation=3.5 cents/kWh, gives cash flow for the reactor.

2 Reliability is measured as the probability of the number of unplanned outages in a
year with one of the reasons for such an outage being demand exceeding available
generation.
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firms cannot delay an investment decision for ever and need to decide
before the anticipated entry of a competitor, or before a technology be-
comes obsolete. Also utilities need to meet the electricity demand with
someminimum reliability, which restricts their decision horizon to finite
time. The investment rules, such as the optimal time to start construction
and the real option value of the investment, can differ significantly with
changing decision horizons.

Real options canbepricedwithmethods used for pricingAmerican- or
Bermudan-style financial options. We use a simulation based algorithm,
called the stochastic grid method (SGM) (Jain and Oosterlee, 2012), for
computing the real option values of modular investment decisions. SGM
has been used to price Bermudan options in (Jain and Oosterlee, 2012)
with results comparable to those obtained using the well-known least
squares method (LSM) of Longstaff and Schwartz (2001), but typically
with tighter confidence intervals using fewer Monte Carlo paths. The op-
tion values are computed by generating stochastic paths for electricity
prices, and thus with uncertain future cash flows. As an outcome of com-
puting the real option price, we find the optimal electricity price at which
a newmodule should be ordered.

In the sections to follow we state the problem of modular invest-
ment in nuclear power plants and compare it with its counterpart
in the financial world. In Section 2 we describe the problem and its
real option formulation. In Section 3 the mathematical formulation
behind the problem is discussed. Section 4 gives the description of
the stochastic grid method used to value the real option. Section 5 de-
scribes in detail the application of the method to the nuclear case. Fi-
nally, Section 6 gives some concluding remarks and possible future
research questions that need to be addressed.

2. Problem context

We consider a competitive electricity market where the price of
electricity follows a stochastic process. The utility faces the choice of ei-
ther constructing a single large reactor of 1200 MWe, or sequentially
constructing four modules of 300 MWe each. The total number of series
units is denoted by n. Unit number i is characterized by discounted aver-
aged cost per KWh equal to θi, its construction time is denoted by Ci and
the lifetime of its operation by Li. Both construction and lifetime are
expressed in years. It is assumed that different modules are constructed
in sequence, where,

1. similar to the case of Gollier et al. (2005), construction of module
i+1 cannot be decided until construction of unit i is over, i.e. no
overlap in construction of modules is allowed.

2. a more relaxed constraint where the construction of unit i+1 can be
decided from any time subsequent to the start of construction of unit i.
We assume a constant discount rate denoted by r here.
The utility here needs to take a decision to start the construction of

the modules within a finite time horizon, denoted by Ti for the ith
module. In terms of financial options, Ti represents the expiration
time for the ‘option to start the construction of the ithmodule’. Unlike
financial options, it's difficult to quantify the expiration time for real
options, and it is usually taken as the expected time of arrival of a
competitor in the market, or time before which the underlying tech-
nology becomes obsolete. In case of an electricity utility, it also repre-
sents the time before which the utility needs to set up a plant to meet
the electricity demand with certain reliability.2

2.1. The real option formulation

The problem of modular construction can be formulated as a mul-
tiple exercise Bermudan option. In this case we consider the stochas-
tic process, Xt, to be the process which models the electricity price.
The payoff, hi(Xt=x), for the real option problem is the expected
net cash flows per unit power of electricity sold through the lifetime
of module i, when it gets operational at time t and state Xt=x.

Fig. 1 illustrates the profit from the sale of electricity for one realized
electricity price path. The cost of operation, θ, in the illustration is
3.5 cents/kWh and the area between the electricity path and θ gives the
profit from the sale of electricity.We are interested in the expected profit,
i.e. the mean profit from all possible electricity paths in the future. This
expected profit (or net cash flow) is the payoff, hi(Xt), for the real option.

The revenue, Ri, for the ith module, for every unit power of electric-
ity sold through its lifetime Li, starting construction at time t, when
the electricity price is Xt=x, can be written as

Ri Xt ¼ xð Þ ¼ E ∫tþCiþLi
tþCi

e−ruXudujXt ¼ x
h i

: ð1Þ

Ri is the discounted expected gross revenue over all possible electricity
price paths. The revenue starts flowing in once the construction is over,
and therefore the range for the integral starts from t+Ci and lasts as
long as the plant is operational, i.e. until t+Ci+Li. Similarly, the cost of
operating the ith module, Ki, through its lifetime for every unit power
of electricity generated, is:

Ki ¼ ∫tþCiþLi
tþCi

e−ruθidu: ð2Þ



3 The optimal time to order is often called “optimal stopping time”. In the case of se-
quential modular construction optimal stopping time would refer to the time when the
option to delay the construction to the next time step terminates.

