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ABSTRACT
The regulatory credit value adjustment (CVA) for an outstanding
over-the-counter (OTC) derivative portfolio is computed based on
the portfolio exposure over its lifetime. Usually, the future portfo-
lio exposure is approximated using the Monte Carlo simulation, as
the portfolio value can be driven by several market risk-factors. For
derivatives, such as Bermudan swaptions, that do not have an
analytical approximation for their Mark-to-Market (MtM) value,
the standard market practice is to use the regression functions
from the least squares Monte Carlo method to approximate their
MtM along simulated scenarios. However, such approximations
have significant bias and noise, resulting in inaccurate CVA charge.
In this paper, we extend the Stochastic Grid Bundling Method
(SGBM) for the one-factor Gaussian short rate model, to efficiently
and accurately compute Expected Exposure, Potential Future
exposure and CVA for Bermudan swaptions. A novel contribution
of the paper is that it demonstrates how different measures, for
instance spot and terminal measure, can simultaneously be
employed in the SGBM framework, to significantly reduce the
variance and bias of the solution.
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1. Introduction

The notional of outstanding over-the-counter (OTC) derivatives has grown exponen-
tially over the last two decades, a rapid growth mainly due to the increase in interest
rate derivatives. Figure 1 illustrates the Bank for International Settlements semiannual
market survey of outstanding OTC derivatives from June 1998 through December 2013.
As of December 2013, the total amount of outstanding notional in OTC derivatives was
710.2 trillion USD, with 584.4 trillion USD in interest rate derivatives. Any trading desk
entering an OTC deal will face the risk that the counterparty at a future date may
default and cannot fulfil its payment obligations. Therefore, the bank needs to estimate
the total risk it is facing with respect to a particular counterparty and to keep a capital
buffer i.e., the capital requirement, to cover for potential losses due to a default.

CONTACT Patrik Karlsson patrik.karlsson@nek.lu.se Quantitative Analytics, ING Bank, Foppingadreef 7, 1000
BV Amsterdam, The Netherlands.
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Before the financial crisis in 2007, there was the general market view that large
companies where ‘too-big-to-fail’ and thus an overall tendency to underestimate coun-
terparty risk. ‘A too-big-to-fail firm is one whose size, complexity, interconnections, and
critical functions are such that, should the firm go into liquidation unexpectedly, the
financial system and the economy would face severe adverse consequences’, to quote the
Federal Reserve Chair Ben Bernanke in 2010. However, the bankruptcy of e.g. AIG and
Lehman Brothers in 2008 demonstrated that instead of being ‘too-big-to-fail’ they were
instead ‘too-big-to-be-allowed-to-fail’ (Gregory 2010, 17). These events increased the
markets’ concern regarding counterparty risk and the need for better risk management
when trading OTC derivatives. The Basel Committee on Banking Supervision has
formulated in the Basel II and III accords regulatory standards for setting up capital
requirements to cover for losses in the case of a counterparty default.

In the Basel II accord, the requirements consist of computing what is generally
referred to as the counterparty credit exposure, i.e., the amount of money that can be
lost if default occurs, examples of such quantities are the Expected Exposures (EE) and
the Potential Future Exposures (PFE). In the Basel III accord, the requirements are
more stringent and require the estimation of Credit Valuation Adjustment (CVA)
charges (http://www.bis.org/publ/bcbs189_dec2010.pdf). CVA is an adjustment to the
derivatives’ price to compensate for a possible counterparty default. The value of an
OTC deal taking the counterparty risk into account is the value without counterparty
risk, the risk-free price, plus a positive adjustment, the CVA charge.

Estimating CVA charges requires an underlying model and, therefore, makes it a
model dependent quantity. Products that initially were model independent, for example
plain interest rate vanilla swaps become model dependent, because one needs an
interest rate model to price the future portfolio exposure at simulated (also model
dependent) default times of the counterparty.
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Figure 1. Global OTC derivative markets. The notional amounts (in trillions of US dollars) out-
standing of OTC derivatives by risk category from the Bank for International Settlements semiannual
survey, June 1998 through December 2013. For, foreign exchange (FX), interest rate (IR), equity-
linked (EQ), commodity (COM) derivatives, and credit default swaps (CDS).

2 P. KARLSSON ET AL.

http://www.bis.org/publ/bcbs189_dec2010.pdf


Moving towards exotic derivatives, the situation becomes even more complex since
some exotic derivatives are priced using Monte Carlo simulations, and in the context of
measuring counterparty risk, EE and PFE are also computed by means of Monte Carlo
simulation. Nested Monte Carlo simulations are not an option in this context for
performance reasons. Rather than calculating CVA as an over-night job, a trading desk
wants to be able to have the CVA estimation for each counterparty in real-time. Also, in
order to be able to hedge CVA and restructure portfolios to reduce CVA, there is the
challenge of estimating risks and the first-order derivatives for all input parameters.

American Monte Carlo methods, like the well-known Least Squares Method (LSM) as
introduced by Longstaff and Schwartz (2001), where the continuation value is approxi-
mated by a regression to determine an optimal exercise policy, are today in the context of
CVA standard among practitioners, for mainly two reasons. First, because of its ability to
increase the computational performance by avoiding nested Monte Carlo methods, i.e.,
Monte Carlo simulation within a Monte Carlo simulation, by using the same set of paths
for pricing and for market simulation, as in De Prisco and Rosen (2005). Secondly, since
derivatives such as American and Bermudan swaptions, i.e. products that can be exercised
at various dates prior to maturity need to be priced by Monte Carlo methods. The benefit
of having an American Monte Carlo CVA calculation is that all instruments will be
handled the same way within the CVA computation which makes it easy to aggregate
trades, include netting, collateralization, and others.

A general problem with the regression functions as they are used in the least squares
Monte Carlo method is that they do not necessarily provide accurate approximations of
the MtM value of the derivative over all simulated paths, and can have significant bias
and noise, resulting in an inaccurate CVA charge for such products. Additionally,
schemes that are used to improve the approximation of the MtM value of such
derivatives on the valuation date, for instance using only the in-the-money (ITM)
paths for approximation by the regression functions, cannot be used for CVA purposes,
as they are based on exposures along all paths and scenarios.

