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It is shown that it is possible to obtain fourth-order accurate diagonally implicit Runge-Kutta-Nystrom 

methods with only 2 stages. The scheme with the largest interval of periodicity, i.e. (0,12), is given. Furth­

ermore, the requirement of P-stability decreases the order to 2. 
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1. INTRODUCTION 

For the numerical integration of the special second-order initial value problem 

y" = f(t,y), y(to) =Yo, y'(to) =Yo , 

1 

(1.1) 

it is often advantageous applying a direct method for this type of differential equations, rather than 

rewriting ( 1.1) to its first-order form. 
Therefore we consider general Runge-Kutta-Nystrom methods which are of the form [5,6) 

m 

Yn,j = Yn + cjhy~ + h2 ~ aj,lf(tn +c,h, Yn,1) , j = l, ... ,m , 
/=I 

m 

Yn +1 = Yn + hy~ + h2 ~ bjf(tn +cjh, Yn,j), 
j=I 

m 

Y~ +I = Y~ + h ~ b.jf(tn +cjh, Y,,,j), 
j=I 

..l 2 - ~ ""' 
2 cj - £.J aj,I , vj . 

/=I 

(l.2a) 

(l.2b) 

(1.2c) 

Here h is the step size, tn = t 0 + nh and Yn +i. y~ + 1 are approximations to the exact solution y(tn + i) 

and y'(tn + 1 ). Since the computational complexity of this fully implicit scheme is a deterrent prospect, 

we confine our considerations to diagonally implicit (or semi-explicit [2]) methods, which result from 

(1.2) by setting aJ,I =O for /> j. These methods are much more attractive from a computational point 

of view, because now in each implicit relation in (l.2a) only one (unknown) Yn,j is involved. Further­

more, if we require aj,j =a(=l=O) for all j, then the scheme allows for an efficient implementation 

because the decomposition of the matrix l-ah 2Jn, Jn=(of!oy)l 1• occurring in Newton-type methods 

can be used in all stages. 
In the sequel these schemes are referred to as DIRKN methods; they are compactly represented by 

means of the Butcher array 
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with obvious definition of c,b and b'. 
In the case of first-order ODEs, this idea with respect to the choice of the A-matrix was introduced 

by N0RSETT [8] and, since then, extensively discussed in numerous papers (e.g. [l]). On the contrary, 
for second-order ODEs, this approach is rarely discussed in the literature; as a matter of fact, we are 
not aware of any such a paper. 

In this note, we will derive a fourth-order, two-stage DIRKN method. 

2. STABILITY 
In studying the (linear) stability of DIRKN methods, we apply the scheme (1.2) to the scalar test 
equation 

AEIR. 

Setting H=h>. and eliminating the intermediate results Yn,j• the numerical solution satisfies [6] 

[;:+:,] = M(H
2
)[;:] • M(H

2
) = ['~;,':~~=:: i~:::~~=::]. 

where L=I+H2A and e=(l, ···,If. 
Introducing the functions 

S(H2) = Trace (M) and P(H2) = Det(M) 

the characteristic equation corresponding to the difference equation (2.2) is of the form 

t2 - S(H2)t + P(H2) = 0 . 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

In this note we are particularly interested in DIRK.N methods which are suitable for the integration 
of periodic initial value problems. Therefore, we introduce the following definitions ( cf. [7]): 

DEFINITION 1. An interval (O,Hij) is called the interval of periodicity of the method (1.2) if the roots 
of (2.4) are complex conjugate and of modulus one. 

DEFINITION 2. The method ( 1.2) is said to be P-stable if its interval of periodicity is (0, oo ). 

The feature of a nonempty int~rval of periodicity is important in integrating periodic solutions. It 
guarantees that for H 2 e{O,Hij) the numerical solution will not be damped (nor amplified); hence, the 
phenomenon of 'orbitally instability', as it was termed by STIEFEL and BETTIS [9] will not occur. 

Obviously, if the method (1.2) has an interval of periodicity (O,Hij) with Hij >0, then the product 
of the roots of (2.4) is equal to I, for all H 2 e{O,Hij) (see Definition I). Since, the term P(H2) in 
(2.4) equals the product of the roots of this quadratic, we have: 

A necessary condition for the method (1.2) to possess a nonempty interval of periodicity in 
P(H2)=1. 

