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Bayes tests for locally asymptotically normal families 

by 

Donald R. Truax**) 

ABSTRACT 

This paper generalizes results on the asymptotic behavior of Bayes tests, 

developed by Johnson and Truax for exponential families, to families of dis

tributions satisfying a sufficiently strong local asymptotic normality con

dition. The present paper considers only the case of a single parameter and 

a simple, zero-one, loss function and obtains an approximate form for the 

Bayes acceptance region in terms of a local sufficient statistic, as well as 

the asymptotic form of the Bayes risk. Of special interest is the dependence 

of the risk on the prior distribution. 
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1. INTRODUCTION AND SUMMARY 

In a previous paper [3] Johnson and Truax have studied the large sample 

behaviour of the risk of Bayes tests when the underlying distribution be

longed to a multivariate exponential family. The purpose of the present paper 

is to show that the same results hold if the distributions merely satisfy 

a sufficiently strong "local asymptotic normality" condition. This condition 

is satisfied by any exponential family and in a large number of other cases, 

and is discussed at the end of Section 2. 

We suppose that x1,x2 .•. are independent and identically distributed 

random variables having a common probability density f(x;8) with respect to 

some a-finite measureµ. The density is assumed to depend on a real valued 

parameter 0 and {x : f(x;8)> 0} does not depend on A. The log likelihood 

function will be denoted by l(x; 8) = log f(x;8). Through this paper we 

assume that l(x; 8) is a strictly concave function of 8 for each x. The de

rivative of l with respect to 8 will be denoted as l'(x;8), and if this de

rivative is evaluated at 8 = 0 we use the abbreviated notation l 1 (x). 

It will be necessary to introduce some notation for the discussion that 

follows. We will approximate the log likelihood ratio with the log likeli

hood ratio of a normal family. Let x = (x1 ,x2 , ••. ) and 

(1) 
n 

h (x;0) = I l'(x.) 8-½J82 
n ~ n i=I i 

:where 

Throughout the paper J is assumed finite and positive. The error of approx

imation is 

n 
(2) T (x ; 8) = l {l(x. 

n ~ i=I i 

e) -l(x.) -h (x.; 0)}. 
L n L 

Define, for each c > 0 

(3) = {x : sup IT (x;e)l:s;s}. B (c) 
n I 01:s; lo& n 

n ~ 
,

v n 
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Our local asymptotic normality property will be expressed in terms of 

the rate of convergence to zero of P0 (B~(E)), where P0 is the distribution 

of X when 6 = 0. ~ 
The statistical problem we will be concerned with is the testing of a 

simple hypothesis against unrestricted alternatives. Without loss of gen

erality we can express the null hypothesis as e =O, and the alternative as 

0 f O. Suppose there is a prior distribution which assigns positive prob

ability y to the null hypothesis and distributes the remaining probability 

according to a continuous density g(0) <f g(6)d 6 = 1-y). The Bayes test 

based on x1,x2 , ••• ,Xn relative to this prior distribution is easily seen 

to have the acceptance region 

(4) I r1: 1[l(x. ,e) -l(x.)J 
1= 1 ~1 

D ={x: e - g(6)d6:;;y} 
n ~ 

where, for simplicity,we write l(x.) for l(x.; 0). 
~1 ~1 

The exact characterization of the acceptance region is complicated by 

the fact that there is no sufficient statistic as was the case in the ex

ponential family setting. However, in Section 2 we will show that under our 

local asymptotic normality condition the set D can be approximated, in a 
n 

certain sense, by simpler regions depending on the local sufficient statistic, 

(5) 

where 

(6) 

D± (e:) = fx-(:-;=:;::;;=l=::::;;~ .I l'(~1·>)2 I c±e: n l~· li'n(logn)J 1 =I ~ p + + log n 

½c 
e = 

- p 

yJ(p+l)/2 

li"irgo(p+I)p/2 • 

log log n} 
log n 

The constant g0 > 0 and p > 0 are related to the prior density g by the 

assumption 

(7) 

The risk function for the Bayes procedure is split into two parts. The 



type I risk is the expected loss (here, we consider only the simple zero

one loss function) when H0 is true 

and the type II risk, which 1.s the expected loss when H0 fails 

In Section 2 we compute each of these and show that the Bayes risk 1.s 

asymptotically the type II risk and behaves like 

C ( log n) (p+l)/2 
p n 

where C is a constant 
p 

3 

These results generalize the previous results of JOHNSON and TRUAX [3] 

1.n the case of a single parameter. Analogous generalizations can also be made 

if the parameter is vector valued. See RUBIN and SETHURAMAN [4] for a some

what different approach. 