In this paper we extend the Stochastic Grid Bundling Method (SGBM) as introduced
by Jain and Oosterlee (2015) for computing future exposure for Bermudan swaptions,
where the one-factor Gaussian short rate model is used for simulating the interest rates
dynamics. We show through careful numerical experiments, that the EE, PFE and CVA
computed using this approach have much smaller errors and noise when compared to
using the standard LSM regression based approach. One of the novel contributions of
this paper is that under the SGBM problem formulation, in terms of an inner and outer
expectation, we can benefit from the flexibility to use different pricing measures within
the same computation. Specifically in the case of Bermudan swaptions, this allows us to
avoid the simulation of the numeraire process, which helps in achieving significant
variance reduction, as compared to the LSM approach. A comprehensive overview of
CVA methodologies can be found in Canabarro and Duffie (2003), Picoult (2005),
Redon (2006), Pykhtin and Zhu (2007), Pykhtin and Rosen (2010), Gregory (2010) and
Brigo and Pallavicini (2013). There is extensive literature on pricing Bermudan swap-
tions using Monte Carlo schemes, see for instance, Andersen (2000), Bender and
Schoenmakers (2006), Kolodko and Schoenmakers (2006) and Piterbarg (2004).

The paper is organized as follows. Section 2 introduces notations, the general
framework and formulates the Bermudan swaption pricing. Section 3 describes the
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SGBM algorithm for estimating EE, PFE and CVA charges. In Section 4, we present
numerical examples to illustrate the method and its efficiency compared to the tradi-
tional LSM. And we conclude in Section 5.

2. Notation and General Framework

In this section, we introduce notation, the one-factor Gaussian short rate model (GSR)
and define the pricing of Bermudan swaptions. Next, we introduce the methods for
estimating counterparty risk using EE, PFE and CVA.

2.1. The One-Factor Gaussian Short Rate (GSR) Model

In the general one-factor GSR model the short rate r tð Þ follows a mean-reverting
process of the form,

dr tð Þ ¼ κ tð Þ θ tð Þ � r tð Þð Þdt þ σ tð ÞdW tð Þ; (1)

where parameter κ tð Þ is the rate of mean-reversion, σ tð Þ the volatility, and W tð Þ a
standard Brownian motion. The parameters κ tð Þ and σ tð Þ are usually obtained by
calibrating the model to plain-vanilla option prices. The deterministic drift function
θ tð Þ can be directly calculated from the yield curve and fits the curve for

θ tð Þ ¼ 1
κ tð Þ

@f 0; tð Þ
@t

þ f 0; tð Þ þ 1
κ tð Þ

ðt
0
e

�2
ð t

u

κ sð Þds

σ2 uð Þdu:

A non-smooth initial forward curve can affect the calculation of @f 0; tð Þ=@t, but by
defining a new variable x tð Þ ¼ r tð Þ � f 0; tð Þ, computations are feasible. The dynamics
are given by

dx tð Þ ¼ y tð Þ � κ tð Þx tð Þð Þdt þ σ tð ÞdW tð Þ; (2)

where x 0ð Þ ¼ 0 and

y tð Þ ¼
ðt
0
e

�2
ð t

u

κ sð Þds

σ2 uð Þdu:

A benefit with the GSR model is that the risk-neutral expectation EQ
t �½ � of the

discounted bond price P t;Tð Þ at time t with maturity T, that is,

P t;Tð Þ ¼ EQ
t

�
e
�
ðT
t
r uð Þdu

�
;

is known in closed-form and given by

P t;Tð Þ ¼ P 0;Tð Þ
P 0; tð Þ exp �x tð ÞG t;Tð Þ � 1

2
y tð ÞG2 t;Tð Þ

� �
;
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G t;Tð Þ ¼
ðt
0
e

�
ð u

t

κ sð Þds

du:

We use interchangeably the following notations Et �½ � ¼ E �jF t½ �, where F t is the
filtration at time t, generated by W tð Þ.

The analytic tractability of the GSR model makes it attractive for effective numerical
implementations such as for calibration procedures and Monte Carlo simulation, e.g.
for pricing and CVA calculations. Criticisms are that the model allows for negative
short rates and that it has very limited flexibility for modelling yield curve moments,
since all points on the yield curve are perfectly correlated. However, many trading desks
today value Bermudan swaptions by using a GSR model, e.g. by the one-factor Hull-
White model (HW1F) by Hull and White (1990) due to its simplicity and tractability.

For practical reasons to be explained, we choose to work under the spot measure Q B.
The numeraire induced by the spot measure is the discrete version of the continuous
compounded money market account with rolling certificate of deposit B tð Þ, that is

B tð Þ ¼ P t;Tiþ1ð Þ
Yi
n¼0

P�1 Tn;Tnþ1ð Þ; t 2 Ti;Tiþ1ð �;

with corresponding fixed discrete tenor structure, 0 ¼ T0<T1< . . .<TN . Let E
B
t ¼ Et

denote the conditional expectation with respect to the measure induced by B tð Þ. One
benefit with the spot measure is that the numeraire asset B tð Þ is ‘alive’ throughout the
tenor and, therefore, allows for simulating paths irrespective of the tenor. This is
practical for e.g. Bermudan swaptions and American Monte Carlo methods, since the
contract can mature randomly at any of the dates in the discrete tenor structure.

Further details on the one-factor Gaussian short rate model, such as derivations of
the bond equations, connection to HJM, is out of the scope of this paper, but may be
found in Brigo and Mercurio (2001).

2.2. Bermudan Swaptions

A vanilla interest rate swap is a contract that allows one to change payments between
two different cashflows, often a floating leg against a fixed leg. The values of the forward
swap rate Sn;m tð Þ and swap annuity An;m tð Þ at time t with payments Tnþ1; . . . ;Tm are
given by.

