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1. INTRODUCTION 

In this paper, special diagonally implicit Runge-Kutta (DIRK) methods will be constructed for 

integrating systems of ODEs of the form 

!!EJ!l - -dt - j(t,y(t)), y(to) - Jo, (1.1) 

of which it is known in advance that the solution is oscillating. In analogy with a generally adopted 

approach in the phase lag analysis of numerical methods for second-order equations with oscillating 

solutions, we use the equation (cf.[l,3,4,7,8,12,13,l4,15,16]) 

!!EJ!l . ( iw I = zwy t)+ce ' ; w,wp E R w-:=l=wp 
dt 

(1.2) 

as test equation; here w represents a natural (or eigen) frequency of the system and wP represents the 
frequency of the forced solution component. 

In Section 2, we start by deriving explicit expressions for the phase lag introduced by general, 
implicit Runge-Kutta (RK) methods. The phase lag is composed of two parts: the homogeneous phase 

lag corresponding to the eigenmodes in the solution, and the inhomogeneous phase lag corresponding 

to the forced solution component. It will be shown that in calculations over long intervals of integra­

tion, the homogeneous phase lag tends to increase linearly, whereas the inhomogeneous phase error is 

constant. This motivates our concentrating on the reduction of homogeneous phase errors. 
In Section 3, we introduce the concept of a q-th order dispersive stability function, and we show that 

such a stability function generates Runge-Kutta methods that have homogeneous phase errors of 

order q. 
From Section 4 on, we confine our considerations to DIRK methods. We first derive the (disper­

sion) relations specifying a q-th order dispersive stability function (we remark that for explicit Runge­

Kutta methods these relations can be found in [8]). It is shown that there exists a one-parameter fam­

ily of m-stage, p-th order consistent DIRK methods that have homogeneous phase errors of order 

q = 2(m - tp / 2J). In Section 5, the dispersion relations are solved for one-, two-, three- and four­

stage DIRK methods and the resulting stability functions are constructed. These functions are disper­

sive of order q = 2m. The two-stage stability function turns out to be identical with the stability 
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function of the well-known DIRK method of Nc/)RSETI [10]. 
The actual construction of highly dispersive DIRK methods is given in Section 6. Here, a three­

and a four-stage method are presented which are both A-stable and third-order consistent, and which 
have homogeneous dispersion order q = 6 and q = 8, respectively. 

In Section 7, these methods are applied to systems of linear differential equations in which the 
oscillating solution component is dominating. The results are in perfect agreement with the theory. 
Finally, a comparison with the DIRK methods of N~RSETI [10] and CROUZEIX [5] shows that the 
higher-order dispersive methods proposed in this paper produce much more accurate results than con­
ventional DIRK methods. 

2. THE RK SOLUTION OF THE BASIC TEST EQUATION 

The general m-stage RK method for the system of ODEs (I.I) is given by 
m 

Ynj = Yn+h ~ aj1f(tn+c1h,Yn1), j = l, ... ,m, 
/=I 

m 

Yn+l = Yn+h ~ bjf(tn+cjh,Yn)• 
j=l 

where the RK parameters ajl,bj and cj are assumed to be real. 
Application of the RK method (2.1) to the basic test equation (1.2) leads to the recursions 

where we have set 

v : = wh, "P : = wph. 

(2.la) 

(2.lb) 

(2.l') 

Introducing the matrix A = (aji) and the vectors b = (bj), c = (cj), Yn = (Ynj), ep = (exp(icjvp)) 
and e = (I, ... , I l, we can write (2.1 ') in the compact form 

Yn = Yne+ivAYn +ch/"''
1
" Aep, 

_ + . bTY + h iw,t, bT Yn+I -Yn IP n ce er 

From (2.1") a recursion for Yn can be derived: 

Yn +l = [I +ivbT(I -ivA)- 1e]yn +ch/"''1" bT[/ +iv(/ -ivA)- 1A ]er 

It is convenient to define the rational functions (in z) 

R(z) :=I+ zbT(/-zA)- 1e, 

Q(z,ivp) := bT(/-zA)- 1eP, 

so that the Runge-Kutta recursion for the test equation (l.2) is given by 

Yn +l = R(iv)yn + chQ(iv,ivp)/"''
1
". 

R (z) is known as the stability function of the RK method. 
Let us write the solution of (2.2') in the explicit form 

- - iw t - iw t Yn = a1n(Yo-aoe ,o]+aoe '". 

Then, by substitution into (2.2'), we derive 

(2.1") 

(2.2) 

(2.3) 

(2.2') 

(2.4a) 



_ . _ chQ(iv,ivp) 
a1 = R(1v), ao = iv . . · 

e'-R(1v) 

For the exact solution of the basic test equation we have 

y(tn) = a7[y(to)-aoeiw,t,]+ao/"'/·, 

( . ) eh a 1 := exp1v, ao := . . · 
lPp-lP 

3 

(2.4b) 

(2.5a) 

(2.5b) 

We shall compare the phases of the quantities aj and aj with the aim to derive conditions for high­
order phase errors. 