The form of the approximate regions (5) suggests that we might term 

tests with acceptance regions of the form 

{x:( 1 I l'(x.))2:s;c2} 
~ ✓n(logn)J i~I 1. 

"almost Bayes" tests. As in [3], some rather surprising results are obtained 

when we compare the risks of such tests with the risk of the optimal Bayes 

test for various values of the constant c. 

Finally, in section 3, we discuss the sometimes disasterous consequen

ces of wrongly guessing the prior distribution. The behaviour of the risk 

depends strongly on the behaviour of the prior density g near zero. Referring 

to the relationship (7), the rate pat which the prior tends to zero when 

8 tends to zero, is very important. 
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2. THE MAIN RESULTS 

The principal results of this section will be the approximation of the 

Bayes acceptance region by simpler regions and the asymptotic behaviour of 

the Bayes risk. The dependency of the risk on the prior distribution will be 

discussed. In order to prove the main theorems of this section a number of 

technical lemmas will be required, and these have been placed in the appendix. 

THEOREM I. Given any £ > O, we have for a-U suffieientl,y large n 

- + B (E/4) n D (E)c B (E/4) n D c B (E/4) n D (E). n n n n n n 

By invoking a local asymptotic normality condition expressed in terms 

of the rate at which P0 (B~(E)) tends to zero, and with a further condition 

on the distribution of l'(X) one gets the asymptotic type I risk. 

THEOREM 2. If EO(etl'(X))< 

P0 (B~(E)) = o(n-q) for all 

00 for all t in an open neighborhood of O, and if 
p+l E > O, where q > - 2- , then 

where 

~C 
p 

(logn) (p-1) /2 

N(p+l) /2 

cP = 2go(p+I) (p-1)/2 J -(p+I)/2. 

Finally, under our local asymptotic normality condition we get the type 

II risk. 

THEOREM 3. Under the hypothesis of Theorem 2 

COROLLARY. Under the hypothesis of Theorem 2 the Bayes risk satisfies 

J ( ) (p+l) /2 
R = yP0 (X t/. D ) + P8 (X e: D ) g (8) d 8 ~ C logn • 

n ~ n. ~ n p n 
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PROOF OF THEOREM 1. We will first show that x e: B (e/ 4) n D implies ~ n n 
! ED:(£) if n is sufficiently large. The proof will be by contradiction. 

Suppose that x(n) E B (e/4) n D for all n, but for infinitely many n, ~ n n 
x<n) i D +- ( €) • We then have 
~ n 

J exp{ I [l(x~n) ; 8) -l(x~n))J} g(8) d8 
i=l i i 

J exp{f [l(x~n) ;8)-l(x~n))J}g(8)d8. 
i=l i i 

I e I::;; (logn) /v'n 

Since x(n) E B (e:/4) , we have by (3) 
~ n 

-s/4 J --- n 2 y;?: e exp{ e✓Jnlogn vn - 2 e J }g(e )de 

I £JI ::;;(logn) / ✓n 

where 
n 

V =---~ 
n I 

/n(logn)J i=l 

Given o > 0, we have for sufficiently large n 

y> 
(Jn)(p+l)/2 

(8) 

-'c./4(.l s,) ~v2 (logn) 
e -u g-oe n 

= ------.,--,-----
(Jn) (p+l) /2 

---2 
e -½ (8-vn✓log n) 

I 
I e+v ✓log n I ::;; ✓.f log n 

n 

because of (7) 

Since v is bounded by Lemma A-2, the region of integration in (8) con
n 

verges to the whole real line, so for sufficiently large n 
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(9) y > 

(Jn)(p+l)/2 

If X:(n) r/. D + (t::) we have 
~ n 

so 

( l O) 