Sn;m tð Þ ¼ P t;Tnð Þ�P t;Tmð Þ
An;m tð Þ ;An;m tð Þ ¼

Xm�1

i¼n

P t;Tiþ1ð Þτi;

where τi ¼ Tiþ1 � Ti. Given a lockout, i.e., a no-call (no-exercise) period up to time T1,
the Bermudan swaption gives the holder the right – but not the obligation – at a set of
fixing dates Tn, for n 2 I ¼ 1; 2; . . . ;m� 1f g, i.e., for Tn 2 T ¼ T1;T2; . . . ;Tm�1f g
to enter into a fixed-for-floating swap Sn;m with fixing date Tn and last payment date
Tm. The Bermudan swaption with the fixed coupon k, exercised at time Tn corresponds
to the payout given by
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Un ¼ ϕNAn;m Tnð Þ Sn;m Tnð Þ � k
� �

;

where N denotes the notional, and ϕ 2 �1;þ1f g the payer or receiver factor (+1 for a
payer and – 1 for a receiver swaption). The holder of a payer Bermudan swaption will
pay the fixed swap leg and receive the floating swap leg. The present value V0 of a
Bermudan swaption is the supremum taken over all discrete stopping times of all
conditional expected discounted payoffs, that is,

V0 ¼ B T0ð Þ sup
n�2I

ET0

Un�

B Tn�ð Þ

� �
: (3)

The option value at an arbitrary time Tn is the maximum of the intrinsic value Un

and the conditional continuation value Hn, i.e.,

Vn ¼ max Un;Hnð Þ; (4)

where Hm ¼ 0 at maturity Tm. The continuation value Hn is the conditional expected
option value at time Tnþ1 and given by,

Hn ¼ B Tnð ÞETn

Vnþ1

B Tnþ1ð Þ

� �
: (5)

The problem is solved via backward induction, starting from the terminal time Tm, and
solved by recursively repeating (4) and (5) until we reach time T0; where we get the
value V0 of the Bermudan swaption contract.

2.3. Counterparty Credit Risk

The exposure E tð Þ towards a counterparty C at time t is given by the positive side of a
contract (or portfolio) value V tð Þ, that is,

E tð Þ ¼ max V tð Þ; 0f g: (6)

This can be seen as the maximum loss if the counterparty defaults at time t. Let τC
denote the counterparty’s default time, and the Q -probability that the counterparty C
defaults before time t be given by PD tð Þ ¼ Q τC<tð Þ. A commonly used default prob-
ability approximation is

PD tð Þ ¼ 1� exp �
ðt
0
γ tð Þdt

� �
; (7)

where the probability factor γ tð Þ is called the hazard rate or the instantaneous credit
spread, see Gregory (2010). The probability that the counterparty defaults in dt years
given that it has not defaulted so far is γ tð Þdt. The default probability for a given
counterparty is usually bootstrapped from quoted credit default swaps (CDS).1

2.3.1. Credit Value Adjustment (CVA)
CVA is the market value of counterparty credit risk, i.e., the difference between the risk-
free portfolio value and the value taking into account the counterparty’s default prob-
ability. The charge is computed as the integral over all points in time of the discounted
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expected exposure given that the counterparty defaults at that time, multiplied with the
default probability and the loss given default, i.e., one minus the recovery rate R.
Following Gregory (2010) the CVA on an instrument (or portfolio) with maturity T
is given by

CVA ¼ 1� Rð ÞB 0ð Þ
ðT
0
E

E tð Þ
B tð Þ δ t � τCð Þ
� �

dt;

where δ is the Dirac delta function, which is one at the counterparty C’s default at time
τC, zero otherwise, and T is the maturity of the instrument. Assuming that there is no
wrong-way risk (WWR),.2 i.e., the default is independent of both the portfolio value
and the numeraire, and application of Bayes’ theorem, the CVA can be expressed as

CVA ¼ 1� Rð ÞB 0ð Þ
ðT
0
E

E tð Þ
B tð Þ

����t ¼ τC

� �
E δ t � τCð Þ½ �dt:

The conditional expectation E �jt ¼ τC½ � is the current expected exposure at time t
given that counterparty C defaulted at time t, i.e., t ¼ τC. The second expectation
within the integrand is the counterparty C’s default probability function, i.e., PD tð Þ
in (7). The CVA can, therefore, be written as,

CVA ¼ 1� Rð ÞB 0ð Þ
ðT
0
E

E tð Þ
B tð Þ

����t ¼ τC

� �
dPD tð Þ: (8)

Let the expected exposure (EE) and the discounted expected exposure EE� tð Þ at time
t be given by

EE tð Þ ¼ E E tð Þjt ¼ τC½ �;

EE� tð Þ ¼ B 0ð ÞE E tð Þ
B tð Þ

����t ¼ τC

� �
:

Then, for a discrete time grid 0 ¼ T0<T1< � � �<Tm ¼ T of observation dates
Equation (8) can be approximated by

CVA � 1� Rð Þ
Xm�1

n¼1

EE�
n PDnþ1 � PDnð Þ; (9)

where EE�
n ¼ EE� Tnð Þ, to highlight that we work on a discrete time grid.

CVA can be seen as the weighted average of the discounted expected exposure with
the weights given by the default probabilities. The complexity of CVA estimation lies
within the evaluation of the exposure E tð Þ. Market practice is by American Monte Carlo
methods where a large number of market scenarios of factors such as yield and inflation
curves, FX rates, equity and commodity prices, credit spreads and others are simulated.

Next to EE and EE�, trading desks are interested in additional exposure profiles such
as the PFE. For a given date t, the α-percentile PFEα is the maximum exposure of a
portfolio with a high degree of statistical confidence α defined as,
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PFEα tð Þ ¼ inf x : P EE tð Þ � xð Þ � αf g; 0 � t � T:

where P is the historical probability measure.

3. Monte Carlo Simulation of Counterparty Credit Risk

In this section, we summarize the Least Squares Method (LSM) by Longstaff and
Schwartz (2001) and present a version of the Stochastic Grid Bundling Method
(SGBM) algorithm suitable for CVA calculation of Bermudan swaptions.

There are two choices for estimating the exposures on future scenarios, where the
first approach includes all the payments including the one at the observation date, while
the second approach only includes the future payments with respect to the observation
date. We stay with the latter approach, which in case of cash settled early exercise
options implies that the exposure of the option, if not exercised, is equal to its
corresponding continuation value along the scenario at time Tn, i.e., Hn ¼ En. If
exercised at the observation date, we assume no exposure for the option.

We let market state variable rn represent the simulated market information at time
Tn, and in our case, they are the short rates simulated using the one-factor GSR model
in Equation (1).

