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Capital costs, fuel, operation andmaintenance (O&M) costs, and electricity prices play a key role in the economics
of nuclear power plants. Often standardized reactor designs are required to be locally adapted, which often
impacts the project plans and the supply chain. It then becomes difficult to ascertain how these changes will
eventually reflect in costs, whichmakes the capital costs component of nuclear power plants uncertain. Different
nuclear reactor types compete economically by having either lower and less uncertain construction costs,
increased efficiencies, lower and less uncertain fuel cycles and O&M costs etc. The decision making process
related to nuclear power plants requires a holistic approach that takes into account the key economic factors
and their uncertainties. We here present a decision-support tool that satisfactorily takes into account the
major uncertainties in the cost elements of a nuclear power plant, to provide an optimal portfolio of nuclear
reactors. The portfolio so obtained, under our model assumptions and the constraints considered, maximizes
the combined returns for a given level of risk or uncertainty. These decisions are made using a combination of
real option theory and mean–variance portfolio optimization.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The global electricity demand is expected to double to over
30,000 TWh annually by the year 2030 and meeting this demand
without substantially exacerbating the risks of climate change requires
a solution comprised of a variety of technologies on both the supply
and demand side of the energy system (Pacala and Socolow, 2004,
Holdren, 2006 and European Commission, 2007). Nuclear power can
play a key role in meeting the projected large absolute increase in
energy demand while mitigating the risks of serious climate disruption.
The fact that countries seem keen on building nuclear power stations
suggests that their relative costs compared to low-carbon alternatives
seem attractive to at least potential investors (Kessides, 2010). How-
ever, there are some concerns related to uncertainties underlying the
various cost elements of nuclear power. These are reflected in the
wide range of cost estimates due to combined effects of supply chain,
regulatory and project planning uncertainties experienced in many
new nuclear power plant (NPP) projects across the world today.
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There have been numerous studies on the economics of nuclear
power in recent yearswhich use levelized cost2 of electricity to compare
the economics of different generation technologies. The levelized cost
methodology used in these studies however does not address the role
of risks and uncertainties involved. Methodologies that take into
account the large and diverse set of risks characterizing investment in
nuclear power are required. This paper concentrates on the effect of
risks and uncertainties on investment decisions related to the nuclear
industry and the use of diversification to mitigate some of these risks.
Following Roques et al. (2008) and Fortin et al. (2007) we use a two-
step approach, where first real option optimal investment decisions
are taken at the plant level, and then mean–variance portfolio (MVP
here after) theory is used to minimize the uncertainties of returns for
a portfolio of nuclear reactors.

The seminal literature using MVP techniques in the power sector
concentrated on fuel price risk, and focussed on minimizing generation
cost, which, under ideal regulations of a vertically integrated franchise
monopoly, should maximize social welfare. Awerbuch and Berger
(2003) use MVP to identify the optimal European energy technology
2 The levelized cost of a project is equivalent to the constant euro price of electricity that
would be required over the life of the plant to cover all operating expenses, interest and
repayment obligations on project debt, and taxes plus an acceptable return to equity in-
vestors over the economic life of the project.
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3 MVP is one of the possible ways for portfolio optimization, based on how the risk is
expressed, which in the case of MVP is the standard deviation of the returns. Others like
Szolgayová et al. (2011), Fuss et al. (2012) use Conditional Value at Risk (CVar) for portfo-
lio optimization.

4 See Awerbuch and Berger (2003) and Jansen et al. (2006) for a discussion of the as-
sumptions and limitations affecting the application of MVP theory to power generation
assets.
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mix, considering not only fuel price risk but also Operation andMainte-
nance (O&M), as well as construction period risks, while Jansen et al.
(2006) use MVP to explore different scenarios of the electricity system
development in the Netherlands. Roques et al. (2008) applied the port-
folio theory from a private investor perspective to identify optimal port-
folios for electricity generators in the UK electricity market,
concentrating on profit risk rather than production costs risk. Fortin
et al. (2007) suggest the use of Conditional Value-at-Risk (CVaR) for
portfolio optimization rather thanmean–variance portfolio and provide
a detailed review of the literature in this area.

Real options analysis (ROA) has been applied to the energy sector
planning for years, since the special features of the electricity sector,
such as uncertainty, irreversibility and flexibility to postpone invest-
ments, make standard investment rules solely relying on the net
present value (NPV) not advisable as they ignore the options involved
in a sequence of decisions. The real options approach for making invest-
ment decisions in projects with uncertainties was pioneered by Arrow
and Fisher (1974). Using real options it's possible to value the option
to delay, expand or abandon a project with uncertainties, when such
decisions are made following an optimal policy.

Pindyck (1993) employs real options to analyse the decisions to
start, continue or abandon the construction of nuclear power plants.
There, uncertain costs of a reactor rather than expected cash flows are
considered for making the optimal decisions. Rothwell (2006) uses
ROA to compute the critical electricity price at which a new advanced
boiling water reactor should be ordered in Texas. Naito et al. (2010)
apply real options theory to determine the optimal timing for
decommissioning of existing nuclear power plants and construction of
their replacements. Zhu (2012) uses real options to evaluate the
Sanmen nuclear power plant in the Zhejiang province, China, taking
into account factors such as uncertain construction and electricity
costs. Gollier et al. (2005) evaluate projects where a firm needs to
make a choice between a single high capacity reactor (1200 MWe) or
a flexible sequence of modular SMRs (4 × 300MWe) using real options.
The authors in Jain et al. (2013) and Jain et al. (2014) study the value of
modularity in nuclear power plants when decisions are to bemade in fi-
nite time horizon. They show that the value of a modular project can be
significantly affected by changing decision horizons, while taking into
account factors such as learning, probabilistic lifetime extensions, and
rare events that can affect the operation of the power plant.

In this paper we concentrate on investment in nuclear power plants
in a liberalized electricity market, where the energy utility diversifies
into different nuclear reactor types as a strategy for reducing exposure
to construction costs, fuel and electricity price risks. Themean–variance
portfolio (MVP) theory is used to identify the portfolios that maximize
the returns for given risk levels. The return distribution of individual
nuclear generation types depends on the uncertainties in the costs
and revenues of the plant. It is, however, also affected by decisions to
continue or abandon a project that may be taken based on evolution
of construction costs and electricity prices. For example, if the construc-
tion costs become too high in the future, themanagementmaydecide to
abandon a project. Using real options we compute the return distribu-
tion for each plant assuming the management makes optimal decisions
in the future. The return distribution for each plant is then used to
compute the mean–variance portfolio.

Real options in discrete finite time horizon can be priced using
methods for pricing financial options with early exercise features. This
paper uses a simulation based algorithm, called the Stochastic Grid
Bundling Method (SGBM) (Jain and Oosterlee, 2012), for computing
the return distribution for individual reactors. The simulation also
computes the optimal policy to continue or abandon the project in
order to maximize its expected cashflows.

The rest of the paper is structured as follows: Section 2 will be
concerned with defining the portfolio optimization problem. Section 3
gives detailed account of the real options layer used for making optimal
decisions at the individual plant level. In Section 4 we validate our
model against the results reported in (Pindyck, 1993). Section 5
illustrates the two steps involvedwhen determining the optimal reactor
order fractions through various numerical examples. Under our model
assumptions, the sensitivity of reactor order fractions to a different
choice of parameter values and constraints on the portfolio are also
studied in this section. The final section will conclude the findings and
interpret the general implications.