2 > ( +l) + c+e: log logn V p -- - p -=<----=-
n logn logn 

l v lP > c 1-0) (p+1)P 12 
n 

for n sufficiently large, and from (9) 

e-E:/4(I-8)3gO(p-l)p/2 

and (10) we have for such n 

y > 

> 

½v2 (logn)(l )p/2 rn-2 e n ogn 1'L1T 

(Jn)(p+l)/2 

e-e:/ 4 (J-8) 3g0 (p+l)p/ 2 ffi 

(Jn)(p+l)/2 
e 

c+e: 
HP+ I) logn + - 2-

This gives a contradiction if we choose 8 so small that ee:/ 4 (1-8) 3 >I. 

For the second part of the Theorem we show that if n is sufficiently 

large~ EB (e:/4) n D- (E) implies 
n n 

(11) Iexp { I U.(x.;8) -l(x.)J} g(8)d8 <y. 
i=I i i 

Write the integral in (11) as the sum 

I 
J 8 I s(logn) //n 

+ I 
lei> (logn)//n 

-e:/8 +K -d(logn) 2 
s e y e 

for some positive constants Kand d by Lennnas A-5 and A-6. Then, if n is 
· -d(logn)2 - 1c./8 large enough Ke < y ( 1-e ) . 
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PROOF OF THEOREM 2. The existence of the moment generating function of l'(X) 

in a neighborhood of zero is well known (see e.g.[2;p.549'"]) to imply that 

n 
Po( -- l l'(X.)> a)~ 1-<P(a) 
~ i=l 1. n n 

where a = 
n 

O(llogn) and <Pis the standard normal distribution function. 

Let 

(12) 

Our first step will be to compute the "approximate" type I risk 

n n 
= yP0 < ~ I l' (x.) > b ) + y P0 <-1 1, l' (x.) < - b ) 

vnJ i=l 1 n lnJ i,,;;1 1 n 

-lb2 
2ye 2 n ~ y ( 1-<P(b ) ) + y <P (-b ) ~ 

n n ✓z.ir b 
n 

- s / 2 - ( p+ I )/ 2 ( l ) ( p-1 ) / 2 
2ye n ogn -c/2 = 

e 

In exactly the same way 

(logn)(p-l)/ 2 s/2 
yP0 (!iD:(s))~CP~-=-~--- e • 

(p+l)/2 
n 

Now, we can write the type I risk as 

(1 ) (p-1)/2 
C ogn 

p (p+l) /2 
n 

yP0 (X ED)= y (I-P0 (XED nB (t))) -yP0 (XED nB'(s)). ~ n ~ n n ~ n n 

-s/2 
e 

The last term is o(n-q). We will show that y(l-P0 (XED nB (s))) 1.s ~ n n 
the dominant term. By Theorem 1, 

= C 
p 

(logn)(p-l)/ 2 

n 
(p+l)/2 

-2E 
e (I +o (I)). 
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Similarly, 

Po(XiDnB (e:)) :S::Po(XED-(4E) nB (.i::)) ~ n ~ n n 

and this implies 

yP0 (Xr/.D nB (i::)):s:: C 
(logn)(p-l) 12 

(p+l) /2 
2i:: 

e (I+o(J)). 
~ n n p 

-n 

Thus, from (12), for any E > 0 

(logn)(p-I)/ 2 -2E: 
C ------ e (l+o(I)):s:: yP0 (~ iDn) 

P (p+ I) /2 
n 

(logn)(p-1)/2 2e: 
e (J+o(l)) :s:; C 

p 
n 

(p+l)/2 

and since Eis arbitrary, Theorem 2 follows. 

Before proving Theorem 3, it will be helpful to prove three preliminary 

Lemmas. In order to simplify writing, we denote the type II risk by 

R2 = f P8 (X ED )g(8)d8 . 
,n ~ n 

R = f P0 (XED nB (e:))g(8)d8 + o(n-q) . 2,n ~ n n 

PROOF. 