3.1. The Least Squares Method (LSM)

The LSM, introduced by Carriere (1996) and popularized by Longstaff and Schwartz
(2001), is a simulation-based method where one approximates the holding value Hn at
each exercise time Tn of a Bermudan option using parametric functions. The para-
metric functions are approximated using least squares regression, giving the continua-
tion value to have the form,

Hn ¼
Xq
i¼0

αi;nζ i;n; (10)

for a set of q basis functions ζ i;n : R
d ! R , i ¼ 0; 1; . . . ; q, and regression coefficients

αi;n. The basis functions ζ i;n are usually polynomials of the simulated state variables, in

our case the short rates, e.g.. ζ i;n ¼ rin The regression coefficients are determined, when
moving backwards in time, by minimizing

X
ω2ΩITMðTnÞ

Xq
i¼0

αi;nζ i;nðωÞ � U�
τnðωÞðωÞ

 !
;

where ΩITMðTnÞ is the subset of paths on which the swaption is in-the-money (ITM) at
time Tn; and

τnðωÞ ¼ min Tj : UjðωÞ � HjðωÞ; j ¼ nþ 1; . . . ;m
� �

:

U�
nðωÞ represents the corresponding future cashflows discounted along the path ω,

given the observation date Tn: For the purpose of CVA, we do not make a restriction
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on the paths used for regression (based on whether or not they are ITM). Additionally,
to avoid oversight bias, a second set of paths is generated, and regression functions
from the initial simulation are used to approximate the continuation value and hence
the exposures along the scenarios.

3.2. The Stochastic Grid Bundling Method (SGBM)

SGBM is a simulation-based dynamic programming method, which first generates Monte
Carlo paths, forward in time (when the diffusion process appears in closed-form or in
approximated closed-form the sample paths can be generated directly). This is then
followed by finding the optimal early-exercise policy by moving backwards in time.
Although SGBM, like LSM, uses least squares regression to approximate parametric
functions, the two approaches are significantly different. In loose terms, there are two
key differences. First, in the case of LSM, regression is performed on the discounted future
cashflows, while in the case of SGBM regression is directly performed on the value
function. Second, in LSM, the regressed function is an approximation of the continuation
value, and it is used for making the early exercise decisions. In the case of SGBM, the
regressed function is an approximation of the option value function in a reduced space.
The continuation value for a particular exposure date is determined as the conditional
expectation of this regressed functional approximation on the next exposure date. A more
detailed description of SGBM can be found in Jain and Oosterlee (2015).

In SGBM, the exposure (continuation value), En at time Tn; is calculated using the
law of iterated expectations, that is,

En ¼ B Tnð ÞE Vnþ1

B Tnþ1ð Þ jrn
� �

¼ B Tnð ÞE E
Vnþ1

B Tnþ1ð Þ jζnþ1; rn

� �
jrn

� �
; (11)

where ζn ¼ ζ0;n; . . . ; ζq;n
� �T

is a q-dimensional set of basis functions. For Bermudan
swaptions in the one-factor Gaussian short rate model, we take a polynomial of the
short rates as the basis functions. Writing the expected exposure as in Equation (11),
decomposes the problem into two steps. The first step involves computing the inner
conditional expectation,

Znþ1 ¼ E
Vnþ1

B Tnþ1ð Þ jζnþ1; rn

� �
; (12)

which is followed by the computation of the outer expectation,

En ¼ B Tnð ÞE Znþ1jrn½ �: (13)

By carefully selecting the basis functions, Equation (13) can be computed in ‘closed-
form’. However, numerical approximations are required to calculate Znþ1 in
Equation (12).

In order to compute Znþ1 in Equation (12), Vnþ1 needs to be conditioned on rn. If
computational costs were not a concern, this would imply simulating a new set of
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scenarios originating from each rnðωÞ and projecting the corresponding Vnþ1 for these
sub-scenarios onto the basis functions ζnþ1: This would result in a regressed function
for each outer scenario rnðωÞ at Tn: However, nested Monte Carlo simulation is
computationally inefficient as the number of paths grows exponentially with each
time step.

A practical approach to condition Vnþ1 on rn is to use bundling techniques.
Bundling was introduced by Tilley (1993) and extended to higher dimensions in the
State Space Partitioning Method (SSPM) in Jin, Tana, and Sun (2007), and is a method
to partition the state space into non-overlapping regions, so that each point in the space
can be identified to lie in exactly one of the bundled regions. The intuitive idea behind
bundling is that for rnðωÞ; if the neighbouring paths are grouped together, the resulting
distribution of paths at the next time step, in the limiting case of infinite scenarios and
bundles, would be similar to the one obtained if new scenarios were generated starting
from rnðωÞ:

At each time Tn, the paths rn ωkð Þ, for k ¼ 1; . . . ;K, are clustered into sets of non-
overlapping bundles B Tnð Þ. We bundle the grid points at each time step using the
recursive bifurcation algorithm, explained in Appendix B. The number of bundles, after
p iterations, equals 2p: Figure 2 illustrates the bundling procedure with 2 and 4 bundles.
The computational complexity for the bundling is linear in the total number of grid
points K, the dimensions d, and the number of iteration steps p. This makes the method
of bundling practical and fast.

The inner expectation, Znþ1 given by Equation (12) is then approximated onto a
polynomial subspace where the values are linear combinations of the basis functions.
This is done by regressing locally, within each bundle, the option values, divided by the
corresponding bank account process, at Tnþ1 for those paths that originate from the
s-th bundle which contains rn ωkð Þ, that is

bZs
nþ1 ¼

Xq
i¼0

αsi;nþ1r
i
nþ1; rnðωkÞ 2 Bs

n; (14)

such that the following residual is minimized
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Figure 2. Continuation values approximated by a third-order polynomial, with the short rates as
basis functions. Left: Regression with 2 bundles. Right: Regression with 4 bundles.
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min
αs

X
rnðωÞ2Bs

n

bZs
nþ1 ωð Þ � Vnþ1 ωð Þ

B Tnþ1;ωð Þ

� �2

: (15)

The exposure at a grid point rn ωkð Þ that belongs to bundle Bs
n is then approxi-

mated by,

bEn ωkð Þ ¼ B Tn;ωkð ÞE bZs
nþ1

���rn ωkð Þ
h i

;

� B Tn;ωkð Þ
Xq
i¼0

αsi;nþ1E ζ i;nþ1jrn ωkð Þ
	 


: (16)

Equation (16) converges to the true expected exposure, when the number of asset
paths K and i the number of bundles tend to infinity, see Jain and Oosterlee (2015) for
details.