Table 1
Construction time and discounted averaged costs used for the large reactor and themodular
case.

Construction time
(months)

Discounted average cost
(cents/KWh)

Large reactor 60 2.9

Modular case
Module 1 36 3.8
Modules 2 to 4 24 2.5
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Here θi, the cost of operating the reactor per kWh is assumed to be
constant. Therefore, the net discounted cash flow, for module i, is
given by:

hi Xt ¼ xð Þ ¼ Ri Xt ¼ xð Þ−Ki: ð3Þ

Eqs. (1) to (3) give the expected profit from the sale of electricity
through the life of the nuclear reactor.

Eq. (3) is the mean profit from all possible electricity paths in the
future.

The expiration time Tn is the time before which the last module
should be ordered. The optimal exercise policy π={τn, …,τ1}, is then
defined by the determination of the optimal times for starting the con-
struction of different modules, with τi, the optimal time for starting the
construction of module i, so that the net cash flow from the different
modules is maximized.

2.2. Electricity price model

The uncertain parameter in our pricingmodel is the electricity price.
Modeling electricity spot prices is difficult primarily due to factors like:

• Lack of effective storage, which implies electricity needs to be continu-
ously generated and consumed.

• The consumption of electricity is often localized due to constraints of
relatively poor grid connectivity.

• The prices show other features like daily, weekly and seasonal effects,
that vary from place to place.

Models for electricity spot prices have been proposed by Pilipovic
(1998) and Lucia and Schwartz (2002). Barlow (2002) develops a sto-
chastic model for electricity prices starting from a basic supply/demand
model for electricity. These models are focused on the short term fluctu-
ations of electricity prices which help better pricing of electricity
derivatives.

As decisions for setting up power plants look at long term evolution
of electricity prices, we, like Gollier et al. (2005), use the basic Geometric
Brownian Motion (GBM) as the electricity price process. However, it
should be noted that within our modeling approach we can easily in-
clude other price processes.

2.2.1. Geometric Brownian motion
If at any time t the electricity price is given by Xt cents/kWh, then

the electricity price process is given by

dXt ¼ αXtdt þ σXtdWt ; ð4Þ

where α represents the constant growth rate of Xt, σ is the associated
volatility and Wt is the standard Brownian motion. In our model we
assume α and σ to be constant. A closed form solution to the above
SDE can be obtained using Ito's lemma, and is given by:

Xt ¼ X0e
α−σ2

2

� �
tþσ

ffiffi
t

p
Z

� �
; ð5Þ

where Z is a standard normal variable. Also it can be seen that the above
process has a log-normal distribution, i.e. log(Xt) has a Gaussian distri-
bution with mean

E log Xtð Þ½ � ¼ log X0ð Þ þ α−σ2

2

 !
t;

and variance

Var log Xtð Þð Þ ¼ σ2t:
3. Mathematical formulation

The optimal time to order3 a new reactor under uncertain electricity
price is solved using dynamic programming, where an optimal solution
is found recursively moving backwards in time. Here we re-frame the
problem stated above as a dynamic programming problem.

3.1. Dynamic programming formulation

In order to construct all the modules at the optimal time, using
Bellman's principle of optimality, we need to take optimal decisions
starting from the last reactor. The optimal decision time for each of the
reactors is computed as well, starting from their respective expiration
times and moving backwards in time to the initial state. The expiration
time for ordering the ith module is given by

Ti ¼ Tn−
Xn−1

k¼i

Ck: ð6Þ

This constraint comes from the restriction that a new reactor can
be ordered once all the prior ordered reactors have been constructed.
Here Tn is the expiration time for the option to start the construction
of the last module and Ci is the construction time in years for the ith
module.