3. CONSTRUCTION OF THE METHOD 
In [5], Hairer derived m-stage methods of order 2m. His starting point was the optimal (Gauss) 
methods [2] for first-order differential equations. The resulting methods are proved to be P-stable. 
However, they have a full A-matrix. 

In this section we will study what is attainable within the class of two-stage DIRKN methods, pos­
sessing a nonempty interval of periodicity. 

First we observe that, by virtue of the 'compatibility conditions' (1.2c), there are only six free 
parameters at our disposal. For fourth-order consistency, we have to satisfy eight conditions (see e.g. 
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[3]: three conditions for they-component and five conditions for the y'-component. This seems to be 

overambitious, however there appears to exist a solution. 
To simplify the analysis, we use a lemma due to Hairer [4]: 

LEMMA: Let 

bj = bj(l-cj) j = l, ... ,m. (3.1) 

Then the order conditions for they-component are a subset of the order conditions for they' -component. 
0 

Now, in terms of the free parameters ci.c2 ,bl and b2, the fourth-order conditions reduce to 

bi + b2 = 1 ' 

blc1 + b2c2 1/2 

bi er + b2d 1/3 

bid + b2d 1/4 

bid+ b2c1(c~+c1c2-cr) = 1112. 

The equations (3.2) are solved by 
I I l_;;::- I _;;::-

bi = b2 = 2, c 1 = 2+6 v3 , c2 = 2+ v3 , 

(3.2a) 

(3.2b) 

(3.2c) 

(3.2d) 

(3.3) 

(3.4) 

and it turns out that the remaining order condition (3.3) is satisfied by these values. Moreover, we 
found P(H2)_1. 

Now, the scheme is completely determined by (3.4), (3.1) and (l.2c). 
Obviously, the periodicity condition requires IS(H2)1 <2. It is easily verified that the first solution 

in (3.4), i.e. the one where superior signs are used, yields Hij = 12, whereas the other solution, taking 

lower signs, results in Hij = 3 + 3 V3 =8.2. 

Hence, we are now able to formulate our final result: within the class of two-stage DIRKN 

methods it is possible to obtain fourth-order accuracy and the scheme with the largest interval of 

periodicity, i.e. Hij = 12, is given by 

l.+l.V3 l.+_l V3 
2 6 6 12 

l._l.-J3 _l.FJ 
2 6 6 

J_ __ l V3 
4 12 ' 

2 

0 

l.+_l V3 
6 12 

l.+_l V3 
4 12 

2 

Lastly, we state, without derivation, a few additional results: 

(3.5) 

(i) one may wonder whether it is possible to obtain P-stability within this class of two-stage DIRKN 

methods by decreasing the order from four to three. Here is the negative answer: There is no P­

stable third-order two-stage DIRKN method. Moreover, the periodicity interval cannot be 

enlarged. It turned out that (3.5) possesses the optimal Hij-value for two-stage methods of (at 

least) order 3. 

(ii) it should be observed that the c-values in (3.5) are the Gauss-Legendre quadrature points, which 
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are probably responsible for the relatively high order of this scheme. Therefore, it is natural to 
ask whether this choice is suitable in obtaining high-order DIRKN methods using more stages. 
We investigated the case m = 3 and, once more, the answer is disappointing. 
If we again impose condition (3.1 ), we have 8 additional conditions for order 6, and only 4 of 
them are fulfilled. However, the ones which are not satisfied, have extremely small error con­
stants. Therefore, this method may be of interest because of its accurate behaviour and its rela­
tively small extra costs ( cf. the discussion in Section 1 ). This fourth-order three-stage method is 
given by 

J_ __ l Vi5 J_ __ l Vi5 
2 10 5 20 

1 3 1 Vi5 J_ __ l Vi5 --+- 15 
2 40 20 5 20 

1-+_1 Vi5 
2 10 

-1..+_1 Vi5 
25 50 

3 2 Vi5 --+- 15 
25 25 

J_ __ l Vi5 
5 20 

(3.6) 

2-+_1 Vi5 2 2_ __ 1 Vi5 
36 36 9 36 36 

5 4 5 
18 9 18 

Finally, we remark that this scheme has an empty interval of periodicity. It is strongly stable (i.e. 
1r; 1 <I) for H2 E(0,9.5)U(10.6,19.5) with 1r(H2)1 <1.025 for H2 E(9.5,10.6) o 

Prof. P.J. van der Houwen is gratefully acknowledged for his critical remarks. 
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