2. Mean variance portfolio

While selecting the generating technology, policy makers need
to consider not only the cost of the generating technology but also un-
certainties in the costs involved. Furthermore, in liberalized energy
markets uncertainties are not only limited to the costs of the generating
technology but also affect the revenues stream, as utilities are no longer
able to pass on their prudently incurred investment costs to consumers.
In order to systematically deal with uncertainties in the costs and
revenues, we, like Awerbuch and Berger (2003), Roques et al. (2008),
employ the MVP theory3 to find an optimal mix of generating technol-
ogies, that results in the highest expected return for a given level of
uncertainty (or standard deviation) of the returns.4

To compute the optimal reactor order fraction using MVP, the
expected return distribution for individual reactors is required. One
way of obtaining the return distribution is by simulating several sam-
ples of costs (like the fuel prices) and revenues (electricity prices) and
then computing the return for each sample. This approach however
does not address the effect of possible future decisions related to opera-
tion of the power plant (for example, abandoning the plant if the
expected costs exceed expected revenues at a later date) on the return
distribution. In order to include the effect of optimal decisions in the
return distribution, first an optimal investment policy for each reactor
type is computed. This policy is then applied to simulated paths to
determine whether for a particular path there should be an early
abandonment. Based on these decisions the costs and revenues for
each sample path are computed, which then give the optimal return
distribution. The details for computing an optimal investment policy
and the associated return distribution for individual plants are given
in Section 3.

Suppose an investor has a certain wealth to invest in a set of J reac-
tors. Let the return from operation of reactor i be denoted by random
variable Ri, and let wi represent the proportion of the total investment
to allocate in the i-th reactor. The expected return of this portfolio is
given by:

E Rp

h i
¼ w1E R1½ � þ…þwJE RJ

h i
: ð1Þ

The portfolio variance, in turn, is calculated by

Var Rp

� �
¼ E

XJ

i¼1

wiRi−E
XJ

i¼1

wiRi

 ! !2
24 35: ð2Þ

So,

Var Rp

� �
¼
XJ

i¼1

XJ

j¼1

E Ri−E Ri½ �ð Þ Rj−E Rj

h i� �h i
wiwj: ð3Þ
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Representing each entry i, j of the covariance matrix Q by

qij ¼ E Ri−E Ri½ �ð Þ Rj−E Rj

h i� �h i
; ð4Þ

one has

Var Rp

� �
¼ w⊤Qw;

where w = (w1, …, wJ)⊤.
As wi represents the weight of reactor i, the weights are required to

satisfy an additional constraint:

XI
i¼1

wi ¼ 1:

As we deal with a portfolio of nuclear reactors additional conditions
on the weights, like that they cannot be negative, need to be applied.
Additionally, weights of individual reactors might be constrained by
an upper and lower bound, for example, if the utility decides that the
new portfolio should not excessively deviate from the existing one. In
general, we can state that:

Li≤wi≤Ui; i ¼ 1;…; J;

for given lower Li and upper Ui bounds on the weights.
MVP theory does not prescribe a single optimal portfolio combina-

tion, but rather a range of efficient choices for each level of return,
which form a Pareto efficient frontier composed of non dominated
points. This means that a rational investor should use an external
criterion to choose a portfolio out of the set at hand. Investors will
choose a risk–return combination based on their preferences and risk
aversion. By solving the mean–variance optimization problem we
identify a portfolio for given risk tolerance, λ, of the investor, of
minimum variance amongst all that provide a return equal to Rmin,
or, in other words, minimize the risk for a given level of return. The
formulation can be written as:

min
w

1
λ
w⊤Qw

subject to:

E Rp

h i
¼ Rmin;

XJ

i¼1

wi ¼ 1;

Li≤wi≤Ui; i ¼ 1;…; J:

ð5Þ

Eq. (5) is a convex quadratic programming problem for which
the first-order necessary conditions are sufficient for optimality.
The classical Markowitz mean–variance model can be seen as a way of
solving the bi-objective problem, which consists of simultaneously
minimizing the portfolio risk (variance) and maximizing the portfolio
return (profit), i.e.

min
w

max
w

subject to :

1
λ
w⊤Qw;

E Rp

h i
;

XJ

i¼1

wi ¼ 1;

Li≤wi≤Ui; i ¼ 1;…; J:

ð6Þ

The solution of Eq. (6) is non-dominated, efficient or Pareto optimal
for Eq. (5). Efficient portfolios are thus the ones which have the mini-
mum variance among all that provide a certain expected return or, in
other words, those that have maximal expected return among all up
to a certain variance.
3. Plant level optimization using real options

The real option valuation of nuclear power plants should take into
account themajor uncertainties that affect the decision making process
associatedwith them. Of the several risks involved in the life cycle of nu-
clear power plants (see Kessides (2010)for a comprehensive review),
the following have been identified as significant from the perspective
of economic risks and are taken into account in our model.

• The construction or capital costs, and the speed to build: The length of
the pre-construction period and the time it takes to construct the
plant are highly uncertain as there are several factors that make fore-
casting nuclear plant construction costs difficult. As pointed out by
Kessides (2010) one of the reasons for this is that new nuclear plants
require a significant amount of on-site engineering, which accounts
for a major portion of the total construction cost (Thomas, 2005). It
is generally difficult to manage and control the costs of large projects
involving complex on-site engineering.Whilemajor equipment items
(turbine generators, the steam generators, and the reactor vessel) can
be purchased on turnkey terms, it would be difficult for the entire nu-
clear plant to be sold on turnkey terms precisely because of the lack of
confidence on the part of vendors that they can control all aspects of
the total construction costs. Additionally, governmental licencing
and certification procedures can add up significantly to construction
costs and delays.

• The O&M and fuel costs: The O&M component includes expenses
related to health and environmental protection and accumulation of
funds forwastemanagement and for eventual plant decommissioning.
It also includes the cost for insurance coverage against accidents. Thus,
several potential externalities are internalized in O&M costs.

• The price of electricity: Electricity prices are highly uncertain and vary
significantly not just between different seasons but also during a single
day. Thus, the revenues generated by a power plant are uncertain and
an important parameter for making optimal decisions.

3.1. Modelling uncertain construction costs

Construction or capital costs constitute almost 60% of the total costs
associated with nuclear power plants and are the major source of
uncertainty when it comes to a comprehensive cost–benefit analysis
of nuclear power. An economic assessment that reflects on the uncer-
tainty in construction costs by employing probabilistic scenario analysis
can help making economic decisions related to NPPs. To capture the
uncertainties associated with the construction costs and their effect on
the decision making process we follow the model proposed by
Pindyck (1993) for irreversible investment decisions when projects
take time to complete and are subject to uncertainties over the cost of
completion.

Expenditure of nuclear power plants are sunk costs that cannot be
recovered should the investment turn out, ex post, to have been an
unfavourable one, i.e. the firm cannot disinvest and recover the
money spent. Cost uncertainties have implications for irreversible
investment decisions. The uncertainties in construction costs of nuclear
power plants can be classified into two different types. The first, as
Pindyck (1993) states, is technical uncertainty, that relates to the techni-
cal difficulties associated with the completion of the nuclear power
plant, i.e. if the cost of raw materials, labour etc. are fixed then the
uncertainty reflects how much time, effort and material will ultimately
be required. Technical uncertainties involved in the construction of
the plant can be resolved only by undertaking the project which unfolds
the actual costs and construction time as the project proceeds.

The second type of uncertainty that affects the construction costs
is external or independent of what the firm does and is called input
cost uncertainty. Input cost uncertainty arises when the prices of labour,
land, materials needed to build the plant fluctuate unpredictably,
or when there are unpredictable changes in government regulations



Table 1
Expense schedule for nuclear power plant construction from country to country expressed
as percentage of total overnight construction cost per year. Source: OECD (2005), CAN:
Canada, FIN: Finland, NLD: The Netherlands, CHE: Switzerland, ROU: Roumania. Year
stands for number of years before the plant becomes operational.