DEFINITION 2.1. In the RK scheme (2.1) the functions 

a1 
<j>1(v): = arg[-:-] = v-arg[R(iv)], 

a1 

·- a0 _ exp(ivp)-R(iv) 
</>o(P,Pp) . - arg[-:-] - arg[ (. . )Q(" . ) ] 

ao lPp-lP lP,lPp 

are respectively called the homogeneous and inhomogeneous dispersion (or: phase error, phase lag ). If 
<j>1 = O(hq+l) as h ~ p, with w constant, then the method is said to have homogeneous dispersion 
order q. If <l>o = O(hq) ash ~ 0, with w and we constant, then the method is said to have inhomo­
geneous dispersion order q. 0 

In computations with fixed stepsize h and large integration intervals the homogeneous dispersion is 
the more important source of phase error because it causes the numerical solution to become increas­
ingly out of phase with the exact solution. The inhomogeneous dispersion introduces a phase error 
which is constant in time. Since we usually want a solution that has an error which does not change 
too much over the interval of integration, the homogeneous dispersion seems to be the most crucial 
source of phase errors and therefore we will concentrate on the reduction of the magnitude of <j>1 (v). 
As a consequence, when a method is called dispersive of order q we always mean that the method has 
homogeneous dispersion order q. 

2.2. Derivation of the order of dispersion 
In the derivation of the functions <l>j we need the functions R and Q defined in (2.3). In order to 
evaluate R and Q the following lemma may be helpful. 

LEMMA 2.1. Let M be a nonsingular m X m matrix, and v and w m-dimensional vectors. Then 

vTM-lw = det[M +wvTI -1. 
det[M] 

PROOF. Let x := M- 1w and Xm+I 

tions: 

Mu M1m 0 

1 +vT x, then (xT,Xm + 1) satifies the system of m + 1 equa-
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where Mp are the entries of M, and xj,vj,wj the components of x,v,w. By Cramer's rule we may write 

·- T -I _ det(N] 
xm + 1 • - 1 + v M w - det[M] , 

with 

N= [-~T l 
Subtracting the row vector w;(-vr, I) from the i-th row of N(i = l, ... ,m) leads to 

det[N] = ·det[M +wvr] 

which proves the lemma. D 

Using this lemma we derive from (2.3) for R(z) the familiar expression (cf. [ll,p.132]) 

R(z) = det[I-zA +e·brz], (2_6a) 
det[I -zA] 

and for Q (z) we obtain 

. _ det[I-zA +ee·br] 
Q(z,lPp) - det[I-zA] -1. (2.6b) 

EXAMPLE 2.1. Consider the backward Euler method defined by A = l, and b = c = 1. Since 
ee = exp(iPp) it follows from (2.6) that 

I iP, 
R(z) = -

1
-, Q(z,iPp) = _e __ 
-z 1-z 

On substitution into </>j given by Definition 2.1 we obtain 

_ 1-cos(Pp) 
<f>i(P) = p-arctan(P), </>o(P,Pp) - arctan( . ( ) )o 

p-sm Pp 

showing that the backward Euler method has homogeneous and inhomogeneous orders of dispersion 
q = 2 and q = 1, respectively. D 

EXAMPLE 2.2. For the trapezoidal rule we have 

so that 

A = : [~ ~l · b = : e, c = [~] · e, = [.q 
R( ) = 1 +z /2 

z 1-z/2' 
I 1 +/P, 

Q(z,iPp) = z ---
1-z / 2 

The functions </>j now become 

p 
</>1(P) = p-arctan[ 1 ], 

1--,? 
4 

2tan(P /2)-p 
<f>o(P,P ) = arg[ P ] = 0. 

p p -p 
p 

The orders of homogeneous and inhomogeneous dispersion are, respectively, q = 2 and q = oo (the 
infinite order of the inhomogeneous dispersion is due to the symmetry of the trapezoidal rule, cf. 
THOMAS [15]). D 
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3. DISPERSIVE STABILITY FUNCTIONS 

Ideally, the stability function R(z) of an RK method should be such that «[>1(P) := v-arg(R(iv)) van­
ishes identically. Although this will not be possible, it is of interest to characterize the class of func­
tions for which «[>1 (v) does vanish identically. 

- -
DEFINITION 3.1. A function R(z) is said to be in class 6D00 if «[>1(P) := v-arg(R(iv)) = 0 on R, or 
equivalently, 

- -
Im(R(iv)) = tan(v) Re(R(iv)) on R . 0 (3.1) 

THEOREM 3.1. A rational function R(z) with real coefficients is in class 6D00 if, and only if, its Taylor 
expansion is of the form 

-
00 

- .j_. I+. - 2· 
R(z) = ~ lP2j + z 2 (-1) 1Y2u-l)P21Jz :.J, 

j=O /=O 

- - -
(3.2) 

where Po = l and fl2,p4 , ... are arbitrary parameters in R, and where the y 21 are the coefficients in the 
Taylor expansion 