f Po(X ED n B' (r:::))g(8)d8 = ~ n n f f 
n ( ) 

exp{ l [l(x.;8)-l(x.)]}dP0 n (x)g(8) de 
i=I i i ~ 

D nB' (e) 
n n 

where P6n) denotes the distribution of x1,x2, ••. ,Xn when e = 0. Interchanging 

the order of integration we can write the integral as 

J 
D nB' (r:::) 

n n 

f n ( ) 
exp{ I [l(x. ;8)-l(x.)]}g(8)d8 dP0 n (x) 

i=I i i ~ 

:s:; yPO(X EB' (r:::)) = o(n-q) 
~ n 



R = I 2,n 
DnB (e:) 

n n 

9 

I exp{ r [l(x. ;0)-l(x.)]}g(0)d0 dPO(n) (~)+o(n-q). 
i-] l. l. 

lels(logn)//n -

PROOF. The proof is immediate from Lemmas I and A-7. 

LEMMA 3. Given E > 0, if PO (B~ (e:)) = o(n -q), then for> aU sufficiently la:I'ge 

n 

where 

and 

V = n 

-q 3e: + -q + o(n )s R2 s e I (e:) + o(n ) ,n n 

2 
+I e½vn(logn) 

o-(4e:) 
n 

✓n(logn)J 

n 

l 
i=I 

l' (x.) • 
l. 

PROOF. From Lemma 2, and the relations (3) and (7), we have for sufficient

ly large n 

exp{_l [l(xi;e)-l(xi)J}g(0)d0dp0 (~)+o(n ) R = J( 
2,n 

D nB (€) 
n n 

J ,n (n) -q 

i= I 
lei s(logn)/n 

e2e: go 
s ---,-----,-:--r=-

(Jn) (p+l)/2 

I ~-,-- n 2 
ee ✓nlogn - 2 J e g(0)d0 dPin) (~)+o(n-q) 

lels(logn)//n 

I 
D n B (e) 

n n 

-- 2 I 101P eeilogn vn -½e d0 dP(n)(~) +o(n-q). 

I eJs ✓Jlogn 

+ Now, D n B (e:) c D (4~) if n is large, and upon completing the square in n n n 
'the exponent of the above integral 
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2E 
e go f R ~ ---,--,,_...,.-

2, n (Jn)(p+l)/2 + 
D (4E) 

n 

2 ~v (logn) e n 

J 
Ip e-1282 d8 dP(n)(x) -q I 8 + ✓log n vn O ~ + o (n ) • 

I a+✓log n v I ~ /J log n n 

+ If x ED (4E), then v is bounded so the inner integral above is asymp-n n 
totically equivalent to the same expression where the region of integration 

of the inner integral is the whole real line. Thus, if n is sufficiently large 

31:: + R2 ~ e I (e), 
,n n 

giving the required upper bound. For the lower bound, the same kind of ar

guments give 

-3E 
e go 

R ~ ----,---.,...-,...,.... 
2,n (Jn)(p+l)/2 

2 
½v (logn) e n 

Lemma 3 follows if we can show 

(14) 
(Jn)(p+l)/2 

If x E D- ( 4 E), 
n 

- J 
D (4&) nB'(e:) 

n n 

2 ½v (logn) 
e n 

I 2 
2V (logn) n 

c-4E p 
~ ½(logn) (p+l) + - 2- - 2 log log n. 

The left hand side of (14) is then less than or equal 

O(n -q) 



- f 
D (4S)nB' (s) 

n n 

PROOF OF THEOREM 3. The proof will follow from Lemma 3 if we can show 

r(s) ~ C log n + ( )(p+l)/2 
n p n 

+ 
for each s > 0 . r- (s) is given by ( 13). It will be enough to consider 

+ n 
I (E). Let P be the distribution of the standardized statistic n O,n 

n 
I l' (X.) 

~ i=l 1. 

when 8 = O, and let 

b = l(logn)(p+l) + (c+4s) - p log log n. 
n 

We can then write 

+ go 
I (E:) = ---~~ 
n (Jn)(p+l)/2 I 

lu!:o;b 
n 

1 1 

By the same argument as in Johnson and Truax [3], one can make use of asymp-

totic expansion Theorems for P to show O,n 

(15) 
+ 

I (E) ~ 
n (Jn)(p+l)/2 

where~ is the standard normal distribution. 