Once we have calculated exposures at each time step Tn using Equation (16) we can
approximate the expected exposure as

cEEn � 1
K

XK
k¼1

bEn ωkð Þ;

and the discounted expected exposure as

cEE�
n �

1
K

XK
k¼1

B T0ð Þ
bEn ωkð Þ

B Tn;ωkð Þ ;

for k ¼ 1; . . . ;K. Then, by using Equation (9), the CVA charges follow.
Regression-based American Monte Carlo methods depend on the choice of the

regression variables. To avoid over-fitting one should not use too many regression
variables since they are easily affected by outliers in the simulation. For Bermudan
swaptions it is common to use a second-order polynomial (of the underlying swap
value or the short rate) for the regression, see for instance, Glasserman and Yu (2004).

Remark 3.1 As the regression approximation depends on a rather arbitrary choice of
the basis functions, one should ideally have an estimate of both the upper and lower
bound values for the true price. A lower bound for the option price can be computed using
the so-called path-estimator approach, where the option value is computed as an expecta-
tion of the discounted payoffs from a sub-optimal exercise policy, see for example, Broadie
and Glasserman (2004). The policy is sub-optimal, because of the numerical errors in its
computation. One should use a fresh set of paths for the path-estimator, and not the same
ones used to obtain the early-exercise policy, to avoid a foresight bias. An upper bound is
found using the duality approach, based upon the work of Rogers (2002) and Haugh and
Kogan (2004). This approach has moreover been extensively studied and described in
Andersen & Broadie (2004) and Kolodko and Schoenmakers (2004). Belomestny,
Bender, and Schoenmakers (2009) present an efficient method for obtaining the upper
bound using the duality approach, which can be used for Bermudan swaptions. The
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quality of the upper bound produced by the duality approach depends on the quality of
the estimated exercise policy in the first pass, a more accurate policy gives tighter upper
and lower bounds. In this paper, however, we focus only on the lower bounds and show
that the ones obtained using SGBM, with significantly fewer paths, converge to the same
lower bound value as those obtained using LSM. One can, in a relatively straightforward
way, use the exercise policy obtained from SGBM in the duality approach to obtain a
corresponding upper bound.

3.2.1. Hybrid Measure Monte Carlo
CVA calculations are done at netting set level, where the netting set can have several
different types of deals and underlying driving risk-factors. Additionally, a CVA quote
for a new deal, added or removed from an existing netting set, should be ideally priced
in real-time. As the computational time for Monte Carlo simulations scales with
number of scenarios, it is important that the standard error and bias of the results
from the simulation are as small as possible. Variance reduction then is a highly desired
feature for calculations related to CVA pricing.

An advantage of using SGBM is that it allows adapting the problem, to break the
expectation, which would otherwise be solely computed using the Monte Carlo
approach, to sub-problems where part of expectation is known in closed form.
This feature helps in significantly bringing down the variance of the solution. In
particular for the Bermudan swaptions, we employ hybrid measures to achieve
variance reduction.

The T-forward measure, with corresponding expectation ET and the T-maturity zero
coupon bond P t;Tð Þ as the numeraire has the advantage that it allows for decoupling
the payoff V Tð Þ from the numeraire and take out the discount factor from the
expectation, i.e.,

V tð Þ ¼ B tð ÞEt
V Tð Þ
B Tð Þ

� �

¼ P t;Tð ÞET
t V Tð Þ½ �:

One benefit, however, of the spot measure compared to the T-forward measure is
that the numeraire asset B tð Þ is alive throughout the tenor and, therefore, allows for
simulating paths irrespective of tenor. In SGBM, we will employ hybrid measures to
obtain an efficient Monte Carlo simulation. In order to apply the hybrid measure we
modify the inner-expectation, as given in Equation (12), to the following,

Znþ1 ¼ E Vnþ1jζnþ1; rn½ �; (17)

which is followed by the computation of the following outer expectation (as opposed to
Equation (13)),

En ¼ B Tnð ÞE Znþ1

B Tnþ1ð Þ jrn
� �

: (18)
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The inner expectation is approximated by regression on short-rates simulated under
the spot measure. Note that the minimization problem for regression problem changes
from Equation (15) to:

min
αs

X
rnðωÞ2Bs

n

bZs
nþ1 ωð Þ � Vnþ1 ωð Þ

� �2
: (19)

The outer-expectation in Equation (18) can be computed under the T-forward
measure, rather than the spot measure. This would allow computing the expectation,
without explicitly simulating the bank account process B. The exposure at grid point
rn ωð Þ that belongs to bundle Bs

n is, therefore, computed as,

bEn ωð Þ ¼ B Tn;ωð ÞE
bZs
nþ1

BðTnþ1Þ

�����rn ωð Þ
" #

¼ PðTn;Tnþ1;ωÞETnþ1 Ẑs
nþ1jrn ωð Þ

	 

� PðTn;Tnþ1;ωÞ

Xq
i¼0

αsi;nþ1E
Tnþ1 ζ i;nþ1jrn ωð Þ
	 


: (20)

As ζ i;nþ1 is a polynomial function of the short-rates (simulated in the Gaussian factor
model), its conditional moments are known in closed form under the T forward
measure. An outcome of formulating the problem as above is that we only need to
simulate the future option price, and not additionally the corresponding future bank
account process, to obtain the option price on a given exposure date. As a result we
achieve significant variance reduction in the exposure calculation when compared to
plain LSM.

3.2.2. The SGBM-CVA Algorithm
As explained, SGBM computes the continuation value in two steps: we first compute
the expected option value, conditioned on a finer information set, given by Equation
(12), which is followed by the computation of the outer expectation, given by
Equation (18).

The SGBM-CVA algorithm is, therefore, divided into two parts, a first and second
pass. In the first pass, we perform a forward phase where K1 Monte Carlo paths are
simulated, future cash flows are calculated and a regression basis is constructed. This is
subsequently followed by a backward phase, where we estimate the payoffs and the
polynomials by regression. In order to get unbiased values and lower bound values, we
perform a second pass with a new forward phase where we simulate K2 Monte Carlo
paths, evaluating the payoffs using the regression functions estimated in the first pass
but with the new set of paths.

For clarity, we summarize the steps for the SGBM-CVA algorithm.
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I. FIRST PASS: Estimate Regression Functions.
(1) Generate K1 paths ω1; . . . ;ωK1 , using Equation (2).
(2) For each path ωk and time Tn, for k ¼ 1; . . . ;K1 and n ¼ 1; . . . ;N � 1, compute

the state variable rn ωkð Þ and values Vn ωkð Þ; where VN ; is known and for n ¼
1; . . . ;N � 1; it is solved recursively as below.