Year CAN USA FIN NLD CHE JPN ROU

−8 16.5
−7 12.5
−6 10 3 5 12.5
−5 8 20 10 20 19 15 12.5
−4 22 20 22 20 19.5 20 12.5
−3 29 20 28 20 19.5 20 16.5
−2 21 20 20 20 19.5 18.5 12.5
−1 12.5 10 20 20 19.5 21.5 4.5
1 7.5

6 If μc is the truedrift of generation cost then the risk adjusteddrift is μc∗= μc− η, assum-
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(for example a change in the required quantities of construction inputs
or certification time). As prices and government regulations change
irrespective of whether or not the construction of a plant has already
begun, input cost uncertainties affect the expected plant costs.

Consider the expected cost of completion of a nuclear power plant to
be a random variable K, then, following Pindyck (1993), the stochastic
differential equation (SDE) governing the dynamics of Kt can bewritten
as:

dKt ¼ −Idt þ β IKtð Þ1
2dWβ þ γKtdWγ ; ð7Þ

where I is the rate of investment. When the construction of a nuclear
power plant has begun the expected change in Kt over an interval dt is
−Idt, but the realized change can be greater or less than this due to
the random fluctuations in the cost to completion of the project. The
term β IKtð Þ1

2dWβ constitutes a part of the fluctuation in the project
cost due to the technical uncertainty, where the noise is introduced by
the Wiener process Wβ and the amplitude of the noise depends on the
remaining expected costs of the project and the rate of investment I,
and β. When the firm is not investing, i.e., I is zero the project cost is
not influenced by technical uncertainties. The term γKtdWγ constitutes
the part of the fluctuation in the project costs due to input cost uncer-
tainty. As discussed before, this uncertainty affects the cost of the
plant irrespective of I, i.e. whether the firm is investing or not. Higher
values of parameters β and γ, result in greater uncertainties in realized
construction costs of the power plant. The time for completion of the
power plant is a stochastic variable eT and is the time when Kt falls to
zero. Wβ and Wγ are uncorrelated Wiener processes, with Wβ being
also uncorrelated to the economy and the stock market, while Wγ may
be correlated with the market.

In Table 1, we see that the fraction of the overnight costs5 for the
construction of a power plant in different countries incurred each year
is almost equal. Although a linear investment profile is not always the
case, despite the values reported in Table 1, we assume in our model
that the firm invests at a constant rate I in the nuclear power plant.

3.2. Modelling uncertain O&M, fuel and electricity prices

During a nuclear power operation period, the generating costs con-
sist of operational and maintenance cost, back-end and front-end fuel
cycle costs. Following Rothwell (2006) and Zhu (2012) we model the
uncertain generation costs by Geometric Brownian Motion (GBM).
The dynamics of the generation costs are described by the following
SDE:

dCt ¼ μ�
cCtdt þ σ cCtdWC ; ð8Þ
5 Overnight costs are the costs of a construction project if no interest was incurred dur-
ing construction, as if the project was completed “overnight.”
where Ct is the instantaneous cost of generation in € per kWh, μc∗ is a risk
adjusted drift6 of the generation costs and σC is the volatility of the
generation costs. WC is a Wiener process which may be correlated to
the market.

Modelling electricity spot prices is difficult primarily due to factors
like:

• Lack of effective storage, which implies that electricity needs to be
continuously generated and consumed.

• The consumption of electricity is often localized due to constraints of
the grid connectivity.

• The prices show other features like daily, weekly and seasonal effects
that vary from place to place.

Models for electricity spot prices have been proposed by Pilipovic
(1998), Lucia and Schwartz (2002) and Barlow (2002), where the latter
develops a stochastic model for electricity prices starting from a basic
supply/demand model for electricity. These models are focused on
short term fluctuations of electricity prices which help better pricing of
electricity derivatives.

As decisions for setting uppower plants look at long term evolutionof
electricity prices, we, like Gollier et al. (2005), use the GBM as the
electricity price process. However, it should be noted that within our
modelling approach we can easily include other price processes. The
dynamics of electricity prices in our model are now described by

dPt ¼ μ�
pPtdt þ σpPtdWP ; ð9Þ

where Pt is the instantaneous cost of electricity in € per kWh, μp∗ is
the risk adjusted drift of electricity price process and σP gives the
volatility of electricity prices.

3.3. Value of the power plant after it becomes operational

When the construction of a power plant is finished, i.e. Kt = 0, the
value of the project depends only on the net cashflow to be generated
from the operation of the power plant. Let ht(Pt, Ct) be the value of the
power plant, once it becomes operational, at time t when the instanta-
neous cost of electricity is Pt € per kWh and the combined O&M and
fuel cycle costs are Ct € per kWh. Let ets denote the time when the plant
starts its operation, i.e. ets is the first instance when Kt = 0. Then, the
time when it will be decommissioned,et f , is equal to,
et f ¼ Lþets;
where L is the designed lifetime of operation for the power plant andets≤t≤et f . The expected discounted stream of future differences in cash
flows at time t, under the risk neutral measure ℙ, from the remaining
operation of the power plant, assuming the plant is decommissioned
only after completing its designed lifetime, is then a function of its
current state, Pt, Ct, and is equal to:

ht Pt ;Ctð Þ ¼ E
"Z max et f ;t� �

t
e−r f t Pτ−Cτð Þdτ

����Pt ;Ct

#

¼ e− r f−μ�
pð ÞtPt

1−e− r f−μ�
pð Þ t f−tð Þþ

r f−μ�
p

−e− r f−μ�
cð ÞtCt

1−e− r f−μ�
cð Þ t f−tð Þþ

r f−μ�
c

;

ð10Þ

where rf is the risk free discount rate and (tf− t)+ is used to denotemax
(tf − t,0).
ing that the Intertemporal Capital Asset Pricing model of Merton (1973) holds, the risk
premium η is equal to the β⁎ of the successful project times the risk premium of market
portfolio: η = β∗(rm − rf).
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3.4. Real option value of the power plant

The option value of the power plant before it becomes operational
depends on the electricity price, Pt, combined fuel cycle and O&M
costs, Ct, that would be incurred if the plant becomes operational and
on the expected cost of completion, Kt of the power plant. The option
value, Vt(Pt, Ct, Kt), of the plant can be computed using Ito's lemma to
obtain the differential equation for dV:

dV ¼ ∂V
∂t dt þ

∂V
∂PdP þ ∂V

∂CdC þ ∂V
∂KdK

þ1
2

∂2V
∂2
P
dP2 þ 1

2

∂2V
∂2
C
dC2 þ 1

2

∂
2

V

∂2
K
dK2

1
2

∂
2

V
∂P∂CdPdC þ 1

2

∂2V
∂P∂KdPdK þ 1

2
∂2V
∂K∂CdKdC;

and substituting Eqs. (7)–(9) with the corresponding Bellman
equations for optimality (see Pindyck (1993)) with the final
condition:

Vets Pets ;Cets ;Kets� �
¼ max hets Pets ;Cets� �

;0
� �

: ð11Þ

Here hets Pets ;Cets� �
is given by Eq. (10).

Solving the partial differential equation so obtained can be cumber-
some due to the free boundary condition, as the date at which the
power plant starts its operation, ets, is a random variable. The problem
we consider has a dimensionality of three, but in practice it can be
even higher, which makes the use of finite difference based methods
for solving the above PDE cumbersome. We, like Schwartz (2004), use
a simulation-based approach to solve the optimal investment decision
problem.