00 

tan(z) = z ~ y21z 21
• 

/=O 

(3.3) 

- -
PROOF. It is straightforwardly verified that arg(R(iv}) =" for " E R and all real Pzj,} > 0. Con-
versely, substituting a formal Taylor expansion for R into (3.1) leads to expressions for the Taylor 
coefficients which are readily identified with those of (3.2). 0 

As an illustration, we explicitly give the first few terms of the expansion (3.2): 

- - - I - - I- 2 
R(z) = l+z+P2z2+(/l2-3)z3+{l4z4+({l4-3P2+15)z5 

- - I - 2 - 17 + P6z6+(P6-3fl4+15P2- 315 >z 1 (3.2') 

- - I - 2 - 17 - 62 9 
+ Pszs +(/ls -3P6 +15P4- 315 P2 + 2835 )z + .... 

A trivial _example of a function from 6D00 is given by exp(z ); it can be written in the form (3.2) by 
defining P2j : = l / (2})!. 

It is convenient to introduce the notion of consistent and dispersive stability functions: 

DEFINITION 3.2.(a) A given stability function R(z) is called consistent of order p if 

R(z) = exp(z)+O(zP+ 1). 

(b) It is called dispersive of order q (or: to belong to class 6Dq) if there exists a function R E 6D00 such 
that 

R(z) = R(z)+O(zq+I). 0 

This definition is justified by the following theorem: 

THEOREM 3.2.(a) A p-th order consistent RK method possesses a p-th order consistent stability function. 
(b) An RK method has homogeneous dispersion order q if, and only if, its stability function is dispersive of 
order q (belongs to 6Dq). 

PROOF. Assertion (a) of the theorem is well known (see e.g. [6]). 
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Th~ sufficient part of assertion (b) is proved as follows: let R E 6Dq, i.e., R(z) = R(z)+O(zq+l) 
with R E 6D00 , then 

<J>1(v) := p-arg(R(iv)) = [v-arg(R(iv))]-[v-arg(R(iv))] 

= arg(R(iv)/ R(iv)) = arg(I +0(~+ 1 )) = 0(~+ 1 ), 

showing that the RK method has homogeneous dispersion order q. 
Conversely, let <J>1(v) = O(vq+ 1), then 

Im(R(iv)) = tan(v) Re(R(iv))+0(~+ 1 ). (3.3) 

On substitution of the Taylor expansion of the given function R(z) into (3.3) we can show that the 
Taylor co~fficients of R (z) can ~e identified with those of (3.2) up to order q. Hence, there exists a 
function R E 6D00 such that R -R = O(zq+ 1). D 

Evidently, any p-th order consistent RK method has homogeneous dispersion order q ;;;;;.: p. How­
ever, if p is odd, then we get automatically one order higher homogeneous phase error. 

THEOREM 3.3. An RK method of consistency order p = 2p0 + I has homogeneous dispersion order 
q;;;;;.: 2po+2. 

PROOF. According to Theorem 3.2(a) and Definition 3.2(a), the stability function R(z) has a Taylor 
expansion of the form 

_ _!_ 2 I 2p0 +1 +/3 2p0 +2+/3 2po+3 R(z) - l+z+ 2 z + ... + (
2 11 z 2p 0

+2z 2p0
+3z + ... , . po+ ). 

where the coefficients {3j ,j > 2p 0 j- I, are expressions in terms of the RK parameters. 
Next we consider the function R(z) with /321 = I/ (2/)! for l ..;;;; p0, to obtain 

- Po I j I+ . I 2 . 
R(z)= .~ [(2 .)' +z ~ (-1) 1

Y2(j-I) ( 2/)l]z"+ 
J =O J · I =O · 

/3- 2po +2 + 0( 2po +3) 2p0 +2Z Z • 

By setting /32p 0
+2 = /32p 0

+2 and by observing that 

(3.4) 

(3.5) 

j 1+· I I 
i~o(-1) JY2v-1>(2/}! (2j+I)! (3.6) 

- 2 +3 we conclude from (3.4) and (3.5) that R(z)-R(z) = O(z :Po ) which proves the theorem. D 

4. DERIVATION OF DISPERSION RELATIONS 

In [8] dispersion relations have been derived for polynomial stability functions. In this paper we con­
sider stability functions of the form 

m 

~ajzj 
j=O 

R(z) = ~--- ; a,ao, ... ,am E IR. 
(I +azr 

(4.1) 

If a = 0 this function reduces to a polynomial and the results obtained in [8] apply. For instance, the 
maximal attainable order of dispersion for polynomial stability functions is given by 

q := 2(m-p+LP;
1

J)=2(m-L1-J). (4.2) 
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In this section, it will be shown that in some cases this order of dispersion can be raised to q = q + 2 

by a judicious choice of a. To that end 'Ye need the dispersion relations for stability functions of the 

nonpolynomial form (4.1). In principle, these relations can be obtained from the relations derived for 

polynomial stability functions: by expanding (4,1) in a Taylor series of the form 