(3) For each n ¼ N � 1 . . . ; 1,
(a) Bundle the grid points at Tn�1, into a distinct bundles (except at T0, where

there is only one point) using the algorithm described in Appendix B.
(b) Compute the regression functions, Zs

n; s ¼ 1; . . . ; a, given by Equation (14),
using the option values Vn at Tn for the paths originating from the s-th
bundle, Bs

n�1, at Tn�1.
(c) Compute the En for the grid points in the s-th bundle at Tn�1; using

Equation (20) for those paths for which rn ωkð Þ belongs to the bundle Bs
n�1,

for s ¼ 1; . . . ; a:

II. SECOND PASS: Estimate CVA.
(1) In order to compute an unbiased CVA, generate a fresh set of K2 paths

ω
0

1; . . . ;ω
0

K2
, and compute new state variables r ω

0

k

� �
and values Vn ω

0

k

� �
(2) For each n ¼ N � 1 . . . ; 1,

(a) Bundle the grid points at Tn�1 using the same algorithm as in the first pass
and described in Appendix B.

(b) Compute the exposures for the grid points in bundle s, at time step Tn�1,
using the regression function Zs

n s ¼ 1; . . . ; a, obtained in the first pass.
(c) Compute the EEn, EE�

n and PFEα Tnð Þ for the grid points in the s-th bundle at

Tn�1; for those paths for which rn ω
0

k

� �
belongs to the bundle Bs

n�1, for
s ¼ 1; . . . ; a:

(3) The CVA charge is then calculated as,

CVA � 1� RCð Þ
XN�1

n¼0

EE�
n PDnþ1 � PDnð Þ:

Remark 3.2 Valuation of Bermudan swaptions with American Monte Carlo methods
requires an estimate of the early exercise boundary. Exposure can then be seen as a
barrier option (knock-in) with the estimated exercise boundary as the barrier. Once the
option has been exercised (knocked) along a path at time Tn the exposure Em at Tm for
Tn<Tm for that path becomes zero.

Remark 3.3 The market standards for swaptions are cash-settled contracts, i.e., con-
tracts that settle into a cash payment when exercised. The benefit is that one avoids credit
exposure (and the obligation of collateral posting due to the Credit Support Annex, or
CSA) and therefore have zero exposure after the exercise date. For physically settled
contracts, i.e., contracts entered into an interest rate swap when the contract is exercised,
one would have to calculate the exposure of the swap from the exercise date throughout
the swap tenor. The Bermudan swaption formulas in Section 2.2 describe physical-settled
contracts. The standard pricing formulas for cash-settled agreements are not properly
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justified, since one would have to calculate the annuity An;m by discounting at the fixed
swap rate Sn;m T0ð Þ. Since the SGBM-CVA algorithm presented here works irrespectively
of settlement type, we assume for simplicity that the annuity for cash- and physical-settled
Bermudan swaptions are the same.

4. Numerical Results

In this section, we study the performance of SGBM-CVA by means of numerical
experiments. The numerical examples presented below demonstrate the efficiency of
calculating CVA using SGBM.

4.1. Setup

We use a one-dimensional market state variable r tð Þ to represent the market informa-
tion, and we let the short rates be simulated using the HW1F model by Hull and White
(1990), which is commonly used for pricing Bermudan swaptions. Under HW1F, the
short rate dynamics are given by Equation (1) with κ and σ constant. We calibrate the
HW1F model parameters to the initial zero coupon bond prices observed in the market
2 January 2014. For the default probability function in equation (7), we set the hazard
rate γ tð Þ ¼ 0:05, and the recovery rate RC ¼ 0:40.

For the LSM and SGBM regression, we use a third-order polynomial with the short
rate as the basis and ζ i;n ¼ rin. The moments for the short rates under the HW1F
dynamics in Equation (1) are given in Appendix A.

We consider Bermudan swaptions exercisable once a year with Moneyness (MN) i.e.,
the spot vs. strike ratio of 80%, 100% and 120%, and with realistic HW1F parameters
κ ¼ 0:01; 0:02 and σ ¼ 0:01; 0:02.3

We simulate the first pass with K1 ¼ 4096 seeds using the Mersenne twister pseudo
random number generator to estimate the regression functions. Subsequently, we
simulate the second pass with K2 ¼ 8192 quasi-Monte Carlo Sobol paths using the
regression function estimated in the first pass to estimate the unbiased Bermudan
swaptions values, EE, PFE and CVA charges. Each test is repeated 100 times with
different seeds in the first pass, to remove the overall influence of the Mersenne twister
pseudo random number generator.

We use the bundling scheme described in Appendix B with 8 bundles and with the
same number of bundles at each time step, except at time T0, where there is only one
point, r0. We report the values obtained from the second pass. The prices are reported
in basis points, with the notional N ¼ 10; 000.

The variance reduction is defined as the ratio between the variance from LSM and
the variance from SGBM, where both estimates are obtained from 100 simulations.

4.2. EE and PFE Values

Figure 3 illustrates the PFE5%, PFE95% and EE values generated by LSM and SGBM for
5Y, 10Y, 15Y and 20Y Bermudan swaptions. We observe that both methods generate
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the same values and the characteristic shapes, i.e., the exposure tends to increase first,
since there is an increased probability that the Bermudan swaptions will be deeper in-
the-money at a future exercise date.

The efficiency of SGBM compared to LSM for estimating PFE5%, PFE95% and EE is
illustrated in Figure 4. Clearly, LSM is affected by outliers for the high quantile PFE
estimation. For the EE by SGBM, we obtain on average a variance reduction of a
factor 100.