3.5. Computing the real option value using simulation

We assume a complete probability space (Ω, ℱ, ℙ) and finite time
horizon [0, T], with Ω the set of all possible realizations of a stochastic
economy between 0 and T. The information structure in this economy
is represented by an augmented filtrationℱt : tϵ[0, T], and ℙ is the prob-
abilitymeasure on elements ofℱ We assume that the state of economy
is represented by an ℱt-adapted Markovian process (Pt,Ct,Kt), i.e. the
electricity price rate, the generation cost rate and the expected cost of
completion of the power plant, respectively, at time t. The state space
is generated at discrete time steps and for simplicity the time horizon
is divided into M equal parts, with t ∈ [t0 = 0, …, tm, …, tM = T]. The
length of each time step is equal to

Δt ¼ T
M

:
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Fig. 1. Sample paths for expected cost of completion at different time steps.
The simulation begins by generating N stochastic paths for the re-
maining expected construction cost Kt, generation cost Ct and electricity
price rate Pt. The vector Ptm nð Þ;Ctm nð Þ;Ktm nð Þ, where n ∈ [1, …, N] and
m ∈ [0, …, M], defines a unique state at time step tm. We simulate the
randomcost of completion paths using the following discrete approxima-
tion to Eq. (7).

Ktmþ1
nð Þ ¼ Ktm

nð Þ−IΔt þ β IKtm
nð Þ

� �1
2 Δtð Þ1

2Xβ þ γKtm nð Þ Δtð Þ1
2Xγ ; ð12Þ

where Xβ and Xγ are uncorrelated standard normal variates. Time pointets nð Þ is the first time step at which Kt(n) reaches a value less than or
equal to zero and Kt(n) is set to zero for all t≥ets nð Þ. Fig. 1 shows a few
of the scenario paths obtained using Eq. (12), and Fig. 2 gives an exam-
ple of the distribution of the total construction time. The generation cost
rate Ct and the electricity price rate Pt paths are simulated as:

Ctmþ1
nð Þ ¼ Ctm

nð Þe μ�
c−1

2σ
2
cð ÞΔtþσ c

ffiffiffiffiffiffiffi
Δtð Þ

p
XC ; ð13Þ

Ptmþ1
nð Þ ¼ Ptm

nð Þe μ�
p−1

2σ
2
pð ÞΔtþσp

ffiffiffiffiffiffiffi
Δtð Þ

p
XP ; ð14Þ

where Xγ, XC and XP are standard normal variates that can be
correlated.

Time horizon T is taken sufficiently long, so that the construction
of the plant is almost surely finalized before T, i.e. etsbT with very high
probability.

The real option value problem, like its financial counterpart the
Bermudan option, is solved backwards in time, starting from the final
time step, tM = T. For those paths where the construction of the plant
is finalized the option value at any time step is given by Eq. (10). Partic-
ularly, the option value at the time point at which the plant becomes
operational is given by:

Vets Pets nð Þ;Cets nð Þ;0
� �

¼ e− r f−μ�
pð Þets Pets nð Þ1−e− r f−μ�

pð ÞL
r f−μ�

p
ð15Þ

−e− r f−μ�
cð Þets Cets nð Þ1−e− r f−μ�

cð ÞL
r f−μ�

c
; ð16Þ

where n ∈ [1,…, N] and L is the designed lifetime of the plant.
For those paths where investment is still ongoing the optimal deci-

sion to continue the investment is based on the continuation value Qtm

Ptm ;Ctm ;Ktmð Þ, which is given by:

Qtm
:¼ e−r fΔtE Vtmþ1

h ���Ptm
;Ctm

;Ktm

i
; ð17Þ

where the simplified notations Qtm
and Vtmþ1

are used forQtm

Ptm
;Ctm

;Ktm

� �
, and Vtmþ1

Ptmþ1
;Ctmþ1

;Ktmþ1

� �
, respectively. It is optimal



Table 2
Parameter set used for validation case.

Initial expected cost K0 $1435 per kilowatt
Investment rate I $144 per annum
Discount factor r 0.045
Life time of reactor 40 years
Revenue $2000 per kilowatt or 1.23 cents per kWh

9 Note that prices are in USD here in accordance to the reference values from the

Table 3
The real option value and critical expected construction cost for different levels of
technical uncertainties. K0

∗ , is the critical expected construction cost at time t0, above
which the project should not be undertaken.

Pindyck SGBM LSM

β Vt0 K0
∗ Vt0 K0

∗ Vt0 K0
∗

0 121 1550 120.64 1550.5 120.64 1550.5
0.24 131 1609 128.89 1582 128.75 1612
0.59 215 1881 211.46 1798 210.36 1887
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for the firm to continue with the investment, when the construction is
not yet finalized, i.e. if Qtm

nð Þ≥ IΔt , and abandon it otherwise. More
intuitively, irrespective of how much the firm has already spent on
the construction of the power plant, the optimal decision at a given
state point is just based on whether the net future expected revenues
are greater than zero. The option value at a state described by path n,
at time step tm, is then:

Vtm
nð Þ ¼ max Qtm

nð Þ−IΔt;0
� �

: ð18Þ

Once the option value has been computed for all paths at tm, the
above process (17,18) is followed recursively moving backwards in
timeuntil we reach the starting time t0. Themain challenge here is to ef-
ficiently compute the continuation value givenby Eq. (17), forwhichwe
use the Stochastic Grid Bundling Method (SGBM), details of which are
discussed in Jain and Oosterlee (2012).

The policy for continuing or abandoning the construction of the
plant obtained above is used to compute the real option value, i.e. the
expected discounted cashflow, and the distribution of the net cashflow
obtained following the optimal policy. Themean and the distribution of
the optimal cashflow are required as inputs for the portfolio optimiza-
tion step described in Section 2. To compute themwe generate another
set of Nl paths7 and apply the policy computed above to continue or
abandon the construction of the plant. If the n-th path enters the critical
zone, i.e. reaches a state (Pt(n), Ct(n), Kt(n)) where it is optimal to aban-
don, the plant is abandoned for that path and revenues for the path are
set to zero, i.e. Revenue (n) = 0. The costs incurred until the plant was
abandoned are discounted to time t0 to:

Cost nð Þ ¼
Xeta nð Þ

t¼t0

e−r f t IΔt;

where eta is the first time the path enters the abandonment region. For
those paths whose construction is successfully completed (i.e. the
paths which never enter the abandonment region), the revenues as
seen at time t0 are:

Revenue nð Þ ¼ e−r fets Vets Pets nð Þ;Cets nð Þ;0
� �

; ð19Þ

and the costs of construction of the plant, discounted to time t0, are:

Cost nð Þ ¼
Xets
t¼t0

e−r f t IΔt; ð20Þ

whereet nð Þ is the time when the plant starts its operation along the n-th
scenario path. The real option price or the net expected cash-flow fol-
lowing the optimal policy of the power plant is then given by

Vt0
Pt0

;Ct0
;Kt0

� �
¼ 1

Nl

XNl

n¼1

Revenue nð Þ−Cost nð Þð Þ: ð21Þ

The option price so obtained is a lower bound8 of the true price as the
policy used is generally sub-optimal due to numerical errors involved.

4. Validation: a case from Pindyck

Pindyck (1993) examined the decision to start or continue the build-
ing of a nuclear power plant. To apply the model the estimates of the
7 Fresh paths are generated as using the same set of paths that were used to obtain the
optimal policymay result in an option valuewhich is biassed high, due to perfect foresight
(or over-fitting).