00 

R(z) = ~ Pjzj, 
j=O 

we find that the Pj are polynomials in a with coefficients that are linear in the aj, for example, 

Po = ao, · P1 = «1 -ao [7]a, P2 = a2-a1 ['f )a+ao[ (7)2- (~)Ja2. 
We now use the dispersion relations derived in [8] for stability functions of the form 

m 

R(z) = ~ Pjzj. 
j=O 

These dispersion relations are linear relations in terms of the Pj• so that by substituting our Pr 

expressions, we obtain dispersions relations for stability functions of the form (4.1) that are linear in 

aj but polynomial in a. 
The approach outlined above leads to complicated formulas. Therefore, we prefer to follow l!_n 

alternative approach which expresses the dispersion relations in terms of a and the parameters pj 
introduced in Theorem 3.1. 

In the following it is convenient to introduce the vectors 

Pq : = (Po.P2,p4, · · . , Pq)r (4.3a) 

__ l_l _1-_ -r-.- P.... 
- (1, 21' 41' ... ' - ,Pp+2• ... ,pq) ,p .- 2l2J, 

. . p! 

am : = (ao,a1, · · · , Cl.ml, (4.3b) 

the m + I by q + 1 matrix 

[;]·· 0 ... 0 0 0 

B1(a) := (4.3c) 

[:].- [m~l]r' ... [;]•' 0 0 

the q-m byq+l matrix 

0 [:]~ [m~l1~-1 - - - [7]· 0 - - - 0 

0 0 [:]-- [ m 1~-t m-1 [7]a 
\ 

\ \ 
\ \ 

B2(a) := 
\ \ \ (4.3d) 

\ \ .\ \ 

\ \ \ 
\ 0 

0 0 [:].- [m~l]r' [7]· 
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and the q + 1 by q / 2 + I matrix 

1 

Yo 

0 
-y2 Yo 

0 0 
C:= 

Y4 -y2 Yo 

0 ... 
(- l)<q-2>12Yq-2 . . . 

0 . . . 
0 0 

Y4 -y2 Yo 

0 0 0 

Here, p is the order of consistency of ( 4.1 ), q is even and greater than m. 

(4.3e) 

THEOREM. 4.1. Let p be the order of consistency of ( 4.1) and let q be ~n even integer > m. Then the sta­
bility function ( 4.1) is dispersive of order q if there exists a real vector fJq and a real a such that 

and if 

PROOF. The Taylor expansion of the stability function is of the form 

00 . 1 . 
R(z) = ~ f3jzl, f3j := -.

1 
for J = 0,1, ... ,p, 

j=O } • 

where the coefficients /3j, j ;;;;. p + 1 are in R. From ( 4.1) it follows that 

aj- ± /31 [.":_ 1]ai-l = 0, j = 0,1, ... , 
/=O } 

where aj : = 0 for j > m. Using the notations (4.3) and introducing the vector 

fJq : = (/30./31./32, ... '/3ql 

_ 1 1 T 
- (1,1,-21' ... ,-, ,f3p+I• ... ,f3q)' 

. p. 

we deduce from Theorem 3.1 and (3.6) that R E6Dq if 

fJq = CfJq. 

It follows from (4.5) that (again using the notations (4.3)). 

am = B1(a)fJq, 

B 2(a)fJq = 0. 

On substitution of (4.6) we arrive at the relations (4.4). D 

(4.4a) 

(4.4b) 

(4.5) 

(4.6) 

COROLLARY 4.1. Let (4.1) be consistent of order p and let q = q = 2(m - tp /2J) (cj. (4.2)). Then 
(4.4) determines a one-parameter family R (z ;a) of stability functions in 6Dq. 
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PRooi;: .. For e~ch a, (4.4a) represents a linear system of q -m equations for the (q -p) / 2 unknowns 

fJp+2,fJp+4, ... ,fJq with p := 2[p /2J. By choosing q = 2m - p = q the number of unknowns 

equals the number of equations. ~y solving this system the parameter vector «m can be calculated on 

substitution of q = q and /Jq = fJq into (4.4b). According to Theorem 4.1, the resulting stability func­

tion is dispersive of order q, i.e., it lies in 6Dq. D 

It has already been observed that the dispersion order can sometimes be raised by 2 by a judicious 

a. This happens when there exists a real value a such that (4.4a) can be satisfied for q = q+2. Since 

the two additional dispersion relations are polynomial in a it is not always guaranteed that a solution 

a in R exists. 

5. CONSTRUCTION OF HIGHLY DISPERSIVE STABILITY FUNCTIONS 

5.1. The case m = l, p =I 
Let us try to achieve order of dispersion q =4. The dispersion relations (4.4a) reduce to 

[ 

a 1 O [l 
-r2 a+ro 0 ~2 = 0. 