4.3. CVA

For the CVA computations, we consider Bermudan swaptions with maturities of 5Y
and 10Y. Tables 1 and 2 report the lower bound values for the Bermudan swaptions and
CVA charges via LSM and SGBM. The numbers in parentheses are sample standard
deviations and the values from LSM and SGBM differ at most 5 bps. As a first
observation, the standard deviation for the SGBM lower bounds is much smaller than
the ones obtained from LSM. The efficiency of SGBM compared to LSM for pricing and
CVA calculation is illustrated in Figure 5. For the lower volatility scenarios, i.e., σ ¼
0:01 we obtain for the 5Y Bermudan swaption CVA a variance reduction of a factor 200
and for the 10Y a factor of 400. For the high volatility case, i.e., with σ ¼ 0:02 we
observe a variance reduction of a factor 100 for the 5Y and 200 for the 10Y test case.
The interpretation here is that for a 10Y Bermudan swaption under HW1F with σ ¼
0:01 we will on average need 400 times more Monte Carlo seeds for LSM compared to
SGBM in order to obtain equally ‘accurate’ CVA values.
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Figure 3. Bermudan swaption EE, PFE5% and PFE95% under HW1F with κ ¼ 0:01 and σ ¼ 0:01 with
notional N ¼ 10; 000. Upper Left: 5Y Maturity. Upper Right: 10Y Maturity. Lower Left: 15Y Maturity.
Lower Right: 20Y Maturity.
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4.4. Approximation Error

For the approximation error we study the convergence by increasing the number of
paths in the first and the second pass. As the ‘true’ value, we select the mean of the
LSM computations with K1 ¼ 131; 072 and K2 ¼ 2K1, repeated 100 times. Then, for
different values of K1, with K2 ¼ 2K1, we repeat the simulation 100 times, and
estimate the relative error with respect to the ‘true’ value, for LSM and SGBM
with 1, 2, 4, 8 and 16 bundles. In Figure 6, we illustrate the mean and the standard
deviation of the error for a 5Y Bermudan swaption with κ ¼ 0:01, σ ¼ 0:01 and an

Table 1. Lower bound 5Y Bermudan swaption risk-free prices and CVA charges under HW1F using
LSM and SGBM. Prices are in basis points and standard deviations within parentheses.
MN κ σ SGBM LSM CVA SGBM CVA LSM

0.8 0.01 0.01 477.30 (0.1732) 477.39 (3.8995) 51.70 (0.0144) 51.70 (0.2105)
1.0 0.01 0.01 548.12 (0.1827) 548.26 (4.1316) 58.58 (0.0140) 58.53 (0.2206)
1.2 0.01 0.01 599.25 (0.1824) 599.65 (4.3217) 63.41 (0.0141) 63.35 (0.2140)

0.8 0.01 0.02 736.43 (0.4557) 737.74 (7.0878) 76.31 (0.0347) 75.41 (0.3590)
1.0 0.01 0.02 801.25 (0.4585) 803.21 (7.1382) 82.29 (0.0327) 83.04 (0.3801)
1.2 0.01 0.02 846.78 (0.4973) 847.85 (7.3205) 86.45 (0.0337) 86.16 (0.3525)

0.8 0.02 0.01 471.07 (0.1776) 471.89 (4.1821) 51.06 (0.0149) 51.32 (0.2222)
1.0 0.02 0.01 542.15 (0.1792) 542.76 (4.0907) 57.99 (0.0140) 58.01 (0.2165)
1.2 0.02 0.01 593.49 (0.1783) 594.28 (4.5220) 62.86 (0.0132) 63.06 (0.2133)

0.8 0.02 0.02 723.13 (0.4520) 726.45 (6.898) 75.03 (0.0347) 74.86 (0.3722)
1.0 0.02 0.02 788.16 (0.4595) 791.75 (6.8509) 80.96 (0.0343) 80.88 (0.3517)
1.2 0.02 0.02 833.95 (0.4567) 837.23 (6.9155) 85.13 (0.0324) 85.63 (0.3872)
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Figure 4. EE, PFE5% and PFE95% variance reduction for a Bermudan swaption under HW1F with
κ ¼ 0:01, σ ¼ 0:01 and notional N ¼ 10; 000. Upper Left: 5Y Maturity. Upper Right: 10Y Maturity.
Lower Left: 15Y Maturity. Lower Right: 20Y Maturity.
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MN value of 100%. One can observe that LSM requires a large number of paths to
converge to the true value. For SGBM-1 (i.e. SGBM with 1 bundle) we see an
upward-biased value, but we observe a significant improvement in convergence by
SGBM-2 which converges at K1 ¼ 4096 demonstrating essentially the same accuracy
as LSM in the case of K1 ¼ 131; 072 paths. The error is further reduced by increasing
the number of bundles and the computations with 4, 8 and 16 bundles converge at
K1 ¼ 16384 paths. SGBM-16 is slightly upward-biased for small numbers of paths,
most likely because some bundles will then contain too few paths to allow a feasible
regression without too large error. It can be seen that the SGBM-16 is slightly

Table 2. Lower bound 10Y Bermudan swaption risk-free prices and CVA charges under HW1F using
LSM and SGBM. Prices are in basis points and standard deviations within parentheses.
MN κ σ SGBM LSM CVA SGBM CVA LSM

0.8 0.01 0.01 947.30 (0.2326) 946.74 (7.8717) 175.04 (0.0340) 175.41 (0.6631)
1.0 0.01 0.01 1187.0 (0.2355) 1186.7 (8.7668) 215.55 (0.0346) 214.56 (0.7524)
1.2 0.01 0.01 1367.7 (0.2259) 1368.2 (9.0424) 245.44 (0.0327) 244.85 (0.6960)

0.8 0.01 0.02 1584.1 (0.5393) 1586.4 (13.252) 283.59 (0.0747) 282.52 (1.1481)
1.0 0.01 0.02 1805.5 (0.5513) 1809.4 (13.588) 319.16 (0.0760) 319.46 (1.1454)
1.2 0.01 0.02 1966.0 (0.5317) 1968.5 (14.517) 344.73 (0.0691) 343.11 (1.1505)

0.8 0.02 0.01 921.21 (0.2283) 920.38 (8.2133) 170.12 (0.0337) 170.34 (0.7274)
1.0 0.02 0.01 1162.7 (0.2170) 1161.2 (8.5945) 211.08 (0.0324) 210.45 (0.7198)
1.2 0.02 0.01 1345.0 (0.2367) 1344.3 (8.8313) 241.23 (0.0344) 241.07 (0.7121)

0.8 0.02 0.02 1529.5 (0.5057) 1536.7 (12.958) 273.61 (0.0717) 274.5 (1.1336)
1.0 0.02 0.02 1752.3 (0.5428) 1758.7 (14.181) 309.44 (0.0763) 311.73 (1.1552)
1.2 0.02 0.02 1914.2 (0.5630) 1919.6 (13.726) 335.13 (0.0729) 334.72 (1.1953)

