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Abstract

This paper describes an American Monte Carlo approach for obtaining fast and accurate exercise
policies for pricing of callable LIBOR Exotics (e.g., Bermudan swaptions) in the LIBOR market
model using the Stochastic Grid Bundling Method (SGBM). SGBM is a bundling and regression
based Monte Carlo method where the continuation value is projected onto a space where the
distribution is known. We also demonstrate an algorithm to obtain accurate and tight lower–upper
bound values without the need for nested Monte Carlo simulations.

Keywords: Applied mathematical finance; Bermudan swaptions; computational finance; derivative
pricing models; interest rate modelling; LIBOR market model.

1. Introduction

A Bermudan receiver (payer) swaption (i.e., an Bermudan option on a interest rate
swap) is today one of the most liquid and important options. It gives the owner the
right ��� but not the obligation ��� to enter into a receiver (payer) interest rate swap
at a discrete set of dates (exercise dates). This contrasts the European swaption,

Email address: ¶patrik.karlsson@nek.lu.se

International Journal of Financial Engineering
Vol. 3, No. 1 (2016) 1650005 (22 pages)
© World Scientific Publishing Company
DOI: 10.1142/S2424786316500055

1650005-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301653163?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1142/S2424786316500055


which only can be exercised on a single exercise date and the American options,
which can be exercised at any point before the maturity.

The LIBOR market model (LMM) is popular for modelling and pricing interest
rate derivatives, see for instance Miltersen et al. (1997), Brace et al. (1997) and
Jamshidian (1997). The LMM dynamics are specified as nonoverlapping sets of
discretely compounded LIBOR rates. Its consistency with the market practice of
pricing fixed-income derivatives allows for pricing to be reduced to standard
market formulae such as, for example, the Black (1976) formula, and its ability to
price securities that rely strongly on correlations between forward rates are reasons
for its popularity. Pricing Bermudan swaptions in the LMM is a more complex
problem than pricing corresponding European options. First, the holder of a
Bermudan swaption is in a position where, at each exercise date, he needs to
determine whether it is optimal to exercise the option or holding on to it. Second,
due to the high dimensionality of LMM,1 only Monte Carlo methods are feasible
for valuation of exotic fixed-income securities, such as Bermudan swaptions.

Pricing American-style derivatives via Monte Carlo simulation has been
actively studied. The industrial standard Longstaff and Schwartz (2001) method,
Least-Squares Monte Carlo (LSM), uses a regression to approximate the contin-
uation value for a set of simulated paths. The fact that LSM is easy to implement,
robust, and generates accurate lower bound Bermudan swaptions values for a
careful choice of regression variables are reasons for its popularity. Lower bounds
have moreover been studied in Andersen (1999) where a presimulation is per-
formed to estimate a parametrized exercise policy which is then used in a larger
simulation for valuating Bermudan swaptions. Generally, American Monte Carlo
techniques as LSM (for lower bound values) are divided into two passes, a first and
a second pass. In the first pass where the exercise strategy is estimated, the con-
ditional discounted option values are projected onto basis functions of the state
variables. The projected value is then used as the approximate continuation value,
which is compared with the intrinsic value for determining the optimal exercise
strategy. This is then followed by a second pass where the low-biased option
values are obtained by simulating a new set of simulation paths, and exercising
according to the sub-optimal exercise strategy obtained in the first pass.

To validate the pricing models and the lower bound values generated from the
second pass, we need a third pass. These are referred as the upper bound values
and the closer they are to the lower bounds, the better. This has previously been
studied in Rogers (2002), Haugh and Kogan (2001) and Andersen and Broadie
(2004), where the upper bound is approximated via a duality approach. Generally,

1E.g., modelling a Bermudan swaption on a swap with 10 year maturity and frequency 3 months
requires about 40 Libor rates.
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upper bounds algorithms as e.g., in Andersen and Broadie (2004) require nested
Monte Carlo simulation which makes it computationally expensive. The quality
of the upper bound produced by the algorithm depends on the quality of the
estimated exercise policy in the first pass, better policy gives tighter upper–lower
bounds.

The stochastic grid bundling method (SGBM) was introduced in Jain and
Oosterlee (2015) for the pricing of equity Bermudan options on geometric
Brownian motions. They show that SGBM increases the efficiency of Monte Carlo
simulation by reducing the variance of simulation estimates based on conditional
expectations and the use of regression, as in Milstein and Tretyakov (2009). The
method is based upon the stochastic grid method (SGM) by Jain and Oosterlee
(2012a), LSM and the bundling approach by Tilley (1993). The idea behind
SGBM is that for a large set of paths, neighbouring simulated paths will have
similar continuation values and one can therefore perform local-averaging to
compute a continuation value for grid points within a bundle using regression. The
main difference between LSM and SGBM is that in SGBM one projects the option
values onto a set of basis functions of the state variables where the distribution is
analytically (or approximately) known, whereas in LSM the distribution is not
taken into account.

This paper is more than a re-interpretation of Jain and Oosterlee (2015). First,
since the interest rates are stochastic, compared to the fixed in Jain and Oosterlee
(2015), the trivial expectations for the continuation values need to be carefully
calculated. One of the interesting aspects of SGBM employed in the present paper
is that because of a formulation in terms of an inner and outer expectation, for
calculating the continuation value, we can benefit from the flexibility to use dif-
ferent pricing measures within the same problem. In the case of Bermudan
swaptions it allows us to use the spot measure, useful for simulating paths, as well
as the forward measure, which allows the discounting term to be taken out of the
expectation and so gives rise to an analytic expression for the outer expectation.
Second, we also present an efficient way of obtaining upper bound values for
Bermudan swaptions in LMM by avoiding nested Monte Carlo simulations and
therefore reduce the required computational time. Third, we demonstrate that
SGBM gives more accurate results and is computationally more attractive than
LSM.