To evaluate the right hand side of (15), we first let a = (logn) 114 and 
n 

notice 
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uniformly for lul~ a. Secondly, 
n 

Finally, 

f 
lul<a n 

= ili(logn)(p+l)/2 
J 

f J 
lu I::; I 

-102 I e + a u IP e 2 d0 du 
n 

ili f lulp d~ 

a <lul::;b n n 

a b 
__ n_ < lul::; _n __ 

✓log n 

~ ili(logn{p+l)/2 f lulp du 

lul::; ✓p+I 

= v2n(logn)(p+l)/ 2 2(p+l)(p-l)/2 • 

This gives 

I+ (e:) ~ 
n 

2g0 (p+l)(p-1)/2 (p+l)/2 

(p+l)/2 (logn) 
(Jn) 

= C (log n)(p+l)/2 • 
p n 

The corresponding calculation for I-(e:) is completely analogous. 
n 

REMARKS. The local asymptotic normality condition P0 (B~(e:)) = o(n-q) for 

some q > (p;I) is alsways satisfied when the underlying distribution belongs 

to an exponential family since it is easy to show that the set B'(e) is 
n 

empty if n is sufficiently large, It also holds in a number of other situ-

ations. For example, it can easily be checked for any smooth curved ex

ponential family (for any q > 0). If one assumes Cramer's regularity con

ditions [I; page 500] that .l", .l"' also exist for all 0 in some interval 

about O and on this interval 1.l'" (x;0) I::; H (x), then a sufficient condition 

for PO (B~ (e:) = o (n -q) for all e: > 0 is that .l" (X) has a moment generating 
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function in a neighborhood of zero, and H has sufficiently high moments. 

The condition that l'(x) (or even l"(x)) have a moment generating 

function is satisfied in most cases of practical interest. For example, any 

exponential family, or any curved exponential family satisfies it. If 

f(x;0) = p(x-0) where p(x)> 0 on R and p(x) is rational or p(x) = e-Q(x) 

where Q is a polynomial, the condition is also satisfied. 

3. ALMOST BAYES TESTS 

We will say that a test for 0 = 0 is almost Bayes if it has an accep

tance region of the form 

n 
I l' (X.) 

• 1 l. 
1.== 

:,;; C • 

✓n(logn)J 

Under our assumptions it is easy to compute both the type 1 and type 2 risk 

functions (as in [3] ) . The type 1 risk becomes 

the 

For 

g(0) 

g(0) 

n 2y 
yP0 ( I J/' (Xi)_ I> c In (logn)J) ~ 

Also, the type 2 risk can be shown to be 

( (logn) fp+l)/2 p+l 
2c 

n p+l 

Notice that if 
2 

l+p' the type 1 risk is dominant, and the risk of C < 

almost Bayes procedure is much worse than that of the Bayes procedure. 

example, if one used a Bayes procedure based on an assumed prior 

= g0 I a IP + o( I 0 Ip) where p < p when the actual prior was 

= g0 lelP + o( le IP, the Bayes risk is easily seen to be smaller by a 
1 factor approximately p-p n 
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4. APPENDIX 

LEMMA A-1. If x(n) £ B (£) n D for some t > 0 
~ n n 

then 
n l'(x.) 

1 
i~l ---- ➔ Oas n ➔ 00 • 

lnJ(logn) 

PROOF. If this is not the case then there is some positive number o such 

that 

n 
.E 1 l'(x.) 
1= 1 

~ o for infinitely many n. Without loss we can 
lnJ(logn) 

assume .t 1.t'(x.) 2 o /nJ(logn) for some subsequence. Sincex(n)ED nB (£) 
1= 1 'J n n 

we have for all n sufficiently large 

y > J 

n 
I [l (x. ;8)-l(x.) J 

i=I i i 

e g(e)de 
[ e [ :s; log n 

In 

J 
181:S log n 

8E1:1- l'(x.)-~Je2 
1= 1 1 I.. 

e g(8)d8 

In 

n 
l'(xi)- ¥Je 2 

2 
-2 e: 

f 
8Ei=I 

[8 Ip d8 e go e 

I e I :s; log n 

In 

log n//n 
- ~ J82 

J 
/nJ(logn)o8 

2 go -2 £ e 2 ePde e 
0 

-2£ /Jlog n 
½82 goe 

J 
(logn)o8 -

ePde = e 
(Jn)(p+l)/2 

0 
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-2E 2 2 v'Jlog n 2 
goe ½o (logn) 