At the expiration time for the last module the firm does not have the
option to delay the investment. Therefore, the decision to start the con-
struction is taken at those electricity prices for which the expected NPV
of the lastmodule is greater than zero. The option value of the lastmod-
ule at the expiration time is then given by:

Vn tm ¼ Tn;Xtm

� �
¼ max 0; hn Xtm

� �� �
: ð7Þ

At time tk, k=m−1, ⋯, 0, the option value for the last of the series of
reactors is the maximum between immediate pay-off hn and its contin-
uation valueQn. The continuation value is the expected future cash flow
if the decision to construct the reactor is delayed until the next time
step. The reactor is constructed if at the given electricity price the net
present value is greater than the expected cash flows if the reactor is
constructed sometime in the future. This can be written as:

Vn tk;Xtk

� �
¼ max hn Xtk

� �
;Qn tk;Xtk

� �� �
; k ¼ 0;…;m−1: ð8Þ

Given the present stateXtk , the continuation value, or, in otherwords,
the discounted cash flows if the decision to start the construction is de-
layed for the last reactor is,

Qn tk;Xtk

� �
¼ e−r tkþ1−tkð ÞE Vn tkþ1;Xtkþ1

� �
Xtk

��� i
:

h
ð9Þ
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Fig. 2. Optimal investment policy for ordering sequential modular reactors, with a sample scenario path. No overlap between construction period of two reactors is possible in this case.
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Once the option value at each time step for the lastmodule is known,
we move on to modules n−1, …, 1. At the expiration time for the i-th
module, the decision to start its construction is taken when the com-
bined NPV of the present reactor and the expected future cash flow
from the optimally constructed modules i+1, …, n is greater than
zero. Therefore, the option value for the ith module at its expiration
time Ti is given by:

Vi Ti;XTi

� �
¼ max 0;hi XTi

� �
þ Qiþ1 Ti;XTi

� �� �
; ð10Þ

where hi gives the direct future cash flow from the ith module and
Qiþ1 Ti;XTi

� �
gives the expected cash flow from the optimal construc-

tion of modules i+1, …, n, given the information XTi
. The option value

for the module at time step tk, where tkbTi, is given by

Vi tk;Xtk

� �
¼ max hi Xtk

� �
þ Qiþ1 tk;Xtk

� �
;Qi tk;Xtk

� �� �
; ð11Þ

i.e. the decision to start the construction of module i is taken if the cash
flow from its immediate construction (given by hi Xtk

� �
) and the
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Fig. 3. Real option value of a modular project with increasing decision horizon and exercise
electricity is 3 cents/kWh and volatility in electricity price is 20%.
expected cash flow from the modules i+1, …, n, constructed optimally
in the future (modeled by Qiþ1 tk;Xtk

� �
), is greater than the expected

cashflows from themodules i,…,n, if the decision to start its construction
is delayed to the next time step (given byQi tk;Xtk

� �
). The expected cash

flow if the decision to start the construction of modules i,…, n is delayed
to the next time step is given by:

Qi tk;Xtk

� �
¼ e−r tkþ1−tkð ÞE Vi tkþ1;Xtkþ1

� �
Xtk

��� i
:

h
ð12Þ

The option value, Vi tk;Xtk

� 	
, at time tk for constructing the module

i not only carries the information about the cash flows frommodule i,
but also about the cash flows from the optimal construction of the
modules i+1, …, n in the future.

For sequential modular construction the payoff for module i is given
by hi Xtk

� 	þ Qiþ1 tk;Xtk

� 	
. The payoff does not only contain hi, the direct

discounted revenue from module i, but also Qi+1, the value of the new
option to start or delay the construction of newmodules, that opens up
with the construction of module i.
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4. Stochastic grid method for multiple exercise options

The real option problems we are interested in, have financial coun-
terparts, i.e. the Bermudan options andmultiple exercise Bermudan op-
tions. A Bermudan option gives the holder the right, but not obligation,
to exercise the option once, on a discretely spaced set of exercise dates.
Amultiple exercise Bermudanoption, on the other hand, can be exercised
multiple times before the option expires. Pricing of Bermudanoptions, es-
pecially for multi-dimensional processes is a challenging problem owing
to its path-dependent settings.

Consider an economy in discrete time defined up to a finite time
horizon Tn. The market is defined by the filtered probability space
Ω;F ;F t ;Pð Þ. Let Xt, with t=t0, t1, ots, tm=Tn, be an Rd-valued discrete
timeMarkov chain describing the state of the economy, the price of the
underlying assets and any other variables that affect the dynamics of
the underlying. HereP is the risk neutral probabilitymeasure. The hold-
er of the multiple exercise Bermudan option has n exercise opportuni-
ties, that can be exercised at t0, t1, …, tm. Let hi(Xt) represent the
payoff from the ith exercise of the option at time t and underlying
state Xt. The time horizon for the ith exercise opportunity is given by Ti.