The paper is organized as follows. Section 2 introduces notations, the general
framework and formulates the Bermudan swaption pricing problem in the LMM.
Section 3 describes LSM and the SGBM algorithm for pricing Bermudan swap-
tions (both a lower and an upper bound method). In Sec. 4, we present various
numerical examples to illustrate the method and finally we conclude in Sec. 5.
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2. Notation and General Framework

In this section, we introduce notation, give a short introduction to the LMM and
define the Bermudan swaption pricing. We follow the notation in Andersen and
Piterbarg (2010).

2.1. The LIBOR market model

For the LMM, we start with a fixed discrete-tenor structure 0 ¼ T0
< T1 < � � � < TN . The intervals over the time horizon are given by �n ¼ Tnþ1 � Tn
and are typically three or six calendar months. Let Pðt,TnÞ denote the time-t price
of a zero-coupon bond delivering one unit of currency at some maturity time
Tn � t. The discrete LIBOR forward rate LnðtÞ with fixing date Tn as seen at time
t is

LnðtÞ ¼ � �1
n

Pðt, TnÞ
Pðt, Tnþ1Þ

� 1

� �
, N � 1 � n � qðtÞ,

where qðtÞ is the index function of the bond with the shortest maturity, defined as
TqðtÞ�1 � t < TqðtÞ: The price of the discounted bond maturing at time Tk > t is
then given by

Pðt,TnÞ ¼ Pðt,TqðtÞÞ
Yn�1

n¼qðtÞ

1
1þ �nLnðtÞ

:

For the set of LIBOR rates LðtÞ ¼ ðLqðtÞ, LqðtÞþ1, . . . , LN�1ðtÞÞ, we choose to work
under the spot LIBOR measure, denoted by QB, in which the discrete money
market account BðtÞ is the numeraire, given by

BðtÞ ¼ Pðt,TqðtÞÞ
YqðtÞ�1

n¼0

ð1þ �nLnðtÞÞ:

The no-arbitrage dynamics of the forward LIBOR rates LnðtÞ under the spot
LIBOR measure QB for n � qðtÞ are given by

dLnðtÞ ¼ LnðtÞ�nðtÞ>ð�nðtÞdt þ dWBðtÞÞ, (1)

�nðtÞ ¼
Xn

i¼qðtÞ

�i�iðtÞ
1þ �iLiðtÞ

, ð2Þ

where WBðtÞ is an m-dimensional Brownian motion under measure QB and �n for
n � qðtÞ, is a bounded m-dimensional deterministic function. Let Et[ � ] ¼
E[ � jF t] be denoting the conditional expectation at time t under the spot LIBOR
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measure and where F t is the filtration at time t generated byWB. Then by standard
arbitrage-free arguments the time-t price of a security paying VðTÞ at time T is

VðtÞ ¼ Et VðTÞ BðtÞ
BðTÞ

� �
:

Further details on the LMM, such as derivations of the bond equations, connection
to HJM etc., is out of the scope of this paper and can be found in Andersen and
Piterbarg (2010).

2.2. Bermudan swaptions

Given a lockout, i.e., a no-call period up to time T1, the Bermudan swaption gives
the holder the right, but not the obligation, on a set of fixing dates Tn in
T ¼ fT1, T2, . . . ,Tm�1g, for m � N � 1, to enter into a fixed for floating swap
with fixing date Tn and last payment date Tm. The holder of a payer Bermudan will
pay the fixed swap leg and receive the floating swap leg. If exercise at Tn the
payout is given by

UðTnÞ ¼ �N
Xm�1

i¼n

�iPðTn, Tiþ1ÞðLiðTnÞ � kÞ,

where k is the fixed coupon, N the notional, and � 2 f�1, þ 1g is the payer or
receiver factor (þ1 for payer swaption and �1 for a receiver swaption). The payoff
is also equivalent to

UðTnÞ ¼ �NAn,mðTnÞðSn,mðTnÞ � kÞ,

where Sn,mðtÞ is the value of the fixed-for-floating swap with payments at times
Tnþ1, . . . , Tm, see for instance Andersen and Piterbarg (2010, Chapter 19). The
value of the forward swap rate SðtÞ and swap annuity AðtÞ at time t are given by.

SðtÞ :¼ Sn,mðtÞ ¼
Pðt, TnÞ � Pðt, TmÞ

An,mðtÞ
, AðtÞ :¼ An,mðtÞ ¼

Xm�1

i¼n

Pðt,Tiþ1Þ�i: ð3Þ

The present value VðT0Þ of a Bermudan swaption at time T0 is the supremum
taken over all discrete stopping times of all conditional expected discounted
payoffs, that is

VðT0Þ ¼ BðT0Þ sup
�2T

E0
Uð�Þ
Bð�Þ

� �
(4)

¼ BðT0ÞE0
Uð� �Þ
Bð� �Þ

� �
, ð5Þ
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where �� 2 T is the optimal stopping time taking values in the finite set of
allowed discrete exercise dates T . For the American swaption, the holder is
allowed to exercise on any date within [T1,Tm�1]. And for European swaption
case, we have only one exercise date, i.e., T1 ¼ Tm�1.