I 
½(8-ologn) 

ePde = 
(p+ 1) /2 

e e 
(Jn) 0 

-2E 2 2 fJlog n-olog n 
-½82 goe ½o (logn) 

I I 8+o log n Ip d8 = 
(Jn)(p+l)/2 

e e . 
-o log n 

By choosing o < v'J (which 1.s no loss) the integral is asymptotically equiva

lent to 

(ologn)p 

Thus, for large enough n 1.n our subsequence 

y > 

-3E 
goe 

e 
(nJ)(p+l)/2 

-3E p 
goe o /2-ir 

(J)(p+l)/2 

2 2 
½o (logn) 

ili(ologn)p 

e 

Since the right hand side tends to infinity as n ➔ 00 we arrive at a contra

diction. 

LEMMAA-2. For any E>O, if x(n) EB (E)nD 
n n 

then 

V 
n 

is bounded. 

/n(logn)J 

n 

I 
i=J 

.t ' (x. (n) ) 
1. 

PROOF. The proof is again by contradiction. Suppose Iv I is unbounded. We 
n 

can assume, without loss, that there is some subsequence nk such that 

· v ➔ 00 • For convenience we drop the subscript. Since x(n) E D (E) n D 
~ n n 

we have 
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-E 
Y > e f e 

0.¥ .e. I (X~n)) - _21J02 
i.=I I. g(0)d0 

> 

l0l~(logn)//n 

-2£ 
e 

0v ✓log n - ½0 2 
e n j0 jPd0 

(Jn)(p+I)/2 f 
101~/J log n 

(Jn)(p+I)/2 

2 
_2 f: ½v n ( logn) 

e go e 

(Jn) (p+I)/2 

/J log n 

f e 

2 ½(0-v ✓log n) 
n 

0 

Ii log n - v llog n 
n 

f 
-v ✓log n 

n 

V 

By Lemma A-I, IJ log n - v ✓log n = log n (Ii- n ) ➔ 00 so the upper 
n ✓log n 

limit of the integral tends to 00 The integral is then asymptotic equiva-

lent to 

so that for all sufficiently large n in our subsequence 

-3£ r,:;-
e go 1'2'IT ½v2 log n p+I log n + p log (v ✓logn) n - -2- n 

y > 
(J)(p+I)/2 

e 

and if v ➔ 00 we get a contradiction since the right hand side tends to 
n 

infinity. 

LEMMA A-3. If f is a strictly concave function on R such that 

f(-o) < o, f(o) < O, and f(O) = O, then f has its maximum in (-8,o). 

PROOF. 

f'(-o) > 
f(O)-f(-o) 

o- (-o) 

-f(-o) 
0 

> o, 



f'(o) < 
f(o)-f(O) 

o-o 

17 

f(o) < 0 
0 ' 

so f has its maximum in (-o,o). 

LEMMA A-4. Given 

imp lies @ (x) £ ( 
n ~ 

t > O , we have for aU sufficiently large n ~ £ B ( £/ 4) nD- (£) 
- log n log n A • • • n n 

---- , ,- ) , wheve e (x) 1,s the maxurrum hke lihood 
✓ n "n n ~ 

estimator for e based on x 1,x2 , ••• ,xn. 

PROOF. Recall that 

so 

Also, 

Let 

so 

so 

e n 
h (x;8) = - I n ~ n 

i=l 

log n 
h (x· ) = 

n ~' In 

.l'(x-)-
1 

½ J82 

n 2 
log n }:l(x.)-½ (logn) 

J 
vh n 

i=l 1 n 

log n ( /1og n 

In \/ n 
h(p+l) + ~~ J) 

/ log n 

(logn) 2 
- ~ J 

n 

hn(~ ,. -1~ n) _< lo;_n n ( ~ng n / ) c- £ \ 1 (logn) 2 
rn / n J(p+l + log n J/ -zJ 11. 

n 
f (x·e) = 

n ~' n 
l (.l(x. ;8) -l(x.)) 

i=l i i 

T (x; e) 
n ~ 

n 

x e: B (e:/4) implies j T (x;± log n) 
n n ~ ru-

f (x;± log n) 
n ~ In 

:;;; h (x ; ± log n ) + _4e: < 0 
n In n 

for all sufficiently large n. Since f (x;O) = 0 and f (x;0) is strictly 
n~ 1 nn~ 

concave 1n e, we have 

maximum in (- log n, 
In 

shown, by Lermna A-3, that - . E l (x.; 8) has its 
n i=l 1 

log n ) . 