-r2a roa: I {14 
I 

The first relation is satisfied if {12 = - a; the second relation reads 

a2 + y0a + 'Y2 = 0 

(5.1) 

which has no real solution. Hence, q = 2 and, according to ( 4.4b ), a1 = l +a. Thus, we have the 

first-order consistent and second-order dispersive family 

R(z ;a) = 1 +(I +a)z · (5.2) 
(1 +az) 

5.2. The case m =2, p =I 
We try q =6; (4.4a) reads 

a2-r2 2a+ro 0 0 

-2r2a a2 +2ro·a 0 /32 

-r2a2 +y4 2 2a+ro 0 {14 
= 0. (5.3) 

roa -r2 

2y4a -2r2a a2+2roa 1 fJ6 

The first two equations are solved by 

- 'Y2 -a2 - (2ro +a)('Y2 -a2) 
/32 = +

2 
, {14 = 2r2a-a +

2 
(5.4a) 

Tu a Tu a 

2 
The third equation then becomes, upon substitution of 'Yo = I, y2 = 1/3, y4 = Is' 

90a5 + 180a4 + l50a3 + 60a2 + l2a+ I = 0, 

possessing the real root 

a= -.28416 43597 .... (5.4b) 

The fourth equation expresses {16 in terms of {12,{14 and a. The parameter vector a 2 can now be 
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computed by means of ( 4.4b ). The resulting stability function reads 

R(z ;a) = I +(2a+ l)z +(a3 +2a2 +a+ l / 6)z2 /(a+ l / 2) . 
·(I +a:z)2 . 

(5.5) 

It is sixth-order dispersive if a is given by (5.4b) and fourth-order dispersive otherwise. 

5.3. The case m =2, p =3. _ 
The corresponding dispersion relations can be derived from (5.3) by setting f:J2 = l / 2. From (5Aa) it 
then follows that a should satisfy 

a2+a+l/6=0, 

i.e., a = -1/2-+-VJ / 6. The resulting third-order consistent, fourth-order dispersive stability func­
tion given by 

R( .) = 1+(2a+l)z+(a2+2a+I/2)z2 = _J_-+-J__r,;-3 z ,a 2 ' a 2 - 6 v j , 
(1 +az) 

is identical with the stability function considered by N'/IRSETI [1974]. 

5.4. The case m =3, p =3 
The dispersion relations (4.4a) with q =6 assume the form 

a3-3y2a 3a(a+ro) 

-3y2a2+y4 a3 + 3yoa2 -r2 3a+ro 

-y2a3 +3y4a a(yoa2 -3y2) 3a(a+ro) 

The first equation is solved by 

- 3 f:J4 = -a3 +3r2a-2a(a+yo), 

and the second equation becomes 

90a4+150a3+75a2 +15a+ I = 0. 

This equation has the real solutions 

0 

0 

I 

1/2 

f:J4 

f:J6 

a(!) = -.13633 37707 ... , 0:<2> = -.97567 45887 ... 
- -

= 0. 

(5.6) 

(5.7a) 

(5.7b) 

The last equation expresses {:J6 in terms of a and {:J4 so that, by ( 4.4b ), the parameter vector a3 can 
be computed. The resulting stability function is given by 

I 3 1 
I +(3a+ l)z +(3a2 +3a+2)z 2 +(a3 +3a2 +1a+6)z3 

R(z ;a) = (5.8) 
(1 +az)3 

It is third-order consistent; if a is given by (5.7b), then it is sixth-order dispersive, and fourth-order 
dispersive otherwise. 
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5.5. The case m =4, p =3 
To achieve order of dispersion q =8, the system 

a.4 -frr2a.2 +y4 4a.3 +6yoa.2 ....,.Y2 4a+l 0 0 1 

-4y2a.3 +4y4a. a.4 +4roa.3 -4r2a. 6a.2+4a. 1 0 1/2 

-r2a.4 +6y4a.2-y6 roa.4-6y2a.2 +y4 4a.3 +6a.2-y2 4a+ro 0 /J4 = 0 (5.9) 

a.4 +4a.3-4y2a. 6a.2+4roa. 1 /36 

Ps 
requires a real solution (a,/)). _ _ 

From the first and second equation, /34 and /36 are readily solved: 
- I 
/J4 = -(a.4+2a.3+(3yo-6Y2)a.2+y4-2Y2)/(4a+l), 

- a.2 15 
/36 = 4a+ l [6a.4+14a.3-(20y2 -10yo-2)a.2-(20y2 - lOyo)a.-(lOy4 -5y2)a.]. 

On substitution into the third equation, and using the actual values for the y's, we obtain an equa­

tion for the parameter a, 

60a.7 + 144a.6 + 126a.5 +56a.4+14a.3 + 2a.2 +~a +-
1
- = 0 

105 210 • 

possessing three real roots given by 

a_(I) = -.10058 35034 ... , a.<2) = -.18716 71826 ... , a_<3> = -1.12972 65662.... (5.10) 

Finally, /38 follows from the last equation in (5.9) and the vector a4 is determined by (4.4b). The sta­

bility function takes the form 
I I 2 - 4 

l +(4a+ l)z +(6a.2 +4a.+2)z2 +(4a.3 +6a.2 +2a.+6)z3 +(a.4+4a.3 +3a.2+3a.+/J4)z 

R(z ;a) = 
(1 +a.z)4 .11) 

This family furnishes sixth-order dispersive stability functions for all real a; in the particular case of 

( 5 .10) these functions are eighth-order dispersive. 