3. Monte Carlo Simulation of Bermudan Swaptions

In this section, we define the Bermudan option pricing problem, summarize
SGBM, present a bundling algorithm suitable for the pricing of Bermudan
swaptions in the LMM and discuss our implementation of the LSM and the upper
and lower bounds via SGBM.

The present value Vð0Þ of a Bermudan swaption in (4) is usually solved via
backward induction starting from the last exercise date Tm�1. The holder of the
option receives UðTnÞ if the contract is exercised at time Tn. The option value at
VðTnÞ at time Tn is the maximum of the intrinsic value UðTnÞ and the conditional
continuation value HðTnÞ, that is

VðTnÞ ¼ maxðUðTnÞ,HðTnÞÞ, ð6Þ

where HðTm�1Þ ¼ 0. The conditional continuation value HðTnÞ is the conditional
expected time Tnþ1 option value given by,

HðTnÞ ¼ BðTnÞETn

VðTnþ1Þ
BðTnþ1Þ

� �
: ð7Þ

The problem is solved by recursively repeating Eqs. (6) and (7) for each Tn until
we reach time T0, where we find the value VðT0Þ of the contract.

As mentioned in the introduction, lower bound American Monte Carlo methods
as LSM and SGBM are divided into two phases, a first and a second pass. In the
first pass, the conditional discounted option values are projected onto basis func-
tions of the state variables. The projected value is then used as the approximate
continuation value, which is compared with the intrinsic value for determining the
optimal exercise strategy. This is followed by a second pass where the low-biased
option values are obtained by simulating a new set of simulation paths, and
exercising according to the sub-optimal exercise strategy obtained in the first pass.

3.1. The least squares method

In the least squares method (LSM), the problem is solved by recursive value
iteration, by the dynamic programming approach, starting from the last exercise
date and working backwards as given by Eqs. (6) and (7). As pointed out by
Clement et al. (2002), the main problem with dynamic programming is the
evaluation of the conditional expectation. The LSM method is based on
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approximation of the conditional expectation of HðTnÞ at time Tn by an ordinary
least squares estimate,

HðTnÞ ¼
Xq

i¼0

�i, n�iðTnÞ, ð8Þ

for a set of q basis-functions �i : R
d ! R, i ¼ 1, 2, . . . , q, e.g., function of the

underlying swap rates, and where �i, n are constants. The regression is usually
performed using the simulated in-the-money paths and the basis functions are
usually polynomials of the state variables. The optimal stopping time derived using
this approximation, denoted by �, can be written as

�n ¼ tn1fHðTnÞ � UðTnÞg þ tnþ11fHðTnÞ > UðTnÞg, n < m� 1, ð9Þ

having �m�1 ¼ Tm�1. The option price is then computed using Eq. (5).
A rigorous mathematical justification and proof of the almost sure convergence

of the method can be found in Clement et al. (2002).

3.2. The stochastic grid bundling method

SGBM is a simulation-based dynamic programming method, which first generates
Monte Carlo paths, forward in time, followed by finding the optimal early-exercise
policy moving backwards in time. The main difference between LSM and SGBM
is that in SGBM one projects the option values onto a set of basis functions of the
state variables where the distribution is analytically (or approximate) known,
whereas in LSM this is not taken into account.

The discounted continuation value, HðTnÞ in Eq. (7), is computed using the law
of iterated expectations, i.e.,

E[XjH] ¼ E[E[XjG]jH], ð10Þ

where H is a sub-� algebra of G. Using Eq. (10), the continuation value at time Tn
can be written as

HðTnÞ ¼ BðTnÞE
VðTnþ1Þ
BðTnþ1Þ

����SðTnÞ� �
¼ BðTnÞE E

VðTnþ1Þ
BðTnþ1Þ

�����ðTnþ1Þ, SðTnÞ
� � ����SðTnÞ� �

, ð11Þ

where �ðTnÞ ¼ ð�1ðTnþ1Þ, . . . , �qðTnþ1ÞÞ> is a q-dimensional vector of regression
variables, for example the q first monomials

�iðTnþ1Þ ¼ SðTnþ1Þ i, i ¼ 1, . . . , q, ð12Þ

and where S is the swap rates defined in (3).
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Writing the continuation value as in Eq. (11) decomposes the problem into two
steps. The first step involves computing the inner conditional expectation,

ZðTnÞ ¼ E
VðTnþ1Þ
BðTnþ1Þ

�����ðTnþ1Þ, SðTnÞ
� �

: ð13Þ

It is followed by the computation of the outer expectation,

HðTnÞ ¼ BðTnÞE[ZðTnÞjSðTnÞ]: ð14Þ

With a smart choice of basis functions � and simulation measure, Eq. (14) can
generally be computed in \closed-form". However, numerical approximations are
involved in the computation of ZðTnÞ in Eq. (13).

Consider the conditional expectation without the extra conditioning on SðTnÞ as
in Eq. (13),

E
VðTnþ1Þ
BðTnþ1Þ

�����ðTnþ1Þ
� �

: ð15Þ

Equation (15) can be approximated by regressing VðTnþ1Þ=BðTnþ1Þ onto the first
q < 1 basis functions, �1, . . . , �q. For example, by using the polynomials of the
conditioning function as the basis, e.g., polynomials up to order 2-4 constructed by
the monomials of the explanatory variable.

But in order to compute ZðTnÞ in Eq. (13), we also need to condition VðTnþ1Þ
on SðTnÞ, which can be done in two ways. In the first approach, with nested Monte
Carlo simulation, the paths are simulated until the next time Tnþ1 with SðTnÞ as the
source, the option values for these paths are used to approximate Eq. (13). The
fitted value of this regression will converge in mean square and probability, when
the number of paths in this sub-simulation goes to infinity. However, this approach
will be computationally intractable as the number of paths grows exponentially
with each time step. The second approach, is to condition VðTnþ1Þ on SðTnÞ and
then use bundling.