We define a policy, π, as a set of stopping times τn, …, τ1 with
τnb…bτ1, which takes values in t0, …, tm=Tn, and τi determines the
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Fig. 5. Real option value for the large reactor and the modular project for diffe
timewhere the ith remaining exercise opportunity can be used. The op-
tion value when there are n early exercise opportunities remaining is
then found by solving an optimization problem, i.e. to find the optimal
exercise policy, π, for which the expected payoff is maximized. This
can be written as:

Vn t0;Xt0
¼ x

� �
¼ sup

π
E
Xn
k¼0

hk Xτk

� �
jXt0

¼ x

" #
: ð13Þ

In simple terms, Eq. (13) states that of all possible policies for or-
dering the reactor in the given decision horizon, the real option value
is computed using the one which maximizes the expected future cash
flows.

In the past decade several simulation-based algorithms have been
proposed for pricing Bermudan options. The regression based approach
proposed by Carriere (1996), Tsitsiklis and Van Roy (1999) was popu-
larized as the least squares method (LSM) by Longstaff and Schwartz
(2001). Other important approaches include the stochastic meshmeth-
od of Broadie and Glasserman (2004), computing the early exercise
frontier by Ibanez and Zapatero (2004) and the duality based method
from Haugh and Kogan (2004) and Rogers (2002). More recently Jain
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and Oosterlee (2012) proposed the stochastic grid method (SGM) for
pricing high-dimensional Bermudan options.

The problem of pricing Bermudan options with multiple exercise op-
portunities has been dealt with by Meinshausen and Hambly (2004),
with generalizations by Bender (2009), Aleksandrov and Hambly
(2008) and Schoenmakers (2012), who use the dual representation for
such pricing problems. Chiara et al. (2007) apply the multiple exercise
real options in infrastructure projects. They use a multi-least-squares
Monte Carlo method for determining the option value.

The problem of sequential modular construction stated above can
be solved using the stochastic grid method (Jain and Oosterlee, 2012).
We choose the stochastic grid method, because:

• The stochastic grid method (SGM) can efficiently solve the multiple
exercise Bermudan option problem;

• SGM can be used to compute the sensitivities of the real option value;
• The method can be easily extended to higher dimensions;
• The method doesn't depend on the choice of the underlying stochas-
tic process;

• Improved confidence intervals are obtained with fewer paths when
compared to LSM.

Although the problemwe consider here is one-dimensional, with the
electricity price as the stochastic variable, a typical real option problem
1
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Fig. 7. Fraction of modules ordered in the end for different scenario paths with increasing de
prices is 20%.
tends to be high-dimensional with several underlying stochastic terms.
A proper choice of pricing method would be one which can be extended
to higher dimensions in the future.

The stochastic grid method solves a general optimal stopping time
problem using a hybrid of dynamic programming and Monte Carlo
simulation. The method first determines the optimal stopping policy
and a direct estimator for the option price. The optimal stopping pol-
icy for the ith module at time step tk involves finding the critical elec-
tricity price X�

tk
. When the market price of electricity is equal to the

critical price, the value of delaying the construction of the module
to the next time step is equal to the value of starting the construction
immediately, i.e.,

Qi tk;X
�
tk

� �
¼ hi X�

tk

� �
:

Therefore, the critical price is taken to be the largest grid point Xtk ,
for which Qi tk;Xtk

� 	
> hi Xtk

� 	
. The module is ordered if the present

market price of electricity is greater than the critical price for the
given time step. Once the policy for all the time steps is known, SGM
computes lower bound values, using a new set of simulated electricity
paths, as the mean of the cashflows from each simulated path where
the module is ordered following the policy obtained above.

SGM for multiple exercise Bermudan options begins by generating
N stochastic paths for the electricity prices, starting from initial state
X0. The electricity prices realized by these paths at time step tk consti-
tute the grid points at tk. The electricity price paths can be generated
using Eq. (5) here.

The pricing steps for SGM can be decomposed into two main parts,
based on the recursive dynamic programming algorithm from the pre-
vious section.

• Parametrization of the option value: The option values at each grid
point are converted into a functional approximation using piece-wise
regression.

• Computation of the continuation value: The continuation value is com-
puted using the conditional probability density function and the func-
tional approximation of the option value at the next time step.