6. CONSTRUCTION OF THIRD-ORDER DIRK SCHEMES 

Let us start with an m-stage DIRK scheme, generated by the parameter matrix 

-a -a 

C2 c2+a. -a 

C3 0 c3+a. -a 

.... ' (6.1) 
Cm-2 .... .... 

Cm-I 0 0 Cm-I +a -a 

Cm 0 0 Cm+a -a 

0 0 1-bm bm 

By this special choice, its implementation on a computer will require only a few arrays. 
The parameters c2 , •.• ,cm _2 will be used to adapt its stability function to the form required by the 

dispersion considerations ( cf. Section 5); a is prescribed and Cm - I, Cm and bm will be required to 

satisfy the set of equations 
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(l-bm)Cm-1 +bmCm = 1 /2, 

(1-bm)c~ -I +bmc~ = 1/3;. 

(1-bm)[(cm -I +a)cm -2 -cm -I a]+bm[(cm +a)cm -I -cma] = 1/6, 

yielding third-order accuracy. 

6.1. The case m =3 

(6.2a) 

(6.2b) 

(6.2c) 

For a three-stage method, there are no free c-parameters left, because cm- 2 = c 1 = -a. However, 
as any three-stage, third-order DIRK scheme (with a prescribed) has the same stability function (i.e. 
the function R(z ;a), given by (5.8)) there is no need for any adaptation. Hence, solving (6.2) results 
automatically in a scheme, which possesses the required stability function. From (6.2a) and (6.2b) we 
easily deduce 

c = m 

l I 
3-2cm-I 

I 
2-cm-I 

I 2 
(2-cm-d 

' bm = .....-1~~~~2~-
3-cm-I +cm-I 

and, on substitution, (6.2c) requires Cm-I to satisfy 

6 3 _ 9 2 + 8a+4 + a(a+2)+2/3 = O. 
Cm-I Cm-I 2a+ 1 Cm-I -2a- l 

Hence, for any value of a, at least one set of real parameters {cm-J>Cm,bm} is obtained. 

(6.3a) 

(6.3b) 

For the special a-values given by (5.7b), this scheme is sixth-order dispersive. It turned out that for 
a = a<2>; the stability function is A-acceptable (cf.[9,p.237]) whereas a = a< 1> leads to a conditionally 
stable scheme. Hence, for m = 3, we will use a = a<2>, yielding the scheme 

-a -a a~ - .97567 45887, 

C2 c 2 +a -a C2~ .11484 20358, 

0 c3+a with 
C3~ .71636 14441, (6.4) C3 -a 

0 l-b3 b3 b3~ .64030 84570. 

6.2. The case m =4 
To construct a four-stage method, we again impose the order conditions (6.2), but now the resulting 
scheme does not automatically yield the stability function as given by (5.1 I). In general, the coefficient 
of z 4 in the numerator will be different. Therefore, we derived this coefficient for scheme 
{(6.1),m =4} (cf.2.6a) and we identified the resulting expression with the corresponding expression in 
the required stability function (5.1 I). This equation, together with (6.2) was solved numerically for the 
unknowns c2,c3,c4 and b4 • For all values of a, the resulting scheme is sixth-order dispersive. How­
ever, if we employ the special a-values given by (5.10), this order can be increased to 8. It turned out 
that only a<3> yields an A-acceptable stability function, whereas a<1> and a<2> result in schemes with 
very poor stability characteristics, especially along the imaginary axis. 

Hence, form =4, we will use {(6.1),a = a<3>} leading to the scheme 

-a -a a~ - l.12972 65662, 

C2 C2 +a -a C2 ~ .50160 90786, 

0 c3 +a -a 

0 

0 

with C3 ~ .72199 89658, 

C4 ~ .12462 28759, 

b4 ~ .37162 34539. 

(6.5) 



7. NUMERICAL EXPERIMENTS 

We have applied the methods (6.4) and (6.5), and the "conventional" methods 

-a -a 

l+a 1+2a -a 

1 
2 

of N<JRSETT [10], and 

l 
2 

1 -(l-y) 
2 

2 

1 
--:-y 

2 

l+y 

1 

6r 

, I l VJ 
a= -(2+6 3) 

1 
-1-2-y 2(1 +y) 

I 
i- 3r 

2 
, y = v'3 COS('IT I 18) 
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(7.1) 

(7.2) 

of CROUZEIX [5] (see also BURRAGE [2]). All methods are A-stable; a further specification is given 

below: 

method 

(7.1) 
(7.2) 
(6.4) 
(6.5) 

m p 
2 3 
3 4 
3 3 
4 3 

q 
4 
4 
6 
8 

I jR(oo)l j 
0.732 
0.630 
0.679 
0.655 

Notice that the methods of N0rsett and Crouzeix have optimal algebraic order, i.e., p = m + 1. 