Bundling as introduced by Tilley (1993) is a method to partition the state space
into nonoverlapping regions, so that each point in the space can be identified to lie
in exactly one of the bundled regions. The idea behind bundling is that for a large
set of paths, the neighboring paths will have similar continuation values and one
can therefore perform local-averaging. The key step is to construct bundles, by first
generating K paths, !1, . . . ,!K , of the underlying asset, SðTn,!kÞ, and bundle
them at each time, Tn, into anðKÞ nonoverlapping sets, B sðTnÞ ¼ ðB1ðTnÞ,
. . . ,BaðTnÞÞ. This is done by defining at each time, Tn, representative states �

s
n for
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s ¼ 1, . . . , anðKÞ. The sth-bundle at time Tn is thus defined as

HðTnÞ ¼ fSðTn,!kÞ : jjSðTn,!kÞ � � s
njj2 � jjSðTn,!kÞ � �‘

njj2,
81 � ‘ � anðKÞg ð16Þ

for k ¼ 1, . . . ,K and where � s
n is the mean of the points in B sðTnÞ.

The continuation value (7) for a general path !k at time Tn is then approximated
by,

ĤðTn,!kÞ ¼ BðTn,!kÞE
bVðTnþ1,!kÞ
BðTnþ1,!kÞ

�����BðTn,!kÞ
" #

, ð17Þ

where bundle BðTn,!kÞ is the set of path-indices of paths that lie in the bundle
containing SðTn,!kÞ.

SGBM employs a recursive bifurcation algorithm to bundle the grid points at
each time step, the number of partitions, or bundles, after p iterations, equals 2p:

The algorithm is explained in detail in Appendix A and Fig. 1 illustrates the idea
behind the bundling from simulated swap rates and continuation values, using two
respectively four bundles.

As explained, SGBM computes the continuation value in two steps. First, we
compute the expected option value, conditioned on a finer information set, given
by Eq. (13), which is followed by the computation of the outer expectation, given
by Eq. (14). Let BðTn,!kÞ denote the set of path-indices of paths that share the
bundle containing the kth grid point SðTn,!kÞ at time Tn. Second, we approximate
Z in Eq. (13) by regressing the option values at Tn for those paths that originate

T(n)

T(n+1)
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Swap rateTime

V
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V
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Fig. 1. Simulated continuation values as a function of the swap value for a Bermudan swaption at
one of the exercise dates. Continuation values approximated by a second-order polynomial, with the
swaps as basis functions. Left: Regression with two bundles. Right: Regression with four bundles.
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from the bundle containing SðTn,!kÞ, that is

ẑðTn,!kÞ ¼
Xq

i¼1

�i, n�iðTn,!kÞ, ð18Þ

where k 2 BðTn,!kÞ so that the following residual is minimized

min
�

X
l2BðTn,!kÞ

ðẑðTn,!lÞ � VðTn,!lÞÞ2:

The continuation value for grid point SðTn,!kÞ in bundle BðTn,!kÞ is then given
by,

ĤðTn,!kÞ ¼ BðTn,!kÞ
Xq

i¼0

�i, nETn

�iðTnþ1,!kÞ
BðTnþ1,!kÞ

����BðTn,!kÞ
� �

: ð19Þ

Remark 3.1. SGBM requires significantly fewer paths and basis functions than
LSM. The reason for this is that LSM uses the regressed continuation values to
make early exercise decision directly. The quality of the early exercise policy is
inaccurate when a small number of paths and basis functions are used, one
therefore need a large number of paths and basis functions to reduce the regression
noise. In SGBM, the regressed function is just an inner expectation. The outer
expectation, which can be calculated analytically, gives the continuation value and
is used for decision making. Since the regression error is normally distributed with
a zero mean, the noise of outer expectation of is zero. Therefore, the continuation
value surface generated by SGBM is much smoother, compared to the one
generated by LSM.

Further details of SGBM, such as convergence and different bundling algo-
rithms can be found in Jain and Oosterlee (2015).

Some of the difficulties in the pricing of the Bermudan swaptions lie in the
choice of regression variables. Choosing a suitable set of explanatory variables and
parametric functions is crucial. In our framework this can be considered as a
combination of both art and science. An estimation of the exercise boundary close
to the true boundary gives an estimated price closer to the true value. One sig-
nificant problem with regression is ease of overfitting. One should not therefore
use too many regression variables and high-order polynomials since they are easily
affected by outliers in the simulation. One needs to focus on finding significant
explanatory variables. Glasserman and Yu (2004) showed that for the simplest case
of Bermudan swaptions a second-order polynomial with the underlying swap
values as basis appears sufficient to obtain accurate Bermudan swaption values.
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More generally, the choice of basis functions is usually product dependent and
needs to be carefully investigated for complicated Bermudan swaptions, for
example for products with exotic coupons.