4.1. Parametrization of the option value

In order to obtain the continuation value for grid points at tk, we need
to determine the functional approximations of the option value at tk+1.
Once the option values at the grid points at tk+1are known, the functional
approximation is obtained using a piece-wise least squares regression.
Therefore, the option value at a given time step is divided into two re-
gions, separated by the critical electricity price X�

tkþ1
.
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For the two segments the functional approximation is given by,

V̂ i tkþ1;Xtkþ1

� �
¼ 1

Xtkþ1
bX�

tkþ1

n oXM−1

m¼0

amX
m
tkþ1

þ 1
Xtkþ1

≥X�
tkþ1

n oXM−1

m¼0

bmX
m
tkþ1

: ð14Þ

The expression 1
Xtkþ1bX�

tkþ1

n o is an indicator function whose

value equals 1, if the argument Xtkþ1bX�
tkþ1

n o
, is true and it is 0 other-

wise. Therefore, 1
Xtkþ1bX�

tkþ1

n o and 1
Xtkþ1≥X�

tkþ1

n o group the grid

points into two segments, separated by the critical electricity price.
The results converge to the true price when increasing number of
segments are used (see Jain and Oosterlee, 2012).

4.2. Computation of the continuation value

Once the functional approximations of the option values for mod-
ules i and (i+1) are known for time step tk+1, the continuation value
for the ith module at tk can be computed using Eq. (12). In order to
compute the expectation, E Vi tkþ1;Xtkþ1

� 	
Xtk

�� 
�
, we need the distribu-

tion function for Xtkþ1 given Xtk . This conditional distribution function,
f Xtkþ1 Xtk ¼ x

�� 	�
, for the GBM process is known in closed form.
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Fig. 9. Fraction of modules ordered in the end for different scenario paths with increasing v
first module is 9 years.
Therefore, the continuation value, or the value of the reactor if the de-
cision to order it is delayed to the next time step, as given Eq. (12) can
be written as:

Q̂ i tk;Xtk

� �
¼ ∫y∈ 0;X�½ �

XM−1

m¼0

amy
m

 !
f yð jXtk

¼ xÞdy

þ ∫y∈ X� ;∞ð �
XM−1

m¼0

bmy
m

 !
f yð jXtk

¼ x

Þ
dy: ð15Þ

In a more generic case where the conditional distribution function
is unknown, it can be approximated using the Gram Charlier Series.
For more details on computing the continuation value, we refer to
(Jain and Oosterlee, 2012).

5. Numerical experiments

We consider the case where an investor needs to decide between
two projects, one involving a single large reactor of 1200 MWe and
the other consisting of four modules of 300 MWe each. The construc-
tion time and costs for the two projects, given in Table 1, are taken
from the reference case by Gollier et al. (2005). The discount rate is
taken as 8% per annum, which is the OECD average, and the predicted
growth rate of electricity price is 0% here. The cost of electricity pro-
duction for the first unit is relatively expensive when compared to se-
ries units, as a large part of the fixed costs for the modular assembly,
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like the land rights, access by road and railway, site licensing cost, are
connection to the electricity grid are carried by the first unit.

In the case of the modular project we consider two different con-
straints, in two subsections to follow, i.e., the decision for construc-
tion of subsequent units can be made:

1. Once the construction of all prior units is completed (similar to the
case considered by Gollier),

2. Once the decision for the construction of all prior units has been
taken. Also, only one unit can be ordered at a given time step.

5.1. Sequential construction: the case in Gollier et al. (2005)

In this test case we apply constraint 1 for the construction of sub-
sequent modules, i.e., the decision for the construction of a new mod-
ule will not be made, unless the construction of all previous modules
is finalized. By the SGM we first obtain an optimal investment policy
and a direct estimator of the real option value of the project. The op-
timal policy gives the critical electricity price (as a function of time),
above which a module should be ordered. At a given time a newmod-
ule is ordered only when the present electricity is higher than the cor-
responding critical price for the module under consideration and
when all other constraints are satisfied. Once the optimal investment
policy is obtained, a fresh set of electricity paths is generated, and at
each of these simulated paths a new module is decided if the follow-
ing conditions are satisfied:

1. All modules preceding the given module have been constructed.
2. The present electricity price is higher than critical price for order-

ing the given module.
3. The present time is within the decision horizon for the corre-

sponding module.
4. The given module hasn't been ordered so far for the given path.

Fig. 2 illustrates for a sample electricity path when a new module
should be ordered. A module is ordered once the above conditions are
satisfied and the revenue from this module is discounted back to the
initial time. The mean of the discounted revenue for different paths
from all the four modules gives the real option value of the project.
For a single large reactor the steps followed are the same, except
that condition 1 is not required.