In 
LEMMA A-5. Given t > 0 , there exist positive constants K and d so that 

for aU sufficiently large n, if x £ B (e:/4)nD-(e:) then 
n n 
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J 
IBI> log n 

In 

n 
exp{ l [l(x.;6)-l(x.)]} g(6)d6 

i.,;l 1. 1. 

2 
5 ke-d(logn) 

PROOF. According to Lemma A-4, if IBI> log n 

In 
n n 

I [l (x. ;6)-l(x.)] s 
1. 1. max 

+,-
{ l, [l(x. ;± log n) -l(x.)]} 

i=l i=l 1. v'n 1. 

s max {T (x;± log n) + nh (x; log n)} 
+,- n ~ In n ~ In 

n 
s f + max { ± log~ l l'(x.) -½J(logn/} 

+,- In i==l 1. 

s _4c: + (logn){ /2og n!cp+l)J + 1c-£ J)-½J(logn) 2 
\ og n , 

E: 2 s 4 d(logn) 

for all sufficiently large n, where d 1.s some positive constant. Hence, for 

all such n 

J 
n 

exp { l [ l ( X • ; e ) - l ( X • ) J } g ( e ) de 
i=l 1. 1. 

c:/4 s e 
2 

e -d(logn) J g(6)d6 

IBI> log n 

c:./4 s e e 
2 -d(logn) 

rn 

. LEMMA A-6. Given c: > O, 1,,r. have for aU sufficiently large n that if 

x c: B ( c:/ 4) n D - ( c:) , then 
~ n n 



J 
I e k log n 

n 
exp{ I [l(x. ;8) -l(x.)J} g(8)d8 

i=l i i 

In 

PROOF. Define 

n 
V =----- I l' (x.) . 

1 n /n(logn)J i=l 

Since x e: B (-e:/4) we have, if n is large enough, 
~ n 

n 

log n 
exp{ I [l(x.;8)-l(x.)]}g(8)d8 

i=l i i 

In 

:,; e 

(5/16)e: 
e go 
(Jn)(p+l)/2 J 

lel:s; /J log n 

19 

-t./8 
< e Y • 

We may as well suppose llog n v ➔ 00 • Otherwise, the assertion of the Lemma n 
is obvious since the integral converges to zero. Then, 

e ✓lognv - 1 e2 
P n z 

le! e d8 J 
I e l:s; If log n 

2 
½v (logn) n J = e 

Since x e: D- (s) , v 
n n 

to the real line. The 

(logn)p/Z Iv Ip ili, 
n 

I e + ✓log n v !:s; 
n 

/.J log n 

is bounded, so the region of integration converges 

integral, above, is asymptotically equivalent to 

and this is less than or equal to 

d8 
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Finally, 

n 
exp { l [ l ( x . ; 8 ) - l ( x . ) J } g ( 8 ) d 8 

i=l 1. 1. 

e(S/l 6)'\0 ½(log)(p+l) +He-£) -flog log n 

(Jn)(p+I)/2 
e 

x e(l/16/)i:: ili (p+I) p/2 

(5/]6)E -0 E )t + (J/]6)E 
= e g0ili(p+l)p/2(J)-(p+l)/2 e ~ c 

-£ /8 
= e Y 

LEMMA A-7. Given£> O, thePe exist positive constants Kand d so that fop 

aU sufficiently fopge n, if~ £Bn (£) n Dn 

I exp{ I [l(x. ;8)-l(x.)]}g(8)d8 s K 
1 . I 1. i 

!Bl> ~_E_ 1.= 

In 

2 
-d(logn) 

e 

+ 
PROOF. If x EB (£) n D , then by Theorem I, x £ D (4£) for large enough n. 

n n n 
Using the same arguments as in Lemma A-5 the result follows. 
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