8 Lower bound implies that if the same Monte Carlo simulation is performed several
times, with different initial seeds, the mean of Vt0 so obtained would be lower than Vt0 :
expectation and variance of the cost of building a kilowatt of nuclear
generating capacity are used. The variance is decomposed into two
parts to obtain estimates for technical uncertainty and input cost uncer-
tainty. The survey of individual nuclear power plant costs published by
the Tennessee Valley Authority (1977 to 1985)was used, which provid-
ed data on expected cost of a kilowatt of generating capacity on a plant-
by-plant basis. A cross-section regression analysis over time was
employed to estimate the expected costs and variance of a power
plant. The variance of the costs and their decompositionwere estimated
from time-series and cross-sectional variations of the data, using the
fact that the variance of cost due to technical uncertainty is independent
of time, whereas the variance due to input cost fluctuations grows with
time. Based on these estimates the technical uncertainty parameter β in
(Pindyck (1993)) is found to vary from 0.24 to 0.59, while γ in (Pindyck
(1993)) varies between 0.07 and 0.2. In this analysis an instant revenue
as soon as the construction is finalized was considered.

As a first validation experiment, like Pindyck (1993) we use the
parameter set given in Table 2.9

Table 3 compares the values reported by Pindyckwith those obtain-
ed using the simulation method SGBM as well as the least squares
method (LSM) (see Longstaff and Schwartz (2001), Schwartz (2004)
for details on LSM), for different levels of technical uncertainty. It
can be seen that without uncertainties in the construction costs the
closed-form solution and results from simulations are almost identical,
where a minor difference is due to the discretization of Eq. (7). When
technical uncertainty, β, is non-zero the real option values from simula-
tion are slightly lower than the closed form values from (Pindyck,
1993), as simulation results are biassed low. The option values obtained
using SGBM are slightly higher than those obtained using the least
squares method for the same set of paths, which implies that in the dis-
crete time version the critical costs for abandonment, K0

∗ , obtained using
SGBM are more accurate.

We would like to emphasize the role of real options in computing
the net expected cashflow and its distribution when a firm is flexible
to take decisions during the course of construction and operation of a
reactor. If the underlying stochastic factors like expected cost of comple-
tion turn unfavourable in the future the firm uses its discretion to aban-
don the project10 in such a way that the net expected cashflow is
maximized. Fig. 3 compares the cashflow distribution when (a) the
literature.
10 It is assumed that the firm behaves rationally throughout the life cycle of construction
and operation of a nuclear power plant, although there is some empirical evidence which
suggests thatmanagementmight act otherwisewhen sunk costs are involved, for example
see “Throwing goodmoney after bad?: Nuclear power plant investment decisions and the
relevance of sunk costs” by De Bondt and Makhija (1988).
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firm doesn't have the flexibility to change its decision in the future and
continues with the construction of the reactor irrespective of whether
the scenario is favourable or not, and (b) the firm has the flexibility to
change its decision and continues or abandons the project following
the policy computed using SGBM. It can be seen that the option to aban-
don theproject under unfavourable price scenarios reduces the possibil-
ity of extreme losses. When a firm has the flexibility to change its
decision at a future date, we see two peaks in the distribution of the
cashflows. One of the peaks is at a negative cashflow value close to
zero, while the other is around a cashflow of 500. The reason for the
two peaks is the asymmetric nature of future decisions — if the future
outlook of the expected cashflow appears to be fine the project con-
tinues, while when it is lower than some critical threshold value the
project is abandoned. Due to optimal early abandonment of the project
along unfavourable future scenario paths, the losses areminimized. This
can be seen by comparing the frequency of paths forwhich the cashflow
is less than −500 for the two cases in Fig. 3. Overall the net expected
cashflow for the flexible case, when decisions are made optimally,
would be higher than the inflexible case; as extreme losses are mini-
mized in the former case. Table 4 compares the expectation and stan-
dard deviation of the net cashflow for the above two cases.

Fig. 4 shows the fraction of scenario paths for which the project is
abandoned at different time stepswhen the policy from SGBM is follow-
ed for the above case. It's more likely for a project to be abandoned in its
early phases than in later stages. As the project commences the remain-
ing expected construction costs (due to the ongoing investment) and
also the remaining expected time to finish the construction reduce
while the anticipated revenues increase (as the revenues are expected
to start flowing in relatively sooner, which implies they are discounted
less), which reduces the chance of the project being abandoned.
5. Numerical examples

In this section we illustrate by various examples the two steps in-
volved in deciding the optimalmix of NPPs for a power utility (or coun-
try or otherwise). We consider a more realistic case, where not only the
costs are uncertain but also the market price of electricity. We analyse
the real option value, optimal decision rules to start, continue or aban-
don the construction of a reactor, distribution of costs and cashflows ob-
tained following the optimal policy for different reactors. Finally, based
Table 4
The expected value and standard deviation of the net cashflow corresponding to the
distribution in Fig. 3. The reactor parameters are taken from Table 2 and [β,] values are
[0.59 0.07], respectively.

Inflexible case Flexible case (SGBM)

Expected net cashflow ($/kWe) 186 221
Standard deviation 600 500
on the expected net cashflow and its distribution, we find the optimal
reactor order fraction for the different reactors considered.

5.1. Choice of nuclear power plants

In this sectionwe discuss the economics of different nuclear reactors
we consider for determining an optimal portfolio in energy generation
planning. Here, not only the expected costs of completion of the reactors
are uncertain, but also the source of revenues, i.e. the electricity prices.
The optimal decisions do not only depend upon the expected costs of
the reactor but also on the present market price of electricity. Under
our model assumption, the construction of an unfinished reactor con-
tinues as long as the expected cost of completion is below some critical
value and the electricity prices are above the corresponding threshold
electricity price. For a given expected construction cost if the present
electricity price (per annum) falls below a threshold the expected net
cashflow would be negative and hence the construction of the plant is
discontinued in our model. Similarly for a given electricity price if the
expected cost of completion increases above a threshold price the con-
struction of the plant will be abandoned in our model.

For our analysis we consider the following types of reactors for the
portfolio.

• Generic Gen III type Light Water Reactor (LWR): The light water reactor
(LWR) is a type of thermal reactor that uses water as its coolant and a
neutron moderator and solid compound of fissile elements as its fuel.
Thermal reactors are the most common type of nuclear reactor, and
light water reactors are the most common type of thermal reactor.

• Fast Reactors (FR): Fast reactors or fast neutron reactors are a category
of nuclear reactors in which the fission chain reaction is sustained by
fast neutrons. They are considered an attractive option because of
their potential to reduce actinide wastes, particularly plutonium and
minor actinides which eliminate much of the long-term radioactivity
from the spent fuel. Fast reactors with closed fuel cycle allow a signif-
icantly improved usage of natural uranium. The Sodium Cooled Fast
Reactor (SFR), Lead Cooled Fast Reactor (LFR) and Gas Cooled Fast Re-
actor (GFR) are examples of fast reactors featured in theGeneration IV
roadmap (2002) (R. Gen IV, 2002).

• High Temperature Reactor (HTR): Also featured in the Generation IV
roadmap, HTRs are graphite-moderated nuclear reactors with a
once-through uranium fuel cycle. The high temperatures enable ap-
plications such as an emission-free process heat or hydrogen produc-
tion, which effectively increase the efficiency of the reactor by as
much as 20% (Generation IV roadmap, 2002).

• Super Critical Water Reactor (SCWR): Featured in the Generation IV
roadmap, SCWRs resemble light water reactors (LWRs) but operate
at higher pressure and temperature, with a direct once-through
cycle like a boiling water reactor (BWR), with the water always in a
single fluid state like the pressurized water reactor (PWR). The



Table 5
The specification of the reactors considered.

Power (thermal) MW Power (electric) MW Efficiency (%) Capacity factor (%) Life time (years)

Gen III 4500 1600 35.5 90 60
FR 3600 1500 42 85 60
HTR 500 (200 + 100) (40 + 20) 90 60
SCWR 2300 1000 43.5 90 60

Table 6
The cost ranges for annual O&M, front-end and back-end fuel cycle costs for different reactors considered. The final column gives cost ranges for combined O&M and fuel cycle costs.