As the case in Gollier et al. (2005) corresponds to an infinite hori-
zon decision problem with exercise opportunities, we compare it
with an increasing finite time decision horizon. Fig. 3 compares the
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real option value of the modular project with the reference value in
Gollier et al. (2005). The option value of the project doesn't increase
much with an increasing number of exercise opportunities per year,
however it increases significantly with an increasing decision hori-
zon. From Fig. 3 it's clear that the real option value of a modular pro-
ject with a realistic decision horizon is lower than the value obtained
in Gollier et al. (2005), where an infinite decision horizon is assumed.
In other simulations, not reported here, we found that the option
value of the modular project with the same parameters, but with a
decision horizon of 100 and 200 years and four exercise opportunities
per year, has an option value between 390 and 400 Euro/kW, which is
already closer to the infinite horizon values.

Fig. 4 then compares the optimal investment policy for the first
module with the corresponding policy in Gollier et al. (2005). It
shows clearly the effect of a finite decision horizon on the investment
policy. As one approaches the final decision time, the value of waiting
(given by the continuation value) reduces which lowers the threshold
electricity price at which a new module should be ordered. However,
in the case of an infinite decision time horizon, the optimal policy or
threshold electricity price remains constant with time.
5.1.1. Comparison of two projects with different decision times
We now compare the real option values of the two projects, i.e. the

single large reactor and the sequence of small modular units, for increas-
ing decision time horizon and uncertainty in electricity prices. The con-
struction costs and times for the reactors are taken from Table 1. Based
on Eq. (6), we take the corresponding decision horizon for the construc-
tion of the first module between 1 and 17 years. For the single large re-
actor we take the decision horizon the same as that for first module.
One of the advantages of a modular construction is that the increasing
demand can be met gradually, which allows the spreading of the deci-
sions to a longer time horizon, possibly without significant gaps in
Table 2
Critical threshold electricity prices (cents/KWh) at which new reactors should be or-
dered, for different decision horizons. There are twenty equally spaced exercise oppor-
tunities each year. The volatility of the electricity price is taken as 20%.

Final decision Isolated Modular

Time (years) LR Unit 1 Unit 1 Unit2 Unit3 Unit 4

SGM 12 4.56 5.98 4.05 3.44 3.65 3.93
17 4.60 6.02 4.18 3.50 3.69 3.96
22 4.62 6.05 4.24 3.53 3.71 3.98

COS 12 4.56 5.98 4.10 3.46 3.65 3.93
17 4.60 6.03 4.21 3.51 3.69 3.96
22 4.62 6.05 4.25 3.53 3.71 3.98

Gollier ∞ 4.75 6.23 4.29 3.57 3.79 4.10
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demand and supply. Therefore, although the decision horizon for the
first module can be small, the decision horizon for the entire project
can be longer.

Fig. 5 compares the option value for the single large reactor with
that for the modular project for increasing decision time. When the
decision horizon is small it is optimal to opt for the large reactor
whereas for longer decision horizons modular projects appear more
profitable.

An insight into the reason why modular projects are better for lon-
ger decision time is given by Fig. 6, which shows the expected cashflow
from the four units for increasing decision time. When the decision ho-
rizon is small, the expected cashflow from the first module can be neg-
ative, which is the casewhen the decision horizon for thefirstmodule is
1 year. For short decision times, the first unit needs to be ordered to
keep open the option to order more profitable subsequent modules.
As the time approaches the final decision time for the first unit, it can
be ordered even if the expected revenue from its construction would
be negative.With increasing decision horizon the investor canwait lon-
ger and order the modules at more profitable electricity prices.

Fig. 7 shows fractions of the scenario paths forwhich different num-
bers of modules are ordered. When the decision horizon is small, the
project is only partially completed for a large number of scenario
paths, making it unprofitable. However, for longer decision times, the
fraction of the scenario paths for which all the four modules are
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Fig. 13. Real option value for the large reactor and the modular project for diffe
constructed increases, while the fraction of partially completed project
reduces.

5.1.2. Comparison of two projects and different volatilities in electricity
prices

A parameter to be considered when deciding between a single
large reactor and the modular project is the uncertainty in electricity
prices. We compare the real option value of the two projects for in-
creasing volatility in the electricity price in Fig. 8.