In our numerical experiments, the accuracy was measured by the number of correct significant 

digits of the first component of the numerical solution at the endpoint T = tN, i.e., the value of 

sd : = - log10 j ly<1>(T)-yN I j. If T coincides with a zero of y< 1>(t), then this value can be used for a 

mutual comparison of the the pha_se errors of the various methods ( cf.[8]). 

7.1. A model problem 
Consider the equation 

Er_ _ [ 0 wl 
dt - -w 0 y, w ER 

with initial condition y (0) = ( 1, Ol. The exact solution is given by 

[
cos( wt)] 

Y = sin(wt) · 

(7.3) 

This problem belongs to the class of model problems to which the theory of the preceding sections 

applies. In Table 7.1 the sd(h)-values are presented for w = 5, T = 1001(2'11' / w) and for various 

integration steps h. In addition, 
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TABLE 7 .1. Problem (7 .3) with w = 5 and T = 1001 (2?T / w) 

method h =?T; 4w h =?T /8w h =?T / 16w h =?T /32w Pe.ff 
(7.1) 1.1 1.9 3.1 4.3 4 
(7.2) 0.6 1.7 2.8 4.0 4 
(6.4) 2.1 3.6 5.3 7.1 6 
(6.5) 3.0 5.1 7.5 9.9 8 

we list the effective ?rder Pe.ff : = (sd (h )- sd (2h )) / log10(2). These results show that the effective 
order is just the order of dispersion q as predicted by the theory. 

7.2. A stiff problem with oscillating solution 
In order to illustrate the A-stability of the various methods, we consider the problem 

! = -374-2500t -86-500t 53+500t y, 
[ 

113+ lOOOt 26+200t - l6-200tl 

191 +3000t 44+600t -27-600t 

y(O) = (-1,5, Il; 

the first component of the exact solution is given by 

y<1>(t) = sin(t)-3cos(t)+2exp(-50t2). 

(7.4) 

Evidently, this problem is highly stiff: the solution consists of undamped oscillating components and 
a rapidly decaying component (the stiff component). 

In the numerical experiments, the initial phase was integrated using extremely small steps in order 
to avoid errors corning from the transient phase. From t = I on, the steps used are those listed in 
Table 7 .2. The superiority of 

TABLE 7.2. Problem (7.4) with T= IO?T+arctan(3) and h =(T-1) / N 

method N=50 N=IOO N=200 N=400 PeJJ 
(7.l) 0.2 1.1 2.2 3.4 4 
(7.2) 1.1 1.0 2.1 3.2 - 3.7 
(6.4) 0.5 1.8 3.5 5.3 6 
(6.5) 0.7 2.4 4.7 7.7 -9 

the high-dispersive methods is again clear from these results. 

7. 3. The effect of changing frequencies 
In the preceding problems the frequencies of the oscillating solution components did not depend on t. 
We now show the influence of a variable frequency on the accuracy of the numerical solution. For 
this purpose, we again consider problem (7.4). Let us denote the entries of the matrix occurring in 
(7.4) by a;,j+b;.l· If these entries are replaced by 

a;./l +2£t)+b;.jt, £constant, (7.5) 

we obtain a problem, the solution of which does not have a constant frequency anymore. For 
instance, 

yO>(t) = sin(wt)-3cos(wt)+2exp(-50t2), 
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where the frequency w = 1 +t:t. The analogue of Table 7.2 is given in Table 7.3 for t: = 10-2 and 
t: = 10-1 . These results clearly show the drop 

TABLE 7.3. Problem (7.5) with T=[l0'17'+arctan(3)]/(l+t:T) and h =(T-1)/ N 

method t: N=50 N=lOO N=200 N=400 Peff 
(7.1) 10 2 0.2 1.0 2.2 3.4 4 
(7.2) 10-2 1.4 1.0 2.0 3.2 4 
(6.4)• 10-2 0.4 1.7 3.2 4.5 ,..._, 4.5 
(6.5) 10-2 0.6 2.1 3.3 4.2 ,..._, 3.5 

(7.1) 10 I 0.1 0.9 2.0 3.1 ,..._, 3.7 
(7.2) 10-1 0.8 0.9 1.8 2.9 ,..._, 3.5 
(6.4) 10-1 0.3 IA 2.8 4.1 ,..._, 4.5 
(6.5) 10-1 0.4 1.7 2.9 3.7 ,..._, 3.5 

in accuracy of the high-order dispersive methods (6.4) and (6.5), whereas the conventional methods 
(7.1) and (7.2) loose only a small amount of their sd-values. However, the higher-order dispersive 
methods are still superior to the conventional methods. 