O&M range Front-end fuel cycle range Back-end fuel cycle range Combined expected O&M and fuel costs

€/kWe/a €/kWe/a €/kWe/a €/kWe/a

Gen III LWR [50–95] [5–35] [15–75] [70–205]
FR [60–115] [45–100] [15–45] [120–260]
HTR [50–100] [35–110] [10–30] [95–240]
SCWR [45–80] [20–75] [10–55] [75–210]
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SCWR is an advanced nuclear system because of its high thermal effi-
ciency of 45% vs. 33% for current LWRs, and simple design (Generation
IV roadmap, 2002).

The size, efficiency and capacity factors of the reactors considered,
taken from Roelofs et al. (2011), are given in Table 5.

Notice that HTRs have an efficiency of 40%+ 20%, as not only would
the reactor produce 200 MW of electricity, but also 100 MW of process
heat. We incorporate this in our model by assuming that the cost of
electricity is 2.32 times the process heat costs, as in Gandrik (2012),
which results in a revenue for this reactor equal to 1.21 × Pt.11

We take the reference values for the expected construction costs,
fuel cycle costs, operation and maintenance costs and also the confi-
dence interval or standard deviation of these costs from van Heek
et al. (2012) and Roelofs et al. (2011). Van Heek et al. (2012) use the
G4-ECONS (version 2.0) tool (see Williams (2007)) to compute the
levelized unit electric costs, as well as its components capital, O&M
and fuel cycle costs. These are engineering cost estimates as there is
not sufficient experience to estimate these values from historical data.
We use the annual O&M, front-end fuel cycle and back-end fuel cycle
expense range estimates from van Heek et al. (2012), to compute the
combined O&M and fuel cycle cost ranges. These values are reported
in Table 6.

Table 7 gives the expectations and standard deviations of the con-
struction costs, computed from cost ranges reported in van Heek et al.
(2012) and Roelofs et al. (2011). Also listed in Table 7 are the expecta-
tions and standard deviations of the combined O&M and fuel cycle
costs that are computed from the corresponding cost ranges reported
in Table 6. In the case of the HTR we additionally include the benefits
of modular construction (increased standardisation and faster learning
curves), different from van Heek et al. (2012). We follow the analysis
of Boarin et al. (2012), where four effects of modular construction are
distinguished:

1. Learning factor: The number of similar plants constructed world-
wide will lead to increased experience in construction and therefore
in decreased costs;

2. Modularity factor: The modularization factor assumes a capital cost
reduction for modular plants, based on the reasonable assumption
that the smaller the plant size, the higher the degree of design
modularization;

3. Multiple units factor: The multiple units saving factor shows a pro-
gressive cost reduction due to fixed cost sharing among multiple
units at the same site;
11 If Pt is cost of electricity per MWhe, then revenue from electricity generated by the
plant per hourwould be 200× Pt and that fromprocess heatwould be100� Pt

2:32. Therefore,
the equivalent revenue per MWhe would be 200Ptþ100 Pt

2:32

200

� � ¼ 1:21Pt :
4. Design factor: The design factor takes into account a cost reduction by
assumed possible design simplifications for smaller-sized reactors.

Fig. 5 shows the curve constructed when all these separate effects
are combined. A fitted curve that gives the modular construction factor
is then given by,

mcf ¼ min 0:195ln
Powermod

100

� 	
þ 0:63−10−4 � Powerref ;100%

� 	
;

ð22Þ

where Powerref is 1100MWeand Powermod is on the x-axis of Fig. 5. Fol-
lowing Eq. (22) based on the assessment of Boarin et al. (2012), the
modularity construction factor would be 65.5% for a Powermod =
200 MWe HTR, which brings down the expected costs of construction
of HTRs from 6100 to 3600 €/kWe.

As the values reported in Table 7 are “engineering estimates”, the
uncertainty in these values can primarily be attributed to technical un-
certainty. When only technical uncertainties are involved the variance
of the expected cost of construction is given by (see Pindyck (1993)):

Var Kð Þ ¼ β2

2−β2

 !
K2

;

a relation we use to compute the corresponding value of β for different
reactors in the portfolio. The Brownian motions driving the input cost
uncertainties (see Section 1) for different reactors can be correlated to
each other (and the economy), as raw material required and govern-
ment regulations are similar for different reactors, while technical un-
certainties for different reactors are assumed to be uncorrelated.
Table 8 summarizes the parameter choices related to Table 7.

The real option value of the reactors and the distribution of the net
cashflow under optimal policy for construction and operation of the
reactors, depends on, amongst others, the expected growth rate for
electricity prices (μp∗), uncertainty in electricity prices (σP), and the dis-
count rate used (r).12 Table 9 gives values considered for these parame-
ters. For the base case, values corresponding to the row ‘Medium’ in
Table 9 are taken, and the initial price of electricity Pt0 is set to
8.5 cents/kWh.
12 As the Brownianmotions dWγ, dWC, dWP may be correlated with themarket, we can-
not use the risk-free interest rate for discounting, especially if spanning is not possible.We
instead consider different discount rateswhich represent different levels of risk premiums
added to the risk-free rate.



Table 7
Expected construction, fuel and O&M costs for different reactors considered. The values in
brackets are standard deviations of these costs.

Reactor Expected construction cost
€/kWe

Expected fuel and O&M cost
€/kWe/a

Generic Gen III LWR 2900
(320)

140
(35)

FR 4600
(580)

185
(35)

HTR 3600
(750)

165
(35)

SCWR 3400
(400)

140
(33)

Table 8
Initial expected cost of completion, input cost uncertainty parameter γ, technical
uncertainty parameter β, expected construction time, present value of combined O&M
and fuel charges C0 and the corresponding volatility for different reactors. For all cases
considered we assume the correlation coefficient ρ between WP and WC to be 0.5 and
the growth rate in O&M costs, μC∗ to be 0. The rate of investment I for each reactor is
taken as their initial expected construction costs divided by their expected construction
times.

Generic Gen III K0 = 2900 (€/kWe),
γ = 0.07,
β = 0.15,
Expected construction time = 5 years,
C0 = 1.36 (cents/kWh),
σC = 0.25

Generic fast reactor K0 = 4600 (€/kWe),
γ=0.07,
β = 0.18,
Expected construction time = 7 years,
C0 = 1.95 (cents/kWh),
σC = 0.19

HTR K0 = 3600 (€/kWe),
γ = 0.07,
β = 0.17,
Expected construction time = 4 years,
C0 = 1.70 (cents/kWh),
σC = 0.22

SCWR K0 = 3400 (€/kWe),
γ = 0.07,
β = 0.16,
Expected construction time = 5 years
C0 = 1.43 (cents/kWh),
σC = 0.24
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5.2. Real option value analysis

We use real option analysis to determine the optimal policy to start,
continue or abandon the construction of a project, so that the net ex-
pected discounted cashflow is maximized. As stochastic construction
costs Kt, combined O&M and fuel cycle costs Ct, and cost of electricity
Pt, are considered, the optimal decision will depend on these three
state variables. It will be optimal to abandon the project, if:

• the expected cost of completion is too high,
• the O&M and fuel cycle costs are too high, and
• the electricity prices are too low.

Fig. 6 shows the early abandonment region at an intermediate time
step of the simulation. Here the x-axis represents the expected costs of
completion of the reactor and the y-axis represents the cost of electricity
minus fuel and O&M costs. The red coloured grid points represent the
states at which the construction of the reactor should be abandoned,
while green colour represents the ones for which the construction
should continue.