When the volatility in the electricity price is low, the single large
reactor project is more profitable, while for higher volatilities the
modular project seems a better choice. An intuitive answer to this is
that, for high volatilities, modular projects offer more flexibility, i.e.,
if the electricity price path at some point reaches unfavorable prices,
the possibility to abandon module construction, with a few units al-
ready ordered, exists. Fig. 9 shows the fraction of scenario paths for
which the modular project finishes with different numbers of units
ordered. As expected, the fraction of paths for which not all the four
units are ordered increases with increasing volatility.

Fig. 10 gives the expected cashflow from each unit for different
volatilities of the electricity prices. In general, the option value of
the project increases with an increasing uncertainty. A higher volatil-
ity reflects greater future price fluctuations (in either direction) in
underlying electricity price levels. This expectation generally results
10 12 14 16 18

orizon (years)

Modular Case
Large Reactor

rent decision horizons when the initial price of electricity is 3 cents/kWh.
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in a higher option premium, especially if the option is exercised opti-
mally. The cashflow from the first unit is smallest because it's the
most expensive of the four units. When the cost of the units would
be same, as is the case for units 2 to 4, the discount factor plays an im-
portant role, making the present value of units that are ordered first
larger than the value from units further in the future.

For a firm it is not only important to know the real option value for
making an investment decision, but also the sensitivity4 of the value
with respect to the parameters chosen. We here compute the delta
values, i.e. the ratios of the change in the real option value of the re-
actors to the change in the underlying electricity price. High delta
values imply that the investment decisions are sensitive to a changing
electricity price. Fig. 11 compares the delta values for the differentmod-
ules. We see that the delta values for the final module, as expected, con-
verge to one, i.e. when it's optimal to order a new reactor the change in
option value is proportional to the change in the electricity price. Howev-
er, for each prior module the delta values converge to values less than
one. For the first module a unit change in the electricity price changes
the option price by a factor of 0.8. This makes the modular construction
investment option generally more stable, i.e. even if the electricity price
drops by 1 the value of investment changes only by a factor of 0.8.

Table 2 gives the critical threshold prices for constructing a single
large reactor and for the different modules. We compare the SGM results
with those computed using the COSmethod5 (Fang and Oosterlee, 2008)
andwith Gollier et al. (2005). The COSmethod is a deterministic method,
developed for computationalfinance applications,which can easily be ap-
plied to sequential investment decisions for single “assets”. The Monte
Carlo and the COS method give identical prices, which is a validation for
the MC method, and we see a clear difference between the results
obtained for finite time and those for infinite time horizon decisions in
Gollier et al. (2005). From these results we can conclude that SGM is a
good candidate for pricing finite time real option problems, as it can
also be extended to higher dimensions in a straightforward way.

5.2. Modified case: multiple construction, sequential ordering

In this section we consider the two projects discussed above, ex-
cept that we now relax one of the constraints in the case of the
4 Sensitivity analysis in financial options is performed by computing the derivatives
with respect to various parameters, and these derivatives together are referred to as
the Greeks.

5 We would like to thank Marjon Ruijter for the COS method results.
modular project, i.e., a new unit can be ordered if all previous units
have been ordered (not constructed). Only a single unit can be or-
dered at any given time step. It's common practice to have parallel
construction of different units in order to achieve cost savings, as it al-
lows rotation of specialized labor between different units (NEA,
2000).

Fig. 12 shows a scenario path and investment policy for a modular
project with the above considerations. It can be seen that in this case
overlap in the construction period of different units is possible.

5.2.1. Comparison of two projects and different decision times
Fig. 13 compares the real option values of the two projects for dif-

ferent decision times. The decision time for the large unit is kept the
same as that for the first unit in the modular project. As mentioned
before, decisions of generation capacity expansion are based onmeet-
ing increasing electricity demands with a certain minimum reliability
and therefore the decision horizon is chosen to be the same for the
first module and the large reactor. In this case the modular project ap-
pears more profitable than the single large reactor.

In order to detail the results obtained, we compute the expected
cashflow from different units of the modular project and the fraction
of modules ordered for different decision times. Fig. 14 gives the
expected cashflow from the four units for different decision times. It
can be seen that the expected cashflow grows with decision time.
When overlap in the construction periods of different units is
allowed, the cashflow from the three similar costing units is almost
the same. The reason for this is that most often the three units are or-
dered around the same time, and so the effect of discounting to pres-
ent time is almost the same. An important reason for modular
projects having higher real option value is that the effective decision
horizon for the modular project is significantly longer than that of the
large reactor (which is the same as that of the first unit). Another fac-
tor which adds up to the profitability of the modular project (when
parallel construction is allowed) is that modular units have less con-
struction time, which allows cashflow from the sale of electricity to
start before it would start from the large reactor.