We conclude this section by emphasizing the choices of measures used in order
to allow for efficient simulation. The T-forward measure, with corresponding
expectation ET and the T-maturity zero-coupon bond Pðt,TÞ as the numeraire have
the advantage that it allows for decoupling the payoff VðTÞ from the numeraire and
to take out the discount factor from the expectation, i.e.,

VðtÞ ¼ BðtÞEt
VðTÞ
BðTÞ

� �
¼ Pðt, TÞET

t [VðTÞ]:

One benefit, however, of the spot measure compared to the T-forward measure is
that the numeraire asset BðtÞ is alive throughout the tenor and therefore, allows for
simulating paths irrespective of tenor. We employ hybrid measures to obtain ef-
ficient Monte Carlo simulation. The inner expectation is simply approximated by
regression calculated in the spot measure. To express the outer expectation in
closed form, we compute the expectation under the T-forward measure. Since the
spot measure QB coincides with the Tnþ1-forward measure QTnþ1 over the interval
[tn, tnþ1] this allows us to write the continuation value for grid point SðTn,!kÞ in
bundle BðTn,!kÞ as,

bHðTn,!kÞ ¼ BðTn,!kÞE
Pq

i¼0�i, n�iðTnþ1,!kÞ
BðTnþ1,!kÞ

����BðTn,!kÞ
� �

¼ PðTn, Tnþ1,!kÞETnþ1

Xq

i¼0

�i, n�iðTnþ1,!kÞ
�����BðTn,!kÞ

" #

¼ PðTn, Tnþ1,!kÞ
Xq

i¼0

�i, nE
Tnþ1 �iðTnþ1,!kÞ jBðTn,!kÞ½ �:

By this we can efficiently simulate the exposure. We refer to (Andersen and
Piterbarg, 2010, Chapter 4) for additional information on available fixed-income
probability measures.

Remark 3.2. Valuation of Bermudan swaptions with American Monte Carlo
techniques such as LSM and SGBM requires an estimation of the exercise
boundary. The option can then be seen as a barrier option (knock-in) with the
estimated exercise boundary as the barrier.

3.2.1. Algorithm for lower bound

For clarity we summarize the steps of the complete SGBM pricing process for the
Bermudan swaptions. We first simulate a first pass with K1 paths and then estimate
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an exercise policy. Second, we simulate a second pass with K2 paths using the
exercise policy estimated in the first pass. Usually K2 � 10, 000–100,000 and
K1 � K2=4.

I. FIRST PASS: Exercise Policy

1. Generate K1 paths !1, . . . ,!K1
, using (1). Each !k represents one simulated

path of all core LIBOR rates.
2. For each path !k and time Tn, for k ¼ 1, . . . ,K1 and n ¼ 1, . . . ,N � 1, cal-

culate the numeraire BðTn,!kÞ, swap rates SðTn,!kÞ and exercise values
UðTn,!kÞ.

3. Compute the option value for the grid points at the terminal time Tm�1,

VðTm�1Þ ¼ maxðUðTm�1Þ, 0Þ: ð20Þ

4. For each n ¼ m� 2 . . . , 1

(a) Bundle the grid points at Tn�1, into a distinct bundles (except at T0, where
there is only one point and hence only one bundle corresponding to SðT0Þ)
using the bundling algorithm in Appendix A.

(b) Compute the regression functions, Z s
n, s ¼ 1, . . . , a, as given by Eq. (18),

using the option values at Tn for the paths originating from the sth bundle,
B sðTn�1Þ, at Tn�1.

(c) Compute the continuation value for the grid points in the sth bundle at
Tn�1, using Eq. (19), for those paths for which SðTn,!kÞ belongs to the
bundle B sðTn�1Þ, for s ¼ 1, . . . , a:

(d) Compute the option values at Tn�1, as

bVðTnÞ ¼ maxðUðTnÞ,HðTnÞÞ: ð21Þ

5. The option value, bVðT0Þ, at T0, is defined to be the direct estimator value.

II. SECOND PASS: Lower Bound

1. In order to compute lower bounds and an unbiased price, generate a fresh set of
K2 paths, !

0
1, . . . ,!

0
K2
, and bundle at each time step, using the same algorithm

as in the first pass.
2. The continuation values for the grid points in bundle s, at time step Tn�1, are

computed using the Z s
n function, obtained for the direct estimator. The option is

exercised when the continuation value is less than the immediate payoff. The
lower bound can then be computed by determining the earliest time to exercise
at each path, b�ð! 0

kÞ ¼ minfTn : HðTn,! 0
kÞ < UðTn,!

0
kÞg. The lower bound of
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the option value is given by,

V ðT0Þ ¼
1
K2

XK2

k¼1

BðT0,! 0
kÞ

Bð�̂ ,! 0
kÞ

Uð�̂ ,! 0
kÞ:

Remark 3.3. In the case of performance calculation issues, the direct estimate
generated from the first pass will often be close to the lower bound values
generated from the second pass. In this case, one can neglect the second pass but
should keep in mind that the estimated values are biased in an unknown direction.

Remark 3.4. One should also keep in mind that both LSM and SGBM are lower
bound methods, basically because the conditional expectation is approximated by
a regression technique that projects the high dimensional continuation value onto a
limited set of regression variables. The approximation can often be improved, for
example, by having a richer and better set of regression variables, but with the risk
of overfitting.