Table 10 reports the critical price of electricity above which each of
these reactors should be ordered and their real option values when
the initial price of electricity equals P0=8.5 cents/kWh. Reactor specific
parameters are taken from Table 8. The same set of simulated electricity
paths should be used for different reactors.

Under our model assumptions and parameter choices, we see that
theHTRs, despite their high expected capital costs, appear economically
most attractive, primarily due to their higher efficiencies. The Gen III
LWRs have the lowest critical electricity price above which they can
be ordered, while the fast reactors seem economically least viable in
our model settings.

5.3. Optimal portfolio analysis

If a firm has to choose amongst the above reactors, solely based on
their capital costs (Table 8), then their portfolio would contain only Ge-
neric Gen III type LWRs, something also observed in practice. However,
200 400 600 800 1000 1200 1400 1600

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

Size MWe

M
o

d
u

la
r 

C
o

n
st

ru
ct

io
n

 F
ac

to
r

Boarin and Ricotti (2011)
Fitted curve

Fig. 5.Modular construction factor as a function of size of the reactor. The reference power
plant size is 1100 MWe.
such a portfolio excludes the role of uncertainties of cashflows for these
reactors. The application of MVP theory takes into account not only the
expected returns but also the uncertainties or risks associated with
these returns.

An efficient frontier gives the optimal reactor order fraction for a
portfolio designed to meet a given expected return while minimizing
the uncertainties of these returns. In order to determine the efficient
frontier the expected returns and the covariance matrix of the returns
from the reactors considered are required. The distribution of returns
for each reactor optimally constructed is sampled by computing the
returns along each simulated path.

The following constraints on the portfolio are considered:

• Budget constraint: Under a budget constraint, the optimal reactor
order fraction for every euro spent is computed. Returns correspond-
ing to a euro spent on a reactor are given by,

Ri nð Þ ¼ Revenuei nð Þ−Costi nð Þ
Costi nð Þ; ð23Þ

and the constraint for the portfolio optimization problem is then:

XJ

i¼1

wi ¼ 1;

n = 1,…, N being the path index and i = 1,…, while J indicates the dif-
ferent reactors considered. The weights correspond to the fraction of
Table 9
Values of electricity price growth rate μp∗, uncertainty in electricity prices, σP and discount
rate r considered in various examples.

Growth rate Uncertainty Discount rate

μp∗ (% per annum) σP (% per annum) r (% per annum)

Low 0 10 6
Medium 3 20 8
High 5 30 10
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Table 10
Critical price of electricity P�

t0 in (euro cents/kWh) above which the reactors should be
ordered and their option values (in €/kWe) when the initial price of electricity is
8.5 euro-cents/kWh. The reactor parameters are taken from Tables 8 and 9.

Type Critical electricity price P0
∗ Option value P0 = 8.5 cents/kWh

Gen III LWR 4.0 3100
FR 6.25 875
HTR 4.5 3500
SCWR 4.7 2650

Table 11
The expected return and its standard deviation per euro spent for the base case.

Gen III FR HTR SCWR

Expected return 1.3259 0.30778 1.0959 0.972
Stdev return 1.3036 0.99925 1.0873 1.1184
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money invested in different reactors, which is then used to compute the
reactor order fraction (per kWe) by taking into account the expected
construction costs as reported in Table 8.

• Capacity constraint: Under a capacity constraint, the optimal reactor
order fraction for every kWe of capacity ordered is computed. Returns
corresponding to a kWe ordered are given by,

Ri nð Þ ¼ Revenuei nð Þ−Costi nð Þ;

and the constraint for the portfolio optimization problem is:

XJ

i¼1

wi ¼ 1;

n= 1,…, N being the path index, and i=1,…, while J indicates the dif-
ferent reactors considered. The constraint implies here that reactor or-
der fractions should add up to a kWe.

For both constraints, the weights are additionally bounded as,

0≤wi≤1; i ¼ 1;…; J;

which comes naturally from the fact that short selling is not possible
here, and thus the weights cannot be negative.
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Fig. 7. (a) Efficient frontier for the base case when portfolios have the budget constrai
The quadratic programming problem expressed by Eq. (5) is solved
using the optimization toolbox of MATLAB, which solves general
problems of the kind:

min
w

such that :

1
2
w⊤Qwþ f 0w;

Aw≤a;
Bw ¼ b;

L≤w≤U;

ð24Þ

using the command |w= quadprog(Q,f,A,a,B,b,L,U).|
Fig. 7 displays the efficient frontier and the corresponding optimal

reactor order fraction when the portfolio has the budget constraint.
The mean and standard deviation of the simulated returns for the indi-
vidual reactors are reported in Table 11. Under our model assumptions
and choice of parameter values, the Gen III LWRs have the highest
expected returns (based on Eq. (23)), while the FRs have the lowest
returns per euro spent. However, the uncertainty of returns for FRs is
lower than that for Gen III LWRs. An investor who wants to minimize
the uncertainty of returns and is willing to take a lower expected return
in order to do so, will choose a portfolio withmore Gen IV type reactors.
An investor who wants higher returns, and is indifferent to the uncer-
tainty of returns, will hold a portfolio with more Gen III type reactors.

Fig. 8 shows the efficient frontier and optimal reactor order fraction
corresponding to points on the optimal frontier, when the portfolios
have the capacity constraint. Expected returns and their standard devia-
tions per kWe of reactor ordered are reported in Table 12. We see that
unlike the case with the budget constraint, where portfolios with high
returns were dominated by Gen III LWRs, here portfolios with higher
expected returns are dominated by both HTR and Gen III LWRs. This
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Fig. 8. (a) Efficient frontier for the base case when there is a capacity constraint and (b) the reactor order fractions corresponding to points on the efficient frontier.

4000

5000

6000

7000

te
d

 R
et

u
rn

r=6%
r=8%
r=10%

109S. Jain et al. / Energy Economics 44 (2014) 99–112
difference can be explained as the returns in Eq. (23) are scaled by the
individual reactor costs.

5.4. Portfolio sensitivity

In addition to the constraints on the portfolio, the choice of parame-
ter values affects the structure of the optimal portfolio.We study the op-
timal portfolio for varying parameter values, which gives an intuition
about theportfolio's sensitivitywith respect to these parameters. In par-
ticular, we consider the following cases:

• Different discount rates r, with other parameters constant.
• Varying electricity price growth rates μp∗ , with other parameters con-
stant.

• Varying uncertainties in electricity prices σP, with other parameters
constant.

From here on, we only consider portfolios that have capacity
constraints.

5.4.1. Varying discount rates
For our reference case, we considered a discount rate of 8% per

annum. We examine the portfolio's sensitivity to varying discount
rates. A change in discount rate affects the expected revenues, costs
and the optimal investment strategy, which in turn affects the returns.
This makes the discount rate an important parameter while computing
the efficient frontier and corresponding optimal reactor order fractions.

Fig. 9 shows the efficient frontier for low,medium and high discount
rates, with corresponding values taken from Table 9. Lowering the dis-
count rate can help realize higher expected returns, although at in-
creased uncertainty (variance) in returns. Although both the expected
returns and the variance of returns increase, the increase in the expect-
ed returns is more significant than increase in the variance of returns.
Therefore, reactors with higher expected returns would then be more
favoured in the mean–variance portfolio.

The optimal reactor order fractions corresponding to the points on
the efficient frontier are shown in Fig. 10. Under ourmodel assumptions
Table 12
The expected returns and their standard deviations per kWe of reactor ordered for the
base case.