Fig. 15 shows the fraction of different modules constructed by the
end of the decision time for the modular project. It is clear that when
the constraint of waiting for completion of a unit before ordering a
new one is relaxed, that once the first unit is ordered, in most cases
it results in all four units being ordered.

5.2.2. Comparison of two projects for different electricity price volatilities
Fig. 16 compares the real option values of the two projects for dif-

ferent volatilities in electricity prices under the relaxed constraint.
We see in this case that the modular project is always more profitable
than a single large reactor.

When the constraint of ordering a new unit is relaxed from waiting
until completion of all previous units to waiting until ordering of all pre-
vious units, most of the units are ordered around the same time, as can
be concluded from the discussion above. However, this will not be the
case when the uncertainty in the electricity price increases. Fig. 17
shows the fraction of scenario paths for which different numbers of
units are ordered by the end of the decision horizon. It is clear that
with increasing uncertainty more often the project ends with fewer
units than were planned initially.

The cashflow for the project from different units however increases
with increasing uncertainty in electricity prices, as can be seen in Fig. 18.

6. Conclusions

In this paper we present a flexible and accurate valuation method for
computing real option values, and critical electricity prices, related to the
construction of nuclear power plants. We have developed a Monte Carlo
basedmethod, called the stochastic grid method (SGM), to analyze some
scenarios of interest for a utility when choosing nuclear reactors. In
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particular, we have focused our attention to the modular construction
and finite decision horizons.

Some of the outcomes can be summarized as:

• SGM is a suitable Monte Carlo method for pricing real options, es-
pecially for valuing projects with modularity. The method has
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Fig. 17. Fraction of modules ordered at the end for different scenario paths with increasing
first module is 9 years.
been validated against the deterministic COS method for a 1D test
case.

• Most investment decision problems are governed by a finite
decision time. It has been shown, in various numerical experi-
ments, that decision-making in finite time may result in quite dif-
ferent scenarios compared to infinite time decision problems.
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• When the modular project has a restriction on parallel construc-
tion of different units then:
– The real option value of a single large reactor is typically higher

when decision horizons are small.
– For longer decision timesmodular projectsmay bemore profitable.
– With an increasing uncertainty in the electricity prices, modeled

by a higher volatility in the chosen electricity price model, modular
construction may represent a better option. Modular construction
may include the possibility of having a few units ordered, when
the electricity price reaches unfavorable values. With stable elec-
tricity prices the cost effective single large reactor appears to be a
better choice.

• When there is the possibility of parallel construction ofmodular units,
then:
– the option value of the modular project greatly improves, and

seems, with our model assumptions, more profitable than a sin-
gle large reactor for different decision horizons.

– For different electricity price volatility values, the modular pro-
ject seems to be the better choice.

– In many cases, once the first unit of the modular project is or-
dered it results in all units being ordered.
– The option value of the modular project greatly improves, and

seems, with our model assumptions, more profitable than a
single large reactor for different decision horizons.

– For different electricity price volatility values, the modular pro-
ject seems to be the better choice.

– In many cases, once the first unit of the modular project is or-
dered it results in all units being ordered.

This paper serves as a validation of our method against the results
obtained in Gollier et al. (2005). In our future research, a more de-
tailed analysis may include a sophisticated electricity price model, de-
mand and capacity factors, and stochastic construction and operation
costs. In a follow-up paper we also discuss the impact of features like
the construction of twin reactors (parallel construction of modules),
effect of learning and rare events on the real option values of various
scenarios.

It's worth noting that the real option values computed here does not
include electricity price predictionmodel uncertainty, which is typically
called model risk in finance. We presume here that the electricity price
follows GBM and the scenario paths used for calculations follow the
same model. In reality however, the model presumed by a firm
wouldn't exactly replicate the actual electricity price process distribu-
tion.Model risk can however be assessed by varying the price dynamics
and studying the impact on the real option values. Furthermore, one can
always compute sensitivities with respect to the different problem pa-
rameters. In the present paper however, the purpose of the study was
to compare two projects in which case the electricity price prediction
model uncertainty effects the valuation of both of them similarly.
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