3.3. Upper bound using dual formulation

One problem with the lower bound algorithm presented in the previous section is
to determine how close the generated option prices are to the true value. One way
to determine its goodness it to simulate both lower and upper bounds of the option
values, the closer they are to each other the better. Haugh and Kogan (2001) and
Rogers (2002) independently proposed the dual formulation for Bermudan
options, later extended to the primal-dual simulation algorithm in Andersen and
Broadie (2004). The primal problem is given by Eq. (4), for an arbitrary adapted
super-martingale process MðtÞ we have that,

VðT0Þ ¼ sup
�2T

ET0

Uð�Þ
Bð�Þ

� �
¼ sup

�2T
ET0

Uð�Þ
Bð�Þ þMð�Þ �Mð�Þ

� �
¼ Mð0Þ þ sup

�2T
ET0

Uð�Þ
Bð�Þ �Mð�Þ

� �
� Mð0Þ þ ET0 sup

�2T

Uð�Þ
Bð�Þ �Mð�Þ

� �� �
: ð22Þ

The inequality follows from the fact MðtÞ is a super-martingale. The dual for-
mulation of the option pricing problem is then to minimize the upper bound with
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respect to all adapted super-martingale processes K, that is,

V 0 ¼ inf
M2K

Mð0Þ þ ET0 sup
�2T

Uð�Þ
Bð�Þ �Mð�Þ

� �� �� �
: ð23Þ

Haugh and Kogan (2001) showed that when the super-martingale process MðtÞ in
Eq. (22) coincides with the discounted option value process VðtÞ=BðtÞ, the upper
bound V 0 equals the true value. This suggests that a tight upper bound can be
obtained by approximation bVðtÞ, when defining MðtÞ such that when the
approximate option price bVðtÞ coincides with the exact price VðtÞ, MðtÞ equals the
discounted process VðtÞ=BðtÞ. An obvious choice for MðtÞ is then given by

MðTnþ1Þ �MðTnÞ ¼
bVðTnþ1Þ
BðTnþ1Þ

�
bVðTnÞ
BðTnÞ

� ETn

bVðTnþ1Þ
BðTnþ1Þ

�
bVðTnÞ
BðTnÞ

" #
, ð24Þ

for MðT0Þ ¼ bVðT0Þ. Equation (24) can also be written as

MðTnþ1Þ �MðTnÞ ¼
bVðTnþ1Þ
BðTnþ1Þ

� ETn

bVðTnþ1Þ
BðTnþ1Þ

" #
: ð25Þ

Then the upper bound, V 0, corresponding to Eq. (24) is given by

V ð0Þ ¼ bVð0Þ þ� � Vð0Þ, ð26Þ

where the duality gap � is defined as

� ¼ max
n

UðTnÞ
BðTnÞ

�MðTnÞ
� �

, n ¼ 1, . . . ,m� 1: ð27Þ

Generally, upper bounds algorithm as e.g., in Andersen and Broadie (2004) require
nested Monte Carlo simulation and the quality of the upper bound produced by the
algorithm depends on the quality of the estimated exercise policy in the first pass,
better policy gives tighter upper–lower bounds. This makes it computational ex-
pensive and requires in worst cases a workload of K � Knest � m2 operations,
where K is the number of outer simulations, Knest the number of nested simula-
tions, and m the number of exercise dates. The workload is often less than this
because the nested simulation can be stopped whenever the contract is exercised.
This in comparison with the workload in the second pass where an exercise policy
already is given and where the lower bound simulation has a workload of K � m.
This has further been improved by Broadie and Cao (2008) who showed that
nested simulations are not needed on dates where it is sub-optimal to exercise the
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option, which can lead to reduced workload, especially for out-of-the-money
options. When the policy obtained from LSM is used, a sub-simulation with Knest

sub-paths is required. Knest � 100 is often sufficient to find upper bounds with
sufficient quality. Moreover, the upper bound bias introduced from the Monte
Carlo simulation is positive and a decreasing function in the number of nested
simulations.

We conclude this section by emphasizing one important remark allowing one to
avoid nested Monte Carlo simulations for upper bound values when estimating the
exercise policy using SGBM.

Remark 3.5. For pure regression-based algorithms like LSM, Eq. (25) cannot be
estimated directly by regression since it will introduce an unknown bias and
therefore destroys the martingale property of M and the inequality in Eq. (22).
Therefore, one has to rely on nested Monte Carlo simulations to obtain an upper
bound when LSM is used. But, as mentioned in Remark 3.1, the regressed function
in SGBM is just the inner expectation, and it is not used for decision-making. The
outer expectation can be computed in closed form and we can therefore calculate
the upper bounds without nested simulations. This reduces the workload of the
upper bounds significantly, to the workload of the second pass and therefore we
can obtain a speed-up factor of Knest. The computational time for SGBM is
comparable to Longstaff and Schwartz (2001).

3.3.1. Algorithm for upper bound

We summarize the simulation procedure for obtaining duality-based upper bounds
via SGBM below (once the optimal exercise policy has been obtained). Let ĤðTnÞ
be the holding value estimated from the exercise strategy �, given by the simu-
lation in the first pass. The upper bound can then be obtained by the following
algorithm.

III. THIRD PASS: Upper Bound

1. Simulate Ku paths !1, . . . ,!KU

2. For each exercise time Tn and each path !k, compute ĤðTn,!kÞ and BðTn,!kÞ,
and update MðTn,!kÞ in Eq. (28).

(a) Approximate ĤðTn,!kÞ=BðTn,!kÞ using Eq. (17).2

2In order to have an accurate approximation of HðTn,!kÞ, when the policy obtained from LSM is
used, a sub-simulation with Knest sub-paths is required. ĤðTn,!kÞ represents the discounted average
cashflows from these paths when they are exercised following the policy obtained in the first pass.
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3. For each path !K , compute the pathwise duality gaps, as follows:

bDð!kÞ ¼ max
n

UðTn,!kÞ
BðTn,!kÞ

�MðTn,!kÞ
� �

, n ¼ 1, . . . ,m:

4. Estimate the upper bound given by Eq. (28) as

b� ¼ 1
KU

XKU

k¼1

D̂ð!kÞ: ð28Þ

4. Numerical Results

In this section, we study the performance of SGBM for lower and upper bound
values by means of numerical experiments. For a consistency check we use the
same setup and reproduce the results in Andersen (1999) and Andersen and
Piterbarg (2010).