7. 4. The effect of damped oscillations 
Finally, we consider the behaviour of the high-order dispersive methods in problems with damped 
oscillations. As test equation we take Bessel's equation 

t 2 .f!:J!._ + t !!r_ + t 2y = 0 10 :,;;;;;; t :,;;;;;; T (7.6) 
dt2 dt ' 

with the solution y (t) = J 0(t). 
By writing this second-order equation as a system of first-order equations we can apply the various 

DIRK methods. · 

Table 7.4 presents results for T equaling the hundredth zero of J 0(t), i.e., 
T = Z 100 : = 313.3742660775. Although the high-order dispersive methods 

TABLE 7.4. Problem (7.6) with T = Z 100 and h =(T-10) / N 

Method N=lOOO N=2000 N=4000 N=8000 Peff 
(7.1) 2.3 3.2 4.3 5.4 ,..._, 3.5 
(7.2) 2.1 3.0 4.2 5.3 ,..._, 4 

(6.4) 2.9 4.1 5.1 6.0 ,..._, 3 
(6.5) 3.3 4.3 5.2 6.l 3 

furnish more accurate results than the methods of Norsett and Crouzeix, they do not show the order 
of dispersion q, but instead, their algebraic order p. The reason is, of course, ~e 1 / Vt-behaviour of 

the amplitude of the solution y(t) (recall that J 0(t) ,..._, constant*cos(t - ~ )t - 2 as t ~ oo). In order 

to illustrate this we tran~form (7 .6) in such a w_ay that the transformed equation has an undamped 
solution. Writing t = Wt and y(t) = VlO / ty(t), we obtain 

d 2y _l_ - _ - T 
-2 + (100+ -2 )y - 0, 1 :,;;;;;; t :,;;;;;; - (7.6') 

dt 4t 10 
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with the undamped solution y(t) = vf(J 0(10t). For this problem the results listed in Table 7.4' do 
show the order of dispersion q rather nicely. 

TABLE 7.4'. Problem (7.6') with T =Z 100 and h =(T-10) /(ION) 

Method N=IOOO N=2000 N=4000 N=8000 Peff 
(7.1) 1.5 2.5 3.6 4.8 4 
(7.2) 1.3 2.2 3.4 4.6 4 
(6.4) 2.2 3.8 5.5 7.3 6 
(6.5) 2.8 4.9 7.4 8.7 8 

REFERENCES 
[I] BRUSA, L. & L. NIGRO, A one-step method for direct integration of structural dynamic equations, 

lnt. J. Numer. Meth. in Engng. 15, 1980, 685-699. 
[2] BURRAGE, K., Efficiently implementable algebraically stable Runge-Kutta methods, SIAM J. Num. 

Anal. 19, 1982, 245-258. 
[3] CHAWLA, M.M. & P.S. RAo, A Noumerov-type method with minimal phase-lag for the integration 

of second order periodic initial-value problems II. Explicit method, to appear in J. Comp. Appl. 
Math. 

[4] CHAWLA, M.M., P.S. RAO & BENY NETA, Two- step fourth order P-stable methods with phase-lag 
of order six for y" = f (t,y ), to appear in J. Comp. Appl. Math. 

[5) CROUZEIX, M., Sur la B-stabilite des methodes de Runge-Kutta, Numer. Math. 32, 1979, 75-82. 
[6] DEKKER, K. & J.G. VERWER, Stability of Runge-Kutta methods for stiff nonlinear differential equa­

tions, North-Holland, Amsterdam-New York-Oxford, 1984. 
[7] GLADWELL, I. & R.M. THOMAS, Damping and phase analysis of some methods for solving second 

order ordinary differential equations, Int. J. Numer. Meth. in Engng. 19, 1983, 495-503. 
[8] HOUWEN, P.J. VAN DER & B.P. SoMMEIJER, Explicit Runge-Kutta (-Nystrom) methods with reduced 

phase errors for computing oscillating solutions, to appear in SIAM J. Num. Anal. 
[9] LAMBERT, J.D., Computational methods in ordinary differential equations, John Wiley & Sons, New 

York-London, 1973. 
[10) N</lRSETT, S.P., Semi-explicit Runge-Kutta methods, report No. 6174, University of Trondheim, 

Norway, 1974. 
[11) STETTER, H.J., Analysis of discretization methods for ordinary differential equations, Springer Ver-

lag, Berlin-Heidelberg-New York, 1973. · 
[12) STIEFEL, E. & D.G. BEITis,'Stabilization of Cowell's method, Numer. Math. 13, 1969, 154-175. 
[13] STREHMEL, K. & R. WEINER, Nichtlineare Stabilitiit und Phasenuntersuchung adaptiver Nystrom­

Runge-Kutta Methoden, Computing 35, 1985, 325-344. 
[14) STREHMEL, K., Stabilitiits- und Phasenuntersuchung von linear-impliziten Methoden fur 

y" = f (t,y), in: Proc. of the "4e Tagung Numerische Behandlung von gewohnliche Differential 
gleichungen" (ed. R. Marz), Berlin, 1984. 

[15) THOMAS, R.M., Phase properties of high order, almost P-stable formulae, BIT 24, 1984, 225-238. 
[16) TwIZELL, E.H. & A.Q.M. KHALIQ, Multiderivative methods for periodic initial value problems, 

SIAM J. Numer. Anal. 21, 1984, 111-122. 