5Y Bermudan 10Y Bermudan
0

100

200

300

400

500

V
ar

ia
nc

e 
R

ed
uc

tio
n

5Y Bermudan 10Y Bermudan
0

100

200

300

400

500

V
ar

ia
nc

e 
R

ed
uc

tio
n

5Y Bermudan 10Y Bermudan
0

100

200

300

400

500

V
ar

ia
nc

e 
R

ed
uc

tio
n

5Y Bermudan 10Y Bermudan
0

100

200

300

400

500

V
ar

ia
nc

e 
R

ed
uc

tio
n

OTM
ATM
ITM

Figure 5. CVA variance reduction for 5Y and 10Y Bermudan swaptions under HW1F with notional
N ¼ 10; 000. Upper Left: κ ¼ 0:01, σ ¼ 0:01. Upper Right: κ ¼ 0:01 σ ¼ 0:0:2. Lower Left: κ ¼ 0:02
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upward-bias for low number of paths compared to SGBM-4 and SGBM-8. We
observe similar patterns and convergence for different MN values, maturities and
parameter setup, when the number of paths per bundle is too small.

SGBM demonstrate a faster convergence and produces more stable values with
significant lower variances. The reason is that LSM uses the regressed continuation
values directly to make the early-exercise decision. A large number of paths and basis
functions are required to reduce the noise in this regressed function. Therefore, the
quality of the LSM early-exercise policy may not be accurate for a small number of
paths and basis functions. In SGBM, however, the regressed function is just the inner
expectation, which is not used for decision-making. The outer expectation, which can
be analytically computed, gives the continuation value and is used to make the early
exercise decision. As the noise, or the error due to regression, is normally distributed
with a zero mean, the outer expectation of the noise would be zero.

5. Conclusion

Usually banks have a large number of trades in a portfolio and it would be computa-
tionally inefficient to require several runs for the trades in the portfolio to get a CVA
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which we can be confident about if there is high variance. This paper presented the
application of the Stochastic Grid Bundling Method (SGBM) for calculating exposures,
potential future exposure and approximating CVA charges for Bermudan swaptions in
an American Monte Carlo simulation framework. SGBM is a regression-based Monte
Carlo method which is accurate and easy to implement. Variance reduction, based on
iterated conditioning, in combination with the bundling technique forms the necessary
ingredients for accurate CVA valuation with a relative small number of paths and basis
functions. The computational time for the method is comparable to the least squares
method in Longstaff and Schwartz (2001), but a higher accuracy is achieved. Our
numerical examples demonstrate the efficiency of calculating CVA using SGBM, mak-
ing it a very suitable candidate with a potential to calculate ‘real-time’ CVA charges and
easy extension to other charges within the XVA family.

A HW1F Moments
Let Mk s; tð Þ ¼ E r tð Þkjs

h i
be the k-th moment. The three first moments for the

HW1F are given by,

M1 s; tð Þ ¼ e�κ t�sð Þr sð Þ þ θ tð Þ
κ

1� e�κ t�sð Þ
� �

;

M2 s; tð Þ ¼ M2
1 s; tð Þ þ σ2

2κ
1� e�2κ t�sð Þ
� �

;

M3 s; tð Þ ¼ M3
1 s; tð Þ þ 3M1 s; tð ÞðM2 s; tð Þ �M2

1 s; tð Þ
�
:

B Bundling
The goal is to construct bundles by generating K replications of the underlying asset

path, rn ωkð Þ, for n ¼ 1; . . . ;N and k ¼ 1; . . . ;K and to bundle them at each epoch, Tn,
into an Kð Þ non-overlapping sets, Bs

n ¼ B1
n; . . . ;Ba

n

� �
, with a threshold, bn Kð Þ, on the

number of path points in each bundle. This is done by defining at each epoch, Tn,
representative states μsn for s ¼ 1; . . . ; an Kð Þ. The s-th bundle at time Tn is thus
defined as

Bs
n ¼ rn ωkð Þ : rn ωkð Þ � μsn



 


2 � rn ωkð Þ � μ,n



 


2 " 1 � , � an Kð Þ

n o
; (21)

for k ¼ 1; . . . ;K and where μsn is the mean of the points in Bs
n.

Suppose we need to bundle Ks grid points at epoch Tn; given by rn ωkð Þ, where k ¼
1; . . . ;Ks: The following steps are performed recursively.

(1) Compute the mean of the given set of grid points,

μsn ¼
1
Ks

XKs

k¼1

rn ωkð Þ:

(2) Bundling of the grid points is performed by dividing the grid points into two
groups, depending on whether the asset price for the grid point is greater than or
less than the mean of the asset prices for the given set of grid points:
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B1
n ωkð Þ ¼ 1 rn ωkð Þ>μsn

� �
;

B2
n ωkð Þ ¼ 1 rn ωkð Þ � μsn

� �
;

for k ¼ 1; . . . ;Ks: B1
n ωkð Þ returns ‘true’, when the state variable rn ωkð Þ is greater

than the mean, μsn and belongs to bundle 1. B2
n ωkð Þ returns ‘true’, if it less than the

mean and belongs to bundle 2. Formally, Bs
n ωkð Þ returns ‘true’, if the grid point

rn ωkð Þ belongs to bundle s.

(3) Bundles B1
n and B2

n can be split again, returning to step 1.

Notes

1. Basel III states that ‘Whenever such a CDS spread is not available, the bank must use a
proxy spread that is appropriately based on the rating, industry and region of the counter-
party’. Calibration methods ranked from best to worst, first, from CDS spreads (if traded
and quoted in the marked), second, from bond spreads (if traded and quoted in the
marked), and third, from a rating transition matrix and last, from proxies such as stock
prices or reported fundamental data.

2. The International Swaps and Derivatives Association (ISDA) defines the wrong-way risk as
‘the risk that occurs when exposure to a counterparty is adversely correlated with the
credit quality of that counterparty’. If these two effects tend to happen together, then that
co-dependence will increase the CVA on the contract and it will make the CVA larger than
when the effects were independent. For details on WWR see for instance Hull and White
(2012), Rosen and Saunders (2012), Redon (2006)

3. For instance, at the beginning of 2015, the HW1F, with value of κ and σ calibrated to USD,
co-terminal swaptions were both around 0.01.
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