4.1. Bermudan swaption prices

For the continuation value in LSM and SGBM, we use a second-order polynomial
with the swap rate as the basis. The swap rate moments in Eq. (19) can, for
example, with high accuracy be calculated by the convexity adjustment approach
in Belomestny et al. (2009).

We use the bundling scheme described in Section Appendix A, with eight
bundles and the same number of bundles at each time step, except at time T0,
where there is only one point, SðT0Þ.

We consider Bermudan swaptions on three months LIBORS (� ¼ 0:25) with
10% spot rate level and with two different volatility settings. First, a one-factor
LMM with fixed volatility, �nðtÞ ¼ 0:2 for all n and t. Second, more realistically, a
two-factor LMM, with a time-to-maturity dependent volatility of the form3

�nðtÞ ¼ 0:15, 0:15�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:009ðTn � tÞ

ph i>
:

We report values obtained from the second pass. First, we simulate a first pass with
10,000 seeds using an antithetic Monte Carlo random number generator and then
estimate the exercise policy for both LSM and SGBM. Subsequently, we simulate
20,000 second pass paths with a quasi Monte Carlo random number generator
(e.g., Sobol sequence) with the previously obtained exercise policy to estimate the

3Usually, a one-factor LMM already accounts for more than 98% and the two-factor for more than
99.5% of the overall variance.
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unbiased Bermudan swaption value. These two steps are repeated iteratively K 0 ¼
100 times with different seeds in the first simulation, to remove the overall in-
fluence of the first simulation. The prices are reported in basis points, with the
notional N ¼ 10, 000 and the numbers in parentheses are sample standard
deviations.

Duality-based upper bounds, together with the lower bound computed using the
path estimator give valid confidence intervals within which the true option price
lies. The 100 ð1� 	Þ% confidence interval is constructed as

V 0ðT0Þ � q	=2
ŝLffiffiffiffiffi
K 0

p ,V 0ðT0Þ þ q	=2
ŝHffiffiffiffiffi
K 0

p
� �

,

where ŝL is the sample standard deviation for the path estimator and ŝH is the
sample standard deviation for the duality-based upper bound estimator, and q	=2
the normal distributed quantile function.

Tables 1 and 2 report the lower bound value estimates for the Bermudan
swaption via LSM and SGBM, the duality gap and 95%-confidence interval with
one-factor, respectively two-factor LMM. Our reported values for SGBM differ at
most 3 bps compared to the reported values in Andersen and Piterbarg (2010). The
computational time for SGBM is roughly the same as for the LSM. The first
conclusion, the standard deviation for SGBM lower bounds is much smaller than

Table 1. Lower bound estimate of Bermudan payer swaptions in a one-factor LMM. Prices are in
basis points and standard deviations within parentheses.

Type Strike (%) LSM lower SGBM lower b�SGBM
b�AP

95% CI

15M/3M 8 184.61 (0.01) 184.62 (0.00) 0.0022 0.02 184.62–184.63
15M/3M 10 49.11 (0.01) 49.11 (0.00) 0.0008 0.02 49.111–49.114
15M/3M 12 8.73 (0.02) 8.73 (0.00) 0.0001 0.004 8.7322–8.7346

3Y/1Y 8 355.08 (0.08) 355.06 (0.02) 0.0133 0.07 355.05–355.07
3Y/1Y 10 157.13 (0.11) 157.45 (0.03) 0.0030 0.2 157.45–157.46
3Y/1Y 12 60.96 (0.07) 60.97 (0.02) 0.0011 0.04 60.97–60.98

6Y/1Y 8 806.61 (0.41) 808.11 (0.08) 0.0186 0.23 808.09–808.14
6Y/1Y 10 415.35 (0.82) 418.58 (0.13) 0.0088 0.63 418.55–418.61
6Y/1Y 12 212.13 (0.48) 214.16 (0.12) 0.0041 0.33 214.13–214.19

11Y/1Y 8 1377.00 (1.07) 1383.10 (0.26) 0.0307 1.3 1383.00–1383.10
11Y/1Y 10 805.93 (1.00) 811.13 (0.23) 0.0188 1.3 811.08–811.20
11Y/1Y 12 495.16 (0.69) 499.20 (0.27) 0.0120 0.7 499.15–499.27

6Y/3Y 8 493.91 (0.15) 494.12 (0.04) 0.0235 0.08 494.11–494.15
6Y/3Y 10 291.84 (0.22) 293.03 (0.05) 0.0092 0.65 293.02–293.05
6Y/3Y 12 169.22 (0.19) 169.79 (0.04) 0.0040 0.53 169.79–169.80
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the ones obtained from LSM. On average, the ratio of variance of LSM and SGBM
is around 16, meaning that on average, one would need 16 times fewer Monte
Carlo seeds in order to obtain the same pricing accuracy. The second conclusion,
the duality gap b�SGBM obtained by SGBM is significantly smaller than the duality
gap b�AP as reported in Andersen and Piterbarg (2010). As one can observe we
obtain significantly smaller duality gaps, the largest duality gap for the one-factor
LMM is 0.0307 basis points, compared to 1.3 basis points in Andersen and

Table 2. Lower bound estimate of Bermudan payer swaptions in a two-factor LMM. Prices are in
basis points and standard deviations within parentheses.