Gen III FR HTR SCWR

Expected return (€/kWe) 3100 1200 3500 2625
Stdev return 3025 3250 3450 3010
and parameter choices, we see that lowering discount rates results in a
portfolio dominated by reactors having greater expected returns, while
higher discount rates result in a portfolio where reactorswith lower un-
certainties dominate.
5.4.2. Varying electricity price growth rates
Long term growth rates of electricity prices are difficult to predict. A

sensitivity analysis of the optimal portfolio with respect to different
electricity price growth rates is then essential.We do an optimal portfo-
lio analysis for low,medium and high growth rate scenarios for electric-
ity prices.

Fig. 11 shows the efficient frontiers corresponding to different
electricity price growth rates. A higher growth rate in electricity prices
results in portfolios which can achieve greater expected returns.

The optimal reactor order fractions corresponding to the points on
the efficient frontiers for different electricity price growth rates are
shown in Fig. 12. Under ourmodel assumptions,we see that a higher ex-
pected growth rate in electricity prices leads to portfolios that are dom-
inated by reactors with higher expected returns (HTR and GenIII), while
for low growth rate scenarios optimal portfolios can have reactors with
lower returns (like FRs). The presence of FRs in low growth scenarios,
especially corresponding to lower expected returns is because of the fol-
lowing reason. When the revenues are low, as is the case with a low
electricity growth scenario, portfolios with lower expected returns can
be on the efficient frontier. Portfolios with lower expected returns
would be dominated by FRs, as, under our model assumptions, they
have the lowest expected return amongst the reactor types considered.
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Fig. 9. Efficient frontiers for varying discount rates. Parameter values are taken from
Tables 8 and 9.
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Fig. 10. Optimal reactor order fractions when (a) r = 10%, (b) r = 8%, and (c) r = 6%. Parameter values are taken from Tables 8 and 9.
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Fig. 11. Efficient frontier for varying electricity price growth rate, where the reactor specif-
ic parameters are taken from Table 8, and economic parameters from Table 9.
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For the high electricity growth scenario, portfolios with such low ex-
pected returns are not part of the efficient frontier, as for same level of
uncertainties where another combination of reactors can be found
with higher expected returns.

5.4.3. Varying uncertainty in electricity prices
Uncertainty in electricity prices affects the expected return and its

distribution for different reactors. We study the mean–variance portfo-
lio for low, medium and high uncertainty in electricity prices, with the
corresponding values forσP taken fromTable 9. Fig. 13 plots the efficient
frontiers for the three different scenarios considered. With increasing
uncertainty in electricity prices, the uncertainty in returns of the opti-
mal portfolio increases for a given level of expected returns.

The optimal reactor order fractions corresponding to the points on
the efficient frontiers for the three scenarios considered are presented
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Fig. 12. Optimal reactor order fractions when (a) μp∗ = 0%, (b) μp∗ = 3%
in Fig. 14. Under our model assumptions, the reactor order fractions
seem less sensitive to uncertainty in electricity prices, when compared
to their sensitivity to discount rates or electricity price growth rates.
5.4.4. Varying expected construction costs
Due to the absence of commercially available Generation IV type

reactors, their expected construction costs K0 are highly speculative in
nature. The estimates of the expected construction costs can vary
amongst expert groups and it is therefore important to study the sensi-
tivity of the portfolio with respect to the initial estimate of the expected
construction costs. As an illustration we consider a case where two ini-
tial construction costs of €4600 per kWe (60% higher than Gen III
reactors) and €3800 per kWe (30% higher than Gen III reactors) are
considered for an FR. The former is a more conservative estimate
which is computed using the G4Econs tool, as described in (van Heek
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and (c) μp∗ = 5%. Parameter values are taken from Tables 8 and 9.



2600 2800 3000 3200 3400
0

0.2

0.4

0.6

0.8

1

Expected Return

O
p

ti
m

al
 F

ra
ct

io
n

Gen III
FR
HTR
SCWR

a)

2600 2800 3000 3200 3400
0

0.2

0.4

0.6

0.8

1

Expected Return

O
p

ti
m

al
 F

ra
ct

io
n

Gen III
FR
HTR
SCWR

b)

Fig. 15. Optimal reactor order fractions when the K0 for FR is (a) €3800 per kWe (b) €4600 per kWe. Other parameter values are taken from Tables 8 and 9.
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Fig. 14. Optimal reactor order fractions when (a) σP = 10%, (b) σP = 20%, and (c) σP = 30%. Parameter values are taken from Tables 8 and 9.
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et al., 2012); while the latter is currently seen as the capital costs for
NOAK13 FR.We compare the optimal portfolios obtained for the two re-
actor costs considered, while all other parameters are kept constant.
Fig. 15 compares the optimal portfolio weights, corresponding to differ-
ent expected returns for (a) the case when initial FR construction costs
are €3800 per kWe and (b)when the initial construction costs for FR are
€4600 per kWe. It can be seen that lowering the expected construction
costs for the FR does not significantly improve its weight in the optimal
portfolio. One of the reasons for the low sensitivity of the optimal port-
folio with respect to the reactor costs is that, for the electricity price
scenario considered, capital costs and combined O&M and fuel cycle
costs are only a minor fraction when compared to the revenues from
electricity.
6. Conclusion

While the future of nuclear power depends on resolving the issues of
safety of operations, safe management of radioactive wastes and mea-
sures to prevent proliferation (MIT, 2003), in a deregulated electricity
market, the economics of NPPs will be themost important determinant
of nuclear energy's role in the future global energy mix. A decision-
support tool, which takes into account major factors and their uncer-
tainties for studying the economics of individual reactors as well as for
a portfolio of reactors has been presented here.

Specifically, we have used real option analysis and portfolio optimi-
zation to study optimal reactor order fractionswithin the nuclear sector.
A two-step approach is proposed, where first optimal decisions are
taken at the plant level, and then the resulting distribution of returns
13 Nth of a kind.
for each reactor-type are used as inputs to a portfolio optimization prob-
lem solved using the MVP theory. The main contribution on the meth-
odological side can be stated as:

• The method adequately accounts for uncertain reactor construction
costs and schedule, and reflects their effect on the return distribution
for different reactors.

• An optimal policy for continuing the construction or abandoning the
project is computed taking into account the uncertainties in construc-
tion costs, electricity prices andO&Mand fuel cycle costs involved. It is
worth mentioning that at the present time the O&M and fuel cycle
costs are stable and predictable. It is then highly unlikely that the con-
struction of an NPP would be stopped on the account of increased
O&M and fuel cycle costs.

• A detailed study on optimal portfolios based on MVP theory is con-
ducted.

• The effect of different constraints on portfolio diversification is stud-
ied.

• The sensitivity of the optimal portfolio with respect to electricity price
growth rates, uncertainty in electricity prices and discount rates is
studied.

It should be emphasized here that, although careful attention has
been paid to the choosing of realistic parameter values for the reactors
considered, the main focus of the paper is to illustrate a methodology
that accounts for the various economic uncertainties related to nuclear
power plants. Under our model assumptions, it has been shown that
certain scenarios lead to portfolios that are dominated by Generation
IV type reactors, while others result in conventional Gen III type LWRs
being the dominant ones. Following the methodology described here
can be useful when decisions related to reactor order fraction need to
be made.
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A basic MVP, as discussed in this paper, has no mechanism to avoid
reactors which are very likely to be abandoned before their construc-
tion. Although we can compute the likelihood of abandonment for a
given reactor type using our real options model, MVP uses only the
information about themean and variance of returns. If theMVP contains
reactors which are likely to be abandoned, the final mix of reactors
constructed can be different from the one prescribed for the optimal
portfolio. As a possible future direction of research, the portfolio optimi-
zation step should in addition to the variance of the returns also consid-
er other risk measures, such as, value at risk, conditional value at risk
and probability of abandonment. The resulting portfolios will not only
minimize the variance of the returns but will also avoid reactors
which are likely to be abandoned in the future.
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