Type Strike (%) LSM lower SGBM lower b�SGBM
b�AP

95% CI

15M/3M 8 183.83 (0.01) 183.83 (0.00) 0.0003 0.05 183.83–183.83
15M/3M 10 42.17 (0.02) 42.24 (0.02) 0.0009 0.06 42.238–42.247
15M/3M 12 5.21 (0.01) 5.22 (0.01) 0.0001 0.01 5.2183–5.2204

3Y/1Y 8 339.15 (0.05) 339.35 (0.02) 0.0102 0.4 339.34–339.36
3Y/1Y 10 125.12 (0.06) 125.58 (0.02) 0.0024 0.7 125.57–125.58
3Y/1Y 12 35.76 (0.05) 35.87 (0.02) 0.0004 0.2 35.866–35.875

6Y/1Y 8 747.23 (0.19) 751.88 (0.06) 0.0128 3.7 751.86–751.9
6Y/1Y 10 315.73 (0.40) 319.18 (0.10) 0.0054 5.0 319.16–319.21
6Y/1Y 12 126.41 (0.31) 129.14 (0.08) 0.0020 2.6 129.12–129.16

11Y/1Y 8 1237.80 (0.63) 1253.40 (0.20) 0.0191 18.1 1253.4–1253.5
11Y/1Y 10 610.34 (0.65) 628.93 (0.26) 0.0142 20.8 628.88–628.99
11Y/1Y 12 322.55 (0.67) 335.18 (0.17) 0.0071 14.8 335.15–335.22

6Y/3Y 8 444.83 (0.16) 446.15 (0.03) 0.0194 0.8 446.14–446.17
6Y/3Y 10 225.67 (0.14) 227.24 (0.04) 0.0054 1.2 227.23–227.25
6Y/3Y 12 106.16 (0.11) 107.27 (0.03) 0.0019 0.8 107.26–107.27
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Fig. 2. Exercise boundary for LSM and SGBM with bundles, 2q, for q ¼ 0, 1, 2, 3 for a 3Y/1Y
Bermudan payer swaptions in a one-factor LMM.
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Broadie (2004). The conclusion here is that the duality gap obtained by SGBM
gives rise to really tight lower–upper bounds.

Figures 2 and 3 illustrate the exercise boundary and the exercise frequency for
the one-and two-factor LMM, respectively. The pictures demonstrate the sensi-
tivity of the product regarding the exercise policy. We can clearly see that the
Bermudan swaption is mostly canceled directly at the first or last exercise date.
The figures also demonstrate that the stopping times are not very different from
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Fig. 3. Exercise boundary for LSM and SGBM with bundles, 2q, for q ¼ 0, 1, 2, 3 for a 6Y/3Y
Bermudan payer swaptions in a two-factor LMM.
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Bermudan payer swaptions in a one-factor LMM.
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each other, although the few scenarios in which SGBM in comparison with LSM
exercises earlier have a significant effect on the price. This is the reason why the
SGBM prices are superior to the LSM prices in these tests and why SGBM
demonstrates tight lower–upper bounds.

4.2. The effect of number of bundles

In this section, we study how the number of bundles affect the lower–upper bound
values and the duality gap. In particular, we study Bermudan swaptions with the
same setup as in the previous section for a 10% coupon with 2p bundles for
p ¼ 1, 2, 3, 4. The duality gap is illustrated in Fig. 4. We observe an almost log-
linear relationship between the duality gap and the number of bundles. Increasing
the number of bundles will make the duality gap much smaller.

5. Conclusion

This paper presented the application of the SGBM for approximating the values of
Bermudan style options on the LMM by simulation. SGBM is a regression-based
Monte Carlo method where the continuation value is projected onto a space where
the distribution is known. In the method, a practical bundling algorithm is
employed which completes the algorithm and performs very well for the test cases
considered. We also demonstrate how to obtain upper bounds without the need for
nested Monte Carlo simulations as generally required for regression-based meth-
ods. The upper–lower bounds obtained by SGBM are much tighter compared to
the bounds obtained by traditional methods. We illustrate SGBM's performance
using a number of realistic examples. The computational time for the method is
comparable to Longstaff and Schwartz (2001), but a higher accuracy is achieved as
demonstrated by the reduced Monte Carlo variance. The SGBM method is easy to
implement and accurate. Variance reduction, based on iterated conditioning, in
combination with the bundling technique form the necessary ingredients for ac-
curate Bermudan swaptions valuation with a relative small number of paths and
basis functions. One should however keep in mind that we need to know the
conditional expected value of the basis functions.
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Appendix A. Bundling

Suppose we need to bundle Ks grid points at epoch Tn, given by SðTn,!kÞ, where
k ¼ 1, . . . ,Ks. The following steps are performed recursively.

(1) Compute the mean of the given set of grid points,

� s
n ¼

1
Ks

XKs

k¼1

SðTn,!kÞ:

(2) Bundling the grid points is performed by dividing the grid points into two
groups, depending on whether the asset price for the grid point is greater or
less than the mean of the asset prices for the given set of grid points:

B1ðTn,!kÞ ¼ 1ðSðTn,!kÞ > � s
nÞ,

B2ðTn,!kÞ ¼ 1ðSðTn,!kÞ � � s
nÞ,

for k ¼ 1, . . . ,Ks. B1ðTn,!kÞ returns `true', when the asset price SðTn,!kÞ is
greater than the mean, � s

n and belongs to bundle 1. B2ðTn,!kÞ returns `true', if
it less than the mean and belongs to bundle 2. Formally, B sðTn,!kÞ returns
`true', if the grid point SðTn,!kÞ belongs to bundle s.

(3) Bundles B1ðTnÞ and B2ðTnÞ, can be split again, returning to step 1.
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